if_age.c revision 1.16 1 1.16 cegger /* $NetBSD: if_age.c,v 1.16 2009/01/30 08:57:35 cegger Exp $ */
2 1.1 cegger /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.1 cegger
4 1.1 cegger /*-
5 1.1 cegger * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.1 cegger * All rights reserved.
7 1.1 cegger *
8 1.1 cegger * Redistribution and use in source and binary forms, with or without
9 1.1 cegger * modification, are permitted provided that the following conditions
10 1.1 cegger * are met:
11 1.1 cegger * 1. Redistributions of source code must retain the above copyright
12 1.1 cegger * notice unmodified, this list of conditions, and the following
13 1.1 cegger * disclaimer.
14 1.1 cegger * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 cegger * notice, this list of conditions and the following disclaimer in the
16 1.1 cegger * documentation and/or other materials provided with the distribution.
17 1.1 cegger *
18 1.1 cegger * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.1 cegger * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 cegger * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 cegger * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.1 cegger * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 cegger * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 cegger * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 cegger * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 cegger * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 cegger * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 cegger * SUCH DAMAGE.
29 1.1 cegger */
30 1.1 cegger
31 1.1 cegger /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.1 cegger
33 1.2 cegger #include <sys/cdefs.h>
34 1.16 cegger __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.16 2009/01/30 08:57:35 cegger Exp $");
35 1.2 cegger
36 1.1 cegger #include "bpfilter.h"
37 1.1 cegger #include "vlan.h"
38 1.1 cegger
39 1.1 cegger #include <sys/param.h>
40 1.1 cegger #include <sys/proc.h>
41 1.1 cegger #include <sys/endian.h>
42 1.1 cegger #include <sys/systm.h>
43 1.1 cegger #include <sys/types.h>
44 1.1 cegger #include <sys/sockio.h>
45 1.1 cegger #include <sys/mbuf.h>
46 1.1 cegger #include <sys/queue.h>
47 1.1 cegger #include <sys/kernel.h>
48 1.1 cegger #include <sys/device.h>
49 1.1 cegger #include <sys/callout.h>
50 1.1 cegger #include <sys/socket.h>
51 1.1 cegger
52 1.1 cegger #include <net/if.h>
53 1.1 cegger #include <net/if_dl.h>
54 1.1 cegger #include <net/if_media.h>
55 1.1 cegger #include <net/if_ether.h>
56 1.1 cegger
57 1.1 cegger #ifdef INET
58 1.1 cegger #include <netinet/in.h>
59 1.1 cegger #include <netinet/in_systm.h>
60 1.1 cegger #include <netinet/in_var.h>
61 1.1 cegger #include <netinet/ip.h>
62 1.1 cegger #endif
63 1.1 cegger
64 1.1 cegger #include <net/if_types.h>
65 1.1 cegger #include <net/if_vlanvar.h>
66 1.1 cegger
67 1.1 cegger #if NBPFILTER > 0
68 1.1 cegger #include <net/bpf.h>
69 1.1 cegger #endif
70 1.1 cegger
71 1.1 cegger #include <sys/rnd.h>
72 1.1 cegger
73 1.1 cegger #include <dev/mii/mii.h>
74 1.1 cegger #include <dev/mii/miivar.h>
75 1.1 cegger
76 1.1 cegger #include <dev/pci/pcireg.h>
77 1.1 cegger #include <dev/pci/pcivar.h>
78 1.1 cegger #include <dev/pci/pcidevs.h>
79 1.1 cegger
80 1.1 cegger #include <dev/pci/if_agereg.h>
81 1.1 cegger
82 1.1 cegger static int age_match(device_t, cfdata_t, void *);
83 1.1 cegger static void age_attach(device_t, device_t, void *);
84 1.1 cegger static int age_detach(device_t, int);
85 1.1 cegger
86 1.3 cegger static bool age_resume(device_t PMF_FN_PROTO);
87 1.3 cegger
88 1.1 cegger static int age_miibus_readreg(device_t, int, int);
89 1.1 cegger static void age_miibus_writereg(device_t, int, int, int);
90 1.1 cegger static void age_miibus_statchg(device_t);
91 1.1 cegger
92 1.1 cegger static int age_init(struct ifnet *);
93 1.1 cegger static int age_ioctl(struct ifnet *, u_long, void *);
94 1.1 cegger static void age_start(struct ifnet *);
95 1.1 cegger static void age_watchdog(struct ifnet *);
96 1.1 cegger static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 1.1 cegger static int age_mediachange(struct ifnet *);
98 1.1 cegger
99 1.1 cegger static int age_intr(void *);
100 1.1 cegger static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 1.1 cegger static int age_dma_alloc(struct age_softc *);
102 1.1 cegger static void age_dma_free(struct age_softc *);
103 1.1 cegger static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 1.1 cegger static void age_phy_reset(struct age_softc *);
105 1.1 cegger
106 1.1 cegger static int age_encap(struct age_softc *, struct mbuf **);
107 1.1 cegger static void age_init_tx_ring(struct age_softc *);
108 1.1 cegger static int age_init_rx_ring(struct age_softc *);
109 1.1 cegger static void age_init_rr_ring(struct age_softc *);
110 1.1 cegger static void age_init_cmb_block(struct age_softc *);
111 1.1 cegger static void age_init_smb_block(struct age_softc *);
112 1.1 cegger static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 1.1 cegger static void age_mac_config(struct age_softc *);
114 1.1 cegger static void age_txintr(struct age_softc *, int);
115 1.1 cegger static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 1.1 cegger static void age_rxintr(struct age_softc *, int);
117 1.1 cegger static void age_tick(void *);
118 1.1 cegger static void age_reset(struct age_softc *);
119 1.1 cegger static void age_stop(struct age_softc *);
120 1.1 cegger static void age_stats_update(struct age_softc *);
121 1.1 cegger static void age_stop_txmac(struct age_softc *);
122 1.1 cegger static void age_stop_rxmac(struct age_softc *);
123 1.1 cegger static void age_rxvlan(struct age_softc *sc);
124 1.1 cegger static void age_rxfilter(struct age_softc *);
125 1.1 cegger
126 1.1 cegger CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 1.1 cegger age_match, age_attach, age_detach, NULL);
128 1.1 cegger
129 1.1 cegger int agedebug = 0;
130 1.1 cegger #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 1.1 cegger
132 1.9 cegger #define ETHER_ALIGN 2
133 1.1 cegger #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 1.1 cegger
135 1.1 cegger static int
136 1.1 cegger age_match(device_t dev, cfdata_t match, void *aux)
137 1.1 cegger {
138 1.1 cegger struct pci_attach_args *pa = aux;
139 1.1 cegger
140 1.1 cegger return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 1.1 cegger PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 1.1 cegger }
143 1.1 cegger
144 1.1 cegger static void
145 1.1 cegger age_attach(device_t parent, device_t self, void *aux)
146 1.1 cegger {
147 1.1 cegger struct age_softc *sc = device_private(self);
148 1.1 cegger struct pci_attach_args *pa = aux;
149 1.1 cegger pci_intr_handle_t ih;
150 1.1 cegger const char *intrstr;
151 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
152 1.1 cegger pcireg_t memtype;
153 1.1 cegger int error = 0;
154 1.1 cegger
155 1.1 cegger aprint_naive("\n");
156 1.1 cegger aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 1.1 cegger
158 1.1 cegger sc->sc_dev = self;
159 1.1 cegger sc->sc_dmat = pa->pa_dmat;
160 1.1 cegger sc->sc_pct = pa->pa_pc;
161 1.1 cegger sc->sc_pcitag = pa->pa_tag;
162 1.1 cegger
163 1.1 cegger /*
164 1.1 cegger * Allocate IO memory
165 1.1 cegger */
166 1.1 cegger memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 1.1 cegger switch (memtype) {
168 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 1.1 cegger break;
172 1.1 cegger default:
173 1.1 cegger aprint_error_dev(self, "invalid base address register\n");
174 1.1 cegger break;
175 1.1 cegger }
176 1.1 cegger
177 1.1 cegger if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 1.1 cegger &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 1.1 cegger aprint_error_dev(self, "could not map mem space\n");
180 1.1 cegger return;
181 1.1 cegger }
182 1.1 cegger
183 1.1 cegger if (pci_intr_map(pa, &ih) != 0) {
184 1.1 cegger aprint_error_dev(self, "could not map interrupt\n");
185 1.1 cegger return;
186 1.1 cegger }
187 1.1 cegger
188 1.1 cegger /*
189 1.1 cegger * Allocate IRQ
190 1.1 cegger */
191 1.1 cegger intrstr = pci_intr_string(sc->sc_pct, ih);
192 1.1 cegger sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 1.1 cegger age_intr, sc);
194 1.1 cegger if (sc->sc_irq_handle == NULL) {
195 1.1 cegger aprint_error_dev(self, "could not establish interrupt");
196 1.1 cegger if (intrstr != NULL)
197 1.1 cegger aprint_error(" at %s", intrstr);
198 1.1 cegger aprint_error("\n");
199 1.1 cegger return;
200 1.1 cegger }
201 1.7 cegger aprint_normal_dev(self, "%s\n", intrstr);
202 1.1 cegger
203 1.1 cegger /* Set PHY address. */
204 1.1 cegger sc->age_phyaddr = AGE_PHY_ADDR;
205 1.1 cegger
206 1.1 cegger /* Reset PHY. */
207 1.1 cegger age_phy_reset(sc);
208 1.1 cegger
209 1.1 cegger /* Reset the ethernet controller. */
210 1.1 cegger age_reset(sc);
211 1.1 cegger
212 1.1 cegger /* Get PCI and chip id/revision. */
213 1.1 cegger sc->age_rev = PCI_REVISION(pa->pa_class);
214 1.1 cegger sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 1.1 cegger MASTER_CHIP_REV_SHIFT;
216 1.1 cegger
217 1.1 cegger aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 1.1 cegger aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 1.1 cegger
220 1.1 cegger if (agedebug) {
221 1.1 cegger aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 1.1 cegger CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 1.1 cegger CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 1.1 cegger }
225 1.1 cegger
226 1.1 cegger /* Set max allowable DMA size. */
227 1.1 cegger sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 1.1 cegger sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 1.1 cegger
230 1.1 cegger /* Allocate DMA stuffs */
231 1.1 cegger error = age_dma_alloc(sc);
232 1.1 cegger if (error)
233 1.1 cegger goto fail;
234 1.1 cegger
235 1.1 cegger callout_init(&sc->sc_tick_ch, 0);
236 1.1 cegger callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 1.1 cegger
238 1.1 cegger /* Load station address. */
239 1.1 cegger age_get_macaddr(sc, sc->sc_enaddr);
240 1.1 cegger
241 1.1 cegger aprint_normal_dev(self, "Ethernet address %s\n",
242 1.1 cegger ether_sprintf(sc->sc_enaddr));
243 1.1 cegger
244 1.1 cegger ifp->if_softc = sc;
245 1.1 cegger ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 1.1 cegger ifp->if_init = age_init;
247 1.1 cegger ifp->if_ioctl = age_ioctl;
248 1.1 cegger ifp->if_start = age_start;
249 1.1 cegger ifp->if_watchdog = age_watchdog;
250 1.1 cegger ifp->if_baudrate = IF_Gbps(1);
251 1.1 cegger IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 1.1 cegger IFQ_SET_READY(&ifp->if_snd);
253 1.1 cegger strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254 1.1 cegger
255 1.1 cegger sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256 1.1 cegger
257 1.1 cegger #ifdef AGE_CHECKSUM
258 1.1 cegger ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
259 1.1 cegger IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
260 1.1 cegger IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
261 1.1 cegger #endif
262 1.1 cegger
263 1.1 cegger #if NVLAN > 0
264 1.1 cegger sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 1.1 cegger #endif
266 1.1 cegger
267 1.1 cegger /* Set up MII bus. */
268 1.1 cegger sc->sc_miibus.mii_ifp = ifp;
269 1.1 cegger sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 1.1 cegger sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 1.1 cegger sc->sc_miibus.mii_statchg = age_miibus_statchg;
272 1.1 cegger
273 1.1 cegger ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
274 1.1 cegger age_mediastatus);
275 1.1 cegger mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
276 1.1 cegger MII_OFFSET_ANY, 0);
277 1.1 cegger
278 1.1 cegger if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
279 1.1 cegger aprint_error_dev(self, "no PHY found!\n");
280 1.1 cegger ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
281 1.1 cegger 0, NULL);
282 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
283 1.1 cegger } else
284 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
285 1.1 cegger
286 1.1 cegger if_attach(ifp);
287 1.1 cegger ether_ifattach(ifp, sc->sc_enaddr);
288 1.1 cegger
289 1.6 cegger if (!pmf_device_register(self, NULL, age_resume))
290 1.1 cegger aprint_error_dev(self, "couldn't establish power handler\n");
291 1.1 cegger else
292 1.1 cegger pmf_class_network_register(self, ifp);
293 1.1 cegger
294 1.1 cegger return;
295 1.14 cegger
296 1.1 cegger fail:
297 1.14 cegger if (sc->sc_irq_handle != NULL) {
298 1.14 cegger pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
299 1.14 cegger sc->sc_irq_handle = NULL;
300 1.14 cegger }
301 1.1 cegger }
302 1.1 cegger
303 1.1 cegger static int
304 1.1 cegger age_detach(device_t self, int flags)
305 1.1 cegger {
306 1.1 cegger struct age_softc *sc = device_private(self);
307 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
308 1.1 cegger int s;
309 1.1 cegger
310 1.1 cegger s = splnet();
311 1.1 cegger age_stop(sc);
312 1.1 cegger splx(s);
313 1.1 cegger
314 1.1 cegger mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
315 1.1 cegger
316 1.1 cegger /* Delete all remaining media. */
317 1.1 cegger ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
318 1.1 cegger
319 1.1 cegger ether_ifdetach(ifp);
320 1.1 cegger if_detach(ifp);
321 1.1 cegger age_dma_free(sc);
322 1.1 cegger
323 1.1 cegger if (sc->sc_irq_handle != NULL) {
324 1.1 cegger pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
325 1.1 cegger sc->sc_irq_handle = NULL;
326 1.1 cegger }
327 1.1 cegger
328 1.15 cegger return 0;
329 1.1 cegger }
330 1.1 cegger
331 1.1 cegger /*
332 1.1 cegger * Read a PHY register on the MII of the L1.
333 1.1 cegger */
334 1.1 cegger static int
335 1.11 cegger age_miibus_readreg(device_t dev, int phy, int reg)
336 1.1 cegger {
337 1.1 cegger struct age_softc *sc = device_private(dev);
338 1.1 cegger uint32_t v;
339 1.1 cegger int i;
340 1.1 cegger
341 1.1 cegger if (phy != sc->age_phyaddr)
342 1.15 cegger return 0;
343 1.1 cegger
344 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
345 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
346 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
347 1.1 cegger DELAY(1);
348 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
349 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
350 1.1 cegger break;
351 1.1 cegger }
352 1.1 cegger
353 1.1 cegger if (i == 0) {
354 1.1 cegger printf("%s: phy read timeout: phy %d, reg %d\n",
355 1.1 cegger device_xname(sc->sc_dev), phy, reg);
356 1.15 cegger return 0;
357 1.1 cegger }
358 1.1 cegger
359 1.1 cegger return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
360 1.1 cegger }
361 1.1 cegger
362 1.1 cegger /*
363 1.1 cegger * Write a PHY register on the MII of the L1.
364 1.1 cegger */
365 1.1 cegger static void
366 1.11 cegger age_miibus_writereg(device_t dev, int phy, int reg, int val)
367 1.1 cegger {
368 1.1 cegger struct age_softc *sc = device_private(dev);
369 1.1 cegger uint32_t v;
370 1.1 cegger int i;
371 1.1 cegger
372 1.1 cegger if (phy != sc->age_phyaddr)
373 1.1 cegger return;
374 1.1 cegger
375 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
376 1.1 cegger (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
377 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
378 1.1 cegger
379 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
380 1.1 cegger DELAY(1);
381 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
382 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
383 1.1 cegger break;
384 1.1 cegger }
385 1.1 cegger
386 1.1 cegger if (i == 0) {
387 1.1 cegger printf("%s: phy write timeout: phy %d, reg %d\n",
388 1.1 cegger device_xname(sc->sc_dev), phy, reg);
389 1.1 cegger }
390 1.1 cegger }
391 1.1 cegger
392 1.1 cegger /*
393 1.1 cegger * Callback from MII layer when media changes.
394 1.1 cegger */
395 1.1 cegger static void
396 1.1 cegger age_miibus_statchg(device_t dev)
397 1.1 cegger {
398 1.1 cegger struct age_softc *sc = device_private(dev);
399 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
400 1.1 cegger struct mii_data *mii;
401 1.1 cegger
402 1.1 cegger if ((ifp->if_flags & IFF_RUNNING) == 0)
403 1.1 cegger return;
404 1.1 cegger
405 1.1 cegger mii = &sc->sc_miibus;
406 1.1 cegger
407 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
408 1.1 cegger if ((mii->mii_media_status & IFM_AVALID) != 0) {
409 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
410 1.1 cegger case IFM_10_T:
411 1.1 cegger case IFM_100_TX:
412 1.1 cegger case IFM_1000_T:
413 1.1 cegger sc->age_flags |= AGE_FLAG_LINK;
414 1.1 cegger break;
415 1.1 cegger default:
416 1.1 cegger break;
417 1.1 cegger }
418 1.1 cegger }
419 1.1 cegger
420 1.1 cegger /* Stop Rx/Tx MACs. */
421 1.1 cegger age_stop_rxmac(sc);
422 1.1 cegger age_stop_txmac(sc);
423 1.1 cegger
424 1.1 cegger /* Program MACs with resolved speed/duplex/flow-control. */
425 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
426 1.1 cegger uint32_t reg;
427 1.1 cegger
428 1.1 cegger age_mac_config(sc);
429 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
430 1.1 cegger /* Restart DMA engine and Tx/Rx MAC. */
431 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
432 1.1 cegger DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
433 1.1 cegger reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
434 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
435 1.1 cegger }
436 1.1 cegger }
437 1.1 cegger
438 1.1 cegger /*
439 1.1 cegger * Get the current interface media status.
440 1.1 cegger */
441 1.1 cegger static void
442 1.1 cegger age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
443 1.1 cegger {
444 1.1 cegger struct age_softc *sc = ifp->if_softc;
445 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
446 1.1 cegger
447 1.1 cegger mii_pollstat(mii);
448 1.1 cegger ifmr->ifm_status = mii->mii_media_status;
449 1.1 cegger ifmr->ifm_active = mii->mii_media_active;
450 1.1 cegger }
451 1.1 cegger
452 1.1 cegger /*
453 1.1 cegger * Set hardware to newly-selected media.
454 1.1 cegger */
455 1.1 cegger static int
456 1.1 cegger age_mediachange(struct ifnet *ifp)
457 1.1 cegger {
458 1.1 cegger struct age_softc *sc = ifp->if_softc;
459 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
460 1.1 cegger int error;
461 1.1 cegger
462 1.1 cegger if (mii->mii_instance != 0) {
463 1.1 cegger struct mii_softc *miisc;
464 1.1 cegger
465 1.1 cegger LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
466 1.1 cegger mii_phy_reset(miisc);
467 1.1 cegger }
468 1.1 cegger error = mii_mediachg(mii);
469 1.1 cegger
470 1.15 cegger return error;
471 1.1 cegger }
472 1.1 cegger
473 1.1 cegger static int
474 1.1 cegger age_intr(void *arg)
475 1.1 cegger {
476 1.1 cegger struct age_softc *sc = arg;
477 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
478 1.1 cegger struct cmb *cmb;
479 1.1 cegger uint32_t status;
480 1.1 cegger
481 1.1 cegger status = CSR_READ_4(sc, AGE_INTR_STATUS);
482 1.1 cegger if (status == 0 || (status & AGE_INTRS) == 0)
483 1.10 cegger return 0;
484 1.10 cegger
485 1.10 cegger cmb = sc->age_rdata.age_cmb_block;
486 1.10 cegger if (cmb == NULL)
487 1.10 cegger return 0;
488 1.1 cegger
489 1.1 cegger /* Disable interrupts. */
490 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
491 1.1 cegger
492 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
493 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 1.1 cegger status = le32toh(cmb->intr_status);
495 1.1 cegger if ((status & AGE_INTRS) == 0)
496 1.1 cegger goto back;
497 1.1 cegger
498 1.1 cegger sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
499 1.1 cegger TPD_CONS_SHIFT;
500 1.1 cegger sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
501 1.1 cegger RRD_PROD_SHIFT;
502 1.1 cegger
503 1.1 cegger /* Let hardware know CMB was served. */
504 1.1 cegger cmb->intr_status = 0;
505 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
506 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
507 1.1 cegger BUS_DMASYNC_PREWRITE);
508 1.1 cegger
509 1.1 cegger if (ifp->if_flags & IFF_RUNNING) {
510 1.1 cegger if (status & INTR_CMB_RX)
511 1.1 cegger age_rxintr(sc, sc->age_rr_prod);
512 1.1 cegger
513 1.1 cegger if (status & INTR_CMB_TX)
514 1.1 cegger age_txintr(sc, sc->age_tpd_cons);
515 1.1 cegger
516 1.1 cegger if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
517 1.1 cegger if (status & INTR_DMA_RD_TO_RST)
518 1.1 cegger printf("%s: DMA read error! -- resetting\n",
519 1.1 cegger device_xname(sc->sc_dev));
520 1.1 cegger if (status & INTR_DMA_WR_TO_RST)
521 1.1 cegger printf("%s: DMA write error! -- resetting\n",
522 1.1 cegger device_xname(sc->sc_dev));
523 1.1 cegger age_init(ifp);
524 1.1 cegger }
525 1.1 cegger
526 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
527 1.1 cegger age_start(ifp);
528 1.1 cegger
529 1.1 cegger if (status & INTR_SMB)
530 1.1 cegger age_stats_update(sc);
531 1.1 cegger }
532 1.1 cegger
533 1.1 cegger /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
534 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
535 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
536 1.1 cegger BUS_DMASYNC_POSTREAD);
537 1.1 cegger
538 1.1 cegger back:
539 1.1 cegger /* Re-enable interrupts. */
540 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
541 1.1 cegger
542 1.15 cegger return 1;
543 1.1 cegger }
544 1.1 cegger
545 1.1 cegger static int
546 1.1 cegger age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
547 1.1 cegger uint32_t *word)
548 1.1 cegger {
549 1.1 cegger int i;
550 1.3 cegger pcireg_t rv;
551 1.1 cegger
552 1.3 cegger pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
553 1.3 cegger offset << PCI_VPD_ADDRESS_SHIFT);
554 1.1 cegger for (i = AGE_TIMEOUT; i > 0; i--) {
555 1.1 cegger DELAY(10);
556 1.3 cegger rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
557 1.3 cegger PCI_VPD_ADDRESS(vpdc));
558 1.3 cegger if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
559 1.1 cegger break;
560 1.1 cegger }
561 1.1 cegger if (i == 0) {
562 1.1 cegger printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
563 1.1 cegger *word = 0;
564 1.3 cegger return ETIMEDOUT;
565 1.1 cegger }
566 1.1 cegger
567 1.3 cegger *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
568 1.3 cegger return 0;
569 1.1 cegger }
570 1.1 cegger
571 1.1 cegger static void
572 1.1 cegger age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
573 1.1 cegger {
574 1.1 cegger uint32_t ea[2], off, reg, word;
575 1.1 cegger int vpd_error, match, vpdc;
576 1.1 cegger
577 1.1 cegger reg = CSR_READ_4(sc, AGE_SPI_CTRL);
578 1.1 cegger if ((reg & SPI_VPD_ENB) != 0) {
579 1.1 cegger /* Get VPD stored in TWSI EEPROM. */
580 1.1 cegger reg &= ~SPI_VPD_ENB;
581 1.1 cegger CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
582 1.1 cegger }
583 1.1 cegger
584 1.1 cegger vpd_error = 0;
585 1.1 cegger ea[0] = ea[1] = 0;
586 1.1 cegger if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
587 1.1 cegger PCI_CAP_VPD, &vpdc, NULL))) {
588 1.1 cegger /*
589 1.1 cegger * PCI VPD capability exists, but it seems that it's
590 1.1 cegger * not in the standard form as stated in PCI VPD
591 1.1 cegger * specification such that driver could not use
592 1.1 cegger * pci_get_vpd_readonly(9) with keyword 'NA'.
593 1.1 cegger * Search VPD data starting at address 0x0100. The data
594 1.1 cegger * should be used as initializers to set AGE_PAR0,
595 1.1 cegger * AGE_PAR1 register including other PCI configuration
596 1.1 cegger * registers.
597 1.1 cegger */
598 1.1 cegger word = 0;
599 1.1 cegger match = 0;
600 1.1 cegger reg = 0;
601 1.1 cegger for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
602 1.1 cegger off += sizeof(uint32_t)) {
603 1.1 cegger vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
604 1.1 cegger if (vpd_error != 0)
605 1.1 cegger break;
606 1.1 cegger if (match != 0) {
607 1.1 cegger switch (reg) {
608 1.1 cegger case AGE_PAR0:
609 1.1 cegger ea[0] = word;
610 1.1 cegger break;
611 1.1 cegger case AGE_PAR1:
612 1.1 cegger ea[1] = word;
613 1.1 cegger break;
614 1.1 cegger default:
615 1.1 cegger break;
616 1.1 cegger }
617 1.1 cegger match = 0;
618 1.1 cegger } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
619 1.1 cegger match = 1;
620 1.1 cegger reg = word >> 16;
621 1.1 cegger } else
622 1.1 cegger break;
623 1.1 cegger }
624 1.1 cegger if (off >= AGE_VPD_REG_CONF_END)
625 1.1 cegger vpd_error = ENOENT;
626 1.1 cegger if (vpd_error == 0) {
627 1.1 cegger /*
628 1.1 cegger * Don't blindly trust ethernet address obtained
629 1.1 cegger * from VPD. Check whether ethernet address is
630 1.1 cegger * valid one. Otherwise fall-back to reading
631 1.1 cegger * PAR register.
632 1.1 cegger */
633 1.1 cegger ea[1] &= 0xFFFF;
634 1.1 cegger if ((ea[0] == 0 && ea[1] == 0) ||
635 1.1 cegger (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
636 1.1 cegger if (agedebug)
637 1.1 cegger printf("%s: invalid ethernet address "
638 1.1 cegger "returned from VPD.\n",
639 1.1 cegger device_xname(sc->sc_dev));
640 1.1 cegger vpd_error = EINVAL;
641 1.1 cegger }
642 1.1 cegger }
643 1.1 cegger if (vpd_error != 0 && (agedebug))
644 1.1 cegger printf("%s: VPD access failure!\n",
645 1.1 cegger device_xname(sc->sc_dev));
646 1.1 cegger } else {
647 1.1 cegger if (agedebug)
648 1.1 cegger printf("%s: PCI VPD capability not found!\n",
649 1.1 cegger device_xname(sc->sc_dev));
650 1.1 cegger }
651 1.1 cegger
652 1.1 cegger /*
653 1.1 cegger * It seems that L1 also provides a way to extract ethernet
654 1.1 cegger * address via SPI flash interface. Because SPI flash memory
655 1.1 cegger * device of different vendors vary in their instruction
656 1.1 cegger * codes for read ID instruction, it's very hard to get
657 1.1 cegger * instructions codes without detailed information for the
658 1.1 cegger * flash memory device used on ethernet controller. To simplify
659 1.1 cegger * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
660 1.1 cegger * address which is supposed to be set by hardware during
661 1.1 cegger * power on reset.
662 1.1 cegger */
663 1.1 cegger if (vpd_error != 0) {
664 1.1 cegger /*
665 1.1 cegger * VPD is mapped to SPI flash memory or BIOS set it.
666 1.1 cegger */
667 1.1 cegger ea[0] = CSR_READ_4(sc, AGE_PAR0);
668 1.1 cegger ea[1] = CSR_READ_4(sc, AGE_PAR1);
669 1.1 cegger }
670 1.1 cegger
671 1.1 cegger ea[1] &= 0xFFFF;
672 1.1 cegger eaddr[0] = (ea[1] >> 8) & 0xFF;
673 1.1 cegger eaddr[1] = (ea[1] >> 0) & 0xFF;
674 1.1 cegger eaddr[2] = (ea[0] >> 24) & 0xFF;
675 1.1 cegger eaddr[3] = (ea[0] >> 16) & 0xFF;
676 1.1 cegger eaddr[4] = (ea[0] >> 8) & 0xFF;
677 1.1 cegger eaddr[5] = (ea[0] >> 0) & 0xFF;
678 1.1 cegger }
679 1.1 cegger
680 1.1 cegger static void
681 1.1 cegger age_phy_reset(struct age_softc *sc)
682 1.1 cegger {
683 1.1 cegger /* Reset PHY. */
684 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
685 1.1 cegger DELAY(1000);
686 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
687 1.1 cegger DELAY(1000);
688 1.1 cegger }
689 1.1 cegger
690 1.1 cegger static int
691 1.1 cegger age_dma_alloc(struct age_softc *sc)
692 1.1 cegger {
693 1.1 cegger struct age_txdesc *txd;
694 1.1 cegger struct age_rxdesc *rxd;
695 1.1 cegger int nsegs, error, i;
696 1.1 cegger
697 1.1 cegger /*
698 1.1 cegger * Create DMA stuffs for TX ring
699 1.1 cegger */
700 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
701 1.1 cegger AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
702 1.1 cegger if (error)
703 1.15 cegger return ENOBUFS;
704 1.1 cegger
705 1.1 cegger /* Allocate DMA'able memory for TX ring */
706 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
707 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
708 1.1 cegger &nsegs, BUS_DMA_WAITOK);
709 1.1 cegger if (error) {
710 1.16 cegger printf("%s: could not allocate DMA'able memory for Tx ring, "
711 1.16 cegger "error = %i\n", device_xname(sc->sc_dev), error);
712 1.1 cegger return error;
713 1.1 cegger }
714 1.1 cegger
715 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
716 1.1 cegger nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
717 1.1 cegger BUS_DMA_NOWAIT);
718 1.1 cegger if (error)
719 1.15 cegger return ENOBUFS;
720 1.1 cegger
721 1.1 cegger memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
722 1.1 cegger
723 1.1 cegger /* Load the DMA map for Tx ring. */
724 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
725 1.1 cegger sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
726 1.1 cegger if (error) {
727 1.16 cegger printf("%s: could not load DMA'able memory for Tx ring, "
728 1.16 cegger "error = %i\n", device_xname(sc->sc_dev), error);
729 1.1 cegger bus_dmamem_free(sc->sc_dmat,
730 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
731 1.1 cegger return error;
732 1.1 cegger }
733 1.1 cegger
734 1.1 cegger sc->age_rdata.age_tx_ring_paddr =
735 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
736 1.1 cegger
737 1.1 cegger /*
738 1.1 cegger * Create DMA stuffs for RX ring
739 1.1 cegger */
740 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
741 1.1 cegger AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
742 1.1 cegger if (error)
743 1.15 cegger return ENOBUFS;
744 1.1 cegger
745 1.1 cegger /* Allocate DMA'able memory for RX ring */
746 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
747 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
748 1.1 cegger &nsegs, BUS_DMA_WAITOK);
749 1.1 cegger if (error) {
750 1.16 cegger printf("%s: could not allocate DMA'able memory for Rx ring, "
751 1.16 cegger "error = %i.\n", device_xname(sc->sc_dev), error);
752 1.1 cegger return error;
753 1.1 cegger }
754 1.1 cegger
755 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
756 1.1 cegger nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
757 1.1 cegger BUS_DMA_NOWAIT);
758 1.1 cegger if (error)
759 1.15 cegger return ENOBUFS;
760 1.1 cegger
761 1.1 cegger memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
762 1.1 cegger
763 1.1 cegger /* Load the DMA map for Rx ring. */
764 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
765 1.1 cegger sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
766 1.1 cegger if (error) {
767 1.16 cegger printf("%s: could not load DMA'able memory for Rx ring, "
768 1.16 cegger "error = %i.\n", device_xname(sc->sc_dev), error);
769 1.1 cegger bus_dmamem_free(sc->sc_dmat,
770 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
771 1.1 cegger return error;
772 1.1 cegger }
773 1.1 cegger
774 1.1 cegger sc->age_rdata.age_rx_ring_paddr =
775 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
776 1.1 cegger
777 1.1 cegger /*
778 1.1 cegger * Create DMA stuffs for RX return ring
779 1.1 cegger */
780 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
781 1.1 cegger AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
782 1.1 cegger if (error)
783 1.15 cegger return ENOBUFS;
784 1.1 cegger
785 1.1 cegger /* Allocate DMA'able memory for RX return ring */
786 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
787 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
788 1.1 cegger &nsegs, BUS_DMA_WAITOK);
789 1.1 cegger if (error) {
790 1.1 cegger printf("%s: could not allocate DMA'able memory for Rx "
791 1.16 cegger "return ring, error = %i.\n",
792 1.16 cegger device_xname(sc->sc_dev), error);
793 1.1 cegger return error;
794 1.1 cegger }
795 1.1 cegger
796 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
797 1.1 cegger nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
798 1.1 cegger BUS_DMA_NOWAIT);
799 1.1 cegger if (error)
800 1.15 cegger return ENOBUFS;
801 1.1 cegger
802 1.1 cegger memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
803 1.1 cegger
804 1.1 cegger /* Load the DMA map for Rx return ring. */
805 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
806 1.1 cegger sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
807 1.1 cegger if (error) {
808 1.16 cegger printf("%s: could not load DMA'able memory for Rx return ring, "
809 1.16 cegger "error = %i\n", device_xname(sc->sc_dev), error);
810 1.1 cegger bus_dmamem_free(sc->sc_dmat,
811 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
812 1.1 cegger return error;
813 1.1 cegger }
814 1.1 cegger
815 1.1 cegger sc->age_rdata.age_rr_ring_paddr =
816 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
817 1.1 cegger
818 1.1 cegger /*
819 1.1 cegger * Create DMA stuffs for CMB block
820 1.1 cegger */
821 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
822 1.1 cegger AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
823 1.1 cegger &sc->age_cdata.age_cmb_block_map);
824 1.1 cegger if (error)
825 1.15 cegger return ENOBUFS;
826 1.1 cegger
827 1.1 cegger /* Allocate DMA'able memory for CMB block */
828 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
829 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
830 1.1 cegger &nsegs, BUS_DMA_WAITOK);
831 1.1 cegger if (error) {
832 1.1 cegger printf("%s: could not allocate DMA'able memory for "
833 1.16 cegger "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
834 1.1 cegger return error;
835 1.1 cegger }
836 1.1 cegger
837 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
838 1.1 cegger nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
839 1.1 cegger BUS_DMA_NOWAIT);
840 1.1 cegger if (error)
841 1.15 cegger return ENOBUFS;
842 1.1 cegger
843 1.1 cegger memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
844 1.1 cegger
845 1.1 cegger /* Load the DMA map for CMB block. */
846 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
847 1.1 cegger sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
848 1.1 cegger BUS_DMA_WAITOK);
849 1.1 cegger if (error) {
850 1.16 cegger printf("%s: could not load DMA'able memory for CMB block, "
851 1.16 cegger "error = %i\n", device_xname(sc->sc_dev), error);
852 1.1 cegger bus_dmamem_free(sc->sc_dmat,
853 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
854 1.1 cegger return error;
855 1.1 cegger }
856 1.1 cegger
857 1.1 cegger sc->age_rdata.age_cmb_block_paddr =
858 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
859 1.1 cegger
860 1.1 cegger /*
861 1.1 cegger * Create DMA stuffs for SMB block
862 1.1 cegger */
863 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
864 1.1 cegger AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
865 1.1 cegger &sc->age_cdata.age_smb_block_map);
866 1.1 cegger if (error)
867 1.15 cegger return ENOBUFS;
868 1.1 cegger
869 1.1 cegger /* Allocate DMA'able memory for SMB block */
870 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
871 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
872 1.1 cegger &nsegs, BUS_DMA_WAITOK);
873 1.1 cegger if (error) {
874 1.1 cegger printf("%s: could not allocate DMA'able memory for "
875 1.16 cegger "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
876 1.1 cegger return error;
877 1.1 cegger }
878 1.1 cegger
879 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
880 1.1 cegger nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
881 1.1 cegger BUS_DMA_NOWAIT);
882 1.1 cegger if (error)
883 1.15 cegger return ENOBUFS;
884 1.1 cegger
885 1.1 cegger memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
886 1.1 cegger
887 1.1 cegger /* Load the DMA map for SMB block */
888 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
889 1.1 cegger sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
890 1.1 cegger BUS_DMA_WAITOK);
891 1.1 cegger if (error) {
892 1.16 cegger printf("%s: could not load DMA'able memory for SMB block, "
893 1.16 cegger "error = %i\n", device_xname(sc->sc_dev), error);
894 1.1 cegger bus_dmamem_free(sc->sc_dmat,
895 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
896 1.1 cegger return error;
897 1.1 cegger }
898 1.1 cegger
899 1.1 cegger sc->age_rdata.age_smb_block_paddr =
900 1.1 cegger sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
901 1.1 cegger
902 1.1 cegger /* Create DMA maps for Tx buffers. */
903 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
904 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
905 1.1 cegger txd->tx_m = NULL;
906 1.1 cegger txd->tx_dmamap = NULL;
907 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
908 1.1 cegger AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
909 1.1 cegger &txd->tx_dmamap);
910 1.1 cegger if (error) {
911 1.16 cegger printf("%s: could not create Tx dmamap, error = %i.\n",
912 1.16 cegger device_xname(sc->sc_dev), error);
913 1.1 cegger return error;
914 1.1 cegger }
915 1.1 cegger }
916 1.1 cegger
917 1.1 cegger /* Create DMA maps for Rx buffers. */
918 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
919 1.1 cegger BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
920 1.1 cegger if (error) {
921 1.16 cegger printf("%s: could not create spare Rx dmamap, error = %i.\n",
922 1.16 cegger device_xname(sc->sc_dev), error);
923 1.1 cegger return error;
924 1.1 cegger }
925 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
926 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
927 1.1 cegger rxd->rx_m = NULL;
928 1.1 cegger rxd->rx_dmamap = NULL;
929 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
930 1.1 cegger MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
931 1.1 cegger if (error) {
932 1.16 cegger printf("%s: could not create Rx dmamap, error = %i.\n",
933 1.16 cegger device_xname(sc->sc_dev), error);
934 1.1 cegger return error;
935 1.1 cegger }
936 1.1 cegger }
937 1.1 cegger
938 1.15 cegger return 0;
939 1.1 cegger }
940 1.1 cegger
941 1.1 cegger static void
942 1.1 cegger age_dma_free(struct age_softc *sc)
943 1.1 cegger {
944 1.1 cegger struct age_txdesc *txd;
945 1.1 cegger struct age_rxdesc *rxd;
946 1.1 cegger int i;
947 1.1 cegger
948 1.1 cegger /* Tx buffers */
949 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
950 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
951 1.1 cegger if (txd->tx_dmamap != NULL) {
952 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
953 1.1 cegger txd->tx_dmamap = NULL;
954 1.1 cegger }
955 1.1 cegger }
956 1.1 cegger /* Rx buffers */
957 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
958 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
959 1.1 cegger if (rxd->rx_dmamap != NULL) {
960 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
961 1.1 cegger rxd->rx_dmamap = NULL;
962 1.1 cegger }
963 1.1 cegger }
964 1.1 cegger if (sc->age_cdata.age_rx_sparemap != NULL) {
965 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
966 1.1 cegger sc->age_cdata.age_rx_sparemap = NULL;
967 1.1 cegger }
968 1.1 cegger
969 1.1 cegger /* Tx ring. */
970 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL)
971 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
972 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL &&
973 1.1 cegger sc->age_rdata.age_tx_ring != NULL)
974 1.1 cegger bus_dmamem_free(sc->sc_dmat,
975 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
976 1.1 cegger sc->age_rdata.age_tx_ring = NULL;
977 1.1 cegger sc->age_cdata.age_tx_ring_map = NULL;
978 1.1 cegger
979 1.1 cegger /* Rx ring. */
980 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL)
981 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
982 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL &&
983 1.1 cegger sc->age_rdata.age_rx_ring != NULL)
984 1.1 cegger bus_dmamem_free(sc->sc_dmat,
985 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
986 1.1 cegger sc->age_rdata.age_rx_ring = NULL;
987 1.1 cegger sc->age_cdata.age_rx_ring_map = NULL;
988 1.1 cegger
989 1.1 cegger /* Rx return ring. */
990 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL)
991 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
992 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL &&
993 1.1 cegger sc->age_rdata.age_rr_ring != NULL)
994 1.1 cegger bus_dmamem_free(sc->sc_dmat,
995 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
996 1.1 cegger sc->age_rdata.age_rr_ring = NULL;
997 1.1 cegger sc->age_cdata.age_rr_ring_map = NULL;
998 1.1 cegger
999 1.1 cegger /* CMB block */
1000 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL)
1001 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1002 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL &&
1003 1.1 cegger sc->age_rdata.age_cmb_block != NULL)
1004 1.1 cegger bus_dmamem_free(sc->sc_dmat,
1005 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1006 1.1 cegger sc->age_rdata.age_cmb_block = NULL;
1007 1.1 cegger sc->age_cdata.age_cmb_block_map = NULL;
1008 1.1 cegger
1009 1.1 cegger /* SMB block */
1010 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL)
1011 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1012 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL &&
1013 1.1 cegger sc->age_rdata.age_smb_block != NULL)
1014 1.1 cegger bus_dmamem_free(sc->sc_dmat,
1015 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1016 1.1 cegger }
1017 1.1 cegger
1018 1.1 cegger static void
1019 1.1 cegger age_start(struct ifnet *ifp)
1020 1.1 cegger {
1021 1.1 cegger struct age_softc *sc = ifp->if_softc;
1022 1.1 cegger struct mbuf *m_head;
1023 1.1 cegger int enq;
1024 1.1 cegger
1025 1.1 cegger if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1026 1.1 cegger return;
1027 1.1 cegger
1028 1.1 cegger enq = 0;
1029 1.1 cegger for (;;) {
1030 1.1 cegger IFQ_DEQUEUE(&ifp->if_snd, m_head);
1031 1.1 cegger if (m_head == NULL)
1032 1.1 cegger break;
1033 1.1 cegger
1034 1.1 cegger /*
1035 1.1 cegger * Pack the data into the transmit ring. If we
1036 1.1 cegger * don't have room, set the OACTIVE flag and wait
1037 1.1 cegger * for the NIC to drain the ring.
1038 1.1 cegger */
1039 1.1 cegger if (age_encap(sc, &m_head)) {
1040 1.1 cegger if (m_head == NULL)
1041 1.1 cegger break;
1042 1.1 cegger ifp->if_flags |= IFF_OACTIVE;
1043 1.1 cegger break;
1044 1.1 cegger }
1045 1.1 cegger enq = 1;
1046 1.1 cegger
1047 1.1 cegger #if NBPFILTER > 0
1048 1.1 cegger /*
1049 1.1 cegger * If there's a BPF listener, bounce a copy of this frame
1050 1.1 cegger * to him.
1051 1.1 cegger */
1052 1.1 cegger if (ifp->if_bpf != NULL)
1053 1.1 cegger bpf_mtap(ifp->if_bpf, m_head);
1054 1.1 cegger #endif
1055 1.1 cegger }
1056 1.1 cegger
1057 1.1 cegger if (enq) {
1058 1.1 cegger /* Update mbox. */
1059 1.1 cegger AGE_COMMIT_MBOX(sc);
1060 1.1 cegger /* Set a timeout in case the chip goes out to lunch. */
1061 1.1 cegger ifp->if_timer = AGE_TX_TIMEOUT;
1062 1.1 cegger }
1063 1.1 cegger }
1064 1.1 cegger
1065 1.1 cegger static void
1066 1.1 cegger age_watchdog(struct ifnet *ifp)
1067 1.1 cegger {
1068 1.1 cegger struct age_softc *sc = ifp->if_softc;
1069 1.1 cegger
1070 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1071 1.1 cegger printf("%s: watchdog timeout (missed link)\n",
1072 1.1 cegger device_xname(sc->sc_dev));
1073 1.1 cegger ifp->if_oerrors++;
1074 1.1 cegger age_init(ifp);
1075 1.1 cegger return;
1076 1.1 cegger }
1077 1.1 cegger
1078 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0) {
1079 1.1 cegger printf("%s: watchdog timeout (missed Tx interrupts) "
1080 1.1 cegger "-- recovering\n", device_xname(sc->sc_dev));
1081 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1082 1.1 cegger age_start(ifp);
1083 1.1 cegger return;
1084 1.1 cegger }
1085 1.1 cegger
1086 1.1 cegger printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1087 1.1 cegger ifp->if_oerrors++;
1088 1.1 cegger age_init(ifp);
1089 1.1 cegger
1090 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1091 1.1 cegger age_start(ifp);
1092 1.1 cegger }
1093 1.1 cegger
1094 1.1 cegger static int
1095 1.1 cegger age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1096 1.1 cegger {
1097 1.1 cegger struct age_softc *sc = ifp->if_softc;
1098 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1099 1.1 cegger struct ifreq *ifr = (struct ifreq *)data;
1100 1.1 cegger int s, error = 0;
1101 1.1 cegger
1102 1.1 cegger s = splnet();
1103 1.1 cegger
1104 1.1 cegger switch (cmd) {
1105 1.1 cegger case SIOCSIFMEDIA:
1106 1.1 cegger case SIOCGIFMEDIA:
1107 1.1 cegger error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1108 1.1 cegger break;
1109 1.1 cegger default:
1110 1.1 cegger error = ether_ioctl(ifp, cmd, data);
1111 1.8 cegger if (error == ENETRESET) {
1112 1.8 cegger if (ifp->if_flags & IFF_RUNNING)
1113 1.8 cegger age_rxfilter(sc);
1114 1.8 cegger error = 0;
1115 1.8 cegger }
1116 1.1 cegger break;
1117 1.1 cegger }
1118 1.1 cegger
1119 1.1 cegger splx(s);
1120 1.8 cegger return error;
1121 1.1 cegger }
1122 1.1 cegger
1123 1.1 cegger static void
1124 1.1 cegger age_mac_config(struct age_softc *sc)
1125 1.1 cegger {
1126 1.1 cegger struct mii_data *mii;
1127 1.1 cegger uint32_t reg;
1128 1.1 cegger
1129 1.1 cegger mii = &sc->sc_miibus;
1130 1.1 cegger
1131 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1132 1.1 cegger reg &= ~MAC_CFG_FULL_DUPLEX;
1133 1.1 cegger reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1134 1.1 cegger reg &= ~MAC_CFG_SPEED_MASK;
1135 1.1 cegger
1136 1.1 cegger /* Reprogram MAC with resolved speed/duplex. */
1137 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
1138 1.1 cegger case IFM_10_T:
1139 1.1 cegger case IFM_100_TX:
1140 1.1 cegger reg |= MAC_CFG_SPEED_10_100;
1141 1.1 cegger break;
1142 1.1 cegger case IFM_1000_T:
1143 1.1 cegger reg |= MAC_CFG_SPEED_1000;
1144 1.1 cegger break;
1145 1.1 cegger }
1146 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1147 1.1 cegger reg |= MAC_CFG_FULL_DUPLEX;
1148 1.1 cegger #ifdef notyet
1149 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1150 1.1 cegger reg |= MAC_CFG_TX_FC;
1151 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1152 1.1 cegger reg |= MAC_CFG_RX_FC;
1153 1.1 cegger #endif
1154 1.1 cegger }
1155 1.1 cegger
1156 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1157 1.1 cegger }
1158 1.1 cegger
1159 1.3 cegger static bool
1160 1.3 cegger age_resume(device_t dv PMF_FN_ARGS)
1161 1.3 cegger {
1162 1.3 cegger struct age_softc *sc = device_private(dv);
1163 1.3 cegger uint16_t cmd;
1164 1.3 cegger
1165 1.3 cegger /*
1166 1.3 cegger * Clear INTx emulation disable for hardware that
1167 1.3 cegger * is set in resume event. From Linux.
1168 1.3 cegger */
1169 1.3 cegger cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1170 1.3 cegger if ((cmd & 0x0400) != 0) {
1171 1.3 cegger cmd &= ~0x0400;
1172 1.3 cegger pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1173 1.3 cegger PCI_COMMAND_STATUS_REG, cmd);
1174 1.3 cegger }
1175 1.3 cegger
1176 1.3 cegger return true;
1177 1.3 cegger }
1178 1.3 cegger
1179 1.1 cegger static int
1180 1.1 cegger age_encap(struct age_softc *sc, struct mbuf **m_head)
1181 1.1 cegger {
1182 1.1 cegger struct age_txdesc *txd, *txd_last;
1183 1.1 cegger struct tx_desc *desc;
1184 1.1 cegger struct mbuf *m;
1185 1.1 cegger bus_dmamap_t map;
1186 1.1 cegger uint32_t cflags, poff, vtag;
1187 1.1 cegger int error, i, nsegs, prod;
1188 1.1 cegger struct m_tag *mtag;
1189 1.1 cegger
1190 1.1 cegger m = *m_head;
1191 1.1 cegger cflags = vtag = 0;
1192 1.1 cegger poff = 0;
1193 1.1 cegger
1194 1.1 cegger prod = sc->age_cdata.age_tx_prod;
1195 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1196 1.1 cegger txd_last = txd;
1197 1.1 cegger map = txd->tx_dmamap;
1198 1.1 cegger
1199 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1200 1.1 cegger
1201 1.1 cegger if (error != 0) {
1202 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1203 1.1 cegger error = EFBIG;
1204 1.1 cegger }
1205 1.1 cegger if (error == EFBIG) {
1206 1.1 cegger error = 0;
1207 1.1 cegger
1208 1.1 cegger MGETHDR(m, M_DONTWAIT, MT_DATA);
1209 1.1 cegger if (m == NULL) {
1210 1.1 cegger printf("%s: can't defrag TX mbuf\n",
1211 1.1 cegger device_xname(sc->sc_dev));
1212 1.1 cegger m_freem(*m_head);
1213 1.1 cegger *m_head = NULL;
1214 1.12 cegger return ENOBUFS;
1215 1.1 cegger }
1216 1.1 cegger
1217 1.12 cegger M_COPY_PKTHDR(m, *m_head);
1218 1.12 cegger if ((*m_head)->m_pkthdr.len > MHLEN) {
1219 1.12 cegger MCLGET(m, M_DONTWAIT);
1220 1.12 cegger if (!(m->m_flags & M_EXT)) {
1221 1.12 cegger m_freem(*m_head);
1222 1.12 cegger m_freem(m);
1223 1.12 cegger *m_head = NULL;
1224 1.12 cegger return ENOBUFS;
1225 1.12 cegger }
1226 1.1 cegger }
1227 1.12 cegger m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1228 1.12 cegger mtod(m, void *));
1229 1.12 cegger m_freem(*m_head);
1230 1.1 cegger m->m_len = m->m_pkthdr.len;
1231 1.1 cegger *m_head = m;
1232 1.1 cegger
1233 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1234 1.1 cegger BUS_DMA_NOWAIT);
1235 1.1 cegger
1236 1.1 cegger if (error != 0) {
1237 1.1 cegger printf("%s: could not load defragged TX mbuf\n",
1238 1.1 cegger device_xname(sc->sc_dev));
1239 1.1 cegger if (!error) {
1240 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1241 1.1 cegger error = EFBIG;
1242 1.1 cegger }
1243 1.1 cegger m_freem(*m_head);
1244 1.1 cegger *m_head = NULL;
1245 1.15 cegger return error;
1246 1.1 cegger }
1247 1.1 cegger } else if (error) {
1248 1.1 cegger printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1249 1.15 cegger return error;
1250 1.1 cegger }
1251 1.1 cegger
1252 1.1 cegger nsegs = map->dm_nsegs;
1253 1.1 cegger
1254 1.1 cegger if (nsegs == 0) {
1255 1.1 cegger m_freem(*m_head);
1256 1.1 cegger *m_head = NULL;
1257 1.15 cegger return EIO;
1258 1.1 cegger }
1259 1.1 cegger
1260 1.1 cegger /* Check descriptor overrun. */
1261 1.1 cegger if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1262 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1263 1.15 cegger return ENOBUFS;
1264 1.1 cegger }
1265 1.1 cegger
1266 1.1 cegger m = *m_head;
1267 1.1 cegger /* Configure Tx IP/TCP/UDP checksum offload. */
1268 1.1 cegger if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1269 1.1 cegger cflags |= AGE_TD_CSUM;
1270 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1271 1.1 cegger cflags |= AGE_TD_TCPCSUM;
1272 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1273 1.1 cegger cflags |= AGE_TD_UDPCSUM;
1274 1.1 cegger /* Set checksum start offset. */
1275 1.1 cegger cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1276 1.1 cegger }
1277 1.1 cegger
1278 1.1 cegger #if NVLAN > 0
1279 1.1 cegger /* Configure VLAN hardware tag insertion. */
1280 1.1 cegger if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1281 1.1 cegger vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1282 1.1 cegger vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1283 1.1 cegger cflags |= AGE_TD_INSERT_VLAN_TAG;
1284 1.1 cegger }
1285 1.1 cegger #endif
1286 1.1 cegger
1287 1.1 cegger desc = NULL;
1288 1.1 cegger for (i = 0; i < nsegs; i++) {
1289 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1290 1.1 cegger desc->addr = htole64(map->dm_segs[i].ds_addr);
1291 1.1 cegger desc->len =
1292 1.1 cegger htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1293 1.1 cegger desc->flags = htole32(cflags);
1294 1.1 cegger sc->age_cdata.age_tx_cnt++;
1295 1.1 cegger AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1296 1.1 cegger }
1297 1.1 cegger
1298 1.1 cegger /* Update producer index. */
1299 1.1 cegger sc->age_cdata.age_tx_prod = prod;
1300 1.1 cegger
1301 1.1 cegger /* Set EOP on the last descriptor. */
1302 1.1 cegger prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1303 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1304 1.1 cegger desc->flags |= htole32(AGE_TD_EOP);
1305 1.1 cegger
1306 1.1 cegger /* Swap dmamap of the first and the last. */
1307 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1308 1.1 cegger map = txd_last->tx_dmamap;
1309 1.1 cegger txd_last->tx_dmamap = txd->tx_dmamap;
1310 1.1 cegger txd->tx_dmamap = map;
1311 1.1 cegger txd->tx_m = m;
1312 1.1 cegger
1313 1.1 cegger /* Sync descriptors. */
1314 1.1 cegger bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1315 1.1 cegger BUS_DMASYNC_PREWRITE);
1316 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1317 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1318 1.1 cegger
1319 1.15 cegger return 0;
1320 1.1 cegger }
1321 1.1 cegger
1322 1.1 cegger static void
1323 1.1 cegger age_txintr(struct age_softc *sc, int tpd_cons)
1324 1.1 cegger {
1325 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1326 1.1 cegger struct age_txdesc *txd;
1327 1.1 cegger int cons, prog;
1328 1.1 cegger
1329 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1330 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1331 1.1 cegger
1332 1.1 cegger /*
1333 1.1 cegger * Go through our Tx list and free mbufs for those
1334 1.1 cegger * frames which have been transmitted.
1335 1.1 cegger */
1336 1.1 cegger cons = sc->age_cdata.age_tx_cons;
1337 1.1 cegger for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1338 1.1 cegger if (sc->age_cdata.age_tx_cnt <= 0)
1339 1.1 cegger break;
1340 1.1 cegger prog++;
1341 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1342 1.1 cegger sc->age_cdata.age_tx_cnt--;
1343 1.1 cegger txd = &sc->age_cdata.age_txdesc[cons];
1344 1.1 cegger /*
1345 1.1 cegger * Clear Tx descriptors, it's not required but would
1346 1.1 cegger * help debugging in case of Tx issues.
1347 1.1 cegger */
1348 1.1 cegger txd->tx_desc->addr = 0;
1349 1.1 cegger txd->tx_desc->len = 0;
1350 1.1 cegger txd->tx_desc->flags = 0;
1351 1.1 cegger
1352 1.1 cegger if (txd->tx_m == NULL)
1353 1.1 cegger continue;
1354 1.1 cegger /* Reclaim transmitted mbufs. */
1355 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1356 1.1 cegger m_freem(txd->tx_m);
1357 1.1 cegger txd->tx_m = NULL;
1358 1.1 cegger }
1359 1.1 cegger
1360 1.1 cegger if (prog > 0) {
1361 1.1 cegger sc->age_cdata.age_tx_cons = cons;
1362 1.1 cegger
1363 1.1 cegger /*
1364 1.1 cegger * Unarm watchdog timer only when there are no pending
1365 1.1 cegger * Tx descriptors in queue.
1366 1.1 cegger */
1367 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0)
1368 1.1 cegger ifp->if_timer = 0;
1369 1.1 cegger
1370 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1371 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize,
1372 1.1 cegger BUS_DMASYNC_PREWRITE);
1373 1.1 cegger }
1374 1.1 cegger }
1375 1.1 cegger
1376 1.1 cegger /* Receive a frame. */
1377 1.1 cegger static void
1378 1.1 cegger age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1379 1.1 cegger {
1380 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1381 1.1 cegger struct age_rxdesc *rxd;
1382 1.1 cegger struct rx_desc *desc;
1383 1.1 cegger struct mbuf *mp, *m;
1384 1.1 cegger uint32_t status, index, vtag;
1385 1.1 cegger int count, nsegs, pktlen;
1386 1.1 cegger int rx_cons;
1387 1.1 cegger
1388 1.1 cegger status = le32toh(rxrd->flags);
1389 1.1 cegger index = le32toh(rxrd->index);
1390 1.1 cegger rx_cons = AGE_RX_CONS(index);
1391 1.1 cegger nsegs = AGE_RX_NSEGS(index);
1392 1.1 cegger
1393 1.1 cegger sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1394 1.1 cegger if ((status & AGE_RRD_ERROR) != 0 &&
1395 1.1 cegger (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1396 1.1 cegger AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1397 1.1 cegger /*
1398 1.1 cegger * We want to pass the following frames to upper
1399 1.1 cegger * layer regardless of error status of Rx return
1400 1.1 cegger * ring.
1401 1.1 cegger *
1402 1.1 cegger * o IP/TCP/UDP checksum is bad.
1403 1.1 cegger * o frame length and protocol specific length
1404 1.1 cegger * does not match.
1405 1.1 cegger */
1406 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1407 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1408 1.1 cegger return;
1409 1.1 cegger }
1410 1.1 cegger
1411 1.1 cegger pktlen = 0;
1412 1.1 cegger for (count = 0; count < nsegs; count++,
1413 1.1 cegger AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1414 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1415 1.1 cegger mp = rxd->rx_m;
1416 1.1 cegger desc = rxd->rx_desc;
1417 1.1 cegger /* Add a new receive buffer to the ring. */
1418 1.1 cegger if (age_newbuf(sc, rxd, 0) != 0) {
1419 1.1 cegger ifp->if_iqdrops++;
1420 1.1 cegger /* Reuse Rx buffers. */
1421 1.1 cegger if (sc->age_cdata.age_rxhead != NULL) {
1422 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1423 1.1 cegger AGE_RXCHAIN_RESET(sc);
1424 1.1 cegger }
1425 1.1 cegger break;
1426 1.1 cegger }
1427 1.1 cegger
1428 1.1 cegger /* The length of the first mbuf is computed last. */
1429 1.1 cegger if (count != 0) {
1430 1.1 cegger mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1431 1.1 cegger pktlen += mp->m_len;
1432 1.1 cegger }
1433 1.1 cegger
1434 1.1 cegger /* Chain received mbufs. */
1435 1.1 cegger if (sc->age_cdata.age_rxhead == NULL) {
1436 1.1 cegger sc->age_cdata.age_rxhead = mp;
1437 1.1 cegger sc->age_cdata.age_rxtail = mp;
1438 1.1 cegger } else {
1439 1.1 cegger mp->m_flags &= ~M_PKTHDR;
1440 1.1 cegger sc->age_cdata.age_rxprev_tail =
1441 1.1 cegger sc->age_cdata.age_rxtail;
1442 1.1 cegger sc->age_cdata.age_rxtail->m_next = mp;
1443 1.1 cegger sc->age_cdata.age_rxtail = mp;
1444 1.1 cegger }
1445 1.1 cegger
1446 1.1 cegger if (count == nsegs - 1) {
1447 1.1 cegger /*
1448 1.1 cegger * It seems that L1 controller has no way
1449 1.1 cegger * to tell hardware to strip CRC bytes.
1450 1.1 cegger */
1451 1.1 cegger sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1452 1.1 cegger if (nsegs > 1) {
1453 1.1 cegger /* Remove the CRC bytes in chained mbufs. */
1454 1.1 cegger pktlen -= ETHER_CRC_LEN;
1455 1.1 cegger if (mp->m_len <= ETHER_CRC_LEN) {
1456 1.1 cegger sc->age_cdata.age_rxtail =
1457 1.1 cegger sc->age_cdata.age_rxprev_tail;
1458 1.1 cegger sc->age_cdata.age_rxtail->m_len -=
1459 1.1 cegger (ETHER_CRC_LEN - mp->m_len);
1460 1.1 cegger sc->age_cdata.age_rxtail->m_next = NULL;
1461 1.1 cegger m_freem(mp);
1462 1.1 cegger } else {
1463 1.1 cegger mp->m_len -= ETHER_CRC_LEN;
1464 1.1 cegger }
1465 1.1 cegger }
1466 1.1 cegger
1467 1.1 cegger m = sc->age_cdata.age_rxhead;
1468 1.1 cegger m->m_flags |= M_PKTHDR;
1469 1.1 cegger m->m_pkthdr.rcvif = ifp;
1470 1.1 cegger m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1471 1.1 cegger /* Set the first mbuf length. */
1472 1.1 cegger m->m_len = sc->age_cdata.age_rxlen - pktlen;
1473 1.1 cegger
1474 1.1 cegger /*
1475 1.1 cegger * Set checksum information.
1476 1.1 cegger * It seems that L1 controller can compute partial
1477 1.1 cegger * checksum. The partial checksum value can be used
1478 1.1 cegger * to accelerate checksum computation for fragmented
1479 1.1 cegger * TCP/UDP packets. Upper network stack already
1480 1.1 cegger * takes advantage of the partial checksum value in
1481 1.1 cegger * IP reassembly stage. But I'm not sure the
1482 1.1 cegger * correctness of the partial hardware checksum
1483 1.1 cegger * assistance due to lack of data sheet. If it is
1484 1.1 cegger * proven to work on L1 I'll enable it.
1485 1.1 cegger */
1486 1.1 cegger if (status & AGE_RRD_IPV4) {
1487 1.13 cegger if (status & AGE_RRD_IPCSUM_NOK)
1488 1.1 cegger m->m_pkthdr.csum_flags |=
1489 1.1 cegger M_CSUM_IPv4_BAD;
1490 1.13 cegger if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1491 1.13 cegger (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1492 1.1 cegger m->m_pkthdr.csum_flags |=
1493 1.1 cegger M_CSUM_TCP_UDP_BAD;
1494 1.1 cegger }
1495 1.1 cegger /*
1496 1.1 cegger * Don't mark bad checksum for TCP/UDP frames
1497 1.1 cegger * as fragmented frames may always have set
1498 1.1 cegger * bad checksummed bit of descriptor status.
1499 1.1 cegger */
1500 1.1 cegger }
1501 1.1 cegger #if NVLAN > 0
1502 1.1 cegger /* Check for VLAN tagged frames. */
1503 1.1 cegger if (status & AGE_RRD_VLAN) {
1504 1.1 cegger vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1505 1.1 cegger VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1506 1.1 cegger continue);
1507 1.1 cegger }
1508 1.1 cegger #endif
1509 1.1 cegger
1510 1.1 cegger #if NBPFILTER > 0
1511 1.1 cegger if (ifp->if_bpf)
1512 1.1 cegger bpf_mtap(ifp->if_bpf, m);
1513 1.1 cegger #endif
1514 1.1 cegger /* Pass it on. */
1515 1.1 cegger ether_input(ifp, m);
1516 1.1 cegger
1517 1.1 cegger /* Reset mbuf chains. */
1518 1.1 cegger AGE_RXCHAIN_RESET(sc);
1519 1.1 cegger }
1520 1.1 cegger }
1521 1.1 cegger
1522 1.1 cegger if (count != nsegs) {
1523 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1524 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1525 1.1 cegger } else
1526 1.1 cegger sc->age_cdata.age_rx_cons = rx_cons;
1527 1.1 cegger }
1528 1.1 cegger
1529 1.1 cegger static void
1530 1.1 cegger age_rxintr(struct age_softc *sc, int rr_prod)
1531 1.1 cegger {
1532 1.1 cegger struct rx_rdesc *rxrd;
1533 1.1 cegger int rr_cons, nsegs, pktlen, prog;
1534 1.1 cegger
1535 1.1 cegger rr_cons = sc->age_cdata.age_rr_cons;
1536 1.1 cegger if (rr_cons == rr_prod)
1537 1.1 cegger return;
1538 1.1 cegger
1539 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1540 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1541 1.1 cegger BUS_DMASYNC_POSTREAD);
1542 1.1 cegger
1543 1.1 cegger for (prog = 0; rr_cons != rr_prod; prog++) {
1544 1.1 cegger rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1545 1.1 cegger nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1546 1.1 cegger if (nsegs == 0)
1547 1.1 cegger break;
1548 1.1 cegger /*
1549 1.1 cegger * Check number of segments against received bytes
1550 1.1 cegger * Non-matching value would indicate that hardware
1551 1.1 cegger * is still trying to update Rx return descriptors.
1552 1.1 cegger * I'm not sure whether this check is really needed.
1553 1.1 cegger */
1554 1.1 cegger pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1555 1.9 cegger if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1556 1.9 cegger (MCLBYTES - ETHER_ALIGN)))
1557 1.1 cegger break;
1558 1.1 cegger
1559 1.1 cegger /* Received a frame. */
1560 1.1 cegger age_rxeof(sc, rxrd);
1561 1.1 cegger
1562 1.1 cegger /* Clear return ring. */
1563 1.1 cegger rxrd->index = 0;
1564 1.1 cegger AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1565 1.1 cegger }
1566 1.1 cegger
1567 1.1 cegger if (prog > 0) {
1568 1.1 cegger /* Update the consumer index. */
1569 1.1 cegger sc->age_cdata.age_rr_cons = rr_cons;
1570 1.1 cegger
1571 1.1 cegger /* Sync descriptors. */
1572 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1573 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1574 1.1 cegger BUS_DMASYNC_PREWRITE);
1575 1.1 cegger
1576 1.1 cegger /* Notify hardware availability of new Rx buffers. */
1577 1.1 cegger AGE_COMMIT_MBOX(sc);
1578 1.1 cegger }
1579 1.1 cegger }
1580 1.1 cegger
1581 1.1 cegger static void
1582 1.1 cegger age_tick(void *xsc)
1583 1.1 cegger {
1584 1.1 cegger struct age_softc *sc = xsc;
1585 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1586 1.1 cegger int s;
1587 1.1 cegger
1588 1.1 cegger s = splnet();
1589 1.1 cegger mii_tick(mii);
1590 1.1 cegger splx(s);
1591 1.1 cegger
1592 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1593 1.1 cegger }
1594 1.1 cegger
1595 1.1 cegger static void
1596 1.1 cegger age_reset(struct age_softc *sc)
1597 1.1 cegger {
1598 1.1 cegger uint32_t reg;
1599 1.1 cegger int i;
1600 1.1 cegger
1601 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1602 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1603 1.1 cegger DELAY(1);
1604 1.1 cegger if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1605 1.1 cegger break;
1606 1.1 cegger }
1607 1.1 cegger if (i == 0)
1608 1.1 cegger printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1609 1.1 cegger
1610 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1611 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1612 1.1 cegger break;
1613 1.1 cegger DELAY(10);
1614 1.1 cegger }
1615 1.1 cegger
1616 1.1 cegger if (i == 0)
1617 1.1 cegger printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1618 1.1 cegger reg);
1619 1.1 cegger
1620 1.1 cegger /* Initialize PCIe module. From Linux. */
1621 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1622 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1623 1.1 cegger }
1624 1.1 cegger
1625 1.1 cegger static int
1626 1.1 cegger age_init(struct ifnet *ifp)
1627 1.1 cegger {
1628 1.1 cegger struct age_softc *sc = ifp->if_softc;
1629 1.1 cegger struct mii_data *mii;
1630 1.1 cegger uint8_t eaddr[ETHER_ADDR_LEN];
1631 1.1 cegger bus_addr_t paddr;
1632 1.1 cegger uint32_t reg, fsize;
1633 1.1 cegger uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1634 1.1 cegger int error;
1635 1.1 cegger
1636 1.1 cegger /*
1637 1.1 cegger * Cancel any pending I/O.
1638 1.1 cegger */
1639 1.1 cegger age_stop(sc);
1640 1.1 cegger
1641 1.1 cegger /*
1642 1.1 cegger * Reset the chip to a known state.
1643 1.1 cegger */
1644 1.1 cegger age_reset(sc);
1645 1.1 cegger
1646 1.1 cegger /* Initialize descriptors. */
1647 1.1 cegger error = age_init_rx_ring(sc);
1648 1.1 cegger if (error != 0) {
1649 1.1 cegger printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1650 1.1 cegger age_stop(sc);
1651 1.15 cegger return error;
1652 1.1 cegger }
1653 1.1 cegger age_init_rr_ring(sc);
1654 1.1 cegger age_init_tx_ring(sc);
1655 1.1 cegger age_init_cmb_block(sc);
1656 1.1 cegger age_init_smb_block(sc);
1657 1.1 cegger
1658 1.1 cegger /* Reprogram the station address. */
1659 1.1 cegger memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1660 1.1 cegger CSR_WRITE_4(sc, AGE_PAR0,
1661 1.1 cegger eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1662 1.1 cegger CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1663 1.1 cegger
1664 1.1 cegger /* Set descriptor base addresses. */
1665 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1666 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1667 1.1 cegger paddr = sc->age_rdata.age_rx_ring_paddr;
1668 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1669 1.1 cegger paddr = sc->age_rdata.age_rr_ring_paddr;
1670 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1671 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1672 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1673 1.1 cegger paddr = sc->age_rdata.age_cmb_block_paddr;
1674 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1675 1.1 cegger paddr = sc->age_rdata.age_smb_block_paddr;
1676 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1677 1.1 cegger
1678 1.1 cegger /* Set Rx/Rx return descriptor counter. */
1679 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1680 1.1 cegger ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1681 1.1 cegger DESC_RRD_CNT_MASK) |
1682 1.1 cegger ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1683 1.1 cegger
1684 1.1 cegger /* Set Tx descriptor counter. */
1685 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1686 1.1 cegger (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1687 1.1 cegger
1688 1.1 cegger /* Tell hardware that we're ready to load descriptors. */
1689 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1690 1.1 cegger
1691 1.1 cegger /*
1692 1.1 cegger * Initialize mailbox register.
1693 1.1 cegger * Updated producer/consumer index information is exchanged
1694 1.1 cegger * through this mailbox register. However Tx producer and
1695 1.1 cegger * Rx return consumer/Rx producer are all shared such that
1696 1.1 cegger * it's hard to separate code path between Tx and Rx without
1697 1.1 cegger * locking. If L1 hardware have a separate mail box register
1698 1.1 cegger * for Tx and Rx consumer/producer management we could have
1699 1.1 cegger * indepent Tx/Rx handler which in turn Rx handler could have
1700 1.1 cegger * been run without any locking.
1701 1.1 cegger */
1702 1.1 cegger AGE_COMMIT_MBOX(sc);
1703 1.1 cegger
1704 1.1 cegger /* Configure IPG/IFG parameters. */
1705 1.1 cegger CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1706 1.1 cegger ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1707 1.1 cegger ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1708 1.1 cegger ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1709 1.1 cegger ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1710 1.1 cegger
1711 1.1 cegger /* Set parameters for half-duplex media. */
1712 1.1 cegger CSR_WRITE_4(sc, AGE_HDPX_CFG,
1713 1.1 cegger ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1714 1.1 cegger HDPX_CFG_LCOL_MASK) |
1715 1.1 cegger ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1716 1.1 cegger HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1717 1.1 cegger ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1718 1.1 cegger HDPX_CFG_ABEBT_MASK) |
1719 1.1 cegger ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1720 1.1 cegger HDPX_CFG_JAMIPG_MASK));
1721 1.1 cegger
1722 1.1 cegger /* Configure interrupt moderation timer. */
1723 1.1 cegger sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1724 1.1 cegger CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1725 1.1 cegger reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1726 1.1 cegger reg &= ~MASTER_MTIMER_ENB;
1727 1.1 cegger if (AGE_USECS(sc->age_int_mod) == 0)
1728 1.1 cegger reg &= ~MASTER_ITIMER_ENB;
1729 1.1 cegger else
1730 1.1 cegger reg |= MASTER_ITIMER_ENB;
1731 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1732 1.1 cegger if (agedebug)
1733 1.1 cegger printf("%s: interrupt moderation is %d us.\n",
1734 1.1 cegger device_xname(sc->sc_dev), sc->age_int_mod);
1735 1.1 cegger CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1736 1.1 cegger
1737 1.1 cegger /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1738 1.1 cegger if (ifp->if_mtu < ETHERMTU)
1739 1.1 cegger sc->age_max_frame_size = ETHERMTU;
1740 1.1 cegger else
1741 1.1 cegger sc->age_max_frame_size = ifp->if_mtu;
1742 1.1 cegger sc->age_max_frame_size += ETHER_HDR_LEN +
1743 1.1 cegger sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1744 1.1 cegger CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1745 1.1 cegger
1746 1.1 cegger /* Configure jumbo frame. */
1747 1.1 cegger fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1748 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1749 1.1 cegger (((fsize / sizeof(uint64_t)) <<
1750 1.1 cegger RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1751 1.1 cegger ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1752 1.1 cegger RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1753 1.1 cegger ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1754 1.1 cegger RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1755 1.1 cegger
1756 1.1 cegger /* Configure flow-control parameters. From Linux. */
1757 1.1 cegger if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1758 1.1 cegger /*
1759 1.1 cegger * Magic workaround for old-L1.
1760 1.1 cegger * Don't know which hw revision requires this magic.
1761 1.1 cegger */
1762 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1763 1.1 cegger /*
1764 1.1 cegger * Another magic workaround for flow-control mode
1765 1.1 cegger * change. From Linux.
1766 1.1 cegger */
1767 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1768 1.1 cegger }
1769 1.1 cegger /*
1770 1.1 cegger * TODO
1771 1.1 cegger * Should understand pause parameter relationships between FIFO
1772 1.1 cegger * size and number of Rx descriptors and Rx return descriptors.
1773 1.1 cegger *
1774 1.1 cegger * Magic parameters came from Linux.
1775 1.1 cegger */
1776 1.1 cegger switch (sc->age_chip_rev) {
1777 1.1 cegger case 0x8001:
1778 1.1 cegger case 0x9001:
1779 1.1 cegger case 0x9002:
1780 1.1 cegger case 0x9003:
1781 1.1 cegger rxf_hi = AGE_RX_RING_CNT / 16;
1782 1.1 cegger rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1783 1.1 cegger rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1784 1.1 cegger rrd_lo = AGE_RR_RING_CNT / 16;
1785 1.1 cegger break;
1786 1.1 cegger default:
1787 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1788 1.1 cegger rxf_lo = reg / 16;
1789 1.1 cegger if (rxf_lo < 192)
1790 1.1 cegger rxf_lo = 192;
1791 1.1 cegger rxf_hi = (reg * 7) / 8;
1792 1.1 cegger if (rxf_hi < rxf_lo)
1793 1.1 cegger rxf_hi = rxf_lo + 16;
1794 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1795 1.1 cegger rrd_lo = reg / 8;
1796 1.1 cegger rrd_hi = (reg * 7) / 8;
1797 1.1 cegger if (rrd_lo < 2)
1798 1.1 cegger rrd_lo = 2;
1799 1.1 cegger if (rrd_hi < rrd_lo)
1800 1.1 cegger rrd_hi = rrd_lo + 3;
1801 1.1 cegger break;
1802 1.1 cegger }
1803 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1804 1.1 cegger ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1805 1.1 cegger RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1806 1.1 cegger ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1807 1.1 cegger RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1808 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1809 1.1 cegger ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1810 1.1 cegger RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1811 1.1 cegger ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1812 1.1 cegger RXQ_RRD_PAUSE_THRESH_HI_MASK));
1813 1.1 cegger
1814 1.1 cegger /* Configure RxQ. */
1815 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1816 1.1 cegger ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1817 1.1 cegger RXQ_CFG_RD_BURST_MASK) |
1818 1.1 cegger ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1819 1.1 cegger RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1820 1.1 cegger ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1821 1.1 cegger RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1822 1.1 cegger RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1823 1.1 cegger
1824 1.1 cegger /* Configure TxQ. */
1825 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1826 1.1 cegger ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1827 1.1 cegger TXQ_CFG_TPD_BURST_MASK) |
1828 1.1 cegger ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1829 1.1 cegger TXQ_CFG_TX_FIFO_BURST_MASK) |
1830 1.1 cegger ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1831 1.1 cegger TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1832 1.1 cegger TXQ_CFG_ENB);
1833 1.1 cegger
1834 1.1 cegger /* Configure DMA parameters. */
1835 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1836 1.1 cegger DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1837 1.1 cegger sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1838 1.1 cegger sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1839 1.1 cegger
1840 1.1 cegger /* Configure CMB DMA write threshold. */
1841 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1842 1.1 cegger ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1843 1.1 cegger CMB_WR_THRESH_RRD_MASK) |
1844 1.1 cegger ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1845 1.1 cegger CMB_WR_THRESH_TPD_MASK));
1846 1.1 cegger
1847 1.1 cegger /* Set CMB/SMB timer and enable them. */
1848 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1849 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1850 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1851 1.1 cegger
1852 1.1 cegger /* Request SMB updates for every seconds. */
1853 1.1 cegger CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1854 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1855 1.1 cegger
1856 1.1 cegger /*
1857 1.1 cegger * Disable all WOL bits as WOL can interfere normal Rx
1858 1.1 cegger * operation.
1859 1.1 cegger */
1860 1.1 cegger CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1861 1.1 cegger
1862 1.1 cegger /*
1863 1.1 cegger * Configure Tx/Rx MACs.
1864 1.1 cegger * - Auto-padding for short frames.
1865 1.1 cegger * - Enable CRC generation.
1866 1.1 cegger * Start with full-duplex/1000Mbps media. Actual reconfiguration
1867 1.1 cegger * of MAC is followed after link establishment.
1868 1.1 cegger */
1869 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG,
1870 1.1 cegger MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1871 1.1 cegger MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1872 1.1 cegger ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1873 1.1 cegger MAC_CFG_PREAMBLE_MASK));
1874 1.1 cegger
1875 1.1 cegger /* Set up the receive filter. */
1876 1.1 cegger age_rxfilter(sc);
1877 1.1 cegger age_rxvlan(sc);
1878 1.1 cegger
1879 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1880 1.1 cegger reg |= MAC_CFG_RXCSUM_ENB;
1881 1.1 cegger
1882 1.1 cegger /* Ack all pending interrupts and clear it. */
1883 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1884 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1885 1.1 cegger
1886 1.1 cegger /* Finally enable Tx/Rx MAC. */
1887 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1888 1.1 cegger
1889 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1890 1.1 cegger
1891 1.1 cegger /* Switch to the current media. */
1892 1.1 cegger mii = &sc->sc_miibus;
1893 1.1 cegger mii_mediachg(mii);
1894 1.1 cegger
1895 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1896 1.1 cegger
1897 1.1 cegger ifp->if_flags |= IFF_RUNNING;
1898 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1899 1.1 cegger
1900 1.15 cegger return 0;
1901 1.1 cegger }
1902 1.1 cegger
1903 1.1 cegger static void
1904 1.1 cegger age_stop(struct age_softc *sc)
1905 1.1 cegger {
1906 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1907 1.1 cegger struct age_txdesc *txd;
1908 1.1 cegger struct age_rxdesc *rxd;
1909 1.1 cegger uint32_t reg;
1910 1.1 cegger int i;
1911 1.1 cegger
1912 1.1 cegger callout_stop(&sc->sc_tick_ch);
1913 1.1 cegger
1914 1.1 cegger /*
1915 1.1 cegger * Mark the interface down and cancel the watchdog timer.
1916 1.1 cegger */
1917 1.1 cegger ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1918 1.1 cegger ifp->if_timer = 0;
1919 1.1 cegger
1920 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1921 1.1 cegger
1922 1.1 cegger /*
1923 1.1 cegger * Disable interrupts.
1924 1.1 cegger */
1925 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1926 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1927 1.1 cegger
1928 1.1 cegger /* Stop CMB/SMB updates. */
1929 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1930 1.1 cegger
1931 1.1 cegger /* Stop Rx/Tx MAC. */
1932 1.1 cegger age_stop_rxmac(sc);
1933 1.1 cegger age_stop_txmac(sc);
1934 1.1 cegger
1935 1.1 cegger /* Stop DMA. */
1936 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1937 1.1 cegger CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1938 1.1 cegger
1939 1.1 cegger /* Stop TxQ/RxQ. */
1940 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1941 1.1 cegger CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1942 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1943 1.1 cegger CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1944 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1945 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1946 1.1 cegger break;
1947 1.1 cegger DELAY(10);
1948 1.1 cegger }
1949 1.1 cegger if (i == 0)
1950 1.1 cegger printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1951 1.1 cegger device_xname(sc->sc_dev), reg);
1952 1.1 cegger
1953 1.1 cegger /* Reclaim Rx buffers that have been processed. */
1954 1.1 cegger if (sc->age_cdata.age_rxhead != NULL)
1955 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1956 1.1 cegger AGE_RXCHAIN_RESET(sc);
1957 1.1 cegger
1958 1.1 cegger /*
1959 1.1 cegger * Free RX and TX mbufs still in the queues.
1960 1.1 cegger */
1961 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
1962 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
1963 1.1 cegger if (rxd->rx_m != NULL) {
1964 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1965 1.1 cegger m_freem(rxd->rx_m);
1966 1.1 cegger rxd->rx_m = NULL;
1967 1.1 cegger }
1968 1.1 cegger }
1969 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
1970 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
1971 1.1 cegger if (txd->tx_m != NULL) {
1972 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1973 1.1 cegger m_freem(txd->tx_m);
1974 1.1 cegger txd->tx_m = NULL;
1975 1.1 cegger }
1976 1.1 cegger }
1977 1.1 cegger }
1978 1.1 cegger
1979 1.1 cegger static void
1980 1.1 cegger age_stats_update(struct age_softc *sc)
1981 1.1 cegger {
1982 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1983 1.1 cegger struct age_stats *stat;
1984 1.1 cegger struct smb *smb;
1985 1.1 cegger
1986 1.1 cegger stat = &sc->age_stat;
1987 1.1 cegger
1988 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1989 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1990 1.1 cegger
1991 1.1 cegger smb = sc->age_rdata.age_smb_block;
1992 1.1 cegger if (smb->updated == 0)
1993 1.1 cegger return;
1994 1.1 cegger
1995 1.1 cegger /* Rx stats. */
1996 1.1 cegger stat->rx_frames += smb->rx_frames;
1997 1.1 cegger stat->rx_bcast_frames += smb->rx_bcast_frames;
1998 1.1 cegger stat->rx_mcast_frames += smb->rx_mcast_frames;
1999 1.1 cegger stat->rx_pause_frames += smb->rx_pause_frames;
2000 1.1 cegger stat->rx_control_frames += smb->rx_control_frames;
2001 1.1 cegger stat->rx_crcerrs += smb->rx_crcerrs;
2002 1.1 cegger stat->rx_lenerrs += smb->rx_lenerrs;
2003 1.1 cegger stat->rx_bytes += smb->rx_bytes;
2004 1.1 cegger stat->rx_runts += smb->rx_runts;
2005 1.1 cegger stat->rx_fragments += smb->rx_fragments;
2006 1.1 cegger stat->rx_pkts_64 += smb->rx_pkts_64;
2007 1.1 cegger stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2008 1.1 cegger stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2009 1.1 cegger stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2010 1.1 cegger stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2011 1.1 cegger stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2012 1.1 cegger stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2013 1.1 cegger stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2014 1.1 cegger stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2015 1.1 cegger stat->rx_desc_oflows += smb->rx_desc_oflows;
2016 1.1 cegger stat->rx_alignerrs += smb->rx_alignerrs;
2017 1.1 cegger stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2018 1.1 cegger stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2019 1.1 cegger stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2020 1.1 cegger
2021 1.1 cegger /* Tx stats. */
2022 1.1 cegger stat->tx_frames += smb->tx_frames;
2023 1.1 cegger stat->tx_bcast_frames += smb->tx_bcast_frames;
2024 1.1 cegger stat->tx_mcast_frames += smb->tx_mcast_frames;
2025 1.1 cegger stat->tx_pause_frames += smb->tx_pause_frames;
2026 1.1 cegger stat->tx_excess_defer += smb->tx_excess_defer;
2027 1.1 cegger stat->tx_control_frames += smb->tx_control_frames;
2028 1.1 cegger stat->tx_deferred += smb->tx_deferred;
2029 1.1 cegger stat->tx_bytes += smb->tx_bytes;
2030 1.1 cegger stat->tx_pkts_64 += smb->tx_pkts_64;
2031 1.1 cegger stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2032 1.1 cegger stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2033 1.1 cegger stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2034 1.1 cegger stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2035 1.1 cegger stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2036 1.1 cegger stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2037 1.1 cegger stat->tx_single_colls += smb->tx_single_colls;
2038 1.1 cegger stat->tx_multi_colls += smb->tx_multi_colls;
2039 1.1 cegger stat->tx_late_colls += smb->tx_late_colls;
2040 1.1 cegger stat->tx_excess_colls += smb->tx_excess_colls;
2041 1.1 cegger stat->tx_underrun += smb->tx_underrun;
2042 1.1 cegger stat->tx_desc_underrun += smb->tx_desc_underrun;
2043 1.1 cegger stat->tx_lenerrs += smb->tx_lenerrs;
2044 1.1 cegger stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2045 1.1 cegger stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2046 1.1 cegger stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2047 1.1 cegger
2048 1.1 cegger /* Update counters in ifnet. */
2049 1.1 cegger ifp->if_opackets += smb->tx_frames;
2050 1.1 cegger
2051 1.1 cegger ifp->if_collisions += smb->tx_single_colls +
2052 1.1 cegger smb->tx_multi_colls + smb->tx_late_colls +
2053 1.1 cegger smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2054 1.1 cegger
2055 1.1 cegger ifp->if_oerrors += smb->tx_excess_colls +
2056 1.1 cegger smb->tx_late_colls + smb->tx_underrun +
2057 1.1 cegger smb->tx_pkts_truncated;
2058 1.1 cegger
2059 1.1 cegger ifp->if_ipackets += smb->rx_frames;
2060 1.1 cegger
2061 1.1 cegger ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2062 1.1 cegger smb->rx_runts + smb->rx_pkts_truncated +
2063 1.1 cegger smb->rx_fifo_oflows + smb->rx_desc_oflows +
2064 1.1 cegger smb->rx_alignerrs;
2065 1.1 cegger
2066 1.1 cegger /* Update done, clear. */
2067 1.1 cegger smb->updated = 0;
2068 1.1 cegger
2069 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2070 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2071 1.1 cegger }
2072 1.1 cegger
2073 1.1 cegger static void
2074 1.1 cegger age_stop_txmac(struct age_softc *sc)
2075 1.1 cegger {
2076 1.1 cegger uint32_t reg;
2077 1.1 cegger int i;
2078 1.1 cegger
2079 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2080 1.1 cegger if ((reg & MAC_CFG_TX_ENB) != 0) {
2081 1.1 cegger reg &= ~MAC_CFG_TX_ENB;
2082 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2083 1.1 cegger }
2084 1.1 cegger /* Stop Tx DMA engine. */
2085 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2086 1.1 cegger if ((reg & DMA_CFG_RD_ENB) != 0) {
2087 1.1 cegger reg &= ~DMA_CFG_RD_ENB;
2088 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2089 1.1 cegger }
2090 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2091 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2092 1.1 cegger (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2093 1.1 cegger break;
2094 1.1 cegger DELAY(10);
2095 1.1 cegger }
2096 1.1 cegger if (i == 0)
2097 1.1 cegger printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2098 1.1 cegger }
2099 1.1 cegger
2100 1.1 cegger static void
2101 1.1 cegger age_stop_rxmac(struct age_softc *sc)
2102 1.1 cegger {
2103 1.1 cegger uint32_t reg;
2104 1.1 cegger int i;
2105 1.1 cegger
2106 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2107 1.1 cegger if ((reg & MAC_CFG_RX_ENB) != 0) {
2108 1.1 cegger reg &= ~MAC_CFG_RX_ENB;
2109 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2110 1.1 cegger }
2111 1.1 cegger /* Stop Rx DMA engine. */
2112 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2113 1.1 cegger if ((reg & DMA_CFG_WR_ENB) != 0) {
2114 1.1 cegger reg &= ~DMA_CFG_WR_ENB;
2115 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2116 1.1 cegger }
2117 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2118 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2119 1.1 cegger (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2120 1.1 cegger break;
2121 1.1 cegger DELAY(10);
2122 1.1 cegger }
2123 1.1 cegger if (i == 0)
2124 1.1 cegger printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2125 1.1 cegger }
2126 1.1 cegger
2127 1.1 cegger static void
2128 1.1 cegger age_init_tx_ring(struct age_softc *sc)
2129 1.1 cegger {
2130 1.1 cegger struct age_ring_data *rd;
2131 1.1 cegger struct age_txdesc *txd;
2132 1.1 cegger int i;
2133 1.1 cegger
2134 1.1 cegger sc->age_cdata.age_tx_prod = 0;
2135 1.1 cegger sc->age_cdata.age_tx_cons = 0;
2136 1.1 cegger sc->age_cdata.age_tx_cnt = 0;
2137 1.1 cegger
2138 1.1 cegger rd = &sc->age_rdata;
2139 1.1 cegger memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2140 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
2141 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
2142 1.1 cegger txd->tx_desc = &rd->age_tx_ring[i];
2143 1.1 cegger txd->tx_m = NULL;
2144 1.1 cegger }
2145 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2146 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2147 1.1 cegger }
2148 1.1 cegger
2149 1.1 cegger static int
2150 1.1 cegger age_init_rx_ring(struct age_softc *sc)
2151 1.1 cegger {
2152 1.1 cegger struct age_ring_data *rd;
2153 1.1 cegger struct age_rxdesc *rxd;
2154 1.1 cegger int i;
2155 1.1 cegger
2156 1.1 cegger sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2157 1.1 cegger rd = &sc->age_rdata;
2158 1.1 cegger memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2159 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
2160 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
2161 1.1 cegger rxd->rx_m = NULL;
2162 1.1 cegger rxd->rx_desc = &rd->age_rx_ring[i];
2163 1.1 cegger if (age_newbuf(sc, rxd, 1) != 0)
2164 1.15 cegger return ENOBUFS;
2165 1.1 cegger }
2166 1.1 cegger
2167 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2168 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2169 1.1 cegger
2170 1.15 cegger return 0;
2171 1.1 cegger }
2172 1.1 cegger
2173 1.1 cegger static void
2174 1.1 cegger age_init_rr_ring(struct age_softc *sc)
2175 1.1 cegger {
2176 1.1 cegger struct age_ring_data *rd;
2177 1.1 cegger
2178 1.1 cegger sc->age_cdata.age_rr_cons = 0;
2179 1.1 cegger AGE_RXCHAIN_RESET(sc);
2180 1.1 cegger
2181 1.1 cegger rd = &sc->age_rdata;
2182 1.1 cegger memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2183 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2184 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2185 1.1 cegger }
2186 1.1 cegger
2187 1.1 cegger static void
2188 1.1 cegger age_init_cmb_block(struct age_softc *sc)
2189 1.1 cegger {
2190 1.1 cegger struct age_ring_data *rd;
2191 1.1 cegger
2192 1.1 cegger rd = &sc->age_rdata;
2193 1.1 cegger memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2194 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2195 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2196 1.1 cegger }
2197 1.1 cegger
2198 1.1 cegger static void
2199 1.1 cegger age_init_smb_block(struct age_softc *sc)
2200 1.1 cegger {
2201 1.1 cegger struct age_ring_data *rd;
2202 1.1 cegger
2203 1.1 cegger rd = &sc->age_rdata;
2204 1.1 cegger memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2205 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2206 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2207 1.1 cegger }
2208 1.1 cegger
2209 1.1 cegger static int
2210 1.1 cegger age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2211 1.1 cegger {
2212 1.1 cegger struct rx_desc *desc;
2213 1.1 cegger struct mbuf *m;
2214 1.1 cegger bus_dmamap_t map;
2215 1.1 cegger int error;
2216 1.1 cegger
2217 1.1 cegger MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2218 1.1 cegger if (m == NULL)
2219 1.15 cegger return ENOBUFS;
2220 1.1 cegger MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2221 1.1 cegger if (!(m->m_flags & M_EXT)) {
2222 1.1 cegger m_freem(m);
2223 1.15 cegger return ENOBUFS;
2224 1.1 cegger }
2225 1.1 cegger
2226 1.1 cegger m->m_len = m->m_pkthdr.len = MCLBYTES;
2227 1.9 cegger m_adj(m, ETHER_ALIGN);
2228 1.1 cegger
2229 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat,
2230 1.1 cegger sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2231 1.1 cegger
2232 1.1 cegger if (error != 0) {
2233 1.1 cegger if (!error) {
2234 1.1 cegger bus_dmamap_unload(sc->sc_dmat,
2235 1.1 cegger sc->age_cdata.age_rx_sparemap);
2236 1.1 cegger error = EFBIG;
2237 1.1 cegger printf("%s: too many segments?!\n",
2238 1.1 cegger device_xname(sc->sc_dev));
2239 1.1 cegger }
2240 1.1 cegger m_freem(m);
2241 1.1 cegger
2242 1.1 cegger if (init)
2243 1.1 cegger printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2244 1.15 cegger return error;
2245 1.1 cegger }
2246 1.1 cegger
2247 1.1 cegger if (rxd->rx_m != NULL) {
2248 1.1 cegger bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2249 1.1 cegger rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2250 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2251 1.1 cegger }
2252 1.1 cegger map = rxd->rx_dmamap;
2253 1.1 cegger rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2254 1.1 cegger sc->age_cdata.age_rx_sparemap = map;
2255 1.1 cegger rxd->rx_m = m;
2256 1.1 cegger
2257 1.1 cegger desc = rxd->rx_desc;
2258 1.1 cegger desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2259 1.1 cegger desc->len =
2260 1.1 cegger htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2261 1.1 cegger AGE_RD_LEN_SHIFT);
2262 1.1 cegger
2263 1.15 cegger return 0;
2264 1.1 cegger }
2265 1.1 cegger
2266 1.1 cegger static void
2267 1.1 cegger age_rxvlan(struct age_softc *sc)
2268 1.1 cegger {
2269 1.1 cegger uint32_t reg;
2270 1.1 cegger
2271 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2272 1.1 cegger reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2273 1.1 cegger if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2274 1.1 cegger reg |= MAC_CFG_VLAN_TAG_STRIP;
2275 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2276 1.1 cegger }
2277 1.1 cegger
2278 1.1 cegger static void
2279 1.1 cegger age_rxfilter(struct age_softc *sc)
2280 1.1 cegger {
2281 1.1 cegger struct ethercom *ec = &sc->sc_ec;
2282 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
2283 1.1 cegger struct ether_multi *enm;
2284 1.1 cegger struct ether_multistep step;
2285 1.1 cegger uint32_t crc;
2286 1.1 cegger uint32_t mchash[2];
2287 1.1 cegger uint32_t rxcfg;
2288 1.1 cegger
2289 1.1 cegger rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2290 1.1 cegger rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2291 1.1 cegger
2292 1.1 cegger if (ifp->if_flags & IFF_BROADCAST)
2293 1.1 cegger rxcfg |= MAC_CFG_BCAST;
2294 1.1 cegger if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2295 1.1 cegger if (ifp->if_flags & IFF_PROMISC)
2296 1.1 cegger rxcfg |= MAC_CFG_PROMISC;
2297 1.1 cegger if (ifp->if_flags & IFF_ALLMULTI)
2298 1.1 cegger rxcfg |= MAC_CFG_ALLMULTI;
2299 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2300 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2301 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2302 1.1 cegger return;
2303 1.1 cegger }
2304 1.1 cegger
2305 1.1 cegger /* Program new filter. */
2306 1.1 cegger memset(mchash, 0, sizeof(mchash));
2307 1.1 cegger
2308 1.1 cegger ETHER_FIRST_MULTI(step, ec, enm);
2309 1.1 cegger while (enm != NULL) {
2310 1.1 cegger crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2311 1.1 cegger enm->enm_addrlo), ETHER_ADDR_LEN);
2312 1.1 cegger
2313 1.1 cegger mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2314 1.1 cegger ETHER_NEXT_MULTI(step, enm);
2315 1.1 cegger }
2316 1.1 cegger
2317 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2318 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2319 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2320 1.1 cegger }
2321