if_age.c revision 1.2 1 1.2 cegger /* $NetBSD: if_age.c,v 1.2 2009/01/16 21:47:56 cegger Exp $ */
2 1.1 cegger /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.1 cegger
4 1.1 cegger /*-
5 1.1 cegger * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.1 cegger * All rights reserved.
7 1.1 cegger *
8 1.1 cegger * Redistribution and use in source and binary forms, with or without
9 1.1 cegger * modification, are permitted provided that the following conditions
10 1.1 cegger * are met:
11 1.1 cegger * 1. Redistributions of source code must retain the above copyright
12 1.1 cegger * notice unmodified, this list of conditions, and the following
13 1.1 cegger * disclaimer.
14 1.1 cegger * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 cegger * notice, this list of conditions and the following disclaimer in the
16 1.1 cegger * documentation and/or other materials provided with the distribution.
17 1.1 cegger *
18 1.1 cegger * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.1 cegger * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 cegger * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 cegger * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.1 cegger * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 cegger * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 cegger * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 cegger * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 cegger * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 cegger * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 cegger * SUCH DAMAGE.
29 1.1 cegger */
30 1.1 cegger
31 1.1 cegger /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.1 cegger
33 1.2 cegger #include <sys/cdefs.h>
34 1.2 cegger __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.2 2009/01/16 21:47:56 cegger Exp $");
35 1.2 cegger
36 1.1 cegger #include "bpfilter.h"
37 1.1 cegger #include "vlan.h"
38 1.1 cegger
39 1.1 cegger #include <sys/param.h>
40 1.1 cegger #include <sys/proc.h>
41 1.1 cegger #include <sys/endian.h>
42 1.1 cegger #include <sys/systm.h>
43 1.1 cegger #include <sys/types.h>
44 1.1 cegger #include <sys/sockio.h>
45 1.1 cegger #include <sys/mbuf.h>
46 1.1 cegger #include <sys/queue.h>
47 1.1 cegger #include <sys/kernel.h>
48 1.1 cegger #include <sys/device.h>
49 1.1 cegger #include <sys/callout.h>
50 1.1 cegger #include <sys/socket.h>
51 1.1 cegger
52 1.1 cegger #include <net/if.h>
53 1.1 cegger #include <net/if_dl.h>
54 1.1 cegger #include <net/if_media.h>
55 1.1 cegger #include <net/if_ether.h>
56 1.1 cegger
57 1.1 cegger #ifdef INET
58 1.1 cegger #include <netinet/in.h>
59 1.1 cegger #include <netinet/in_systm.h>
60 1.1 cegger #include <netinet/in_var.h>
61 1.1 cegger #include <netinet/ip.h>
62 1.1 cegger #endif
63 1.1 cegger
64 1.1 cegger #include <net/if_types.h>
65 1.1 cegger #include <net/if_vlanvar.h>
66 1.1 cegger
67 1.1 cegger #if NBPFILTER > 0
68 1.1 cegger #include <net/bpf.h>
69 1.1 cegger #endif
70 1.1 cegger
71 1.1 cegger #include <sys/rnd.h>
72 1.1 cegger
73 1.1 cegger #include <dev/mii/mii.h>
74 1.1 cegger #include <dev/mii/miivar.h>
75 1.1 cegger
76 1.1 cegger #include <dev/pci/pcireg.h>
77 1.1 cegger #include <dev/pci/pcivar.h>
78 1.1 cegger #include <dev/pci/pcidevs.h>
79 1.1 cegger
80 1.1 cegger #include <dev/pci/if_agereg.h>
81 1.1 cegger
82 1.1 cegger static int age_match(device_t, cfdata_t, void *);
83 1.1 cegger static void age_attach(device_t, device_t, void *);
84 1.1 cegger static int age_detach(device_t, int);
85 1.1 cegger
86 1.1 cegger static int age_miibus_readreg(device_t, int, int);
87 1.1 cegger static void age_miibus_writereg(device_t, int, int, int);
88 1.1 cegger static void age_miibus_statchg(device_t);
89 1.1 cegger
90 1.1 cegger static int age_init(struct ifnet *);
91 1.1 cegger static int age_ioctl(struct ifnet *, u_long, void *);
92 1.1 cegger static void age_start(struct ifnet *);
93 1.1 cegger static void age_watchdog(struct ifnet *);
94 1.1 cegger static void age_mediastatus(struct ifnet *, struct ifmediareq *);
95 1.1 cegger static int age_mediachange(struct ifnet *);
96 1.1 cegger
97 1.1 cegger static int age_intr(void *);
98 1.1 cegger static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
99 1.1 cegger static int age_dma_alloc(struct age_softc *);
100 1.1 cegger static void age_dma_free(struct age_softc *);
101 1.1 cegger static void age_get_macaddr(struct age_softc *, uint8_t[]);
102 1.1 cegger static void age_phy_reset(struct age_softc *);
103 1.1 cegger
104 1.1 cegger static int age_encap(struct age_softc *, struct mbuf **);
105 1.1 cegger static void age_init_tx_ring(struct age_softc *);
106 1.1 cegger static int age_init_rx_ring(struct age_softc *);
107 1.1 cegger static void age_init_rr_ring(struct age_softc *);
108 1.1 cegger static void age_init_cmb_block(struct age_softc *);
109 1.1 cegger static void age_init_smb_block(struct age_softc *);
110 1.1 cegger static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
111 1.1 cegger static void age_mac_config(struct age_softc *);
112 1.1 cegger static void age_txintr(struct age_softc *, int);
113 1.1 cegger static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
114 1.1 cegger static void age_rxintr(struct age_softc *, int);
115 1.1 cegger static void age_tick(void *);
116 1.1 cegger static void age_reset(struct age_softc *);
117 1.1 cegger static void age_stop(struct age_softc *);
118 1.1 cegger static void age_stats_update(struct age_softc *);
119 1.1 cegger static void age_stop_txmac(struct age_softc *);
120 1.1 cegger static void age_stop_rxmac(struct age_softc *);
121 1.1 cegger static void age_rxvlan(struct age_softc *sc);
122 1.1 cegger static void age_rxfilter(struct age_softc *);
123 1.1 cegger
124 1.1 cegger CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
125 1.1 cegger age_match, age_attach, age_detach, NULL);
126 1.1 cegger
127 1.1 cegger int agedebug = 0;
128 1.1 cegger #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
129 1.1 cegger
130 1.1 cegger #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 1.1 cegger
132 1.1 cegger static int
133 1.1 cegger age_match(device_t dev, cfdata_t match, void *aux)
134 1.1 cegger {
135 1.1 cegger struct pci_attach_args *pa = aux;
136 1.1 cegger
137 1.1 cegger return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 1.1 cegger PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 1.1 cegger }
140 1.1 cegger
141 1.1 cegger static void
142 1.1 cegger age_attach(device_t parent, device_t self, void *aux)
143 1.1 cegger {
144 1.1 cegger struct age_softc *sc = device_private(self);
145 1.1 cegger struct pci_attach_args *pa = aux;
146 1.1 cegger pci_intr_handle_t ih;
147 1.1 cegger const char *intrstr;
148 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
149 1.1 cegger pcireg_t memtype;
150 1.1 cegger int error = 0;
151 1.1 cegger
152 1.1 cegger aprint_naive("\n");
153 1.1 cegger aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
154 1.1 cegger
155 1.1 cegger sc->sc_dev = self;
156 1.1 cegger sc->sc_dmat = pa->pa_dmat;
157 1.1 cegger sc->sc_pct = pa->pa_pc;
158 1.1 cegger sc->sc_pcitag = pa->pa_tag;
159 1.1 cegger
160 1.1 cegger /*
161 1.1 cegger * Allocate IO memory
162 1.1 cegger */
163 1.1 cegger memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
164 1.1 cegger switch (memtype) {
165 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
166 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
167 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
168 1.1 cegger break;
169 1.1 cegger default:
170 1.1 cegger aprint_error_dev(self, "invalid base address register\n");
171 1.1 cegger break;
172 1.1 cegger }
173 1.1 cegger
174 1.1 cegger if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
175 1.1 cegger &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
176 1.1 cegger aprint_error_dev(self, "could not map mem space\n");
177 1.1 cegger return;
178 1.1 cegger }
179 1.1 cegger
180 1.1 cegger if (pci_intr_map(pa, &ih) != 0) {
181 1.1 cegger aprint_error_dev(self, "could not map interrupt\n");
182 1.1 cegger return;
183 1.1 cegger }
184 1.1 cegger
185 1.1 cegger /*
186 1.1 cegger * Allocate IRQ
187 1.1 cegger */
188 1.1 cegger intrstr = pci_intr_string(sc->sc_pct, ih);
189 1.1 cegger sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
190 1.1 cegger age_intr, sc);
191 1.1 cegger if (sc->sc_irq_handle == NULL) {
192 1.1 cegger aprint_error_dev(self, "could not establish interrupt");
193 1.1 cegger if (intrstr != NULL)
194 1.1 cegger aprint_error(" at %s", intrstr);
195 1.1 cegger aprint_error("\n");
196 1.1 cegger return;
197 1.1 cegger }
198 1.1 cegger aprint_normal_dev(self, "%s", intrstr);
199 1.1 cegger
200 1.1 cegger /* Set PHY address. */
201 1.1 cegger sc->age_phyaddr = AGE_PHY_ADDR;
202 1.1 cegger
203 1.1 cegger /* Reset PHY. */
204 1.1 cegger age_phy_reset(sc);
205 1.1 cegger
206 1.1 cegger /* Reset the ethernet controller. */
207 1.1 cegger age_reset(sc);
208 1.1 cegger
209 1.1 cegger /* Get PCI and chip id/revision. */
210 1.1 cegger sc->age_rev = PCI_REVISION(pa->pa_class);
211 1.1 cegger sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
212 1.1 cegger MASTER_CHIP_REV_SHIFT;
213 1.1 cegger
214 1.1 cegger aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
215 1.1 cegger aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
216 1.1 cegger
217 1.1 cegger if (agedebug) {
218 1.1 cegger aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
219 1.1 cegger CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
220 1.1 cegger CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
221 1.1 cegger }
222 1.1 cegger
223 1.1 cegger /* Set max allowable DMA size. */
224 1.1 cegger sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
225 1.1 cegger sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
226 1.1 cegger
227 1.1 cegger /* Allocate DMA stuffs */
228 1.1 cegger error = age_dma_alloc(sc);
229 1.1 cegger if (error)
230 1.1 cegger goto fail;
231 1.1 cegger
232 1.1 cegger callout_init(&sc->sc_tick_ch, 0);
233 1.1 cegger callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
234 1.1 cegger
235 1.1 cegger /* Load station address. */
236 1.1 cegger age_get_macaddr(sc, sc->sc_enaddr);
237 1.1 cegger
238 1.1 cegger aprint_normal_dev(self, "Ethernet address %s\n",
239 1.1 cegger ether_sprintf(sc->sc_enaddr));
240 1.1 cegger
241 1.1 cegger ifp->if_softc = sc;
242 1.1 cegger ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
243 1.1 cegger ifp->if_init = age_init;
244 1.1 cegger ifp->if_ioctl = age_ioctl;
245 1.1 cegger ifp->if_start = age_start;
246 1.1 cegger ifp->if_watchdog = age_watchdog;
247 1.1 cegger ifp->if_baudrate = IF_Gbps(1);
248 1.1 cegger IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 1.1 cegger IFQ_SET_READY(&ifp->if_snd);
250 1.1 cegger strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251 1.1 cegger
252 1.1 cegger sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253 1.1 cegger
254 1.1 cegger #ifdef AGE_CHECKSUM
255 1.1 cegger ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
256 1.1 cegger IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
257 1.1 cegger IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
258 1.1 cegger #endif
259 1.1 cegger
260 1.1 cegger #if NVLAN > 0
261 1.1 cegger sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
262 1.1 cegger #endif
263 1.1 cegger
264 1.1 cegger /* Set up MII bus. */
265 1.1 cegger sc->sc_miibus.mii_ifp = ifp;
266 1.1 cegger sc->sc_miibus.mii_readreg = age_miibus_readreg;
267 1.1 cegger sc->sc_miibus.mii_writereg = age_miibus_writereg;
268 1.1 cegger sc->sc_miibus.mii_statchg = age_miibus_statchg;
269 1.1 cegger
270 1.1 cegger ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
271 1.1 cegger age_mediastatus);
272 1.1 cegger mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
273 1.1 cegger MII_OFFSET_ANY, 0);
274 1.1 cegger
275 1.1 cegger if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
276 1.1 cegger aprint_error_dev(self, "no PHY found!\n");
277 1.1 cegger ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
278 1.1 cegger 0, NULL);
279 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
280 1.1 cegger } else
281 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
282 1.1 cegger
283 1.1 cegger if_attach(ifp);
284 1.1 cegger ether_ifattach(ifp, sc->sc_enaddr);
285 1.1 cegger
286 1.1 cegger if (!pmf_device_register(self, NULL, NULL))
287 1.1 cegger aprint_error_dev(self, "couldn't establish power handler\n");
288 1.1 cegger else
289 1.1 cegger pmf_class_network_register(self, ifp);
290 1.1 cegger
291 1.1 cegger return;
292 1.1 cegger fail:
293 1.1 cegger age_detach(sc->sc_dev, 0);
294 1.1 cegger }
295 1.1 cegger
296 1.1 cegger static int
297 1.1 cegger age_detach(device_t self, int flags)
298 1.1 cegger {
299 1.1 cegger struct age_softc *sc = device_private(self);
300 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
301 1.1 cegger int s;
302 1.1 cegger
303 1.1 cegger s = splnet();
304 1.1 cegger age_stop(sc);
305 1.1 cegger splx(s);
306 1.1 cegger
307 1.1 cegger mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
308 1.1 cegger
309 1.1 cegger /* Delete all remaining media. */
310 1.1 cegger ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
311 1.1 cegger
312 1.1 cegger ether_ifdetach(ifp);
313 1.1 cegger if_detach(ifp);
314 1.1 cegger age_dma_free(sc);
315 1.1 cegger
316 1.1 cegger if (sc->sc_irq_handle != NULL) {
317 1.1 cegger pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
318 1.1 cegger sc->sc_irq_handle = NULL;
319 1.1 cegger }
320 1.1 cegger
321 1.1 cegger return (0);
322 1.1 cegger }
323 1.1 cegger
324 1.1 cegger /*
325 1.1 cegger * Read a PHY register on the MII of the L1.
326 1.1 cegger */
327 1.1 cegger static int
328 1.1 cegger age_miibus_readreg(struct device *dev, int phy, int reg)
329 1.1 cegger {
330 1.1 cegger struct age_softc *sc = device_private(dev);
331 1.1 cegger uint32_t v;
332 1.1 cegger int i;
333 1.1 cegger
334 1.1 cegger if (phy != sc->age_phyaddr)
335 1.1 cegger return (0);
336 1.1 cegger
337 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
338 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
339 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
340 1.1 cegger DELAY(1);
341 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
342 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
343 1.1 cegger break;
344 1.1 cegger }
345 1.1 cegger
346 1.1 cegger if (i == 0) {
347 1.1 cegger printf("%s: phy read timeout: phy %d, reg %d\n",
348 1.1 cegger device_xname(sc->sc_dev), phy, reg);
349 1.1 cegger return (0);
350 1.1 cegger }
351 1.1 cegger
352 1.1 cegger return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
353 1.1 cegger }
354 1.1 cegger
355 1.1 cegger /*
356 1.1 cegger * Write a PHY register on the MII of the L1.
357 1.1 cegger */
358 1.1 cegger static void
359 1.1 cegger age_miibus_writereg(struct device *dev, int phy, int reg, int val)
360 1.1 cegger {
361 1.1 cegger struct age_softc *sc = device_private(dev);
362 1.1 cegger uint32_t v;
363 1.1 cegger int i;
364 1.1 cegger
365 1.1 cegger if (phy != sc->age_phyaddr)
366 1.1 cegger return;
367 1.1 cegger
368 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
369 1.1 cegger (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
370 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
371 1.1 cegger
372 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
373 1.1 cegger DELAY(1);
374 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
375 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
376 1.1 cegger break;
377 1.1 cegger }
378 1.1 cegger
379 1.1 cegger if (i == 0) {
380 1.1 cegger printf("%s: phy write timeout: phy %d, reg %d\n",
381 1.1 cegger device_xname(sc->sc_dev), phy, reg);
382 1.1 cegger }
383 1.1 cegger }
384 1.1 cegger
385 1.1 cegger /*
386 1.1 cegger * Callback from MII layer when media changes.
387 1.1 cegger */
388 1.1 cegger static void
389 1.1 cegger age_miibus_statchg(device_t dev)
390 1.1 cegger {
391 1.1 cegger struct age_softc *sc = device_private(dev);
392 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
393 1.1 cegger struct mii_data *mii;
394 1.1 cegger
395 1.1 cegger if ((ifp->if_flags & IFF_RUNNING) == 0)
396 1.1 cegger return;
397 1.1 cegger
398 1.1 cegger mii = &sc->sc_miibus;
399 1.1 cegger
400 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
401 1.1 cegger if ((mii->mii_media_status & IFM_AVALID) != 0) {
402 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
403 1.1 cegger case IFM_10_T:
404 1.1 cegger case IFM_100_TX:
405 1.1 cegger case IFM_1000_T:
406 1.1 cegger sc->age_flags |= AGE_FLAG_LINK;
407 1.1 cegger break;
408 1.1 cegger default:
409 1.1 cegger break;
410 1.1 cegger }
411 1.1 cegger }
412 1.1 cegger
413 1.1 cegger /* Stop Rx/Tx MACs. */
414 1.1 cegger age_stop_rxmac(sc);
415 1.1 cegger age_stop_txmac(sc);
416 1.1 cegger
417 1.1 cegger /* Program MACs with resolved speed/duplex/flow-control. */
418 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
419 1.1 cegger uint32_t reg;
420 1.1 cegger
421 1.1 cegger age_mac_config(sc);
422 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
423 1.1 cegger /* Restart DMA engine and Tx/Rx MAC. */
424 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
425 1.1 cegger DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
426 1.1 cegger reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
427 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
428 1.1 cegger }
429 1.1 cegger }
430 1.1 cegger
431 1.1 cegger /*
432 1.1 cegger * Get the current interface media status.
433 1.1 cegger */
434 1.1 cegger static void
435 1.1 cegger age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
436 1.1 cegger {
437 1.1 cegger struct age_softc *sc = ifp->if_softc;
438 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
439 1.1 cegger
440 1.1 cegger mii_pollstat(mii);
441 1.1 cegger ifmr->ifm_status = mii->mii_media_status;
442 1.1 cegger ifmr->ifm_active = mii->mii_media_active;
443 1.1 cegger }
444 1.1 cegger
445 1.1 cegger /*
446 1.1 cegger * Set hardware to newly-selected media.
447 1.1 cegger */
448 1.1 cegger static int
449 1.1 cegger age_mediachange(struct ifnet *ifp)
450 1.1 cegger {
451 1.1 cegger struct age_softc *sc = ifp->if_softc;
452 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
453 1.1 cegger int error;
454 1.1 cegger
455 1.1 cegger if (mii->mii_instance != 0) {
456 1.1 cegger struct mii_softc *miisc;
457 1.1 cegger
458 1.1 cegger LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
459 1.1 cegger mii_phy_reset(miisc);
460 1.1 cegger }
461 1.1 cegger error = mii_mediachg(mii);
462 1.1 cegger
463 1.1 cegger return (error);
464 1.1 cegger }
465 1.1 cegger
466 1.1 cegger static int
467 1.1 cegger age_intr(void *arg)
468 1.1 cegger {
469 1.1 cegger struct age_softc *sc = arg;
470 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
471 1.1 cegger struct cmb *cmb;
472 1.1 cegger uint32_t status;
473 1.1 cegger
474 1.1 cegger status = CSR_READ_4(sc, AGE_INTR_STATUS);
475 1.1 cegger if (status == 0 || (status & AGE_INTRS) == 0)
476 1.1 cegger return (0);
477 1.1 cegger
478 1.1 cegger /* Disable interrupts. */
479 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
480 1.1 cegger
481 1.1 cegger cmb = sc->age_rdata.age_cmb_block;
482 1.1 cegger
483 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
484 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
485 1.1 cegger status = le32toh(cmb->intr_status);
486 1.1 cegger if ((status & AGE_INTRS) == 0)
487 1.1 cegger goto back;
488 1.1 cegger
489 1.1 cegger sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
490 1.1 cegger TPD_CONS_SHIFT;
491 1.1 cegger sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
492 1.1 cegger RRD_PROD_SHIFT;
493 1.1 cegger
494 1.1 cegger /* Let hardware know CMB was served. */
495 1.1 cegger cmb->intr_status = 0;
496 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
497 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
498 1.1 cegger BUS_DMASYNC_PREWRITE);
499 1.1 cegger
500 1.1 cegger if (ifp->if_flags & IFF_RUNNING) {
501 1.1 cegger if (status & INTR_CMB_RX)
502 1.1 cegger age_rxintr(sc, sc->age_rr_prod);
503 1.1 cegger
504 1.1 cegger if (status & INTR_CMB_TX)
505 1.1 cegger age_txintr(sc, sc->age_tpd_cons);
506 1.1 cegger
507 1.1 cegger if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
508 1.1 cegger if (status & INTR_DMA_RD_TO_RST)
509 1.1 cegger printf("%s: DMA read error! -- resetting\n",
510 1.1 cegger device_xname(sc->sc_dev));
511 1.1 cegger if (status & INTR_DMA_WR_TO_RST)
512 1.1 cegger printf("%s: DMA write error! -- resetting\n",
513 1.1 cegger device_xname(sc->sc_dev));
514 1.1 cegger age_init(ifp);
515 1.1 cegger }
516 1.1 cegger
517 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
518 1.1 cegger age_start(ifp);
519 1.1 cegger
520 1.1 cegger if (status & INTR_SMB)
521 1.1 cegger age_stats_update(sc);
522 1.1 cegger }
523 1.1 cegger
524 1.1 cegger /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
525 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
526 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
527 1.1 cegger BUS_DMASYNC_POSTREAD);
528 1.1 cegger
529 1.1 cegger back:
530 1.1 cegger /* Re-enable interrupts. */
531 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
532 1.1 cegger
533 1.1 cegger return (1);
534 1.1 cegger }
535 1.1 cegger
536 1.1 cegger static int
537 1.1 cegger age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
538 1.1 cegger uint32_t *word)
539 1.1 cegger {
540 1.1 cegger int i;
541 1.1 cegger
542 1.1 cegger pci_conf_write(sc->sc_pct, sc->sc_pcitag, vpdc + 0x0, offset << 16);
543 1.1 cegger for (i = AGE_TIMEOUT; i > 0; i--) {
544 1.1 cegger DELAY(10);
545 1.1 cegger if ((pci_conf_read(sc->sc_pct, sc->sc_pcitag,
546 1.1 cegger vpdc + 0x0) >> 16 & 0x8000) == 0x8000)
547 1.1 cegger break;
548 1.1 cegger }
549 1.1 cegger if (i == 0) {
550 1.1 cegger printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
551 1.1 cegger *word = 0;
552 1.1 cegger return (ETIMEDOUT);
553 1.1 cegger }
554 1.1 cegger
555 1.1 cegger *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, vpdc + 0x4);
556 1.1 cegger return (0);
557 1.1 cegger }
558 1.1 cegger
559 1.1 cegger static void
560 1.1 cegger age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
561 1.1 cegger {
562 1.1 cegger uint32_t ea[2], off, reg, word;
563 1.1 cegger int vpd_error, match, vpdc;
564 1.1 cegger
565 1.1 cegger reg = CSR_READ_4(sc, AGE_SPI_CTRL);
566 1.1 cegger if ((reg & SPI_VPD_ENB) != 0) {
567 1.1 cegger /* Get VPD stored in TWSI EEPROM. */
568 1.1 cegger reg &= ~SPI_VPD_ENB;
569 1.1 cegger CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
570 1.1 cegger }
571 1.1 cegger
572 1.1 cegger vpd_error = 0;
573 1.1 cegger ea[0] = ea[1] = 0;
574 1.1 cegger if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
575 1.1 cegger PCI_CAP_VPD, &vpdc, NULL))) {
576 1.1 cegger /*
577 1.1 cegger * PCI VPD capability exists, but it seems that it's
578 1.1 cegger * not in the standard form as stated in PCI VPD
579 1.1 cegger * specification such that driver could not use
580 1.1 cegger * pci_get_vpd_readonly(9) with keyword 'NA'.
581 1.1 cegger * Search VPD data starting at address 0x0100. The data
582 1.1 cegger * should be used as initializers to set AGE_PAR0,
583 1.1 cegger * AGE_PAR1 register including other PCI configuration
584 1.1 cegger * registers.
585 1.1 cegger */
586 1.1 cegger word = 0;
587 1.1 cegger match = 0;
588 1.1 cegger reg = 0;
589 1.1 cegger for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
590 1.1 cegger off += sizeof(uint32_t)) {
591 1.1 cegger vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
592 1.1 cegger if (vpd_error != 0)
593 1.1 cegger break;
594 1.1 cegger if (match != 0) {
595 1.1 cegger switch (reg) {
596 1.1 cegger case AGE_PAR0:
597 1.1 cegger ea[0] = word;
598 1.1 cegger break;
599 1.1 cegger case AGE_PAR1:
600 1.1 cegger ea[1] = word;
601 1.1 cegger break;
602 1.1 cegger default:
603 1.1 cegger break;
604 1.1 cegger }
605 1.1 cegger match = 0;
606 1.1 cegger } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
607 1.1 cegger match = 1;
608 1.1 cegger reg = word >> 16;
609 1.1 cegger } else
610 1.1 cegger break;
611 1.1 cegger }
612 1.1 cegger if (off >= AGE_VPD_REG_CONF_END)
613 1.1 cegger vpd_error = ENOENT;
614 1.1 cegger if (vpd_error == 0) {
615 1.1 cegger /*
616 1.1 cegger * Don't blindly trust ethernet address obtained
617 1.1 cegger * from VPD. Check whether ethernet address is
618 1.1 cegger * valid one. Otherwise fall-back to reading
619 1.1 cegger * PAR register.
620 1.1 cegger */
621 1.1 cegger ea[1] &= 0xFFFF;
622 1.1 cegger if ((ea[0] == 0 && ea[1] == 0) ||
623 1.1 cegger (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
624 1.1 cegger if (agedebug)
625 1.1 cegger printf("%s: invalid ethernet address "
626 1.1 cegger "returned from VPD.\n",
627 1.1 cegger device_xname(sc->sc_dev));
628 1.1 cegger vpd_error = EINVAL;
629 1.1 cegger }
630 1.1 cegger }
631 1.1 cegger if (vpd_error != 0 && (agedebug))
632 1.1 cegger printf("%s: VPD access failure!\n",
633 1.1 cegger device_xname(sc->sc_dev));
634 1.1 cegger } else {
635 1.1 cegger if (agedebug)
636 1.1 cegger printf("%s: PCI VPD capability not found!\n",
637 1.1 cegger device_xname(sc->sc_dev));
638 1.1 cegger }
639 1.1 cegger
640 1.1 cegger /*
641 1.1 cegger * It seems that L1 also provides a way to extract ethernet
642 1.1 cegger * address via SPI flash interface. Because SPI flash memory
643 1.1 cegger * device of different vendors vary in their instruction
644 1.1 cegger * codes for read ID instruction, it's very hard to get
645 1.1 cegger * instructions codes without detailed information for the
646 1.1 cegger * flash memory device used on ethernet controller. To simplify
647 1.1 cegger * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
648 1.1 cegger * address which is supposed to be set by hardware during
649 1.1 cegger * power on reset.
650 1.1 cegger */
651 1.1 cegger if (vpd_error != 0) {
652 1.1 cegger /*
653 1.1 cegger * VPD is mapped to SPI flash memory or BIOS set it.
654 1.1 cegger */
655 1.1 cegger ea[0] = CSR_READ_4(sc, AGE_PAR0);
656 1.1 cegger ea[1] = CSR_READ_4(sc, AGE_PAR1);
657 1.1 cegger }
658 1.1 cegger
659 1.1 cegger ea[1] &= 0xFFFF;
660 1.1 cegger eaddr[0] = (ea[1] >> 8) & 0xFF;
661 1.1 cegger eaddr[1] = (ea[1] >> 0) & 0xFF;
662 1.1 cegger eaddr[2] = (ea[0] >> 24) & 0xFF;
663 1.1 cegger eaddr[3] = (ea[0] >> 16) & 0xFF;
664 1.1 cegger eaddr[4] = (ea[0] >> 8) & 0xFF;
665 1.1 cegger eaddr[5] = (ea[0] >> 0) & 0xFF;
666 1.1 cegger }
667 1.1 cegger
668 1.1 cegger static void
669 1.1 cegger age_phy_reset(struct age_softc *sc)
670 1.1 cegger {
671 1.1 cegger /* Reset PHY. */
672 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
673 1.1 cegger DELAY(1000);
674 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
675 1.1 cegger DELAY(1000);
676 1.1 cegger }
677 1.1 cegger
678 1.1 cegger static int
679 1.1 cegger age_dma_alloc(struct age_softc *sc)
680 1.1 cegger {
681 1.1 cegger struct age_txdesc *txd;
682 1.1 cegger struct age_rxdesc *rxd;
683 1.1 cegger int nsegs, error, i;
684 1.1 cegger
685 1.1 cegger /*
686 1.1 cegger * Create DMA stuffs for TX ring
687 1.1 cegger */
688 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
689 1.1 cegger AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
690 1.1 cegger if (error)
691 1.1 cegger return (ENOBUFS);
692 1.1 cegger
693 1.1 cegger /* Allocate DMA'able memory for TX ring */
694 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
695 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
696 1.1 cegger &nsegs, BUS_DMA_WAITOK);
697 1.1 cegger if (error) {
698 1.1 cegger printf("%s: could not allocate DMA'able memory for Tx ring.\n",
699 1.1 cegger device_xname(sc->sc_dev));
700 1.1 cegger return error;
701 1.1 cegger }
702 1.1 cegger
703 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
704 1.1 cegger nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
705 1.1 cegger BUS_DMA_NOWAIT);
706 1.1 cegger if (error)
707 1.1 cegger return (ENOBUFS);
708 1.1 cegger
709 1.1 cegger memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
710 1.1 cegger
711 1.1 cegger /* Load the DMA map for Tx ring. */
712 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
713 1.1 cegger sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
714 1.1 cegger if (error) {
715 1.1 cegger printf("%s: could not load DMA'able memory for Tx ring.\n",
716 1.1 cegger device_xname(sc->sc_dev));
717 1.1 cegger bus_dmamem_free(sc->sc_dmat,
718 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
719 1.1 cegger return error;
720 1.1 cegger }
721 1.1 cegger
722 1.1 cegger sc->age_rdata.age_tx_ring_paddr =
723 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
724 1.1 cegger
725 1.1 cegger /*
726 1.1 cegger * Create DMA stuffs for RX ring
727 1.1 cegger */
728 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
729 1.1 cegger AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
730 1.1 cegger if (error)
731 1.1 cegger return (ENOBUFS);
732 1.1 cegger
733 1.1 cegger /* Allocate DMA'able memory for RX ring */
734 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
735 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
736 1.1 cegger &nsegs, BUS_DMA_WAITOK);
737 1.1 cegger if (error) {
738 1.1 cegger printf("%s: could not allocate DMA'able memory for Rx ring.\n",
739 1.1 cegger device_xname(sc->sc_dev));
740 1.1 cegger return error;
741 1.1 cegger }
742 1.1 cegger
743 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
744 1.1 cegger nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
745 1.1 cegger BUS_DMA_NOWAIT);
746 1.1 cegger if (error)
747 1.1 cegger return (ENOBUFS);
748 1.1 cegger
749 1.1 cegger memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
750 1.1 cegger
751 1.1 cegger /* Load the DMA map for Rx ring. */
752 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
753 1.1 cegger sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
754 1.1 cegger if (error) {
755 1.1 cegger printf("%s: could not load DMA'able memory for Rx ring.\n",
756 1.1 cegger device_xname(sc->sc_dev));
757 1.1 cegger bus_dmamem_free(sc->sc_dmat,
758 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
759 1.1 cegger return error;
760 1.1 cegger }
761 1.1 cegger
762 1.1 cegger sc->age_rdata.age_rx_ring_paddr =
763 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
764 1.1 cegger
765 1.1 cegger /*
766 1.1 cegger * Create DMA stuffs for RX return ring
767 1.1 cegger */
768 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
769 1.1 cegger AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
770 1.1 cegger if (error)
771 1.1 cegger return (ENOBUFS);
772 1.1 cegger
773 1.1 cegger /* Allocate DMA'able memory for RX return ring */
774 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
775 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
776 1.1 cegger &nsegs, BUS_DMA_WAITOK);
777 1.1 cegger if (error) {
778 1.1 cegger printf("%s: could not allocate DMA'able memory for Rx "
779 1.1 cegger "return ring.\n", device_xname(sc->sc_dev));
780 1.1 cegger return error;
781 1.1 cegger }
782 1.1 cegger
783 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
784 1.1 cegger nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
785 1.1 cegger BUS_DMA_NOWAIT);
786 1.1 cegger if (error)
787 1.1 cegger return (ENOBUFS);
788 1.1 cegger
789 1.1 cegger memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
790 1.1 cegger
791 1.1 cegger /* Load the DMA map for Rx return ring. */
792 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
793 1.1 cegger sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
794 1.1 cegger if (error) {
795 1.1 cegger printf("%s: could not load DMA'able memory for Rx return ring."
796 1.1 cegger "\n", device_xname(sc->sc_dev));
797 1.1 cegger bus_dmamem_free(sc->sc_dmat,
798 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
799 1.1 cegger return error;
800 1.1 cegger }
801 1.1 cegger
802 1.1 cegger sc->age_rdata.age_rr_ring_paddr =
803 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
804 1.1 cegger
805 1.1 cegger /*
806 1.1 cegger * Create DMA stuffs for CMB block
807 1.1 cegger */
808 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
809 1.1 cegger AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
810 1.1 cegger &sc->age_cdata.age_cmb_block_map);
811 1.1 cegger if (error)
812 1.1 cegger return (ENOBUFS);
813 1.1 cegger
814 1.1 cegger /* Allocate DMA'able memory for CMB block */
815 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
816 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
817 1.1 cegger &nsegs, BUS_DMA_WAITOK);
818 1.1 cegger if (error) {
819 1.1 cegger printf("%s: could not allocate DMA'able memory for "
820 1.1 cegger "CMB block\n", device_xname(sc->sc_dev));
821 1.1 cegger return error;
822 1.1 cegger }
823 1.1 cegger
824 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
825 1.1 cegger nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
826 1.1 cegger BUS_DMA_NOWAIT);
827 1.1 cegger if (error)
828 1.1 cegger return (ENOBUFS);
829 1.1 cegger
830 1.1 cegger memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
831 1.1 cegger
832 1.1 cegger /* Load the DMA map for CMB block. */
833 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
834 1.1 cegger sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
835 1.1 cegger BUS_DMA_WAITOK);
836 1.1 cegger if (error) {
837 1.1 cegger printf("%s: could not load DMA'able memory for CMB block\n",
838 1.1 cegger device_xname(sc->sc_dev));
839 1.1 cegger bus_dmamem_free(sc->sc_dmat,
840 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
841 1.1 cegger return error;
842 1.1 cegger }
843 1.1 cegger
844 1.1 cegger sc->age_rdata.age_cmb_block_paddr =
845 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
846 1.1 cegger
847 1.1 cegger /*
848 1.1 cegger * Create DMA stuffs for SMB block
849 1.1 cegger */
850 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
851 1.1 cegger AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
852 1.1 cegger &sc->age_cdata.age_smb_block_map);
853 1.1 cegger if (error)
854 1.1 cegger return (ENOBUFS);
855 1.1 cegger
856 1.1 cegger /* Allocate DMA'able memory for SMB block */
857 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
858 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
859 1.1 cegger &nsegs, BUS_DMA_WAITOK);
860 1.1 cegger if (error) {
861 1.1 cegger printf("%s: could not allocate DMA'able memory for "
862 1.1 cegger "SMB block\n", device_xname(sc->sc_dev));
863 1.1 cegger return error;
864 1.1 cegger }
865 1.1 cegger
866 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
867 1.1 cegger nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
868 1.1 cegger BUS_DMA_NOWAIT);
869 1.1 cegger if (error)
870 1.1 cegger return (ENOBUFS);
871 1.1 cegger
872 1.1 cegger memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
873 1.1 cegger
874 1.1 cegger /* Load the DMA map for SMB block */
875 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
876 1.1 cegger sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
877 1.1 cegger BUS_DMA_WAITOK);
878 1.1 cegger if (error) {
879 1.1 cegger printf("%s: could not load DMA'able memory for SMB block\n",
880 1.1 cegger device_xname(sc->sc_dev));
881 1.1 cegger bus_dmamem_free(sc->sc_dmat,
882 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
883 1.1 cegger return error;
884 1.1 cegger }
885 1.1 cegger
886 1.1 cegger sc->age_rdata.age_smb_block_paddr =
887 1.1 cegger sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
888 1.1 cegger
889 1.1 cegger /* Create DMA maps for Tx buffers. */
890 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
891 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
892 1.1 cegger txd->tx_m = NULL;
893 1.1 cegger txd->tx_dmamap = NULL;
894 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
895 1.1 cegger AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
896 1.1 cegger &txd->tx_dmamap);
897 1.1 cegger if (error) {
898 1.1 cegger printf("%s: could not create Tx dmamap.\n",
899 1.1 cegger device_xname(sc->sc_dev));
900 1.1 cegger return error;
901 1.1 cegger }
902 1.1 cegger }
903 1.1 cegger
904 1.1 cegger /* Create DMA maps for Rx buffers. */
905 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
906 1.1 cegger BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
907 1.1 cegger if (error) {
908 1.1 cegger printf("%s: could not create spare Rx dmamap.\n",
909 1.1 cegger device_xname(sc->sc_dev));
910 1.1 cegger return error;
911 1.1 cegger }
912 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
913 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
914 1.1 cegger rxd->rx_m = NULL;
915 1.1 cegger rxd->rx_dmamap = NULL;
916 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
917 1.1 cegger MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
918 1.1 cegger if (error) {
919 1.1 cegger printf("%s: could not create Rx dmamap.\n",
920 1.1 cegger device_xname(sc->sc_dev));
921 1.1 cegger return error;
922 1.1 cegger }
923 1.1 cegger }
924 1.1 cegger
925 1.1 cegger return (0);
926 1.1 cegger }
927 1.1 cegger
928 1.1 cegger static void
929 1.1 cegger age_dma_free(struct age_softc *sc)
930 1.1 cegger {
931 1.1 cegger struct age_txdesc *txd;
932 1.1 cegger struct age_rxdesc *rxd;
933 1.1 cegger int i;
934 1.1 cegger
935 1.1 cegger /* Tx buffers */
936 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
937 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
938 1.1 cegger if (txd->tx_dmamap != NULL) {
939 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
940 1.1 cegger txd->tx_dmamap = NULL;
941 1.1 cegger }
942 1.1 cegger }
943 1.1 cegger /* Rx buffers */
944 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
945 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
946 1.1 cegger if (rxd->rx_dmamap != NULL) {
947 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
948 1.1 cegger rxd->rx_dmamap = NULL;
949 1.1 cegger }
950 1.1 cegger }
951 1.1 cegger if (sc->age_cdata.age_rx_sparemap != NULL) {
952 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
953 1.1 cegger sc->age_cdata.age_rx_sparemap = NULL;
954 1.1 cegger }
955 1.1 cegger
956 1.1 cegger /* Tx ring. */
957 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL)
958 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
959 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL &&
960 1.1 cegger sc->age_rdata.age_tx_ring != NULL)
961 1.1 cegger bus_dmamem_free(sc->sc_dmat,
962 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
963 1.1 cegger sc->age_rdata.age_tx_ring = NULL;
964 1.1 cegger sc->age_cdata.age_tx_ring_map = NULL;
965 1.1 cegger
966 1.1 cegger /* Rx ring. */
967 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL)
968 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
969 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL &&
970 1.1 cegger sc->age_rdata.age_rx_ring != NULL)
971 1.1 cegger bus_dmamem_free(sc->sc_dmat,
972 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
973 1.1 cegger sc->age_rdata.age_rx_ring = NULL;
974 1.1 cegger sc->age_cdata.age_rx_ring_map = NULL;
975 1.1 cegger
976 1.1 cegger /* Rx return ring. */
977 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL)
978 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
979 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL &&
980 1.1 cegger sc->age_rdata.age_rr_ring != NULL)
981 1.1 cegger bus_dmamem_free(sc->sc_dmat,
982 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
983 1.1 cegger sc->age_rdata.age_rr_ring = NULL;
984 1.1 cegger sc->age_cdata.age_rr_ring_map = NULL;
985 1.1 cegger
986 1.1 cegger /* CMB block */
987 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL)
988 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
989 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL &&
990 1.1 cegger sc->age_rdata.age_cmb_block != NULL)
991 1.1 cegger bus_dmamem_free(sc->sc_dmat,
992 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
993 1.1 cegger sc->age_rdata.age_cmb_block = NULL;
994 1.1 cegger sc->age_cdata.age_cmb_block_map = NULL;
995 1.1 cegger
996 1.1 cegger /* SMB block */
997 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL)
998 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
999 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL &&
1000 1.1 cegger sc->age_rdata.age_smb_block != NULL)
1001 1.1 cegger bus_dmamem_free(sc->sc_dmat,
1002 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1003 1.1 cegger }
1004 1.1 cegger
1005 1.1 cegger static void
1006 1.1 cegger age_start(struct ifnet *ifp)
1007 1.1 cegger {
1008 1.1 cegger struct age_softc *sc = ifp->if_softc;
1009 1.1 cegger struct mbuf *m_head;
1010 1.1 cegger int enq;
1011 1.1 cegger
1012 1.1 cegger if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1013 1.1 cegger return;
1014 1.1 cegger
1015 1.1 cegger enq = 0;
1016 1.1 cegger for (;;) {
1017 1.1 cegger IFQ_DEQUEUE(&ifp->if_snd, m_head);
1018 1.1 cegger if (m_head == NULL)
1019 1.1 cegger break;
1020 1.1 cegger
1021 1.1 cegger /*
1022 1.1 cegger * Pack the data into the transmit ring. If we
1023 1.1 cegger * don't have room, set the OACTIVE flag and wait
1024 1.1 cegger * for the NIC to drain the ring.
1025 1.1 cegger */
1026 1.1 cegger if (age_encap(sc, &m_head)) {
1027 1.1 cegger if (m_head == NULL)
1028 1.1 cegger break;
1029 1.1 cegger ifp->if_flags |= IFF_OACTIVE;
1030 1.1 cegger break;
1031 1.1 cegger }
1032 1.1 cegger enq = 1;
1033 1.1 cegger
1034 1.1 cegger #if NBPFILTER > 0
1035 1.1 cegger /*
1036 1.1 cegger * If there's a BPF listener, bounce a copy of this frame
1037 1.1 cegger * to him.
1038 1.1 cegger */
1039 1.1 cegger if (ifp->if_bpf != NULL)
1040 1.1 cegger bpf_mtap(ifp->if_bpf, m_head);
1041 1.1 cegger #endif
1042 1.1 cegger }
1043 1.1 cegger
1044 1.1 cegger if (enq) {
1045 1.1 cegger /* Update mbox. */
1046 1.1 cegger AGE_COMMIT_MBOX(sc);
1047 1.1 cegger /* Set a timeout in case the chip goes out to lunch. */
1048 1.1 cegger ifp->if_timer = AGE_TX_TIMEOUT;
1049 1.1 cegger }
1050 1.1 cegger }
1051 1.1 cegger
1052 1.1 cegger static void
1053 1.1 cegger age_watchdog(struct ifnet *ifp)
1054 1.1 cegger {
1055 1.1 cegger struct age_softc *sc = ifp->if_softc;
1056 1.1 cegger
1057 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1058 1.1 cegger printf("%s: watchdog timeout (missed link)\n",
1059 1.1 cegger device_xname(sc->sc_dev));
1060 1.1 cegger ifp->if_oerrors++;
1061 1.1 cegger age_init(ifp);
1062 1.1 cegger return;
1063 1.1 cegger }
1064 1.1 cegger
1065 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0) {
1066 1.1 cegger printf("%s: watchdog timeout (missed Tx interrupts) "
1067 1.1 cegger "-- recovering\n", device_xname(sc->sc_dev));
1068 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1069 1.1 cegger age_start(ifp);
1070 1.1 cegger return;
1071 1.1 cegger }
1072 1.1 cegger
1073 1.1 cegger printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1074 1.1 cegger ifp->if_oerrors++;
1075 1.1 cegger age_init(ifp);
1076 1.1 cegger
1077 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1078 1.1 cegger age_start(ifp);
1079 1.1 cegger }
1080 1.1 cegger
1081 1.1 cegger static int
1082 1.1 cegger age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1083 1.1 cegger {
1084 1.1 cegger struct age_softc *sc = ifp->if_softc;
1085 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1086 1.1 cegger struct ifreq *ifr = (struct ifreq *)data;
1087 1.1 cegger int s, error = 0;
1088 1.1 cegger
1089 1.1 cegger s = splnet();
1090 1.1 cegger
1091 1.1 cegger switch (cmd) {
1092 1.1 cegger case SIOCSIFADDR:
1093 1.1 cegger ifp->if_flags |= IFF_UP;
1094 1.1 cegger if (!(ifp->if_flags & IFF_RUNNING))
1095 1.1 cegger age_init(ifp);
1096 1.1 cegger #ifdef INET
1097 1.1 cegger if (ifa->ifa_addr->sa_family == AF_INET)
1098 1.1 cegger arp_ifinit(&sc->sc_ec, ifa);
1099 1.1 cegger #endif
1100 1.1 cegger break;
1101 1.1 cegger
1102 1.1 cegger case SIOCSIFFLAGS:
1103 1.1 cegger error = ifioctl_common(ifp, cmd, data);
1104 1.1 cegger if (error)
1105 1.1 cegger break;
1106 1.1 cegger if (ifp->if_flags & IFF_UP) {
1107 1.1 cegger if (ifp->if_flags & IFF_RUNNING)
1108 1.1 cegger age_rxfilter(sc);
1109 1.1 cegger else
1110 1.1 cegger age_init(ifp);
1111 1.1 cegger } else {
1112 1.1 cegger if (ifp->if_flags & IFF_RUNNING)
1113 1.1 cegger age_stop(sc);
1114 1.1 cegger }
1115 1.1 cegger sc->age_if_flags = ifp->if_flags;
1116 1.1 cegger break;
1117 1.1 cegger
1118 1.1 cegger case SIOCADDMULTI:
1119 1.1 cegger case SIOCDELMULTI:
1120 1.1 cegger error = ether_ioctl(ifp, cmd, data);
1121 1.1 cegger break;
1122 1.1 cegger
1123 1.1 cegger case SIOCSIFMEDIA:
1124 1.1 cegger case SIOCGIFMEDIA:
1125 1.1 cegger error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1126 1.1 cegger break;
1127 1.1 cegger default:
1128 1.1 cegger error = ether_ioctl(ifp, cmd, data);
1129 1.1 cegger break;
1130 1.1 cegger }
1131 1.1 cegger
1132 1.1 cegger if (error == ENETRESET) {
1133 1.1 cegger if (ifp->if_flags & IFF_RUNNING)
1134 1.1 cegger age_rxfilter(sc);
1135 1.1 cegger error = 0;
1136 1.1 cegger }
1137 1.1 cegger
1138 1.1 cegger splx(s);
1139 1.1 cegger return (error);
1140 1.1 cegger }
1141 1.1 cegger
1142 1.1 cegger static void
1143 1.1 cegger age_mac_config(struct age_softc *sc)
1144 1.1 cegger {
1145 1.1 cegger struct mii_data *mii;
1146 1.1 cegger uint32_t reg;
1147 1.1 cegger
1148 1.1 cegger mii = &sc->sc_miibus;
1149 1.1 cegger
1150 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1151 1.1 cegger reg &= ~MAC_CFG_FULL_DUPLEX;
1152 1.1 cegger reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1153 1.1 cegger reg &= ~MAC_CFG_SPEED_MASK;
1154 1.1 cegger
1155 1.1 cegger /* Reprogram MAC with resolved speed/duplex. */
1156 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
1157 1.1 cegger case IFM_10_T:
1158 1.1 cegger case IFM_100_TX:
1159 1.1 cegger reg |= MAC_CFG_SPEED_10_100;
1160 1.1 cegger break;
1161 1.1 cegger case IFM_1000_T:
1162 1.1 cegger reg |= MAC_CFG_SPEED_1000;
1163 1.1 cegger break;
1164 1.1 cegger }
1165 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1166 1.1 cegger reg |= MAC_CFG_FULL_DUPLEX;
1167 1.1 cegger #ifdef notyet
1168 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1169 1.1 cegger reg |= MAC_CFG_TX_FC;
1170 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1171 1.1 cegger reg |= MAC_CFG_RX_FC;
1172 1.1 cegger #endif
1173 1.1 cegger }
1174 1.1 cegger
1175 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1176 1.1 cegger }
1177 1.1 cegger
1178 1.1 cegger static int
1179 1.1 cegger age_encap(struct age_softc *sc, struct mbuf **m_head)
1180 1.1 cegger {
1181 1.1 cegger struct age_txdesc *txd, *txd_last;
1182 1.1 cegger struct tx_desc *desc;
1183 1.1 cegger struct mbuf *m;
1184 1.1 cegger bus_dmamap_t map;
1185 1.1 cegger uint32_t cflags, poff, vtag;
1186 1.1 cegger int error, i, nsegs, prod;
1187 1.1 cegger struct m_tag *mtag;
1188 1.1 cegger
1189 1.1 cegger m = *m_head;
1190 1.1 cegger cflags = vtag = 0;
1191 1.1 cegger poff = 0;
1192 1.1 cegger
1193 1.1 cegger prod = sc->age_cdata.age_tx_prod;
1194 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1195 1.1 cegger txd_last = txd;
1196 1.1 cegger map = txd->tx_dmamap;
1197 1.1 cegger
1198 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1199 1.1 cegger
1200 1.1 cegger if (error != 0) {
1201 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1202 1.1 cegger error = EFBIG;
1203 1.1 cegger }
1204 1.1 cegger if (error == EFBIG) {
1205 1.1 cegger error = 0;
1206 1.1 cegger
1207 1.1 cegger MGETHDR(m, M_DONTWAIT, MT_DATA);
1208 1.1 cegger if (m == NULL) {
1209 1.1 cegger printf("%s: can't defrag TX mbuf\n",
1210 1.1 cegger device_xname(sc->sc_dev));
1211 1.1 cegger m_freem(*m_head);
1212 1.1 cegger *m_head = NULL;
1213 1.1 cegger return (ENOBUFS);
1214 1.1 cegger }
1215 1.1 cegger
1216 1.1 cegger MCLGET(m, M_DONTWAIT);
1217 1.1 cegger if (!(m->m_flags & M_EXT)) {
1218 1.1 cegger m_freem(m);
1219 1.1 cegger *m_head = NULL;
1220 1.1 cegger return (ENOBUFS);
1221 1.1 cegger }
1222 1.1 cegger m->m_len = m->m_pkthdr.len;
1223 1.1 cegger *m_head = m;
1224 1.1 cegger
1225 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1226 1.1 cegger BUS_DMA_NOWAIT);
1227 1.1 cegger
1228 1.1 cegger if (error != 0) {
1229 1.1 cegger printf("%s: could not load defragged TX mbuf\n",
1230 1.1 cegger device_xname(sc->sc_dev));
1231 1.1 cegger if (!error) {
1232 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1233 1.1 cegger error = EFBIG;
1234 1.1 cegger }
1235 1.1 cegger m_freem(*m_head);
1236 1.1 cegger *m_head = NULL;
1237 1.1 cegger return (error);
1238 1.1 cegger }
1239 1.1 cegger } else if (error) {
1240 1.1 cegger printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1241 1.1 cegger return (error);
1242 1.1 cegger }
1243 1.1 cegger
1244 1.1 cegger nsegs = map->dm_nsegs;
1245 1.1 cegger
1246 1.1 cegger if (nsegs == 0) {
1247 1.1 cegger m_freem(*m_head);
1248 1.1 cegger *m_head = NULL;
1249 1.1 cegger return (EIO);
1250 1.1 cegger }
1251 1.1 cegger
1252 1.1 cegger /* Check descriptor overrun. */
1253 1.1 cegger if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1254 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1255 1.1 cegger return (ENOBUFS);
1256 1.1 cegger }
1257 1.1 cegger
1258 1.1 cegger m = *m_head;
1259 1.1 cegger /* Configure Tx IP/TCP/UDP checksum offload. */
1260 1.1 cegger if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1261 1.1 cegger cflags |= AGE_TD_CSUM;
1262 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1263 1.1 cegger cflags |= AGE_TD_TCPCSUM;
1264 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1265 1.1 cegger cflags |= AGE_TD_UDPCSUM;
1266 1.1 cegger /* Set checksum start offset. */
1267 1.1 cegger cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1268 1.1 cegger }
1269 1.1 cegger
1270 1.1 cegger #if NVLAN > 0
1271 1.1 cegger /* Configure VLAN hardware tag insertion. */
1272 1.1 cegger if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1273 1.1 cegger vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1274 1.1 cegger vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1275 1.1 cegger cflags |= AGE_TD_INSERT_VLAN_TAG;
1276 1.1 cegger }
1277 1.1 cegger #endif
1278 1.1 cegger
1279 1.1 cegger desc = NULL;
1280 1.1 cegger for (i = 0; i < nsegs; i++) {
1281 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1282 1.1 cegger desc->addr = htole64(map->dm_segs[i].ds_addr);
1283 1.1 cegger desc->len =
1284 1.1 cegger htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1285 1.1 cegger desc->flags = htole32(cflags);
1286 1.1 cegger sc->age_cdata.age_tx_cnt++;
1287 1.1 cegger AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 1.1 cegger }
1289 1.1 cegger
1290 1.1 cegger /* Update producer index. */
1291 1.1 cegger sc->age_cdata.age_tx_prod = prod;
1292 1.1 cegger
1293 1.1 cegger /* Set EOP on the last descriptor. */
1294 1.1 cegger prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1295 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1296 1.1 cegger desc->flags |= htole32(AGE_TD_EOP);
1297 1.1 cegger
1298 1.1 cegger /* Swap dmamap of the first and the last. */
1299 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1300 1.1 cegger map = txd_last->tx_dmamap;
1301 1.1 cegger txd_last->tx_dmamap = txd->tx_dmamap;
1302 1.1 cegger txd->tx_dmamap = map;
1303 1.1 cegger txd->tx_m = m;
1304 1.1 cegger
1305 1.1 cegger /* Sync descriptors. */
1306 1.1 cegger bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1307 1.1 cegger BUS_DMASYNC_PREWRITE);
1308 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1309 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1310 1.1 cegger
1311 1.1 cegger return (0);
1312 1.1 cegger }
1313 1.1 cegger
1314 1.1 cegger static void
1315 1.1 cegger age_txintr(struct age_softc *sc, int tpd_cons)
1316 1.1 cegger {
1317 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1318 1.1 cegger struct age_txdesc *txd;
1319 1.1 cegger int cons, prog;
1320 1.1 cegger
1321 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1322 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323 1.1 cegger
1324 1.1 cegger /*
1325 1.1 cegger * Go through our Tx list and free mbufs for those
1326 1.1 cegger * frames which have been transmitted.
1327 1.1 cegger */
1328 1.1 cegger cons = sc->age_cdata.age_tx_cons;
1329 1.1 cegger for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1330 1.1 cegger if (sc->age_cdata.age_tx_cnt <= 0)
1331 1.1 cegger break;
1332 1.1 cegger prog++;
1333 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1334 1.1 cegger sc->age_cdata.age_tx_cnt--;
1335 1.1 cegger txd = &sc->age_cdata.age_txdesc[cons];
1336 1.1 cegger /*
1337 1.1 cegger * Clear Tx descriptors, it's not required but would
1338 1.1 cegger * help debugging in case of Tx issues.
1339 1.1 cegger */
1340 1.1 cegger txd->tx_desc->addr = 0;
1341 1.1 cegger txd->tx_desc->len = 0;
1342 1.1 cegger txd->tx_desc->flags = 0;
1343 1.1 cegger
1344 1.1 cegger if (txd->tx_m == NULL)
1345 1.1 cegger continue;
1346 1.1 cegger /* Reclaim transmitted mbufs. */
1347 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1348 1.1 cegger m_freem(txd->tx_m);
1349 1.1 cegger txd->tx_m = NULL;
1350 1.1 cegger }
1351 1.1 cegger
1352 1.1 cegger if (prog > 0) {
1353 1.1 cegger sc->age_cdata.age_tx_cons = cons;
1354 1.1 cegger
1355 1.1 cegger /*
1356 1.1 cegger * Unarm watchdog timer only when there are no pending
1357 1.1 cegger * Tx descriptors in queue.
1358 1.1 cegger */
1359 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0)
1360 1.1 cegger ifp->if_timer = 0;
1361 1.1 cegger
1362 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1363 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize,
1364 1.1 cegger BUS_DMASYNC_PREWRITE);
1365 1.1 cegger }
1366 1.1 cegger }
1367 1.1 cegger
1368 1.1 cegger /* Receive a frame. */
1369 1.1 cegger static void
1370 1.1 cegger age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1371 1.1 cegger {
1372 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1373 1.1 cegger struct age_rxdesc *rxd;
1374 1.1 cegger struct rx_desc *desc;
1375 1.1 cegger struct mbuf *mp, *m;
1376 1.1 cegger uint32_t status, index, vtag;
1377 1.1 cegger int count, nsegs, pktlen;
1378 1.1 cegger int rx_cons;
1379 1.1 cegger
1380 1.1 cegger status = le32toh(rxrd->flags);
1381 1.1 cegger index = le32toh(rxrd->index);
1382 1.1 cegger rx_cons = AGE_RX_CONS(index);
1383 1.1 cegger nsegs = AGE_RX_NSEGS(index);
1384 1.1 cegger
1385 1.1 cegger sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1386 1.1 cegger if ((status & AGE_RRD_ERROR) != 0 &&
1387 1.1 cegger (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1388 1.1 cegger AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1389 1.1 cegger /*
1390 1.1 cegger * We want to pass the following frames to upper
1391 1.1 cegger * layer regardless of error status of Rx return
1392 1.1 cegger * ring.
1393 1.1 cegger *
1394 1.1 cegger * o IP/TCP/UDP checksum is bad.
1395 1.1 cegger * o frame length and protocol specific length
1396 1.1 cegger * does not match.
1397 1.1 cegger */
1398 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1399 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1400 1.1 cegger return;
1401 1.1 cegger }
1402 1.1 cegger
1403 1.1 cegger pktlen = 0;
1404 1.1 cegger for (count = 0; count < nsegs; count++,
1405 1.1 cegger AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1406 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1407 1.1 cegger mp = rxd->rx_m;
1408 1.1 cegger desc = rxd->rx_desc;
1409 1.1 cegger /* Add a new receive buffer to the ring. */
1410 1.1 cegger if (age_newbuf(sc, rxd, 0) != 0) {
1411 1.1 cegger ifp->if_iqdrops++;
1412 1.1 cegger /* Reuse Rx buffers. */
1413 1.1 cegger if (sc->age_cdata.age_rxhead != NULL) {
1414 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1415 1.1 cegger AGE_RXCHAIN_RESET(sc);
1416 1.1 cegger }
1417 1.1 cegger break;
1418 1.1 cegger }
1419 1.1 cegger
1420 1.1 cegger /* The length of the first mbuf is computed last. */
1421 1.1 cegger if (count != 0) {
1422 1.1 cegger mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1423 1.1 cegger pktlen += mp->m_len;
1424 1.1 cegger }
1425 1.1 cegger
1426 1.1 cegger /* Chain received mbufs. */
1427 1.1 cegger if (sc->age_cdata.age_rxhead == NULL) {
1428 1.1 cegger sc->age_cdata.age_rxhead = mp;
1429 1.1 cegger sc->age_cdata.age_rxtail = mp;
1430 1.1 cegger } else {
1431 1.1 cegger mp->m_flags &= ~M_PKTHDR;
1432 1.1 cegger sc->age_cdata.age_rxprev_tail =
1433 1.1 cegger sc->age_cdata.age_rxtail;
1434 1.1 cegger sc->age_cdata.age_rxtail->m_next = mp;
1435 1.1 cegger sc->age_cdata.age_rxtail = mp;
1436 1.1 cegger }
1437 1.1 cegger
1438 1.1 cegger if (count == nsegs - 1) {
1439 1.1 cegger /*
1440 1.1 cegger * It seems that L1 controller has no way
1441 1.1 cegger * to tell hardware to strip CRC bytes.
1442 1.1 cegger */
1443 1.1 cegger sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1444 1.1 cegger if (nsegs > 1) {
1445 1.1 cegger /* Remove the CRC bytes in chained mbufs. */
1446 1.1 cegger pktlen -= ETHER_CRC_LEN;
1447 1.1 cegger if (mp->m_len <= ETHER_CRC_LEN) {
1448 1.1 cegger sc->age_cdata.age_rxtail =
1449 1.1 cegger sc->age_cdata.age_rxprev_tail;
1450 1.1 cegger sc->age_cdata.age_rxtail->m_len -=
1451 1.1 cegger (ETHER_CRC_LEN - mp->m_len);
1452 1.1 cegger sc->age_cdata.age_rxtail->m_next = NULL;
1453 1.1 cegger m_freem(mp);
1454 1.1 cegger } else {
1455 1.1 cegger mp->m_len -= ETHER_CRC_LEN;
1456 1.1 cegger }
1457 1.1 cegger }
1458 1.1 cegger
1459 1.1 cegger m = sc->age_cdata.age_rxhead;
1460 1.1 cegger m->m_flags |= M_PKTHDR;
1461 1.1 cegger m->m_pkthdr.rcvif = ifp;
1462 1.1 cegger m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1463 1.1 cegger /* Set the first mbuf length. */
1464 1.1 cegger m->m_len = sc->age_cdata.age_rxlen - pktlen;
1465 1.1 cegger
1466 1.1 cegger /*
1467 1.1 cegger * Set checksum information.
1468 1.1 cegger * It seems that L1 controller can compute partial
1469 1.1 cegger * checksum. The partial checksum value can be used
1470 1.1 cegger * to accelerate checksum computation for fragmented
1471 1.1 cegger * TCP/UDP packets. Upper network stack already
1472 1.1 cegger * takes advantage of the partial checksum value in
1473 1.1 cegger * IP reassembly stage. But I'm not sure the
1474 1.1 cegger * correctness of the partial hardware checksum
1475 1.1 cegger * assistance due to lack of data sheet. If it is
1476 1.1 cegger * proven to work on L1 I'll enable it.
1477 1.1 cegger */
1478 1.1 cegger if (status & AGE_RRD_IPV4) {
1479 1.1 cegger if (!(status & AGE_RRD_IPCSUM_NOK))
1480 1.1 cegger m->m_pkthdr.csum_flags |=
1481 1.1 cegger M_CSUM_IPv4_BAD;
1482 1.1 cegger if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1483 1.1 cegger (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
1484 1.1 cegger m->m_pkthdr.csum_flags |=
1485 1.1 cegger M_CSUM_TCP_UDP_BAD;
1486 1.1 cegger }
1487 1.1 cegger /*
1488 1.1 cegger * Don't mark bad checksum for TCP/UDP frames
1489 1.1 cegger * as fragmented frames may always have set
1490 1.1 cegger * bad checksummed bit of descriptor status.
1491 1.1 cegger */
1492 1.1 cegger }
1493 1.1 cegger #if NVLAN > 0
1494 1.1 cegger /* Check for VLAN tagged frames. */
1495 1.1 cegger if (status & AGE_RRD_VLAN) {
1496 1.1 cegger vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1497 1.1 cegger VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1498 1.1 cegger continue);
1499 1.1 cegger }
1500 1.1 cegger #endif
1501 1.1 cegger
1502 1.1 cegger #if NBPFILTER > 0
1503 1.1 cegger if (ifp->if_bpf)
1504 1.1 cegger bpf_mtap(ifp->if_bpf, m);
1505 1.1 cegger #endif
1506 1.1 cegger /* Pass it on. */
1507 1.1 cegger ether_input(ifp, m);
1508 1.1 cegger
1509 1.1 cegger /* Reset mbuf chains. */
1510 1.1 cegger AGE_RXCHAIN_RESET(sc);
1511 1.1 cegger }
1512 1.1 cegger }
1513 1.1 cegger
1514 1.1 cegger if (count != nsegs) {
1515 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1516 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1517 1.1 cegger } else
1518 1.1 cegger sc->age_cdata.age_rx_cons = rx_cons;
1519 1.1 cegger }
1520 1.1 cegger
1521 1.1 cegger static void
1522 1.1 cegger age_rxintr(struct age_softc *sc, int rr_prod)
1523 1.1 cegger {
1524 1.1 cegger struct rx_rdesc *rxrd;
1525 1.1 cegger int rr_cons, nsegs, pktlen, prog;
1526 1.1 cegger
1527 1.1 cegger rr_cons = sc->age_cdata.age_rr_cons;
1528 1.1 cegger if (rr_cons == rr_prod)
1529 1.1 cegger return;
1530 1.1 cegger
1531 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1532 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1533 1.1 cegger BUS_DMASYNC_POSTREAD);
1534 1.1 cegger
1535 1.1 cegger for (prog = 0; rr_cons != rr_prod; prog++) {
1536 1.1 cegger rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1537 1.1 cegger nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1538 1.1 cegger if (nsegs == 0)
1539 1.1 cegger break;
1540 1.1 cegger /*
1541 1.1 cegger * Check number of segments against received bytes
1542 1.1 cegger * Non-matching value would indicate that hardware
1543 1.1 cegger * is still trying to update Rx return descriptors.
1544 1.1 cegger * I'm not sure whether this check is really needed.
1545 1.1 cegger */
1546 1.1 cegger pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1547 1.1 cegger if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
1548 1.1 cegger (MCLBYTES - ETHER_HDR_LEN)))
1549 1.1 cegger break;
1550 1.1 cegger
1551 1.1 cegger /* Received a frame. */
1552 1.1 cegger age_rxeof(sc, rxrd);
1553 1.1 cegger
1554 1.1 cegger /* Clear return ring. */
1555 1.1 cegger rxrd->index = 0;
1556 1.1 cegger AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1557 1.1 cegger }
1558 1.1 cegger
1559 1.1 cegger if (prog > 0) {
1560 1.1 cegger /* Update the consumer index. */
1561 1.1 cegger sc->age_cdata.age_rr_cons = rr_cons;
1562 1.1 cegger
1563 1.1 cegger /* Sync descriptors. */
1564 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1565 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1566 1.1 cegger BUS_DMASYNC_PREWRITE);
1567 1.1 cegger
1568 1.1 cegger /* Notify hardware availability of new Rx buffers. */
1569 1.1 cegger AGE_COMMIT_MBOX(sc);
1570 1.1 cegger }
1571 1.1 cegger }
1572 1.1 cegger
1573 1.1 cegger static void
1574 1.1 cegger age_tick(void *xsc)
1575 1.1 cegger {
1576 1.1 cegger struct age_softc *sc = xsc;
1577 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1578 1.1 cegger int s;
1579 1.1 cegger
1580 1.1 cegger s = splnet();
1581 1.1 cegger mii_tick(mii);
1582 1.1 cegger splx(s);
1583 1.1 cegger
1584 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1585 1.1 cegger }
1586 1.1 cegger
1587 1.1 cegger static void
1588 1.1 cegger age_reset(struct age_softc *sc)
1589 1.1 cegger {
1590 1.1 cegger uint32_t reg;
1591 1.1 cegger int i;
1592 1.1 cegger
1593 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1594 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1595 1.1 cegger DELAY(1);
1596 1.1 cegger if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1597 1.1 cegger break;
1598 1.1 cegger }
1599 1.1 cegger if (i == 0)
1600 1.1 cegger printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1601 1.1 cegger
1602 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1603 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1604 1.1 cegger break;
1605 1.1 cegger DELAY(10);
1606 1.1 cegger }
1607 1.1 cegger
1608 1.1 cegger if (i == 0)
1609 1.1 cegger printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1610 1.1 cegger reg);
1611 1.1 cegger
1612 1.1 cegger /* Initialize PCIe module. From Linux. */
1613 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1614 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1615 1.1 cegger }
1616 1.1 cegger
1617 1.1 cegger static int
1618 1.1 cegger age_init(struct ifnet *ifp)
1619 1.1 cegger {
1620 1.1 cegger struct age_softc *sc = ifp->if_softc;
1621 1.1 cegger struct mii_data *mii;
1622 1.1 cegger uint8_t eaddr[ETHER_ADDR_LEN];
1623 1.1 cegger bus_addr_t paddr;
1624 1.1 cegger uint32_t reg, fsize;
1625 1.1 cegger uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1626 1.1 cegger int error;
1627 1.1 cegger
1628 1.1 cegger /*
1629 1.1 cegger * Cancel any pending I/O.
1630 1.1 cegger */
1631 1.1 cegger age_stop(sc);
1632 1.1 cegger
1633 1.1 cegger /*
1634 1.1 cegger * Reset the chip to a known state.
1635 1.1 cegger */
1636 1.1 cegger age_reset(sc);
1637 1.1 cegger
1638 1.1 cegger /* Initialize descriptors. */
1639 1.1 cegger error = age_init_rx_ring(sc);
1640 1.1 cegger if (error != 0) {
1641 1.1 cegger printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1642 1.1 cegger age_stop(sc);
1643 1.1 cegger return (error);
1644 1.1 cegger }
1645 1.1 cegger age_init_rr_ring(sc);
1646 1.1 cegger age_init_tx_ring(sc);
1647 1.1 cegger age_init_cmb_block(sc);
1648 1.1 cegger age_init_smb_block(sc);
1649 1.1 cegger
1650 1.1 cegger /* Reprogram the station address. */
1651 1.1 cegger memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1652 1.1 cegger CSR_WRITE_4(sc, AGE_PAR0,
1653 1.1 cegger eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1654 1.1 cegger CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1655 1.1 cegger
1656 1.1 cegger /* Set descriptor base addresses. */
1657 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1658 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1659 1.1 cegger paddr = sc->age_rdata.age_rx_ring_paddr;
1660 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 1.1 cegger paddr = sc->age_rdata.age_rr_ring_paddr;
1662 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1663 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1664 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1665 1.1 cegger paddr = sc->age_rdata.age_cmb_block_paddr;
1666 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1667 1.1 cegger paddr = sc->age_rdata.age_smb_block_paddr;
1668 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1669 1.1 cegger
1670 1.1 cegger /* Set Rx/Rx return descriptor counter. */
1671 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1672 1.1 cegger ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1673 1.1 cegger DESC_RRD_CNT_MASK) |
1674 1.1 cegger ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1675 1.1 cegger
1676 1.1 cegger /* Set Tx descriptor counter. */
1677 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1678 1.1 cegger (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1679 1.1 cegger
1680 1.1 cegger /* Tell hardware that we're ready to load descriptors. */
1681 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682 1.1 cegger
1683 1.1 cegger /*
1684 1.1 cegger * Initialize mailbox register.
1685 1.1 cegger * Updated producer/consumer index information is exchanged
1686 1.1 cegger * through this mailbox register. However Tx producer and
1687 1.1 cegger * Rx return consumer/Rx producer are all shared such that
1688 1.1 cegger * it's hard to separate code path between Tx and Rx without
1689 1.1 cegger * locking. If L1 hardware have a separate mail box register
1690 1.1 cegger * for Tx and Rx consumer/producer management we could have
1691 1.1 cegger * indepent Tx/Rx handler which in turn Rx handler could have
1692 1.1 cegger * been run without any locking.
1693 1.1 cegger */
1694 1.1 cegger AGE_COMMIT_MBOX(sc);
1695 1.1 cegger
1696 1.1 cegger /* Configure IPG/IFG parameters. */
1697 1.1 cegger CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1698 1.1 cegger ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1699 1.1 cegger ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1700 1.1 cegger ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1701 1.1 cegger ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1702 1.1 cegger
1703 1.1 cegger /* Set parameters for half-duplex media. */
1704 1.1 cegger CSR_WRITE_4(sc, AGE_HDPX_CFG,
1705 1.1 cegger ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1706 1.1 cegger HDPX_CFG_LCOL_MASK) |
1707 1.1 cegger ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1708 1.1 cegger HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1709 1.1 cegger ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1710 1.1 cegger HDPX_CFG_ABEBT_MASK) |
1711 1.1 cegger ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1712 1.1 cegger HDPX_CFG_JAMIPG_MASK));
1713 1.1 cegger
1714 1.1 cegger /* Configure interrupt moderation timer. */
1715 1.1 cegger sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1716 1.1 cegger CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1717 1.1 cegger reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1718 1.1 cegger reg &= ~MASTER_MTIMER_ENB;
1719 1.1 cegger if (AGE_USECS(sc->age_int_mod) == 0)
1720 1.1 cegger reg &= ~MASTER_ITIMER_ENB;
1721 1.1 cegger else
1722 1.1 cegger reg |= MASTER_ITIMER_ENB;
1723 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1724 1.1 cegger if (agedebug)
1725 1.1 cegger printf("%s: interrupt moderation is %d us.\n",
1726 1.1 cegger device_xname(sc->sc_dev), sc->age_int_mod);
1727 1.1 cegger CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1728 1.1 cegger
1729 1.1 cegger /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1730 1.1 cegger if (ifp->if_mtu < ETHERMTU)
1731 1.1 cegger sc->age_max_frame_size = ETHERMTU;
1732 1.1 cegger else
1733 1.1 cegger sc->age_max_frame_size = ifp->if_mtu;
1734 1.1 cegger sc->age_max_frame_size += ETHER_HDR_LEN +
1735 1.1 cegger sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1736 1.1 cegger CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1737 1.1 cegger
1738 1.1 cegger /* Configure jumbo frame. */
1739 1.1 cegger fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1740 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1741 1.1 cegger (((fsize / sizeof(uint64_t)) <<
1742 1.1 cegger RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1743 1.1 cegger ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1744 1.1 cegger RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1745 1.1 cegger ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1746 1.1 cegger RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1747 1.1 cegger
1748 1.1 cegger /* Configure flow-control parameters. From Linux. */
1749 1.1 cegger if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1750 1.1 cegger /*
1751 1.1 cegger * Magic workaround for old-L1.
1752 1.1 cegger * Don't know which hw revision requires this magic.
1753 1.1 cegger */
1754 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1755 1.1 cegger /*
1756 1.1 cegger * Another magic workaround for flow-control mode
1757 1.1 cegger * change. From Linux.
1758 1.1 cegger */
1759 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1760 1.1 cegger }
1761 1.1 cegger /*
1762 1.1 cegger * TODO
1763 1.1 cegger * Should understand pause parameter relationships between FIFO
1764 1.1 cegger * size and number of Rx descriptors and Rx return descriptors.
1765 1.1 cegger *
1766 1.1 cegger * Magic parameters came from Linux.
1767 1.1 cegger */
1768 1.1 cegger switch (sc->age_chip_rev) {
1769 1.1 cegger case 0x8001:
1770 1.1 cegger case 0x9001:
1771 1.1 cegger case 0x9002:
1772 1.1 cegger case 0x9003:
1773 1.1 cegger rxf_hi = AGE_RX_RING_CNT / 16;
1774 1.1 cegger rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1775 1.1 cegger rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1776 1.1 cegger rrd_lo = AGE_RR_RING_CNT / 16;
1777 1.1 cegger break;
1778 1.1 cegger default:
1779 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1780 1.1 cegger rxf_lo = reg / 16;
1781 1.1 cegger if (rxf_lo < 192)
1782 1.1 cegger rxf_lo = 192;
1783 1.1 cegger rxf_hi = (reg * 7) / 8;
1784 1.1 cegger if (rxf_hi < rxf_lo)
1785 1.1 cegger rxf_hi = rxf_lo + 16;
1786 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1787 1.1 cegger rrd_lo = reg / 8;
1788 1.1 cegger rrd_hi = (reg * 7) / 8;
1789 1.1 cegger if (rrd_lo < 2)
1790 1.1 cegger rrd_lo = 2;
1791 1.1 cegger if (rrd_hi < rrd_lo)
1792 1.1 cegger rrd_hi = rrd_lo + 3;
1793 1.1 cegger break;
1794 1.1 cegger }
1795 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1796 1.1 cegger ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1797 1.1 cegger RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1798 1.1 cegger ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1799 1.1 cegger RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1800 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1801 1.1 cegger ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1802 1.1 cegger RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1803 1.1 cegger ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1804 1.1 cegger RXQ_RRD_PAUSE_THRESH_HI_MASK));
1805 1.1 cegger
1806 1.1 cegger /* Configure RxQ. */
1807 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1808 1.1 cegger ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1809 1.1 cegger RXQ_CFG_RD_BURST_MASK) |
1810 1.1 cegger ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1811 1.1 cegger RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1812 1.1 cegger ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1813 1.1 cegger RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1814 1.1 cegger RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1815 1.1 cegger
1816 1.1 cegger /* Configure TxQ. */
1817 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1818 1.1 cegger ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1819 1.1 cegger TXQ_CFG_TPD_BURST_MASK) |
1820 1.1 cegger ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1821 1.1 cegger TXQ_CFG_TX_FIFO_BURST_MASK) |
1822 1.1 cegger ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1823 1.1 cegger TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1824 1.1 cegger TXQ_CFG_ENB);
1825 1.1 cegger
1826 1.1 cegger /* Configure DMA parameters. */
1827 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1828 1.1 cegger DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1829 1.1 cegger sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1830 1.1 cegger sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1831 1.1 cegger
1832 1.1 cegger /* Configure CMB DMA write threshold. */
1833 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1834 1.1 cegger ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1835 1.1 cegger CMB_WR_THRESH_RRD_MASK) |
1836 1.1 cegger ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1837 1.1 cegger CMB_WR_THRESH_TPD_MASK));
1838 1.1 cegger
1839 1.1 cegger /* Set CMB/SMB timer and enable them. */
1840 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1841 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1842 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1843 1.1 cegger
1844 1.1 cegger /* Request SMB updates for every seconds. */
1845 1.1 cegger CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1846 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1847 1.1 cegger
1848 1.1 cegger /*
1849 1.1 cegger * Disable all WOL bits as WOL can interfere normal Rx
1850 1.1 cegger * operation.
1851 1.1 cegger */
1852 1.1 cegger CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1853 1.1 cegger
1854 1.1 cegger /*
1855 1.1 cegger * Configure Tx/Rx MACs.
1856 1.1 cegger * - Auto-padding for short frames.
1857 1.1 cegger * - Enable CRC generation.
1858 1.1 cegger * Start with full-duplex/1000Mbps media. Actual reconfiguration
1859 1.1 cegger * of MAC is followed after link establishment.
1860 1.1 cegger */
1861 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG,
1862 1.1 cegger MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1863 1.1 cegger MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1864 1.1 cegger ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1865 1.1 cegger MAC_CFG_PREAMBLE_MASK));
1866 1.1 cegger
1867 1.1 cegger /* Set up the receive filter. */
1868 1.1 cegger age_rxfilter(sc);
1869 1.1 cegger age_rxvlan(sc);
1870 1.1 cegger
1871 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872 1.1 cegger reg |= MAC_CFG_RXCSUM_ENB;
1873 1.1 cegger
1874 1.1 cegger /* Ack all pending interrupts and clear it. */
1875 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1876 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1877 1.1 cegger
1878 1.1 cegger /* Finally enable Tx/Rx MAC. */
1879 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1880 1.1 cegger
1881 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1882 1.1 cegger
1883 1.1 cegger /* Switch to the current media. */
1884 1.1 cegger mii = &sc->sc_miibus;
1885 1.1 cegger mii_mediachg(mii);
1886 1.1 cegger
1887 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1888 1.1 cegger
1889 1.1 cegger ifp->if_flags |= IFF_RUNNING;
1890 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1891 1.1 cegger
1892 1.1 cegger return (0);
1893 1.1 cegger }
1894 1.1 cegger
1895 1.1 cegger static void
1896 1.1 cegger age_stop(struct age_softc *sc)
1897 1.1 cegger {
1898 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1899 1.1 cegger struct age_txdesc *txd;
1900 1.1 cegger struct age_rxdesc *rxd;
1901 1.1 cegger uint32_t reg;
1902 1.1 cegger int i;
1903 1.1 cegger
1904 1.1 cegger callout_stop(&sc->sc_tick_ch);
1905 1.1 cegger
1906 1.1 cegger /*
1907 1.1 cegger * Mark the interface down and cancel the watchdog timer.
1908 1.1 cegger */
1909 1.1 cegger ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1910 1.1 cegger ifp->if_timer = 0;
1911 1.1 cegger
1912 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1913 1.1 cegger
1914 1.1 cegger /*
1915 1.1 cegger * Disable interrupts.
1916 1.1 cegger */
1917 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1918 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1919 1.1 cegger
1920 1.1 cegger /* Stop CMB/SMB updates. */
1921 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1922 1.1 cegger
1923 1.1 cegger /* Stop Rx/Tx MAC. */
1924 1.1 cegger age_stop_rxmac(sc);
1925 1.1 cegger age_stop_txmac(sc);
1926 1.1 cegger
1927 1.1 cegger /* Stop DMA. */
1928 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1929 1.1 cegger CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1930 1.1 cegger
1931 1.1 cegger /* Stop TxQ/RxQ. */
1932 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1933 1.1 cegger CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1934 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1935 1.1 cegger CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1936 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1937 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1938 1.1 cegger break;
1939 1.1 cegger DELAY(10);
1940 1.1 cegger }
1941 1.1 cegger if (i == 0)
1942 1.1 cegger printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1943 1.1 cegger device_xname(sc->sc_dev), reg);
1944 1.1 cegger
1945 1.1 cegger /* Reclaim Rx buffers that have been processed. */
1946 1.1 cegger if (sc->age_cdata.age_rxhead != NULL)
1947 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1948 1.1 cegger AGE_RXCHAIN_RESET(sc);
1949 1.1 cegger
1950 1.1 cegger /*
1951 1.1 cegger * Free RX and TX mbufs still in the queues.
1952 1.1 cegger */
1953 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
1954 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
1955 1.1 cegger if (rxd->rx_m != NULL) {
1956 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1957 1.1 cegger m_freem(rxd->rx_m);
1958 1.1 cegger rxd->rx_m = NULL;
1959 1.1 cegger }
1960 1.1 cegger }
1961 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
1962 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
1963 1.1 cegger if (txd->tx_m != NULL) {
1964 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1965 1.1 cegger m_freem(txd->tx_m);
1966 1.1 cegger txd->tx_m = NULL;
1967 1.1 cegger }
1968 1.1 cegger }
1969 1.1 cegger }
1970 1.1 cegger
1971 1.1 cegger static void
1972 1.1 cegger age_stats_update(struct age_softc *sc)
1973 1.1 cegger {
1974 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1975 1.1 cegger struct age_stats *stat;
1976 1.1 cegger struct smb *smb;
1977 1.1 cegger
1978 1.1 cegger stat = &sc->age_stat;
1979 1.1 cegger
1980 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1981 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1982 1.1 cegger
1983 1.1 cegger smb = sc->age_rdata.age_smb_block;
1984 1.1 cegger if (smb->updated == 0)
1985 1.1 cegger return;
1986 1.1 cegger
1987 1.1 cegger /* Rx stats. */
1988 1.1 cegger stat->rx_frames += smb->rx_frames;
1989 1.1 cegger stat->rx_bcast_frames += smb->rx_bcast_frames;
1990 1.1 cegger stat->rx_mcast_frames += smb->rx_mcast_frames;
1991 1.1 cegger stat->rx_pause_frames += smb->rx_pause_frames;
1992 1.1 cegger stat->rx_control_frames += smb->rx_control_frames;
1993 1.1 cegger stat->rx_crcerrs += smb->rx_crcerrs;
1994 1.1 cegger stat->rx_lenerrs += smb->rx_lenerrs;
1995 1.1 cegger stat->rx_bytes += smb->rx_bytes;
1996 1.1 cegger stat->rx_runts += smb->rx_runts;
1997 1.1 cegger stat->rx_fragments += smb->rx_fragments;
1998 1.1 cegger stat->rx_pkts_64 += smb->rx_pkts_64;
1999 1.1 cegger stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2000 1.1 cegger stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2001 1.1 cegger stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2002 1.1 cegger stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2003 1.1 cegger stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2004 1.1 cegger stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2005 1.1 cegger stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2006 1.1 cegger stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2007 1.1 cegger stat->rx_desc_oflows += smb->rx_desc_oflows;
2008 1.1 cegger stat->rx_alignerrs += smb->rx_alignerrs;
2009 1.1 cegger stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2010 1.1 cegger stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2011 1.1 cegger stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2012 1.1 cegger
2013 1.1 cegger /* Tx stats. */
2014 1.1 cegger stat->tx_frames += smb->tx_frames;
2015 1.1 cegger stat->tx_bcast_frames += smb->tx_bcast_frames;
2016 1.1 cegger stat->tx_mcast_frames += smb->tx_mcast_frames;
2017 1.1 cegger stat->tx_pause_frames += smb->tx_pause_frames;
2018 1.1 cegger stat->tx_excess_defer += smb->tx_excess_defer;
2019 1.1 cegger stat->tx_control_frames += smb->tx_control_frames;
2020 1.1 cegger stat->tx_deferred += smb->tx_deferred;
2021 1.1 cegger stat->tx_bytes += smb->tx_bytes;
2022 1.1 cegger stat->tx_pkts_64 += smb->tx_pkts_64;
2023 1.1 cegger stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2024 1.1 cegger stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2025 1.1 cegger stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2026 1.1 cegger stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2027 1.1 cegger stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2028 1.1 cegger stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2029 1.1 cegger stat->tx_single_colls += smb->tx_single_colls;
2030 1.1 cegger stat->tx_multi_colls += smb->tx_multi_colls;
2031 1.1 cegger stat->tx_late_colls += smb->tx_late_colls;
2032 1.1 cegger stat->tx_excess_colls += smb->tx_excess_colls;
2033 1.1 cegger stat->tx_underrun += smb->tx_underrun;
2034 1.1 cegger stat->tx_desc_underrun += smb->tx_desc_underrun;
2035 1.1 cegger stat->tx_lenerrs += smb->tx_lenerrs;
2036 1.1 cegger stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2037 1.1 cegger stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2038 1.1 cegger stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2039 1.1 cegger
2040 1.1 cegger /* Update counters in ifnet. */
2041 1.1 cegger ifp->if_opackets += smb->tx_frames;
2042 1.1 cegger
2043 1.1 cegger ifp->if_collisions += smb->tx_single_colls +
2044 1.1 cegger smb->tx_multi_colls + smb->tx_late_colls +
2045 1.1 cegger smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2046 1.1 cegger
2047 1.1 cegger ifp->if_oerrors += smb->tx_excess_colls +
2048 1.1 cegger smb->tx_late_colls + smb->tx_underrun +
2049 1.1 cegger smb->tx_pkts_truncated;
2050 1.1 cegger
2051 1.1 cegger ifp->if_ipackets += smb->rx_frames;
2052 1.1 cegger
2053 1.1 cegger ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2054 1.1 cegger smb->rx_runts + smb->rx_pkts_truncated +
2055 1.1 cegger smb->rx_fifo_oflows + smb->rx_desc_oflows +
2056 1.1 cegger smb->rx_alignerrs;
2057 1.1 cegger
2058 1.1 cegger /* Update done, clear. */
2059 1.1 cegger smb->updated = 0;
2060 1.1 cegger
2061 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2062 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2063 1.1 cegger }
2064 1.1 cegger
2065 1.1 cegger static void
2066 1.1 cegger age_stop_txmac(struct age_softc *sc)
2067 1.1 cegger {
2068 1.1 cegger uint32_t reg;
2069 1.1 cegger int i;
2070 1.1 cegger
2071 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2072 1.1 cegger if ((reg & MAC_CFG_TX_ENB) != 0) {
2073 1.1 cegger reg &= ~MAC_CFG_TX_ENB;
2074 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2075 1.1 cegger }
2076 1.1 cegger /* Stop Tx DMA engine. */
2077 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2078 1.1 cegger if ((reg & DMA_CFG_RD_ENB) != 0) {
2079 1.1 cegger reg &= ~DMA_CFG_RD_ENB;
2080 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2081 1.1 cegger }
2082 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2083 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2084 1.1 cegger (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2085 1.1 cegger break;
2086 1.1 cegger DELAY(10);
2087 1.1 cegger }
2088 1.1 cegger if (i == 0)
2089 1.1 cegger printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2090 1.1 cegger }
2091 1.1 cegger
2092 1.1 cegger static void
2093 1.1 cegger age_stop_rxmac(struct age_softc *sc)
2094 1.1 cegger {
2095 1.1 cegger uint32_t reg;
2096 1.1 cegger int i;
2097 1.1 cegger
2098 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 1.1 cegger if ((reg & MAC_CFG_RX_ENB) != 0) {
2100 1.1 cegger reg &= ~MAC_CFG_RX_ENB;
2101 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 1.1 cegger }
2103 1.1 cegger /* Stop Rx DMA engine. */
2104 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 1.1 cegger if ((reg & DMA_CFG_WR_ENB) != 0) {
2106 1.1 cegger reg &= ~DMA_CFG_WR_ENB;
2107 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 1.1 cegger }
2109 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 1.1 cegger (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2112 1.1 cegger break;
2113 1.1 cegger DELAY(10);
2114 1.1 cegger }
2115 1.1 cegger if (i == 0)
2116 1.1 cegger printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2117 1.1 cegger }
2118 1.1 cegger
2119 1.1 cegger static void
2120 1.1 cegger age_init_tx_ring(struct age_softc *sc)
2121 1.1 cegger {
2122 1.1 cegger struct age_ring_data *rd;
2123 1.1 cegger struct age_txdesc *txd;
2124 1.1 cegger int i;
2125 1.1 cegger
2126 1.1 cegger sc->age_cdata.age_tx_prod = 0;
2127 1.1 cegger sc->age_cdata.age_tx_cons = 0;
2128 1.1 cegger sc->age_cdata.age_tx_cnt = 0;
2129 1.1 cegger
2130 1.1 cegger rd = &sc->age_rdata;
2131 1.1 cegger memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2132 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
2133 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
2134 1.1 cegger txd->tx_desc = &rd->age_tx_ring[i];
2135 1.1 cegger txd->tx_m = NULL;
2136 1.1 cegger }
2137 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2138 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 1.1 cegger }
2140 1.1 cegger
2141 1.1 cegger static int
2142 1.1 cegger age_init_rx_ring(struct age_softc *sc)
2143 1.1 cegger {
2144 1.1 cegger struct age_ring_data *rd;
2145 1.1 cegger struct age_rxdesc *rxd;
2146 1.1 cegger int i;
2147 1.1 cegger
2148 1.1 cegger sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2149 1.1 cegger rd = &sc->age_rdata;
2150 1.1 cegger memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2151 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
2152 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
2153 1.1 cegger rxd->rx_m = NULL;
2154 1.1 cegger rxd->rx_desc = &rd->age_rx_ring[i];
2155 1.1 cegger if (age_newbuf(sc, rxd, 1) != 0)
2156 1.1 cegger return (ENOBUFS);
2157 1.1 cegger }
2158 1.1 cegger
2159 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2160 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161 1.1 cegger
2162 1.1 cegger return (0);
2163 1.1 cegger }
2164 1.1 cegger
2165 1.1 cegger static void
2166 1.1 cegger age_init_rr_ring(struct age_softc *sc)
2167 1.1 cegger {
2168 1.1 cegger struct age_ring_data *rd;
2169 1.1 cegger
2170 1.1 cegger sc->age_cdata.age_rr_cons = 0;
2171 1.1 cegger AGE_RXCHAIN_RESET(sc);
2172 1.1 cegger
2173 1.1 cegger rd = &sc->age_rdata;
2174 1.1 cegger memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2175 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2176 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2177 1.1 cegger }
2178 1.1 cegger
2179 1.1 cegger static void
2180 1.1 cegger age_init_cmb_block(struct age_softc *sc)
2181 1.1 cegger {
2182 1.1 cegger struct age_ring_data *rd;
2183 1.1 cegger
2184 1.1 cegger rd = &sc->age_rdata;
2185 1.1 cegger memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2186 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2187 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2188 1.1 cegger }
2189 1.1 cegger
2190 1.1 cegger static void
2191 1.1 cegger age_init_smb_block(struct age_softc *sc)
2192 1.1 cegger {
2193 1.1 cegger struct age_ring_data *rd;
2194 1.1 cegger
2195 1.1 cegger rd = &sc->age_rdata;
2196 1.1 cegger memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2197 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2198 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 1.1 cegger }
2200 1.1 cegger
2201 1.1 cegger static int
2202 1.1 cegger age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2203 1.1 cegger {
2204 1.1 cegger struct rx_desc *desc;
2205 1.1 cegger struct mbuf *m;
2206 1.1 cegger bus_dmamap_t map;
2207 1.1 cegger int error;
2208 1.1 cegger
2209 1.1 cegger MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2210 1.1 cegger if (m == NULL)
2211 1.1 cegger return (ENOBUFS);
2212 1.1 cegger MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2213 1.1 cegger if (!(m->m_flags & M_EXT)) {
2214 1.1 cegger m_freem(m);
2215 1.1 cegger return (ENOBUFS);
2216 1.1 cegger }
2217 1.1 cegger
2218 1.1 cegger m->m_len = m->m_pkthdr.len = MCLBYTES;
2219 1.1 cegger m_adj(m, PAGE_SIZE);
2220 1.1 cegger
2221 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat,
2222 1.1 cegger sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2223 1.1 cegger
2224 1.1 cegger if (error != 0) {
2225 1.1 cegger if (!error) {
2226 1.1 cegger bus_dmamap_unload(sc->sc_dmat,
2227 1.1 cegger sc->age_cdata.age_rx_sparemap);
2228 1.1 cegger error = EFBIG;
2229 1.1 cegger printf("%s: too many segments?!\n",
2230 1.1 cegger device_xname(sc->sc_dev));
2231 1.1 cegger }
2232 1.1 cegger m_freem(m);
2233 1.1 cegger
2234 1.1 cegger if (init)
2235 1.1 cegger printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2236 1.1 cegger return (error);
2237 1.1 cegger }
2238 1.1 cegger
2239 1.1 cegger if (rxd->rx_m != NULL) {
2240 1.1 cegger bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2241 1.1 cegger rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2242 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2243 1.1 cegger }
2244 1.1 cegger map = rxd->rx_dmamap;
2245 1.1 cegger rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2246 1.1 cegger sc->age_cdata.age_rx_sparemap = map;
2247 1.1 cegger rxd->rx_m = m;
2248 1.1 cegger
2249 1.1 cegger desc = rxd->rx_desc;
2250 1.1 cegger desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2251 1.1 cegger desc->len =
2252 1.1 cegger htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2253 1.1 cegger AGE_RD_LEN_SHIFT);
2254 1.1 cegger
2255 1.1 cegger return (0);
2256 1.1 cegger }
2257 1.1 cegger
2258 1.1 cegger static void
2259 1.1 cegger age_rxvlan(struct age_softc *sc)
2260 1.1 cegger {
2261 1.1 cegger uint32_t reg;
2262 1.1 cegger
2263 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 1.1 cegger reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2265 1.1 cegger if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2266 1.1 cegger reg |= MAC_CFG_VLAN_TAG_STRIP;
2267 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2268 1.1 cegger }
2269 1.1 cegger
2270 1.1 cegger static void
2271 1.1 cegger age_rxfilter(struct age_softc *sc)
2272 1.1 cegger {
2273 1.1 cegger struct ethercom *ec = &sc->sc_ec;
2274 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
2275 1.1 cegger struct ether_multi *enm;
2276 1.1 cegger struct ether_multistep step;
2277 1.1 cegger uint32_t crc;
2278 1.1 cegger uint32_t mchash[2];
2279 1.1 cegger uint32_t rxcfg;
2280 1.1 cegger
2281 1.1 cegger rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2282 1.1 cegger rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2283 1.1 cegger
2284 1.1 cegger if (ifp->if_flags & IFF_BROADCAST)
2285 1.1 cegger rxcfg |= MAC_CFG_BCAST;
2286 1.1 cegger if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2287 1.1 cegger if (ifp->if_flags & IFF_PROMISC)
2288 1.1 cegger rxcfg |= MAC_CFG_PROMISC;
2289 1.1 cegger if (ifp->if_flags & IFF_ALLMULTI)
2290 1.1 cegger rxcfg |= MAC_CFG_ALLMULTI;
2291 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2292 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2293 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2294 1.1 cegger return;
2295 1.1 cegger }
2296 1.1 cegger
2297 1.1 cegger /* Program new filter. */
2298 1.1 cegger memset(mchash, 0, sizeof(mchash));
2299 1.1 cegger
2300 1.1 cegger ETHER_FIRST_MULTI(step, ec, enm);
2301 1.1 cegger while (enm != NULL) {
2302 1.1 cegger crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2303 1.1 cegger enm->enm_addrlo), ETHER_ADDR_LEN);
2304 1.1 cegger
2305 1.1 cegger mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 1.1 cegger ETHER_NEXT_MULTI(step, enm);
2307 1.1 cegger }
2308 1.1 cegger
2309 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2310 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2311 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2312 1.1 cegger }
2313