Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.28.2.2
      1  1.28.2.2  snj /*	$NetBSD: if_age.c,v 1.28.2.2 2009/05/03 23:45:47 snj Exp $ */
      2  1.28.2.2  snj /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3  1.28.2.2  snj 
      4  1.28.2.2  snj /*-
      5  1.28.2.2  snj  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  1.28.2.2  snj  * All rights reserved.
      7  1.28.2.2  snj  *
      8  1.28.2.2  snj  * Redistribution and use in source and binary forms, with or without
      9  1.28.2.2  snj  * modification, are permitted provided that the following conditions
     10  1.28.2.2  snj  * are met:
     11  1.28.2.2  snj  * 1. Redistributions of source code must retain the above copyright
     12  1.28.2.2  snj  *    notice unmodified, this list of conditions, and the following
     13  1.28.2.2  snj  *    disclaimer.
     14  1.28.2.2  snj  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.28.2.2  snj  *    notice, this list of conditions and the following disclaimer in the
     16  1.28.2.2  snj  *    documentation and/or other materials provided with the distribution.
     17  1.28.2.2  snj  *
     18  1.28.2.2  snj  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  1.28.2.2  snj  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.28.2.2  snj  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.28.2.2  snj  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  1.28.2.2  snj  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.28.2.2  snj  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.28.2.2  snj  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.28.2.2  snj  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.28.2.2  snj  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.28.2.2  snj  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.28.2.2  snj  * SUCH DAMAGE.
     29  1.28.2.2  snj  */
     30  1.28.2.2  snj 
     31  1.28.2.2  snj /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32  1.28.2.2  snj 
     33  1.28.2.2  snj #include <sys/cdefs.h>
     34  1.28.2.2  snj __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28.2.2 2009/05/03 23:45:47 snj Exp $");
     35  1.28.2.2  snj 
     36  1.28.2.2  snj #include "bpfilter.h"
     37  1.28.2.2  snj #include "vlan.h"
     38  1.28.2.2  snj 
     39  1.28.2.2  snj #include <sys/param.h>
     40  1.28.2.2  snj #include <sys/proc.h>
     41  1.28.2.2  snj #include <sys/endian.h>
     42  1.28.2.2  snj #include <sys/systm.h>
     43  1.28.2.2  snj #include <sys/types.h>
     44  1.28.2.2  snj #include <sys/sockio.h>
     45  1.28.2.2  snj #include <sys/mbuf.h>
     46  1.28.2.2  snj #include <sys/queue.h>
     47  1.28.2.2  snj #include <sys/kernel.h>
     48  1.28.2.2  snj #include <sys/device.h>
     49  1.28.2.2  snj #include <sys/callout.h>
     50  1.28.2.2  snj #include <sys/socket.h>
     51  1.28.2.2  snj 
     52  1.28.2.2  snj #include <net/if.h>
     53  1.28.2.2  snj #include <net/if_dl.h>
     54  1.28.2.2  snj #include <net/if_media.h>
     55  1.28.2.2  snj #include <net/if_ether.h>
     56  1.28.2.2  snj 
     57  1.28.2.2  snj #ifdef INET
     58  1.28.2.2  snj #include <netinet/in.h>
     59  1.28.2.2  snj #include <netinet/in_systm.h>
     60  1.28.2.2  snj #include <netinet/in_var.h>
     61  1.28.2.2  snj #include <netinet/ip.h>
     62  1.28.2.2  snj #endif
     63  1.28.2.2  snj 
     64  1.28.2.2  snj #include <net/if_types.h>
     65  1.28.2.2  snj #include <net/if_vlanvar.h>
     66  1.28.2.2  snj 
     67  1.28.2.2  snj #if NBPFILTER > 0
     68  1.28.2.2  snj #include <net/bpf.h>
     69  1.28.2.2  snj #endif
     70  1.28.2.2  snj 
     71  1.28.2.2  snj #include <sys/rnd.h>
     72  1.28.2.2  snj 
     73  1.28.2.2  snj #include <dev/mii/mii.h>
     74  1.28.2.2  snj #include <dev/mii/miivar.h>
     75  1.28.2.2  snj 
     76  1.28.2.2  snj #include <dev/pci/pcireg.h>
     77  1.28.2.2  snj #include <dev/pci/pcivar.h>
     78  1.28.2.2  snj #include <dev/pci/pcidevs.h>
     79  1.28.2.2  snj 
     80  1.28.2.2  snj #include <dev/pci/if_agereg.h>
     81  1.28.2.2  snj 
     82  1.28.2.2  snj static int	age_match(device_t, cfdata_t, void *);
     83  1.28.2.2  snj static void	age_attach(device_t, device_t, void *);
     84  1.28.2.2  snj static int	age_detach(device_t, int);
     85  1.28.2.2  snj 
     86  1.28.2.2  snj static bool	age_resume(device_t PMF_FN_PROTO);
     87  1.28.2.2  snj 
     88  1.28.2.2  snj static int	age_miibus_readreg(device_t, int, int);
     89  1.28.2.2  snj static void	age_miibus_writereg(device_t, int, int, int);
     90  1.28.2.2  snj static void	age_miibus_statchg(device_t);
     91  1.28.2.2  snj 
     92  1.28.2.2  snj static int	age_init(struct ifnet *);
     93  1.28.2.2  snj static int	age_ioctl(struct ifnet *, u_long, void *);
     94  1.28.2.2  snj static void	age_start(struct ifnet *);
     95  1.28.2.2  snj static void	age_watchdog(struct ifnet *);
     96  1.28.2.2  snj static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97  1.28.2.2  snj static int	age_mediachange(struct ifnet *);
     98  1.28.2.2  snj 
     99  1.28.2.2  snj static int	age_intr(void *);
    100  1.28.2.2  snj static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101  1.28.2.2  snj static int	age_dma_alloc(struct age_softc *);
    102  1.28.2.2  snj static void	age_dma_free(struct age_softc *);
    103  1.28.2.2  snj static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104  1.28.2.2  snj static void	age_phy_reset(struct age_softc *);
    105  1.28.2.2  snj 
    106  1.28.2.2  snj static int	age_encap(struct age_softc *, struct mbuf **);
    107  1.28.2.2  snj static void	age_init_tx_ring(struct age_softc *);
    108  1.28.2.2  snj static int	age_init_rx_ring(struct age_softc *);
    109  1.28.2.2  snj static void	age_init_rr_ring(struct age_softc *);
    110  1.28.2.2  snj static void	age_init_cmb_block(struct age_softc *);
    111  1.28.2.2  snj static void	age_init_smb_block(struct age_softc *);
    112  1.28.2.2  snj static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113  1.28.2.2  snj static void	age_mac_config(struct age_softc *);
    114  1.28.2.2  snj static void	age_txintr(struct age_softc *, int);
    115  1.28.2.2  snj static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116  1.28.2.2  snj static void	age_rxintr(struct age_softc *, int);
    117  1.28.2.2  snj static void	age_tick(void *);
    118  1.28.2.2  snj static void	age_reset(struct age_softc *);
    119  1.28.2.2  snj static void	age_stop(struct ifnet *, int);
    120  1.28.2.2  snj static void	age_stats_update(struct age_softc *);
    121  1.28.2.2  snj static void	age_stop_txmac(struct age_softc *);
    122  1.28.2.2  snj static void	age_stop_rxmac(struct age_softc *);
    123  1.28.2.2  snj static void	age_rxvlan(struct age_softc *sc);
    124  1.28.2.2  snj static void	age_rxfilter(struct age_softc *);
    125  1.28.2.2  snj 
    126  1.28.2.2  snj CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127  1.28.2.2  snj     age_match, age_attach, age_detach, NULL);
    128  1.28.2.2  snj 
    129  1.28.2.2  snj int agedebug = 0;
    130  1.28.2.2  snj #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131  1.28.2.2  snj 
    132  1.28.2.2  snj #define ETHER_ALIGN 2
    133  1.28.2.2  snj #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134  1.28.2.2  snj 
    135  1.28.2.2  snj static int
    136  1.28.2.2  snj age_match(device_t dev, cfdata_t match, void *aux)
    137  1.28.2.2  snj {
    138  1.28.2.2  snj 	struct pci_attach_args *pa = aux;
    139  1.28.2.2  snj 
    140  1.28.2.2  snj 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141  1.28.2.2  snj 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142  1.28.2.2  snj }
    143  1.28.2.2  snj 
    144  1.28.2.2  snj static void
    145  1.28.2.2  snj age_attach(device_t parent, device_t self, void *aux)
    146  1.28.2.2  snj {
    147  1.28.2.2  snj 	struct age_softc *sc = device_private(self);
    148  1.28.2.2  snj 	struct pci_attach_args *pa = aux;
    149  1.28.2.2  snj 	pci_intr_handle_t ih;
    150  1.28.2.2  snj 	const char *intrstr;
    151  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152  1.28.2.2  snj 	pcireg_t memtype;
    153  1.28.2.2  snj 	int error = 0;
    154  1.28.2.2  snj 
    155  1.28.2.2  snj 	aprint_naive("\n");
    156  1.28.2.2  snj 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157  1.28.2.2  snj 
    158  1.28.2.2  snj 	sc->sc_dev = self;
    159  1.28.2.2  snj 	sc->sc_dmat = pa->pa_dmat;
    160  1.28.2.2  snj 	sc->sc_pct = pa->pa_pc;
    161  1.28.2.2  snj 	sc->sc_pcitag = pa->pa_tag;
    162  1.28.2.2  snj 
    163  1.28.2.2  snj 	/*
    164  1.28.2.2  snj 	 * Allocate IO memory
    165  1.28.2.2  snj 	 */
    166  1.28.2.2  snj 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167  1.28.2.2  snj 	switch (memtype) {
    168  1.28.2.2  snj         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169  1.28.2.2  snj         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170  1.28.2.2  snj         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171  1.28.2.2  snj 		break;
    172  1.28.2.2  snj         default:
    173  1.28.2.2  snj 		aprint_error_dev(self, "invalid base address register\n");
    174  1.28.2.2  snj 		break;
    175  1.28.2.2  snj 	}
    176  1.28.2.2  snj 
    177  1.28.2.2  snj 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178  1.28.2.2  snj 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179  1.28.2.2  snj 		aprint_error_dev(self, "could not map mem space\n");
    180  1.28.2.2  snj 		return;
    181  1.28.2.2  snj 	}
    182  1.28.2.2  snj 
    183  1.28.2.2  snj 	if (pci_intr_map(pa, &ih) != 0) {
    184  1.28.2.2  snj 		aprint_error_dev(self, "could not map interrupt\n");
    185  1.28.2.2  snj 		goto fail;
    186  1.28.2.2  snj 	}
    187  1.28.2.2  snj 
    188  1.28.2.2  snj 	/*
    189  1.28.2.2  snj 	 * Allocate IRQ
    190  1.28.2.2  snj 	 */
    191  1.28.2.2  snj 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192  1.28.2.2  snj 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193  1.28.2.2  snj 	    age_intr, sc);
    194  1.28.2.2  snj 	if (sc->sc_irq_handle == NULL) {
    195  1.28.2.2  snj 		aprint_error_dev(self, "could not establish interrupt");
    196  1.28.2.2  snj 		if (intrstr != NULL)
    197  1.28.2.2  snj 			aprint_error(" at %s", intrstr);
    198  1.28.2.2  snj 		aprint_error("\n");
    199  1.28.2.2  snj 		goto fail;
    200  1.28.2.2  snj 	}
    201  1.28.2.2  snj 	aprint_normal_dev(self, "%s\n", intrstr);
    202  1.28.2.2  snj 
    203  1.28.2.2  snj 	/* Set PHY address. */
    204  1.28.2.2  snj 	sc->age_phyaddr = AGE_PHY_ADDR;
    205  1.28.2.2  snj 
    206  1.28.2.2  snj 	/* Reset PHY. */
    207  1.28.2.2  snj 	age_phy_reset(sc);
    208  1.28.2.2  snj 
    209  1.28.2.2  snj 	/* Reset the ethernet controller. */
    210  1.28.2.2  snj 	age_reset(sc);
    211  1.28.2.2  snj 
    212  1.28.2.2  snj 	/* Get PCI and chip id/revision. */
    213  1.28.2.2  snj 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214  1.28.2.2  snj 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215  1.28.2.2  snj 	    MASTER_CHIP_REV_SHIFT;
    216  1.28.2.2  snj 
    217  1.28.2.2  snj 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218  1.28.2.2  snj 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219  1.28.2.2  snj 
    220  1.28.2.2  snj 	if (agedebug) {
    221  1.28.2.2  snj 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222  1.28.2.2  snj 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223  1.28.2.2  snj 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224  1.28.2.2  snj 	}
    225  1.28.2.2  snj 
    226  1.28.2.2  snj 	/* Set max allowable DMA size. */
    227  1.28.2.2  snj 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228  1.28.2.2  snj 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229  1.28.2.2  snj 
    230  1.28.2.2  snj 	/* Allocate DMA stuffs */
    231  1.28.2.2  snj 	error = age_dma_alloc(sc);
    232  1.28.2.2  snj 	if (error)
    233  1.28.2.2  snj 		goto fail;
    234  1.28.2.2  snj 
    235  1.28.2.2  snj 	callout_init(&sc->sc_tick_ch, 0);
    236  1.28.2.2  snj 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237  1.28.2.2  snj 
    238  1.28.2.2  snj 	/* Load station address. */
    239  1.28.2.2  snj 	age_get_macaddr(sc, sc->sc_enaddr);
    240  1.28.2.2  snj 
    241  1.28.2.2  snj 	aprint_normal_dev(self, "Ethernet address %s\n",
    242  1.28.2.2  snj 	    ether_sprintf(sc->sc_enaddr));
    243  1.28.2.2  snj 
    244  1.28.2.2  snj 	ifp->if_softc = sc;
    245  1.28.2.2  snj 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246  1.28.2.2  snj 	ifp->if_init = age_init;
    247  1.28.2.2  snj 	ifp->if_ioctl = age_ioctl;
    248  1.28.2.2  snj 	ifp->if_start = age_start;
    249  1.28.2.2  snj 	ifp->if_stop = age_stop;
    250  1.28.2.2  snj 	ifp->if_watchdog = age_watchdog;
    251  1.28.2.2  snj 	ifp->if_baudrate = IF_Gbps(1);
    252  1.28.2.2  snj 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    253  1.28.2.2  snj 	IFQ_SET_READY(&ifp->if_snd);
    254  1.28.2.2  snj 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    255  1.28.2.2  snj 
    256  1.28.2.2  snj 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    257  1.28.2.2  snj 
    258  1.28.2.2  snj #ifdef AGE_CHECKSUM
    259  1.28.2.2  snj 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    260  1.28.2.2  snj 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    261  1.28.2.2  snj 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    262  1.28.2.2  snj #endif
    263  1.28.2.2  snj 
    264  1.28.2.2  snj #if NVLAN > 0
    265  1.28.2.2  snj 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    266  1.28.2.2  snj #endif
    267  1.28.2.2  snj 
    268  1.28.2.2  snj 	/* Set up MII bus. */
    269  1.28.2.2  snj 	sc->sc_miibus.mii_ifp = ifp;
    270  1.28.2.2  snj 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    271  1.28.2.2  snj 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    272  1.28.2.2  snj 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    273  1.28.2.2  snj 
    274  1.28.2.2  snj 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    275  1.28.2.2  snj 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    276  1.28.2.2  snj 	    age_mediastatus);
    277  1.28.2.2  snj 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    278  1.28.2.2  snj 	   MII_OFFSET_ANY, 0);
    279  1.28.2.2  snj 
    280  1.28.2.2  snj 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    281  1.28.2.2  snj 		aprint_error_dev(self, "no PHY found!\n");
    282  1.28.2.2  snj 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    283  1.28.2.2  snj 		    0, NULL);
    284  1.28.2.2  snj 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    285  1.28.2.2  snj 	} else
    286  1.28.2.2  snj 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    287  1.28.2.2  snj 
    288  1.28.2.2  snj 	if_attach(ifp);
    289  1.28.2.2  snj 	ether_ifattach(ifp, sc->sc_enaddr);
    290  1.28.2.2  snj 
    291  1.28.2.2  snj 	if (!pmf_device_register(self, NULL, age_resume))
    292  1.28.2.2  snj 		aprint_error_dev(self, "couldn't establish power handler\n");
    293  1.28.2.2  snj 	else
    294  1.28.2.2  snj 		pmf_class_network_register(self, ifp);
    295  1.28.2.2  snj 
    296  1.28.2.2  snj 	return;
    297  1.28.2.2  snj 
    298  1.28.2.2  snj fail:
    299  1.28.2.2  snj 	age_dma_free(sc);
    300  1.28.2.2  snj 	if (sc->sc_irq_handle != NULL) {
    301  1.28.2.2  snj 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302  1.28.2.2  snj 		sc->sc_irq_handle = NULL;
    303  1.28.2.2  snj 	}
    304  1.28.2.2  snj 	if (sc->sc_mem_size) {
    305  1.28.2.2  snj 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306  1.28.2.2  snj 		sc->sc_mem_size = 0;
    307  1.28.2.2  snj 	}
    308  1.28.2.2  snj }
    309  1.28.2.2  snj 
    310  1.28.2.2  snj static int
    311  1.28.2.2  snj age_detach(device_t self, int flags)
    312  1.28.2.2  snj {
    313  1.28.2.2  snj 	struct age_softc *sc = device_private(self);
    314  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315  1.28.2.2  snj 	int s;
    316  1.28.2.2  snj 
    317  1.28.2.2  snj 	pmf_device_deregister(self);
    318  1.28.2.2  snj 	s = splnet();
    319  1.28.2.2  snj 	age_stop(ifp, 0);
    320  1.28.2.2  snj 	splx(s);
    321  1.28.2.2  snj 
    322  1.28.2.2  snj 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    323  1.28.2.2  snj 
    324  1.28.2.2  snj 	/* Delete all remaining media. */
    325  1.28.2.2  snj 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    326  1.28.2.2  snj 
    327  1.28.2.2  snj 	ether_ifdetach(ifp);
    328  1.28.2.2  snj 	if_detach(ifp);
    329  1.28.2.2  snj 	age_dma_free(sc);
    330  1.28.2.2  snj 
    331  1.28.2.2  snj 	if (sc->sc_irq_handle != NULL) {
    332  1.28.2.2  snj 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    333  1.28.2.2  snj 		sc->sc_irq_handle = NULL;
    334  1.28.2.2  snj 	}
    335  1.28.2.2  snj 	if (sc->sc_mem_size) {
    336  1.28.2.2  snj 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    337  1.28.2.2  snj 		sc->sc_mem_size = 0;
    338  1.28.2.2  snj 	}
    339  1.28.2.2  snj 	return 0;
    340  1.28.2.2  snj }
    341  1.28.2.2  snj 
    342  1.28.2.2  snj /*
    343  1.28.2.2  snj  *	Read a PHY register on the MII of the L1.
    344  1.28.2.2  snj  */
    345  1.28.2.2  snj static int
    346  1.28.2.2  snj age_miibus_readreg(device_t dev, int phy, int reg)
    347  1.28.2.2  snj {
    348  1.28.2.2  snj 	struct age_softc *sc = device_private(dev);
    349  1.28.2.2  snj 	uint32_t v;
    350  1.28.2.2  snj 	int i;
    351  1.28.2.2  snj 
    352  1.28.2.2  snj 	if (phy != sc->age_phyaddr)
    353  1.28.2.2  snj 		return 0;
    354  1.28.2.2  snj 
    355  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    356  1.28.2.2  snj 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    357  1.28.2.2  snj 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    358  1.28.2.2  snj 		DELAY(1);
    359  1.28.2.2  snj 		v = CSR_READ_4(sc, AGE_MDIO);
    360  1.28.2.2  snj 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    361  1.28.2.2  snj 			break;
    362  1.28.2.2  snj 	}
    363  1.28.2.2  snj 
    364  1.28.2.2  snj 	if (i == 0) {
    365  1.28.2.2  snj 		printf("%s: phy read timeout: phy %d, reg %d\n",
    366  1.28.2.2  snj 			device_xname(sc->sc_dev), phy, reg);
    367  1.28.2.2  snj 		return 0;
    368  1.28.2.2  snj 	}
    369  1.28.2.2  snj 
    370  1.28.2.2  snj 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    371  1.28.2.2  snj }
    372  1.28.2.2  snj 
    373  1.28.2.2  snj /*
    374  1.28.2.2  snj  * 	Write a PHY register on the MII of the L1.
    375  1.28.2.2  snj  */
    376  1.28.2.2  snj static void
    377  1.28.2.2  snj age_miibus_writereg(device_t dev, int phy, int reg, int val)
    378  1.28.2.2  snj {
    379  1.28.2.2  snj 	struct age_softc *sc = device_private(dev);
    380  1.28.2.2  snj 	uint32_t v;
    381  1.28.2.2  snj 	int i;
    382  1.28.2.2  snj 
    383  1.28.2.2  snj 	if (phy != sc->age_phyaddr)
    384  1.28.2.2  snj 		return;
    385  1.28.2.2  snj 
    386  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    387  1.28.2.2  snj 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    388  1.28.2.2  snj 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    389  1.28.2.2  snj 
    390  1.28.2.2  snj 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    391  1.28.2.2  snj 		DELAY(1);
    392  1.28.2.2  snj 		v = CSR_READ_4(sc, AGE_MDIO);
    393  1.28.2.2  snj 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    394  1.28.2.2  snj 			break;
    395  1.28.2.2  snj 	}
    396  1.28.2.2  snj 
    397  1.28.2.2  snj 	if (i == 0) {
    398  1.28.2.2  snj 		printf("%s: phy write timeout: phy %d, reg %d\n",
    399  1.28.2.2  snj 		    device_xname(sc->sc_dev), phy, reg);
    400  1.28.2.2  snj 	}
    401  1.28.2.2  snj }
    402  1.28.2.2  snj 
    403  1.28.2.2  snj /*
    404  1.28.2.2  snj  *	Callback from MII layer when media changes.
    405  1.28.2.2  snj  */
    406  1.28.2.2  snj static void
    407  1.28.2.2  snj age_miibus_statchg(device_t dev)
    408  1.28.2.2  snj {
    409  1.28.2.2  snj 	struct age_softc *sc = device_private(dev);
    410  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    411  1.28.2.2  snj 	struct mii_data *mii;
    412  1.28.2.2  snj 
    413  1.28.2.2  snj 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    414  1.28.2.2  snj 		return;
    415  1.28.2.2  snj 
    416  1.28.2.2  snj 	mii = &sc->sc_miibus;
    417  1.28.2.2  snj 
    418  1.28.2.2  snj 	sc->age_flags &= ~AGE_FLAG_LINK;
    419  1.28.2.2  snj 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    420  1.28.2.2  snj 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    421  1.28.2.2  snj 		case IFM_10_T:
    422  1.28.2.2  snj 		case IFM_100_TX:
    423  1.28.2.2  snj 		case IFM_1000_T:
    424  1.28.2.2  snj 			sc->age_flags |= AGE_FLAG_LINK;
    425  1.28.2.2  snj 			break;
    426  1.28.2.2  snj 		default:
    427  1.28.2.2  snj 			break;
    428  1.28.2.2  snj 		}
    429  1.28.2.2  snj 	}
    430  1.28.2.2  snj 
    431  1.28.2.2  snj 	/* Stop Rx/Tx MACs. */
    432  1.28.2.2  snj 	age_stop_rxmac(sc);
    433  1.28.2.2  snj 	age_stop_txmac(sc);
    434  1.28.2.2  snj 
    435  1.28.2.2  snj 	/* Program MACs with resolved speed/duplex/flow-control. */
    436  1.28.2.2  snj 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    437  1.28.2.2  snj 		uint32_t reg;
    438  1.28.2.2  snj 
    439  1.28.2.2  snj 		age_mac_config(sc);
    440  1.28.2.2  snj 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    441  1.28.2.2  snj 		/* Restart DMA engine and Tx/Rx MAC. */
    442  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    443  1.28.2.2  snj 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    444  1.28.2.2  snj 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    445  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    446  1.28.2.2  snj 	}
    447  1.28.2.2  snj }
    448  1.28.2.2  snj 
    449  1.28.2.2  snj /*
    450  1.28.2.2  snj  *	Get the current interface media status.
    451  1.28.2.2  snj  */
    452  1.28.2.2  snj static void
    453  1.28.2.2  snj age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    454  1.28.2.2  snj {
    455  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
    456  1.28.2.2  snj 	struct mii_data *mii = &sc->sc_miibus;
    457  1.28.2.2  snj 
    458  1.28.2.2  snj 	mii_pollstat(mii);
    459  1.28.2.2  snj 	ifmr->ifm_status = mii->mii_media_status;
    460  1.28.2.2  snj 	ifmr->ifm_active = mii->mii_media_active;
    461  1.28.2.2  snj }
    462  1.28.2.2  snj 
    463  1.28.2.2  snj /*
    464  1.28.2.2  snj  *	Set hardware to newly-selected media.
    465  1.28.2.2  snj  */
    466  1.28.2.2  snj static int
    467  1.28.2.2  snj age_mediachange(struct ifnet *ifp)
    468  1.28.2.2  snj {
    469  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
    470  1.28.2.2  snj 	struct mii_data *mii = &sc->sc_miibus;
    471  1.28.2.2  snj 	int error;
    472  1.28.2.2  snj 
    473  1.28.2.2  snj 	if (mii->mii_instance != 0) {
    474  1.28.2.2  snj 		struct mii_softc *miisc;
    475  1.28.2.2  snj 
    476  1.28.2.2  snj 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    477  1.28.2.2  snj 			mii_phy_reset(miisc);
    478  1.28.2.2  snj 	}
    479  1.28.2.2  snj 	error = mii_mediachg(mii);
    480  1.28.2.2  snj 
    481  1.28.2.2  snj 	return error;
    482  1.28.2.2  snj }
    483  1.28.2.2  snj 
    484  1.28.2.2  snj static int
    485  1.28.2.2  snj age_intr(void *arg)
    486  1.28.2.2  snj {
    487  1.28.2.2  snj         struct age_softc *sc = arg;
    488  1.28.2.2  snj         struct ifnet *ifp = &sc->sc_ec.ec_if;
    489  1.28.2.2  snj 	struct cmb *cmb;
    490  1.28.2.2  snj         uint32_t status;
    491  1.28.2.2  snj 
    492  1.28.2.2  snj 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    493  1.28.2.2  snj 	if (status == 0 || (status & AGE_INTRS) == 0)
    494  1.28.2.2  snj 		return 0;
    495  1.28.2.2  snj 
    496  1.28.2.2  snj 	cmb = sc->age_rdata.age_cmb_block;
    497  1.28.2.2  snj 	if (cmb == NULL) {
    498  1.28.2.2  snj 		/* Happens when bringing up the interface
    499  1.28.2.2  snj 		 * w/o having a carrier. Ack. the interrupt.
    500  1.28.2.2  snj 		 */
    501  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    502  1.28.2.2  snj 		return 0;
    503  1.28.2.2  snj 	}
    504  1.28.2.2  snj 
    505  1.28.2.2  snj 	/* Disable interrupts. */
    506  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    507  1.28.2.2  snj 
    508  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    509  1.28.2.2  snj 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    510  1.28.2.2  snj 	status = le32toh(cmb->intr_status);
    511  1.28.2.2  snj 	if ((status & AGE_INTRS) == 0)
    512  1.28.2.2  snj 		goto back;
    513  1.28.2.2  snj 
    514  1.28.2.2  snj 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    515  1.28.2.2  snj 	    TPD_CONS_SHIFT;
    516  1.28.2.2  snj 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    517  1.28.2.2  snj 	    RRD_PROD_SHIFT;
    518  1.28.2.2  snj 
    519  1.28.2.2  snj 	/* Let hardware know CMB was served. */
    520  1.28.2.2  snj 	cmb->intr_status = 0;
    521  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    522  1.28.2.2  snj 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    523  1.28.2.2  snj 	    BUS_DMASYNC_PREWRITE);
    524  1.28.2.2  snj 
    525  1.28.2.2  snj 	if (ifp->if_flags & IFF_RUNNING) {
    526  1.28.2.2  snj 		if (status & INTR_CMB_RX)
    527  1.28.2.2  snj 			age_rxintr(sc, sc->age_rr_prod);
    528  1.28.2.2  snj 
    529  1.28.2.2  snj 		if (status & INTR_CMB_TX)
    530  1.28.2.2  snj 			age_txintr(sc, sc->age_tpd_cons);
    531  1.28.2.2  snj 
    532  1.28.2.2  snj 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    533  1.28.2.2  snj 			if (status & INTR_DMA_RD_TO_RST)
    534  1.28.2.2  snj 				printf("%s: DMA read error! -- resetting\n",
    535  1.28.2.2  snj 				    device_xname(sc->sc_dev));
    536  1.28.2.2  snj 			if (status & INTR_DMA_WR_TO_RST)
    537  1.28.2.2  snj 				printf("%s: DMA write error! -- resetting\n",
    538  1.28.2.2  snj 				    device_xname(sc->sc_dev));
    539  1.28.2.2  snj 			age_init(ifp);
    540  1.28.2.2  snj 		}
    541  1.28.2.2  snj 
    542  1.28.2.2  snj 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    543  1.28.2.2  snj 			age_start(ifp);
    544  1.28.2.2  snj 
    545  1.28.2.2  snj 		if (status & INTR_SMB)
    546  1.28.2.2  snj 			age_stats_update(sc);
    547  1.28.2.2  snj 	}
    548  1.28.2.2  snj 
    549  1.28.2.2  snj 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    550  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    551  1.28.2.2  snj 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    552  1.28.2.2  snj 	    BUS_DMASYNC_POSTREAD);
    553  1.28.2.2  snj 
    554  1.28.2.2  snj back:
    555  1.28.2.2  snj 	/* Re-enable interrupts. */
    556  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    557  1.28.2.2  snj 
    558  1.28.2.2  snj 	return 1;
    559  1.28.2.2  snj }
    560  1.28.2.2  snj 
    561  1.28.2.2  snj static int
    562  1.28.2.2  snj age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    563  1.28.2.2  snj     uint32_t *word)
    564  1.28.2.2  snj {
    565  1.28.2.2  snj 	int i;
    566  1.28.2.2  snj 	pcireg_t rv;
    567  1.28.2.2  snj 
    568  1.28.2.2  snj 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    569  1.28.2.2  snj 	    offset << PCI_VPD_ADDRESS_SHIFT);
    570  1.28.2.2  snj 	for (i = AGE_TIMEOUT; i > 0; i--) {
    571  1.28.2.2  snj 		DELAY(10);
    572  1.28.2.2  snj 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    573  1.28.2.2  snj 		    PCI_VPD_ADDRESS(vpdc));
    574  1.28.2.2  snj 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    575  1.28.2.2  snj 			break;
    576  1.28.2.2  snj 	}
    577  1.28.2.2  snj 	if (i == 0) {
    578  1.28.2.2  snj 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    579  1.28.2.2  snj 		*word = 0;
    580  1.28.2.2  snj 		return ETIMEDOUT;
    581  1.28.2.2  snj 	}
    582  1.28.2.2  snj 
    583  1.28.2.2  snj 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    584  1.28.2.2  snj 	return 0;
    585  1.28.2.2  snj }
    586  1.28.2.2  snj 
    587  1.28.2.2  snj static void
    588  1.28.2.2  snj age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    589  1.28.2.2  snj {
    590  1.28.2.2  snj 	uint32_t ea[2], off, reg, word;
    591  1.28.2.2  snj 	int vpd_error, match, vpdc;
    592  1.28.2.2  snj 
    593  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    594  1.28.2.2  snj 	if ((reg & SPI_VPD_ENB) != 0) {
    595  1.28.2.2  snj 		/* Get VPD stored in TWSI EEPROM. */
    596  1.28.2.2  snj 		reg &= ~SPI_VPD_ENB;
    597  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    598  1.28.2.2  snj 	}
    599  1.28.2.2  snj 
    600  1.28.2.2  snj 	vpd_error = 0;
    601  1.28.2.2  snj 	ea[0] = ea[1] = 0;
    602  1.28.2.2  snj 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    603  1.28.2.2  snj 	    PCI_CAP_VPD, &vpdc, NULL))) {
    604  1.28.2.2  snj 		/*
    605  1.28.2.2  snj 		 * PCI VPD capability exists, but it seems that it's
    606  1.28.2.2  snj 		 * not in the standard form as stated in PCI VPD
    607  1.28.2.2  snj 		 * specification such that driver could not use
    608  1.28.2.2  snj 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    609  1.28.2.2  snj 		 * Search VPD data starting at address 0x0100. The data
    610  1.28.2.2  snj 		 * should be used as initializers to set AGE_PAR0,
    611  1.28.2.2  snj 		 * AGE_PAR1 register including other PCI configuration
    612  1.28.2.2  snj 		 * registers.
    613  1.28.2.2  snj 		 */
    614  1.28.2.2  snj 		word = 0;
    615  1.28.2.2  snj 		match = 0;
    616  1.28.2.2  snj 		reg = 0;
    617  1.28.2.2  snj 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    618  1.28.2.2  snj 		    off += sizeof(uint32_t)) {
    619  1.28.2.2  snj 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    620  1.28.2.2  snj 			if (vpd_error != 0)
    621  1.28.2.2  snj 				break;
    622  1.28.2.2  snj 			if (match != 0) {
    623  1.28.2.2  snj 				switch (reg) {
    624  1.28.2.2  snj 				case AGE_PAR0:
    625  1.28.2.2  snj 					ea[0] = word;
    626  1.28.2.2  snj 					break;
    627  1.28.2.2  snj 				case AGE_PAR1:
    628  1.28.2.2  snj 					ea[1] = word;
    629  1.28.2.2  snj 					break;
    630  1.28.2.2  snj 				default:
    631  1.28.2.2  snj 					break;
    632  1.28.2.2  snj 				}
    633  1.28.2.2  snj 				match = 0;
    634  1.28.2.2  snj 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    635  1.28.2.2  snj 				match = 1;
    636  1.28.2.2  snj 				reg = word >> 16;
    637  1.28.2.2  snj 			} else
    638  1.28.2.2  snj 				break;
    639  1.28.2.2  snj 		}
    640  1.28.2.2  snj 		if (off >= AGE_VPD_REG_CONF_END)
    641  1.28.2.2  snj 			vpd_error = ENOENT;
    642  1.28.2.2  snj 		if (vpd_error == 0) {
    643  1.28.2.2  snj 			/*
    644  1.28.2.2  snj 			 * Don't blindly trust ethernet address obtained
    645  1.28.2.2  snj 			 * from VPD. Check whether ethernet address is
    646  1.28.2.2  snj 			 * valid one. Otherwise fall-back to reading
    647  1.28.2.2  snj 			 * PAR register.
    648  1.28.2.2  snj 			 */
    649  1.28.2.2  snj 			ea[1] &= 0xFFFF;
    650  1.28.2.2  snj 			if ((ea[0] == 0 && ea[1] == 0) ||
    651  1.28.2.2  snj 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    652  1.28.2.2  snj 				if (agedebug)
    653  1.28.2.2  snj 					printf("%s: invalid ethernet address "
    654  1.28.2.2  snj 				    	    "returned from VPD.\n",
    655  1.28.2.2  snj 				    	    device_xname(sc->sc_dev));
    656  1.28.2.2  snj 				vpd_error = EINVAL;
    657  1.28.2.2  snj 			}
    658  1.28.2.2  snj 		}
    659  1.28.2.2  snj 		if (vpd_error != 0 && (agedebug))
    660  1.28.2.2  snj 			printf("%s: VPD access failure!\n",
    661  1.28.2.2  snj 			    device_xname(sc->sc_dev));
    662  1.28.2.2  snj 	} else {
    663  1.28.2.2  snj 		if (agedebug)
    664  1.28.2.2  snj 			printf("%s: PCI VPD capability not found!\n",
    665  1.28.2.2  snj 			    device_xname(sc->sc_dev));
    666  1.28.2.2  snj 	}
    667  1.28.2.2  snj 
    668  1.28.2.2  snj 	/*
    669  1.28.2.2  snj 	 * It seems that L1 also provides a way to extract ethernet
    670  1.28.2.2  snj 	 * address via SPI flash interface. Because SPI flash memory
    671  1.28.2.2  snj 	 * device of different vendors vary in their instruction
    672  1.28.2.2  snj 	 * codes for read ID instruction, it's very hard to get
    673  1.28.2.2  snj 	 * instructions codes without detailed information for the
    674  1.28.2.2  snj 	 * flash memory device used on ethernet controller. To simplify
    675  1.28.2.2  snj 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    676  1.28.2.2  snj 	 * address which is supposed to be set by hardware during
    677  1.28.2.2  snj 	 * power on reset.
    678  1.28.2.2  snj 	 */
    679  1.28.2.2  snj 	if (vpd_error != 0) {
    680  1.28.2.2  snj 		/*
    681  1.28.2.2  snj 		 * VPD is mapped to SPI flash memory or BIOS set it.
    682  1.28.2.2  snj 		 */
    683  1.28.2.2  snj 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    684  1.28.2.2  snj 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    685  1.28.2.2  snj 	}
    686  1.28.2.2  snj 
    687  1.28.2.2  snj 	ea[1] &= 0xFFFF;
    688  1.28.2.2  snj 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    689  1.28.2.2  snj 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    690  1.28.2.2  snj 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    691  1.28.2.2  snj 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    692  1.28.2.2  snj 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    693  1.28.2.2  snj 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    694  1.28.2.2  snj }
    695  1.28.2.2  snj 
    696  1.28.2.2  snj static void
    697  1.28.2.2  snj age_phy_reset(struct age_softc *sc)
    698  1.28.2.2  snj {
    699  1.28.2.2  snj 	/* Reset PHY. */
    700  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    701  1.28.2.2  snj 	DELAY(1000);
    702  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    703  1.28.2.2  snj 	DELAY(1000);
    704  1.28.2.2  snj }
    705  1.28.2.2  snj 
    706  1.28.2.2  snj static int
    707  1.28.2.2  snj age_dma_alloc(struct age_softc *sc)
    708  1.28.2.2  snj {
    709  1.28.2.2  snj 	struct age_txdesc *txd;
    710  1.28.2.2  snj 	struct age_rxdesc *rxd;
    711  1.28.2.2  snj 	int nsegs, error, i;
    712  1.28.2.2  snj 
    713  1.28.2.2  snj 	/*
    714  1.28.2.2  snj 	 * Create DMA stuffs for TX ring
    715  1.28.2.2  snj 	 */
    716  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    717  1.28.2.2  snj 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    718  1.28.2.2  snj 	if (error) {
    719  1.28.2.2  snj 		sc->age_cdata.age_tx_ring_map = NULL;
    720  1.28.2.2  snj 		return ENOBUFS;
    721  1.28.2.2  snj 	}
    722  1.28.2.2  snj 
    723  1.28.2.2  snj 	/* Allocate DMA'able memory for TX ring */
    724  1.28.2.2  snj 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    725  1.28.2.2  snj 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    726  1.28.2.2  snj 	    &nsegs, BUS_DMA_WAITOK);
    727  1.28.2.2  snj 	if (error) {
    728  1.28.2.2  snj 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    729  1.28.2.2  snj 		    "error = %i\n", device_xname(sc->sc_dev), error);
    730  1.28.2.2  snj 		return error;
    731  1.28.2.2  snj 	}
    732  1.28.2.2  snj 
    733  1.28.2.2  snj 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    734  1.28.2.2  snj 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    735  1.28.2.2  snj 	    BUS_DMA_NOWAIT);
    736  1.28.2.2  snj 	if (error)
    737  1.28.2.2  snj 		return ENOBUFS;
    738  1.28.2.2  snj 
    739  1.28.2.2  snj 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    740  1.28.2.2  snj 
    741  1.28.2.2  snj 	/*  Load the DMA map for Tx ring. */
    742  1.28.2.2  snj 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    743  1.28.2.2  snj 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    744  1.28.2.2  snj 	if (error) {
    745  1.28.2.2  snj 		printf("%s: could not load DMA'able memory for Tx ring, "
    746  1.28.2.2  snj 		    "error = %i\n", device_xname(sc->sc_dev), error);
    747  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
    748  1.28.2.2  snj 		    &sc->age_rdata.age_tx_ring_seg, 1);
    749  1.28.2.2  snj 		return error;
    750  1.28.2.2  snj 	}
    751  1.28.2.2  snj 
    752  1.28.2.2  snj 	sc->age_rdata.age_tx_ring_paddr =
    753  1.28.2.2  snj 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    754  1.28.2.2  snj 
    755  1.28.2.2  snj 	/*
    756  1.28.2.2  snj 	 * Create DMA stuffs for RX ring
    757  1.28.2.2  snj 	 */
    758  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    759  1.28.2.2  snj 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    760  1.28.2.2  snj 	if (error) {
    761  1.28.2.2  snj 		sc->age_cdata.age_rx_ring_map = NULL;
    762  1.28.2.2  snj 		return ENOBUFS;
    763  1.28.2.2  snj 	}
    764  1.28.2.2  snj 
    765  1.28.2.2  snj 	/* Allocate DMA'able memory for RX ring */
    766  1.28.2.2  snj 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    767  1.28.2.2  snj 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    768  1.28.2.2  snj 	    &nsegs, BUS_DMA_WAITOK);
    769  1.28.2.2  snj 	if (error) {
    770  1.28.2.2  snj 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    771  1.28.2.2  snj 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    772  1.28.2.2  snj 		return error;
    773  1.28.2.2  snj 	}
    774  1.28.2.2  snj 
    775  1.28.2.2  snj 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    776  1.28.2.2  snj 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    777  1.28.2.2  snj 	    BUS_DMA_NOWAIT);
    778  1.28.2.2  snj 	if (error)
    779  1.28.2.2  snj 		return ENOBUFS;
    780  1.28.2.2  snj 
    781  1.28.2.2  snj 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    782  1.28.2.2  snj 
    783  1.28.2.2  snj 	/* Load the DMA map for Rx ring. */
    784  1.28.2.2  snj 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    785  1.28.2.2  snj 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    786  1.28.2.2  snj 	if (error) {
    787  1.28.2.2  snj 		printf("%s: could not load DMA'able memory for Rx ring, "
    788  1.28.2.2  snj 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    789  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
    790  1.28.2.2  snj 		    &sc->age_rdata.age_rx_ring_seg, 1);
    791  1.28.2.2  snj 		return error;
    792  1.28.2.2  snj 	}
    793  1.28.2.2  snj 
    794  1.28.2.2  snj 	sc->age_rdata.age_rx_ring_paddr =
    795  1.28.2.2  snj 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    796  1.28.2.2  snj 
    797  1.28.2.2  snj 	/*
    798  1.28.2.2  snj 	 * Create DMA stuffs for RX return ring
    799  1.28.2.2  snj 	 */
    800  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    801  1.28.2.2  snj 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    802  1.28.2.2  snj 	if (error) {
    803  1.28.2.2  snj 		sc->age_cdata.age_rr_ring_map = NULL;
    804  1.28.2.2  snj 		return ENOBUFS;
    805  1.28.2.2  snj 	}
    806  1.28.2.2  snj 
    807  1.28.2.2  snj 	/* Allocate DMA'able memory for RX return ring */
    808  1.28.2.2  snj 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    809  1.28.2.2  snj 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    810  1.28.2.2  snj 	    &nsegs, BUS_DMA_WAITOK);
    811  1.28.2.2  snj 	if (error) {
    812  1.28.2.2  snj 		printf("%s: could not allocate DMA'able memory for Rx "
    813  1.28.2.2  snj 		    "return ring, error = %i.\n",
    814  1.28.2.2  snj 		    device_xname(sc->sc_dev), error);
    815  1.28.2.2  snj 		return error;
    816  1.28.2.2  snj 	}
    817  1.28.2.2  snj 
    818  1.28.2.2  snj 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    819  1.28.2.2  snj 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    820  1.28.2.2  snj 	    BUS_DMA_NOWAIT);
    821  1.28.2.2  snj 	if (error)
    822  1.28.2.2  snj 		return ENOBUFS;
    823  1.28.2.2  snj 
    824  1.28.2.2  snj 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    825  1.28.2.2  snj 
    826  1.28.2.2  snj 	/*  Load the DMA map for Rx return ring. */
    827  1.28.2.2  snj 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    828  1.28.2.2  snj 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    829  1.28.2.2  snj 	if (error) {
    830  1.28.2.2  snj 		printf("%s: could not load DMA'able memory for Rx return ring, "
    831  1.28.2.2  snj 		    "error = %i\n", device_xname(sc->sc_dev), error);
    832  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
    833  1.28.2.2  snj 		    &sc->age_rdata.age_rr_ring_seg, 1);
    834  1.28.2.2  snj 		return error;
    835  1.28.2.2  snj 	}
    836  1.28.2.2  snj 
    837  1.28.2.2  snj 	sc->age_rdata.age_rr_ring_paddr =
    838  1.28.2.2  snj 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    839  1.28.2.2  snj 
    840  1.28.2.2  snj 	/*
    841  1.28.2.2  snj 	 * Create DMA stuffs for CMB block
    842  1.28.2.2  snj 	 */
    843  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    844  1.28.2.2  snj 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    845  1.28.2.2  snj 	    &sc->age_cdata.age_cmb_block_map);
    846  1.28.2.2  snj 	if (error) {
    847  1.28.2.2  snj 		sc->age_cdata.age_cmb_block_map = NULL;
    848  1.28.2.2  snj 		return ENOBUFS;
    849  1.28.2.2  snj 	}
    850  1.28.2.2  snj 
    851  1.28.2.2  snj 	/* Allocate DMA'able memory for CMB block */
    852  1.28.2.2  snj 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    853  1.28.2.2  snj 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    854  1.28.2.2  snj 	    &nsegs, BUS_DMA_WAITOK);
    855  1.28.2.2  snj 	if (error) {
    856  1.28.2.2  snj 		printf("%s: could not allocate DMA'able memory for "
    857  1.28.2.2  snj 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    858  1.28.2.2  snj 		return error;
    859  1.28.2.2  snj 	}
    860  1.28.2.2  snj 
    861  1.28.2.2  snj 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    862  1.28.2.2  snj 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    863  1.28.2.2  snj 	    BUS_DMA_NOWAIT);
    864  1.28.2.2  snj 	if (error)
    865  1.28.2.2  snj 		return ENOBUFS;
    866  1.28.2.2  snj 
    867  1.28.2.2  snj 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    868  1.28.2.2  snj 
    869  1.28.2.2  snj 	/*  Load the DMA map for CMB block. */
    870  1.28.2.2  snj 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    871  1.28.2.2  snj 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    872  1.28.2.2  snj 	    BUS_DMA_WAITOK);
    873  1.28.2.2  snj 	if (error) {
    874  1.28.2.2  snj 		printf("%s: could not load DMA'able memory for CMB block, "
    875  1.28.2.2  snj 		    "error = %i\n", device_xname(sc->sc_dev), error);
    876  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
    877  1.28.2.2  snj 		    &sc->age_rdata.age_cmb_block_seg, 1);
    878  1.28.2.2  snj 		return error;
    879  1.28.2.2  snj 	}
    880  1.28.2.2  snj 
    881  1.28.2.2  snj 	sc->age_rdata.age_cmb_block_paddr =
    882  1.28.2.2  snj 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    883  1.28.2.2  snj 
    884  1.28.2.2  snj 	/*
    885  1.28.2.2  snj 	 * Create DMA stuffs for SMB block
    886  1.28.2.2  snj 	 */
    887  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    888  1.28.2.2  snj 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    889  1.28.2.2  snj 	    &sc->age_cdata.age_smb_block_map);
    890  1.28.2.2  snj 	if (error) {
    891  1.28.2.2  snj 		sc->age_cdata.age_smb_block_map = NULL;
    892  1.28.2.2  snj 		return ENOBUFS;
    893  1.28.2.2  snj 	}
    894  1.28.2.2  snj 
    895  1.28.2.2  snj 	/* Allocate DMA'able memory for SMB block */
    896  1.28.2.2  snj 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    897  1.28.2.2  snj 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    898  1.28.2.2  snj 	    &nsegs, BUS_DMA_WAITOK);
    899  1.28.2.2  snj 	if (error) {
    900  1.28.2.2  snj 		printf("%s: could not allocate DMA'able memory for "
    901  1.28.2.2  snj 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    902  1.28.2.2  snj 		return error;
    903  1.28.2.2  snj 	}
    904  1.28.2.2  snj 
    905  1.28.2.2  snj 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    906  1.28.2.2  snj 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    907  1.28.2.2  snj 	    BUS_DMA_NOWAIT);
    908  1.28.2.2  snj 	if (error)
    909  1.28.2.2  snj 		return ENOBUFS;
    910  1.28.2.2  snj 
    911  1.28.2.2  snj 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    912  1.28.2.2  snj 
    913  1.28.2.2  snj 	/*  Load the DMA map for SMB block */
    914  1.28.2.2  snj 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    915  1.28.2.2  snj 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    916  1.28.2.2  snj 	    BUS_DMA_WAITOK);
    917  1.28.2.2  snj 	if (error) {
    918  1.28.2.2  snj 		printf("%s: could not load DMA'able memory for SMB block, "
    919  1.28.2.2  snj 		    "error = %i\n", device_xname(sc->sc_dev), error);
    920  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
    921  1.28.2.2  snj 		    &sc->age_rdata.age_smb_block_seg, 1);
    922  1.28.2.2  snj 		return error;
    923  1.28.2.2  snj 	}
    924  1.28.2.2  snj 
    925  1.28.2.2  snj 	sc->age_rdata.age_smb_block_paddr =
    926  1.28.2.2  snj 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    927  1.28.2.2  snj 
    928  1.28.2.2  snj 	/* Create DMA maps for Tx buffers. */
    929  1.28.2.2  snj 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    930  1.28.2.2  snj 		txd = &sc->age_cdata.age_txdesc[i];
    931  1.28.2.2  snj 		txd->tx_m = NULL;
    932  1.28.2.2  snj 		txd->tx_dmamap = NULL;
    933  1.28.2.2  snj 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    934  1.28.2.2  snj 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    935  1.28.2.2  snj 		    &txd->tx_dmamap);
    936  1.28.2.2  snj 		if (error) {
    937  1.28.2.2  snj 			txd->tx_dmamap = NULL;
    938  1.28.2.2  snj 			printf("%s: could not create Tx dmamap, error = %i.\n",
    939  1.28.2.2  snj 			    device_xname(sc->sc_dev), error);
    940  1.28.2.2  snj 			return error;
    941  1.28.2.2  snj 		}
    942  1.28.2.2  snj 	}
    943  1.28.2.2  snj 
    944  1.28.2.2  snj 	/* Create DMA maps for Rx buffers. */
    945  1.28.2.2  snj 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    946  1.28.2.2  snj 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    947  1.28.2.2  snj 	if (error) {
    948  1.28.2.2  snj 		sc->age_cdata.age_rx_sparemap = NULL;
    949  1.28.2.2  snj 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    950  1.28.2.2  snj 		    device_xname(sc->sc_dev), error);
    951  1.28.2.2  snj 		return error;
    952  1.28.2.2  snj 	}
    953  1.28.2.2  snj 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    954  1.28.2.2  snj 		rxd = &sc->age_cdata.age_rxdesc[i];
    955  1.28.2.2  snj 		rxd->rx_m = NULL;
    956  1.28.2.2  snj 		rxd->rx_dmamap = NULL;
    957  1.28.2.2  snj 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    958  1.28.2.2  snj 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    959  1.28.2.2  snj 		if (error) {
    960  1.28.2.2  snj 			rxd->rx_dmamap = NULL;
    961  1.28.2.2  snj 			printf("%s: could not create Rx dmamap, error = %i.\n",
    962  1.28.2.2  snj 			    device_xname(sc->sc_dev), error);
    963  1.28.2.2  snj 			return error;
    964  1.28.2.2  snj 		}
    965  1.28.2.2  snj 	}
    966  1.28.2.2  snj 
    967  1.28.2.2  snj 	return 0;
    968  1.28.2.2  snj }
    969  1.28.2.2  snj 
    970  1.28.2.2  snj static void
    971  1.28.2.2  snj age_dma_free(struct age_softc *sc)
    972  1.28.2.2  snj {
    973  1.28.2.2  snj 	struct age_txdesc *txd;
    974  1.28.2.2  snj 	struct age_rxdesc *rxd;
    975  1.28.2.2  snj 	int i;
    976  1.28.2.2  snj 
    977  1.28.2.2  snj 	/* Tx buffers */
    978  1.28.2.2  snj 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    979  1.28.2.2  snj 		txd = &sc->age_cdata.age_txdesc[i];
    980  1.28.2.2  snj 		if (txd->tx_dmamap != NULL) {
    981  1.28.2.2  snj 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    982  1.28.2.2  snj 			txd->tx_dmamap = NULL;
    983  1.28.2.2  snj 		}
    984  1.28.2.2  snj 	}
    985  1.28.2.2  snj 	/* Rx buffers */
    986  1.28.2.2  snj 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    987  1.28.2.2  snj 		rxd = &sc->age_cdata.age_rxdesc[i];
    988  1.28.2.2  snj 		if (rxd->rx_dmamap != NULL) {
    989  1.28.2.2  snj 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    990  1.28.2.2  snj 			rxd->rx_dmamap = NULL;
    991  1.28.2.2  snj 		}
    992  1.28.2.2  snj 	}
    993  1.28.2.2  snj 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    994  1.28.2.2  snj 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    995  1.28.2.2  snj 		sc->age_cdata.age_rx_sparemap = NULL;
    996  1.28.2.2  snj 	}
    997  1.28.2.2  snj 
    998  1.28.2.2  snj 	/* Tx ring. */
    999  1.28.2.2  snj 	if (sc->age_cdata.age_tx_ring_map != NULL)
   1000  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
   1001  1.28.2.2  snj 	if (sc->age_cdata.age_tx_ring_map != NULL &&
   1002  1.28.2.2  snj 	    sc->age_rdata.age_tx_ring != NULL)
   1003  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
   1004  1.28.2.2  snj 		    &sc->age_rdata.age_tx_ring_seg, 1);
   1005  1.28.2.2  snj 	sc->age_rdata.age_tx_ring = NULL;
   1006  1.28.2.2  snj 	sc->age_cdata.age_tx_ring_map = NULL;
   1007  1.28.2.2  snj 
   1008  1.28.2.2  snj 	/* Rx ring. */
   1009  1.28.2.2  snj 	if (sc->age_cdata.age_rx_ring_map != NULL)
   1010  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
   1011  1.28.2.2  snj 	if (sc->age_cdata.age_rx_ring_map != NULL &&
   1012  1.28.2.2  snj 	    sc->age_rdata.age_rx_ring != NULL)
   1013  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
   1014  1.28.2.2  snj 		    &sc->age_rdata.age_rx_ring_seg, 1);
   1015  1.28.2.2  snj 	sc->age_rdata.age_rx_ring = NULL;
   1016  1.28.2.2  snj 	sc->age_cdata.age_rx_ring_map = NULL;
   1017  1.28.2.2  snj 
   1018  1.28.2.2  snj 	/* Rx return ring. */
   1019  1.28.2.2  snj 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1020  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1021  1.28.2.2  snj 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1022  1.28.2.2  snj 	    sc->age_rdata.age_rr_ring != NULL)
   1023  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
   1024  1.28.2.2  snj 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1025  1.28.2.2  snj 	sc->age_rdata.age_rr_ring = NULL;
   1026  1.28.2.2  snj 	sc->age_cdata.age_rr_ring_map = NULL;
   1027  1.28.2.2  snj 
   1028  1.28.2.2  snj 	/* CMB block */
   1029  1.28.2.2  snj 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1030  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1031  1.28.2.2  snj 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1032  1.28.2.2  snj 	    sc->age_rdata.age_cmb_block != NULL)
   1033  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
   1034  1.28.2.2  snj 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1035  1.28.2.2  snj 	sc->age_rdata.age_cmb_block = NULL;
   1036  1.28.2.2  snj 	sc->age_cdata.age_cmb_block_map = NULL;
   1037  1.28.2.2  snj 
   1038  1.28.2.2  snj 	/* SMB block */
   1039  1.28.2.2  snj 	if (sc->age_cdata.age_smb_block_map != NULL)
   1040  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1041  1.28.2.2  snj 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1042  1.28.2.2  snj 	    sc->age_rdata.age_smb_block != NULL)
   1043  1.28.2.2  snj 		bus_dmamem_free(sc->sc_dmat,
   1044  1.28.2.2  snj 		    &sc->age_rdata.age_smb_block_seg, 1);
   1045  1.28.2.2  snj 	sc->age_rdata.age_smb_block = NULL;
   1046  1.28.2.2  snj 	sc->age_cdata.age_smb_block_map = NULL;
   1047  1.28.2.2  snj }
   1048  1.28.2.2  snj 
   1049  1.28.2.2  snj static void
   1050  1.28.2.2  snj age_start(struct ifnet *ifp)
   1051  1.28.2.2  snj {
   1052  1.28.2.2  snj         struct age_softc *sc = ifp->if_softc;
   1053  1.28.2.2  snj         struct mbuf *m_head;
   1054  1.28.2.2  snj 	int enq;
   1055  1.28.2.2  snj 
   1056  1.28.2.2  snj 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1057  1.28.2.2  snj 		return;
   1058  1.28.2.2  snj 
   1059  1.28.2.2  snj 	enq = 0;
   1060  1.28.2.2  snj 	for (;;) {
   1061  1.28.2.2  snj 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1062  1.28.2.2  snj 		if (m_head == NULL)
   1063  1.28.2.2  snj 			break;
   1064  1.28.2.2  snj 
   1065  1.28.2.2  snj 		/*
   1066  1.28.2.2  snj 		 * Pack the data into the transmit ring. If we
   1067  1.28.2.2  snj 		 * don't have room, set the OACTIVE flag and wait
   1068  1.28.2.2  snj 		 * for the NIC to drain the ring.
   1069  1.28.2.2  snj 		 */
   1070  1.28.2.2  snj 		if (age_encap(sc, &m_head)) {
   1071  1.28.2.2  snj 			if (m_head == NULL)
   1072  1.28.2.2  snj 				break;
   1073  1.28.2.2  snj 			ifp->if_flags |= IFF_OACTIVE;
   1074  1.28.2.2  snj 			break;
   1075  1.28.2.2  snj 		}
   1076  1.28.2.2  snj 		enq = 1;
   1077  1.28.2.2  snj 
   1078  1.28.2.2  snj #if NBPFILTER > 0
   1079  1.28.2.2  snj 		/*
   1080  1.28.2.2  snj 		 * If there's a BPF listener, bounce a copy of this frame
   1081  1.28.2.2  snj 		 * to him.
   1082  1.28.2.2  snj 		 */
   1083  1.28.2.2  snj 		if (ifp->if_bpf != NULL)
   1084  1.28.2.2  snj 			bpf_mtap(ifp->if_bpf, m_head);
   1085  1.28.2.2  snj #endif
   1086  1.28.2.2  snj 	}
   1087  1.28.2.2  snj 
   1088  1.28.2.2  snj 	if (enq) {
   1089  1.28.2.2  snj 		/* Update mbox. */
   1090  1.28.2.2  snj 		AGE_COMMIT_MBOX(sc);
   1091  1.28.2.2  snj 		/* Set a timeout in case the chip goes out to lunch. */
   1092  1.28.2.2  snj 		ifp->if_timer = AGE_TX_TIMEOUT;
   1093  1.28.2.2  snj 	}
   1094  1.28.2.2  snj }
   1095  1.28.2.2  snj 
   1096  1.28.2.2  snj static void
   1097  1.28.2.2  snj age_watchdog(struct ifnet *ifp)
   1098  1.28.2.2  snj {
   1099  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
   1100  1.28.2.2  snj 
   1101  1.28.2.2  snj 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1102  1.28.2.2  snj 		printf("%s: watchdog timeout (missed link)\n",
   1103  1.28.2.2  snj 		    device_xname(sc->sc_dev));
   1104  1.28.2.2  snj 		ifp->if_oerrors++;
   1105  1.28.2.2  snj 		age_init(ifp);
   1106  1.28.2.2  snj 		return;
   1107  1.28.2.2  snj 	}
   1108  1.28.2.2  snj 
   1109  1.28.2.2  snj 	if (sc->age_cdata.age_tx_cnt == 0) {
   1110  1.28.2.2  snj 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1111  1.28.2.2  snj 		    "-- recovering\n", device_xname(sc->sc_dev));
   1112  1.28.2.2  snj 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1113  1.28.2.2  snj 			age_start(ifp);
   1114  1.28.2.2  snj 		return;
   1115  1.28.2.2  snj 	}
   1116  1.28.2.2  snj 
   1117  1.28.2.2  snj 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1118  1.28.2.2  snj 	ifp->if_oerrors++;
   1119  1.28.2.2  snj 	age_init(ifp);
   1120  1.28.2.2  snj 
   1121  1.28.2.2  snj 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1122  1.28.2.2  snj 		age_start(ifp);
   1123  1.28.2.2  snj }
   1124  1.28.2.2  snj 
   1125  1.28.2.2  snj static int
   1126  1.28.2.2  snj age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1127  1.28.2.2  snj {
   1128  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
   1129  1.28.2.2  snj 	int s, error;
   1130  1.28.2.2  snj 
   1131  1.28.2.2  snj 	s = splnet();
   1132  1.28.2.2  snj 
   1133  1.28.2.2  snj 	error = ether_ioctl(ifp, cmd, data);
   1134  1.28.2.2  snj 	if (error == ENETRESET) {
   1135  1.28.2.2  snj 		if (ifp->if_flags & IFF_RUNNING)
   1136  1.28.2.2  snj 			age_rxfilter(sc);
   1137  1.28.2.2  snj 		error = 0;
   1138  1.28.2.2  snj 	}
   1139  1.28.2.2  snj 
   1140  1.28.2.2  snj 	splx(s);
   1141  1.28.2.2  snj 	return error;
   1142  1.28.2.2  snj }
   1143  1.28.2.2  snj 
   1144  1.28.2.2  snj static void
   1145  1.28.2.2  snj age_mac_config(struct age_softc *sc)
   1146  1.28.2.2  snj {
   1147  1.28.2.2  snj 	struct mii_data *mii;
   1148  1.28.2.2  snj 	uint32_t reg;
   1149  1.28.2.2  snj 
   1150  1.28.2.2  snj 	mii = &sc->sc_miibus;
   1151  1.28.2.2  snj 
   1152  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1153  1.28.2.2  snj 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1154  1.28.2.2  snj 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1155  1.28.2.2  snj 	reg &= ~MAC_CFG_SPEED_MASK;
   1156  1.28.2.2  snj 
   1157  1.28.2.2  snj 	/* Reprogram MAC with resolved speed/duplex. */
   1158  1.28.2.2  snj 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1159  1.28.2.2  snj 	case IFM_10_T:
   1160  1.28.2.2  snj 	case IFM_100_TX:
   1161  1.28.2.2  snj 		reg |= MAC_CFG_SPEED_10_100;
   1162  1.28.2.2  snj 		break;
   1163  1.28.2.2  snj 	case IFM_1000_T:
   1164  1.28.2.2  snj 		reg |= MAC_CFG_SPEED_1000;
   1165  1.28.2.2  snj 		break;
   1166  1.28.2.2  snj 	}
   1167  1.28.2.2  snj 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1168  1.28.2.2  snj 		reg |= MAC_CFG_FULL_DUPLEX;
   1169  1.28.2.2  snj #ifdef notyet
   1170  1.28.2.2  snj 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1171  1.28.2.2  snj 			reg |= MAC_CFG_TX_FC;
   1172  1.28.2.2  snj 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1173  1.28.2.2  snj 			reg |= MAC_CFG_RX_FC;
   1174  1.28.2.2  snj #endif
   1175  1.28.2.2  snj 	}
   1176  1.28.2.2  snj 
   1177  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1178  1.28.2.2  snj }
   1179  1.28.2.2  snj 
   1180  1.28.2.2  snj static bool
   1181  1.28.2.2  snj age_resume(device_t dv PMF_FN_ARGS)
   1182  1.28.2.2  snj {
   1183  1.28.2.2  snj 	struct age_softc *sc = device_private(dv);
   1184  1.28.2.2  snj 	uint16_t cmd;
   1185  1.28.2.2  snj 
   1186  1.28.2.2  snj 	/*
   1187  1.28.2.2  snj 	 * Clear INTx emulation disable for hardware that
   1188  1.28.2.2  snj 	 * is set in resume event. From Linux.
   1189  1.28.2.2  snj 	 */
   1190  1.28.2.2  snj 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1191  1.28.2.2  snj 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1192  1.28.2.2  snj 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1193  1.28.2.2  snj 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1194  1.28.2.2  snj 		    PCI_COMMAND_STATUS_REG, cmd);
   1195  1.28.2.2  snj 	}
   1196  1.28.2.2  snj 
   1197  1.28.2.2  snj 	return true;
   1198  1.28.2.2  snj }
   1199  1.28.2.2  snj 
   1200  1.28.2.2  snj static int
   1201  1.28.2.2  snj age_encap(struct age_softc *sc, struct mbuf **m_head)
   1202  1.28.2.2  snj {
   1203  1.28.2.2  snj 	struct age_txdesc *txd, *txd_last;
   1204  1.28.2.2  snj 	struct tx_desc *desc;
   1205  1.28.2.2  snj 	struct mbuf *m;
   1206  1.28.2.2  snj 	bus_dmamap_t map;
   1207  1.28.2.2  snj 	uint32_t cflags, poff, vtag;
   1208  1.28.2.2  snj 	int error, i, nsegs, prod;
   1209  1.28.2.2  snj #if NVLAN > 0
   1210  1.28.2.2  snj 	struct m_tag *mtag;
   1211  1.28.2.2  snj #endif
   1212  1.28.2.2  snj 
   1213  1.28.2.2  snj 	m = *m_head;
   1214  1.28.2.2  snj 	cflags = vtag = 0;
   1215  1.28.2.2  snj 	poff = 0;
   1216  1.28.2.2  snj 
   1217  1.28.2.2  snj 	prod = sc->age_cdata.age_tx_prod;
   1218  1.28.2.2  snj 	txd = &sc->age_cdata.age_txdesc[prod];
   1219  1.28.2.2  snj 	txd_last = txd;
   1220  1.28.2.2  snj 	map = txd->tx_dmamap;
   1221  1.28.2.2  snj 
   1222  1.28.2.2  snj 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1223  1.28.2.2  snj 
   1224  1.28.2.2  snj 	if (error == EFBIG) {
   1225  1.28.2.2  snj 		error = 0;
   1226  1.28.2.2  snj 
   1227  1.28.2.2  snj 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1228  1.28.2.2  snj 		if (m == NULL) {
   1229  1.28.2.2  snj 			printf("%s: can't defrag TX mbuf\n",
   1230  1.28.2.2  snj 			    device_xname(sc->sc_dev));
   1231  1.28.2.2  snj 			m_freem(*m_head);
   1232  1.28.2.2  snj 			*m_head = NULL;
   1233  1.28.2.2  snj 			return ENOBUFS;
   1234  1.28.2.2  snj 		}
   1235  1.28.2.2  snj 
   1236  1.28.2.2  snj 		M_COPY_PKTHDR(m, *m_head);
   1237  1.28.2.2  snj 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1238  1.28.2.2  snj 			MCLGET(m, M_DONTWAIT);
   1239  1.28.2.2  snj 			if (!(m->m_flags & M_EXT)) {
   1240  1.28.2.2  snj 				m_freem(*m_head);
   1241  1.28.2.2  snj 				m_freem(m);
   1242  1.28.2.2  snj 				*m_head = NULL;
   1243  1.28.2.2  snj 				return ENOBUFS;
   1244  1.28.2.2  snj 			}
   1245  1.28.2.2  snj 		}
   1246  1.28.2.2  snj 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1247  1.28.2.2  snj 		    mtod(m, void *));
   1248  1.28.2.2  snj 		m_freem(*m_head);
   1249  1.28.2.2  snj 		m->m_len = m->m_pkthdr.len;
   1250  1.28.2.2  snj 		*m_head = m;
   1251  1.28.2.2  snj 
   1252  1.28.2.2  snj 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1253  1.28.2.2  snj 		  	    BUS_DMA_NOWAIT);
   1254  1.28.2.2  snj 
   1255  1.28.2.2  snj 		if (error != 0) {
   1256  1.28.2.2  snj 			printf("%s: could not load defragged TX mbuf\n",
   1257  1.28.2.2  snj 			    device_xname(sc->sc_dev));
   1258  1.28.2.2  snj 			if (!error) {
   1259  1.28.2.2  snj 				bus_dmamap_unload(sc->sc_dmat, map);
   1260  1.28.2.2  snj 				error = EFBIG;
   1261  1.28.2.2  snj 			}
   1262  1.28.2.2  snj 			m_freem(*m_head);
   1263  1.28.2.2  snj 			*m_head = NULL;
   1264  1.28.2.2  snj 			return error;
   1265  1.28.2.2  snj 		}
   1266  1.28.2.2  snj 	} else if (error) {
   1267  1.28.2.2  snj 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1268  1.28.2.2  snj 		return error;
   1269  1.28.2.2  snj 	}
   1270  1.28.2.2  snj 
   1271  1.28.2.2  snj 	nsegs = map->dm_nsegs;
   1272  1.28.2.2  snj 
   1273  1.28.2.2  snj 	if (nsegs == 0) {
   1274  1.28.2.2  snj 		m_freem(*m_head);
   1275  1.28.2.2  snj 		*m_head = NULL;
   1276  1.28.2.2  snj 		return EIO;
   1277  1.28.2.2  snj 	}
   1278  1.28.2.2  snj 
   1279  1.28.2.2  snj 	/* Check descriptor overrun. */
   1280  1.28.2.2  snj 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1281  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, map);
   1282  1.28.2.2  snj 		return ENOBUFS;
   1283  1.28.2.2  snj 	}
   1284  1.28.2.2  snj 
   1285  1.28.2.2  snj 	m = *m_head;
   1286  1.28.2.2  snj 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1287  1.28.2.2  snj 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1288  1.28.2.2  snj 		cflags |= AGE_TD_CSUM;
   1289  1.28.2.2  snj 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1290  1.28.2.2  snj 			cflags |= AGE_TD_TCPCSUM;
   1291  1.28.2.2  snj 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1292  1.28.2.2  snj 			cflags |= AGE_TD_UDPCSUM;
   1293  1.28.2.2  snj 		/* Set checksum start offset. */
   1294  1.28.2.2  snj 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1295  1.28.2.2  snj 	}
   1296  1.28.2.2  snj 
   1297  1.28.2.2  snj #if NVLAN > 0
   1298  1.28.2.2  snj 	/* Configure VLAN hardware tag insertion. */
   1299  1.28.2.2  snj 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1300  1.28.2.2  snj 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1301  1.28.2.2  snj 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1302  1.28.2.2  snj 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1303  1.28.2.2  snj 	}
   1304  1.28.2.2  snj #endif
   1305  1.28.2.2  snj 
   1306  1.28.2.2  snj 	desc = NULL;
   1307  1.28.2.2  snj 	for (i = 0; i < nsegs; i++) {
   1308  1.28.2.2  snj 		desc = &sc->age_rdata.age_tx_ring[prod];
   1309  1.28.2.2  snj 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1310  1.28.2.2  snj 		desc->len =
   1311  1.28.2.2  snj 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1312  1.28.2.2  snj 		desc->flags = htole32(cflags);
   1313  1.28.2.2  snj 		sc->age_cdata.age_tx_cnt++;
   1314  1.28.2.2  snj 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1315  1.28.2.2  snj 	}
   1316  1.28.2.2  snj 
   1317  1.28.2.2  snj 	/* Update producer index. */
   1318  1.28.2.2  snj 	sc->age_cdata.age_tx_prod = prod;
   1319  1.28.2.2  snj 
   1320  1.28.2.2  snj 	/* Set EOP on the last descriptor. */
   1321  1.28.2.2  snj 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1322  1.28.2.2  snj 	desc = &sc->age_rdata.age_tx_ring[prod];
   1323  1.28.2.2  snj 	desc->flags |= htole32(AGE_TD_EOP);
   1324  1.28.2.2  snj 
   1325  1.28.2.2  snj 	/* Swap dmamap of the first and the last. */
   1326  1.28.2.2  snj 	txd = &sc->age_cdata.age_txdesc[prod];
   1327  1.28.2.2  snj 	map = txd_last->tx_dmamap;
   1328  1.28.2.2  snj 	txd_last->tx_dmamap = txd->tx_dmamap;
   1329  1.28.2.2  snj 	txd->tx_dmamap = map;
   1330  1.28.2.2  snj 	txd->tx_m = m;
   1331  1.28.2.2  snj 
   1332  1.28.2.2  snj 	/* Sync descriptors. */
   1333  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1334  1.28.2.2  snj 	    BUS_DMASYNC_PREWRITE);
   1335  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1336  1.28.2.2  snj 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1337  1.28.2.2  snj 
   1338  1.28.2.2  snj 	return 0;
   1339  1.28.2.2  snj }
   1340  1.28.2.2  snj 
   1341  1.28.2.2  snj static void
   1342  1.28.2.2  snj age_txintr(struct age_softc *sc, int tpd_cons)
   1343  1.28.2.2  snj {
   1344  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1345  1.28.2.2  snj 	struct age_txdesc *txd;
   1346  1.28.2.2  snj 	int cons, prog;
   1347  1.28.2.2  snj 
   1348  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1349  1.28.2.2  snj 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1350  1.28.2.2  snj 
   1351  1.28.2.2  snj 	/*
   1352  1.28.2.2  snj 	 * Go through our Tx list and free mbufs for those
   1353  1.28.2.2  snj 	 * frames which have been transmitted.
   1354  1.28.2.2  snj 	 */
   1355  1.28.2.2  snj 	cons = sc->age_cdata.age_tx_cons;
   1356  1.28.2.2  snj 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1357  1.28.2.2  snj 		if (sc->age_cdata.age_tx_cnt <= 0)
   1358  1.28.2.2  snj 			break;
   1359  1.28.2.2  snj 		prog++;
   1360  1.28.2.2  snj 		ifp->if_flags &= ~IFF_OACTIVE;
   1361  1.28.2.2  snj 		sc->age_cdata.age_tx_cnt--;
   1362  1.28.2.2  snj 		txd = &sc->age_cdata.age_txdesc[cons];
   1363  1.28.2.2  snj 		/*
   1364  1.28.2.2  snj 		 * Clear Tx descriptors, it's not required but would
   1365  1.28.2.2  snj 		 * help debugging in case of Tx issues.
   1366  1.28.2.2  snj 		 */
   1367  1.28.2.2  snj 		txd->tx_desc->addr = 0;
   1368  1.28.2.2  snj 		txd->tx_desc->len = 0;
   1369  1.28.2.2  snj 		txd->tx_desc->flags = 0;
   1370  1.28.2.2  snj 
   1371  1.28.2.2  snj 		if (txd->tx_m == NULL)
   1372  1.28.2.2  snj 			continue;
   1373  1.28.2.2  snj 		/* Reclaim transmitted mbufs. */
   1374  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1375  1.28.2.2  snj 		m_freem(txd->tx_m);
   1376  1.28.2.2  snj 		txd->tx_m = NULL;
   1377  1.28.2.2  snj 	}
   1378  1.28.2.2  snj 
   1379  1.28.2.2  snj 	if (prog > 0) {
   1380  1.28.2.2  snj 		sc->age_cdata.age_tx_cons = cons;
   1381  1.28.2.2  snj 
   1382  1.28.2.2  snj 		/*
   1383  1.28.2.2  snj 		 * Unarm watchdog timer only when there are no pending
   1384  1.28.2.2  snj 		 * Tx descriptors in queue.
   1385  1.28.2.2  snj 		 */
   1386  1.28.2.2  snj 		if (sc->age_cdata.age_tx_cnt == 0)
   1387  1.28.2.2  snj 			ifp->if_timer = 0;
   1388  1.28.2.2  snj 
   1389  1.28.2.2  snj 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1390  1.28.2.2  snj 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1391  1.28.2.2  snj 		    BUS_DMASYNC_PREWRITE);
   1392  1.28.2.2  snj 	}
   1393  1.28.2.2  snj }
   1394  1.28.2.2  snj 
   1395  1.28.2.2  snj /* Receive a frame. */
   1396  1.28.2.2  snj static void
   1397  1.28.2.2  snj age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1398  1.28.2.2  snj {
   1399  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1400  1.28.2.2  snj 	struct age_rxdesc *rxd;
   1401  1.28.2.2  snj 	struct rx_desc *desc;
   1402  1.28.2.2  snj 	struct mbuf *mp, *m;
   1403  1.28.2.2  snj 	uint32_t status, index;
   1404  1.28.2.2  snj 	int count, nsegs, pktlen;
   1405  1.28.2.2  snj 	int rx_cons;
   1406  1.28.2.2  snj 
   1407  1.28.2.2  snj 	status = le32toh(rxrd->flags);
   1408  1.28.2.2  snj 	index = le32toh(rxrd->index);
   1409  1.28.2.2  snj 	rx_cons = AGE_RX_CONS(index);
   1410  1.28.2.2  snj 	nsegs = AGE_RX_NSEGS(index);
   1411  1.28.2.2  snj 
   1412  1.28.2.2  snj 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1413  1.28.2.2  snj 	if ((status & AGE_RRD_ERROR) != 0 &&
   1414  1.28.2.2  snj 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1415  1.28.2.2  snj 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1416  1.28.2.2  snj 		/*
   1417  1.28.2.2  snj 		 * We want to pass the following frames to upper
   1418  1.28.2.2  snj 		 * layer regardless of error status of Rx return
   1419  1.28.2.2  snj 		 * ring.
   1420  1.28.2.2  snj 		 *
   1421  1.28.2.2  snj 		 *  o IP/TCP/UDP checksum is bad.
   1422  1.28.2.2  snj 		 *  o frame length and protocol specific length
   1423  1.28.2.2  snj 		 *     does not match.
   1424  1.28.2.2  snj 		 */
   1425  1.28.2.2  snj 		sc->age_cdata.age_rx_cons += nsegs;
   1426  1.28.2.2  snj 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1427  1.28.2.2  snj 		return;
   1428  1.28.2.2  snj 	}
   1429  1.28.2.2  snj 
   1430  1.28.2.2  snj 	pktlen = 0;
   1431  1.28.2.2  snj 	for (count = 0; count < nsegs; count++,
   1432  1.28.2.2  snj 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1433  1.28.2.2  snj 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1434  1.28.2.2  snj 		mp = rxd->rx_m;
   1435  1.28.2.2  snj 		desc = rxd->rx_desc;
   1436  1.28.2.2  snj 		/* Add a new receive buffer to the ring. */
   1437  1.28.2.2  snj 		if (age_newbuf(sc, rxd, 0) != 0) {
   1438  1.28.2.2  snj 			ifp->if_iqdrops++;
   1439  1.28.2.2  snj 			/* Reuse Rx buffers. */
   1440  1.28.2.2  snj 			if (sc->age_cdata.age_rxhead != NULL) {
   1441  1.28.2.2  snj 				m_freem(sc->age_cdata.age_rxhead);
   1442  1.28.2.2  snj 				AGE_RXCHAIN_RESET(sc);
   1443  1.28.2.2  snj 			}
   1444  1.28.2.2  snj 			break;
   1445  1.28.2.2  snj 		}
   1446  1.28.2.2  snj 
   1447  1.28.2.2  snj 		/* The length of the first mbuf is computed last. */
   1448  1.28.2.2  snj 		if (count != 0) {
   1449  1.28.2.2  snj 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1450  1.28.2.2  snj 			pktlen += mp->m_len;
   1451  1.28.2.2  snj 		}
   1452  1.28.2.2  snj 
   1453  1.28.2.2  snj 		/* Chain received mbufs. */
   1454  1.28.2.2  snj 		if (sc->age_cdata.age_rxhead == NULL) {
   1455  1.28.2.2  snj 			sc->age_cdata.age_rxhead = mp;
   1456  1.28.2.2  snj 			sc->age_cdata.age_rxtail = mp;
   1457  1.28.2.2  snj 		} else {
   1458  1.28.2.2  snj 			mp->m_flags &= ~M_PKTHDR;
   1459  1.28.2.2  snj 			sc->age_cdata.age_rxprev_tail =
   1460  1.28.2.2  snj 			    sc->age_cdata.age_rxtail;
   1461  1.28.2.2  snj 			sc->age_cdata.age_rxtail->m_next = mp;
   1462  1.28.2.2  snj 			sc->age_cdata.age_rxtail = mp;
   1463  1.28.2.2  snj 		}
   1464  1.28.2.2  snj 
   1465  1.28.2.2  snj 		if (count == nsegs - 1) {
   1466  1.28.2.2  snj 			/*
   1467  1.28.2.2  snj 			 * It seems that L1 controller has no way
   1468  1.28.2.2  snj 			 * to tell hardware to strip CRC bytes.
   1469  1.28.2.2  snj 			 */
   1470  1.28.2.2  snj 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1471  1.28.2.2  snj 			if (nsegs > 1) {
   1472  1.28.2.2  snj 				/* Remove the CRC bytes in chained mbufs. */
   1473  1.28.2.2  snj 				pktlen -= ETHER_CRC_LEN;
   1474  1.28.2.2  snj 				if (mp->m_len <= ETHER_CRC_LEN) {
   1475  1.28.2.2  snj 					sc->age_cdata.age_rxtail =
   1476  1.28.2.2  snj 					    sc->age_cdata.age_rxprev_tail;
   1477  1.28.2.2  snj 					sc->age_cdata.age_rxtail->m_len -=
   1478  1.28.2.2  snj 					    (ETHER_CRC_LEN - mp->m_len);
   1479  1.28.2.2  snj 					sc->age_cdata.age_rxtail->m_next = NULL;
   1480  1.28.2.2  snj 					m_freem(mp);
   1481  1.28.2.2  snj 				} else {
   1482  1.28.2.2  snj 					mp->m_len -= ETHER_CRC_LEN;
   1483  1.28.2.2  snj 				}
   1484  1.28.2.2  snj 			}
   1485  1.28.2.2  snj 
   1486  1.28.2.2  snj 			m = sc->age_cdata.age_rxhead;
   1487  1.28.2.2  snj 			m->m_flags |= M_PKTHDR;
   1488  1.28.2.2  snj 			m->m_pkthdr.rcvif = ifp;
   1489  1.28.2.2  snj 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1490  1.28.2.2  snj 			/* Set the first mbuf length. */
   1491  1.28.2.2  snj 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1492  1.28.2.2  snj 
   1493  1.28.2.2  snj 			/*
   1494  1.28.2.2  snj 			 * Set checksum information.
   1495  1.28.2.2  snj 			 * It seems that L1 controller can compute partial
   1496  1.28.2.2  snj 			 * checksum. The partial checksum value can be used
   1497  1.28.2.2  snj 			 * to accelerate checksum computation for fragmented
   1498  1.28.2.2  snj 			 * TCP/UDP packets. Upper network stack already
   1499  1.28.2.2  snj 			 * takes advantage of the partial checksum value in
   1500  1.28.2.2  snj 			 * IP reassembly stage. But I'm not sure the
   1501  1.28.2.2  snj 			 * correctness of the partial hardware checksum
   1502  1.28.2.2  snj 			 * assistance due to lack of data sheet. If it is
   1503  1.28.2.2  snj 			 * proven to work on L1 I'll enable it.
   1504  1.28.2.2  snj 			 */
   1505  1.28.2.2  snj 			if (status & AGE_RRD_IPV4) {
   1506  1.28.2.2  snj 				if (status & AGE_RRD_IPCSUM_NOK)
   1507  1.28.2.2  snj 					m->m_pkthdr.csum_flags |=
   1508  1.28.2.2  snj 					    M_CSUM_IPv4_BAD;
   1509  1.28.2.2  snj 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1510  1.28.2.2  snj 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1511  1.28.2.2  snj 					m->m_pkthdr.csum_flags |=
   1512  1.28.2.2  snj 					    M_CSUM_TCP_UDP_BAD;
   1513  1.28.2.2  snj 				}
   1514  1.28.2.2  snj 				/*
   1515  1.28.2.2  snj 				 * Don't mark bad checksum for TCP/UDP frames
   1516  1.28.2.2  snj 				 * as fragmented frames may always have set
   1517  1.28.2.2  snj 				 * bad checksummed bit of descriptor status.
   1518  1.28.2.2  snj 				 */
   1519  1.28.2.2  snj 			}
   1520  1.28.2.2  snj #if NVLAN > 0
   1521  1.28.2.2  snj 			/* Check for VLAN tagged frames. */
   1522  1.28.2.2  snj 			if (status & AGE_RRD_VLAN) {
   1523  1.28.2.2  snj 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1524  1.28.2.2  snj 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1525  1.28.2.2  snj 					continue);
   1526  1.28.2.2  snj 			}
   1527  1.28.2.2  snj #endif
   1528  1.28.2.2  snj 
   1529  1.28.2.2  snj #if NBPFILTER > 0
   1530  1.28.2.2  snj 			if (ifp->if_bpf)
   1531  1.28.2.2  snj 				bpf_mtap(ifp->if_bpf, m);
   1532  1.28.2.2  snj #endif
   1533  1.28.2.2  snj 			/* Pass it on. */
   1534  1.28.2.2  snj 			ether_input(ifp, m);
   1535  1.28.2.2  snj 
   1536  1.28.2.2  snj 			/* Reset mbuf chains. */
   1537  1.28.2.2  snj 			AGE_RXCHAIN_RESET(sc);
   1538  1.28.2.2  snj 		}
   1539  1.28.2.2  snj 	}
   1540  1.28.2.2  snj 
   1541  1.28.2.2  snj 	if (count != nsegs) {
   1542  1.28.2.2  snj 		sc->age_cdata.age_rx_cons += nsegs;
   1543  1.28.2.2  snj 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1544  1.28.2.2  snj 	} else
   1545  1.28.2.2  snj 		sc->age_cdata.age_rx_cons = rx_cons;
   1546  1.28.2.2  snj }
   1547  1.28.2.2  snj 
   1548  1.28.2.2  snj static void
   1549  1.28.2.2  snj age_rxintr(struct age_softc *sc, int rr_prod)
   1550  1.28.2.2  snj {
   1551  1.28.2.2  snj 	struct rx_rdesc *rxrd;
   1552  1.28.2.2  snj 	int rr_cons, nsegs, pktlen, prog;
   1553  1.28.2.2  snj 
   1554  1.28.2.2  snj 	rr_cons = sc->age_cdata.age_rr_cons;
   1555  1.28.2.2  snj 	if (rr_cons == rr_prod)
   1556  1.28.2.2  snj 		return;
   1557  1.28.2.2  snj 
   1558  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1559  1.28.2.2  snj 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1560  1.28.2.2  snj 	    BUS_DMASYNC_POSTREAD);
   1561  1.28.2.2  snj 
   1562  1.28.2.2  snj 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1563  1.28.2.2  snj 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1564  1.28.2.2  snj 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1565  1.28.2.2  snj 		if (nsegs == 0)
   1566  1.28.2.2  snj 			break;
   1567  1.28.2.2  snj 		/*
   1568  1.28.2.2  snj 		 * Check number of segments against received bytes
   1569  1.28.2.2  snj 		 * Non-matching value would indicate that hardware
   1570  1.28.2.2  snj 		 * is still trying to update Rx return descriptors.
   1571  1.28.2.2  snj 		 * I'm not sure whether this check is really needed.
   1572  1.28.2.2  snj 		 */
   1573  1.28.2.2  snj 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1574  1.28.2.2  snj 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1575  1.28.2.2  snj 		    (MCLBYTES - ETHER_ALIGN)))
   1576  1.28.2.2  snj 			break;
   1577  1.28.2.2  snj 
   1578  1.28.2.2  snj 		/* Received a frame. */
   1579  1.28.2.2  snj 		age_rxeof(sc, rxrd);
   1580  1.28.2.2  snj 
   1581  1.28.2.2  snj 		/* Clear return ring. */
   1582  1.28.2.2  snj 		rxrd->index = 0;
   1583  1.28.2.2  snj 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1584  1.28.2.2  snj 	}
   1585  1.28.2.2  snj 
   1586  1.28.2.2  snj 	if (prog > 0) {
   1587  1.28.2.2  snj 		/* Update the consumer index. */
   1588  1.28.2.2  snj 		sc->age_cdata.age_rr_cons = rr_cons;
   1589  1.28.2.2  snj 
   1590  1.28.2.2  snj 		/* Sync descriptors. */
   1591  1.28.2.2  snj 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1592  1.28.2.2  snj 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1593  1.28.2.2  snj 		    BUS_DMASYNC_PREWRITE);
   1594  1.28.2.2  snj 
   1595  1.28.2.2  snj 		/* Notify hardware availability of new Rx buffers. */
   1596  1.28.2.2  snj 		AGE_COMMIT_MBOX(sc);
   1597  1.28.2.2  snj 	}
   1598  1.28.2.2  snj }
   1599  1.28.2.2  snj 
   1600  1.28.2.2  snj static void
   1601  1.28.2.2  snj age_tick(void *xsc)
   1602  1.28.2.2  snj {
   1603  1.28.2.2  snj 	struct age_softc *sc = xsc;
   1604  1.28.2.2  snj 	struct mii_data *mii = &sc->sc_miibus;
   1605  1.28.2.2  snj 	int s;
   1606  1.28.2.2  snj 
   1607  1.28.2.2  snj 	s = splnet();
   1608  1.28.2.2  snj 	mii_tick(mii);
   1609  1.28.2.2  snj 	splx(s);
   1610  1.28.2.2  snj 
   1611  1.28.2.2  snj 	callout_schedule(&sc->sc_tick_ch, hz);
   1612  1.28.2.2  snj }
   1613  1.28.2.2  snj 
   1614  1.28.2.2  snj static void
   1615  1.28.2.2  snj age_reset(struct age_softc *sc)
   1616  1.28.2.2  snj {
   1617  1.28.2.2  snj 	uint32_t reg;
   1618  1.28.2.2  snj 	int i;
   1619  1.28.2.2  snj 
   1620  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1621  1.28.2.2  snj 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1622  1.28.2.2  snj 		DELAY(1);
   1623  1.28.2.2  snj 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1624  1.28.2.2  snj 			break;
   1625  1.28.2.2  snj 	}
   1626  1.28.2.2  snj 	if (i == 0)
   1627  1.28.2.2  snj 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1628  1.28.2.2  snj 
   1629  1.28.2.2  snj 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1630  1.28.2.2  snj 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1631  1.28.2.2  snj 			break;
   1632  1.28.2.2  snj 		DELAY(10);
   1633  1.28.2.2  snj 	}
   1634  1.28.2.2  snj 
   1635  1.28.2.2  snj 	if (i == 0)
   1636  1.28.2.2  snj 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1637  1.28.2.2  snj 		    reg);
   1638  1.28.2.2  snj 
   1639  1.28.2.2  snj 	/* Initialize PCIe module. From Linux. */
   1640  1.28.2.2  snj 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1641  1.28.2.2  snj 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1642  1.28.2.2  snj }
   1643  1.28.2.2  snj 
   1644  1.28.2.2  snj static int
   1645  1.28.2.2  snj age_init(struct ifnet *ifp)
   1646  1.28.2.2  snj {
   1647  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
   1648  1.28.2.2  snj 	struct mii_data *mii;
   1649  1.28.2.2  snj 	uint8_t eaddr[ETHER_ADDR_LEN];
   1650  1.28.2.2  snj 	bus_addr_t paddr;
   1651  1.28.2.2  snj 	uint32_t reg, fsize;
   1652  1.28.2.2  snj 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1653  1.28.2.2  snj 	int error;
   1654  1.28.2.2  snj 
   1655  1.28.2.2  snj 	/*
   1656  1.28.2.2  snj 	 * Cancel any pending I/O.
   1657  1.28.2.2  snj 	 */
   1658  1.28.2.2  snj 	age_stop(ifp, 0);
   1659  1.28.2.2  snj 
   1660  1.28.2.2  snj 	/*
   1661  1.28.2.2  snj 	 * Reset the chip to a known state.
   1662  1.28.2.2  snj 	 */
   1663  1.28.2.2  snj 	age_reset(sc);
   1664  1.28.2.2  snj 
   1665  1.28.2.2  snj 	/* Initialize descriptors. */
   1666  1.28.2.2  snj 	error = age_init_rx_ring(sc);
   1667  1.28.2.2  snj         if (error != 0) {
   1668  1.28.2.2  snj 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1669  1.28.2.2  snj 		age_stop(ifp, 0);
   1670  1.28.2.2  snj 		return error;
   1671  1.28.2.2  snj         }
   1672  1.28.2.2  snj 	age_init_rr_ring(sc);
   1673  1.28.2.2  snj 	age_init_tx_ring(sc);
   1674  1.28.2.2  snj 	age_init_cmb_block(sc);
   1675  1.28.2.2  snj 	age_init_smb_block(sc);
   1676  1.28.2.2  snj 
   1677  1.28.2.2  snj 	/* Reprogram the station address. */
   1678  1.28.2.2  snj 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1679  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_PAR0,
   1680  1.28.2.2  snj 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1681  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1682  1.28.2.2  snj 
   1683  1.28.2.2  snj 	/* Set descriptor base addresses. */
   1684  1.28.2.2  snj 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1685  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1686  1.28.2.2  snj 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1687  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1688  1.28.2.2  snj 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1689  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1690  1.28.2.2  snj 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1691  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1692  1.28.2.2  snj 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1693  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1694  1.28.2.2  snj 	paddr = sc->age_rdata.age_smb_block_paddr;
   1695  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1696  1.28.2.2  snj 
   1697  1.28.2.2  snj 	/* Set Rx/Rx return descriptor counter. */
   1698  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1699  1.28.2.2  snj 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1700  1.28.2.2  snj 	    DESC_RRD_CNT_MASK) |
   1701  1.28.2.2  snj 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1702  1.28.2.2  snj 
   1703  1.28.2.2  snj 	/* Set Tx descriptor counter. */
   1704  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1705  1.28.2.2  snj 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1706  1.28.2.2  snj 
   1707  1.28.2.2  snj 	/* Tell hardware that we're ready to load descriptors. */
   1708  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1709  1.28.2.2  snj 
   1710  1.28.2.2  snj         /*
   1711  1.28.2.2  snj 	 * Initialize mailbox register.
   1712  1.28.2.2  snj 	 * Updated producer/consumer index information is exchanged
   1713  1.28.2.2  snj 	 * through this mailbox register. However Tx producer and
   1714  1.28.2.2  snj 	 * Rx return consumer/Rx producer are all shared such that
   1715  1.28.2.2  snj 	 * it's hard to separate code path between Tx and Rx without
   1716  1.28.2.2  snj 	 * locking. If L1 hardware have a separate mail box register
   1717  1.28.2.2  snj 	 * for Tx and Rx consumer/producer management we could have
   1718  1.28.2.2  snj 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1719  1.28.2.2  snj 	 * been run without any locking.
   1720  1.28.2.2  snj 	*/
   1721  1.28.2.2  snj 	AGE_COMMIT_MBOX(sc);
   1722  1.28.2.2  snj 
   1723  1.28.2.2  snj 	/* Configure IPG/IFG parameters. */
   1724  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1725  1.28.2.2  snj 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1726  1.28.2.2  snj 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1727  1.28.2.2  snj 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1728  1.28.2.2  snj 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1729  1.28.2.2  snj 
   1730  1.28.2.2  snj 	/* Set parameters for half-duplex media. */
   1731  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1732  1.28.2.2  snj 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1733  1.28.2.2  snj 	    HDPX_CFG_LCOL_MASK) |
   1734  1.28.2.2  snj 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1735  1.28.2.2  snj 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1736  1.28.2.2  snj 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1737  1.28.2.2  snj 	    HDPX_CFG_ABEBT_MASK) |
   1738  1.28.2.2  snj 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1739  1.28.2.2  snj 	     HDPX_CFG_JAMIPG_MASK));
   1740  1.28.2.2  snj 
   1741  1.28.2.2  snj 	/* Configure interrupt moderation timer. */
   1742  1.28.2.2  snj 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1743  1.28.2.2  snj 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1744  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1745  1.28.2.2  snj 	reg &= ~MASTER_MTIMER_ENB;
   1746  1.28.2.2  snj 	if (AGE_USECS(sc->age_int_mod) == 0)
   1747  1.28.2.2  snj 		reg &= ~MASTER_ITIMER_ENB;
   1748  1.28.2.2  snj 	else
   1749  1.28.2.2  snj 		reg |= MASTER_ITIMER_ENB;
   1750  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1751  1.28.2.2  snj 	if (agedebug)
   1752  1.28.2.2  snj 		printf("%s: interrupt moderation is %d us.\n",
   1753  1.28.2.2  snj 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1754  1.28.2.2  snj 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1755  1.28.2.2  snj 
   1756  1.28.2.2  snj 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1757  1.28.2.2  snj 	if (ifp->if_mtu < ETHERMTU)
   1758  1.28.2.2  snj 		sc->age_max_frame_size = ETHERMTU;
   1759  1.28.2.2  snj 	else
   1760  1.28.2.2  snj 		sc->age_max_frame_size = ifp->if_mtu;
   1761  1.28.2.2  snj 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1762  1.28.2.2  snj 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1763  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1764  1.28.2.2  snj 
   1765  1.28.2.2  snj 	/* Configure jumbo frame. */
   1766  1.28.2.2  snj 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1767  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1768  1.28.2.2  snj 	    (((fsize / sizeof(uint64_t)) <<
   1769  1.28.2.2  snj 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1770  1.28.2.2  snj 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1771  1.28.2.2  snj 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1772  1.28.2.2  snj 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1773  1.28.2.2  snj 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1774  1.28.2.2  snj 
   1775  1.28.2.2  snj 	/* Configure flow-control parameters. From Linux. */
   1776  1.28.2.2  snj 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1777  1.28.2.2  snj 		/*
   1778  1.28.2.2  snj 		 * Magic workaround for old-L1.
   1779  1.28.2.2  snj 		 * Don't know which hw revision requires this magic.
   1780  1.28.2.2  snj 		 */
   1781  1.28.2.2  snj 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1782  1.28.2.2  snj 		/*
   1783  1.28.2.2  snj 		 * Another magic workaround for flow-control mode
   1784  1.28.2.2  snj 		 * change. From Linux.
   1785  1.28.2.2  snj 		 */
   1786  1.28.2.2  snj 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1787  1.28.2.2  snj 	}
   1788  1.28.2.2  snj 	/*
   1789  1.28.2.2  snj 	 * TODO
   1790  1.28.2.2  snj 	 *  Should understand pause parameter relationships between FIFO
   1791  1.28.2.2  snj 	 *  size and number of Rx descriptors and Rx return descriptors.
   1792  1.28.2.2  snj 	 *
   1793  1.28.2.2  snj 	 *  Magic parameters came from Linux.
   1794  1.28.2.2  snj 	 */
   1795  1.28.2.2  snj 	switch (sc->age_chip_rev) {
   1796  1.28.2.2  snj 	case 0x8001:
   1797  1.28.2.2  snj 	case 0x9001:
   1798  1.28.2.2  snj 	case 0x9002:
   1799  1.28.2.2  snj 	case 0x9003:
   1800  1.28.2.2  snj 		rxf_hi = AGE_RX_RING_CNT / 16;
   1801  1.28.2.2  snj 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1802  1.28.2.2  snj 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1803  1.28.2.2  snj 		rrd_lo = AGE_RR_RING_CNT / 16;
   1804  1.28.2.2  snj 		break;
   1805  1.28.2.2  snj 	default:
   1806  1.28.2.2  snj 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1807  1.28.2.2  snj 		rxf_lo = reg / 16;
   1808  1.28.2.2  snj 		if (rxf_lo < 192)
   1809  1.28.2.2  snj 			rxf_lo = 192;
   1810  1.28.2.2  snj 		rxf_hi = (reg * 7) / 8;
   1811  1.28.2.2  snj 		if (rxf_hi < rxf_lo)
   1812  1.28.2.2  snj 			rxf_hi = rxf_lo + 16;
   1813  1.28.2.2  snj 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1814  1.28.2.2  snj 		rrd_lo = reg / 8;
   1815  1.28.2.2  snj 		rrd_hi = (reg * 7) / 8;
   1816  1.28.2.2  snj 		if (rrd_lo < 2)
   1817  1.28.2.2  snj 			rrd_lo = 2;
   1818  1.28.2.2  snj 		if (rrd_hi < rrd_lo)
   1819  1.28.2.2  snj 			rrd_hi = rrd_lo + 3;
   1820  1.28.2.2  snj 		break;
   1821  1.28.2.2  snj 	}
   1822  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1823  1.28.2.2  snj 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1824  1.28.2.2  snj 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1825  1.28.2.2  snj 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1826  1.28.2.2  snj 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1827  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1828  1.28.2.2  snj 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1829  1.28.2.2  snj 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1830  1.28.2.2  snj 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1831  1.28.2.2  snj 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1832  1.28.2.2  snj 
   1833  1.28.2.2  snj 	/* Configure RxQ. */
   1834  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1835  1.28.2.2  snj 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1836  1.28.2.2  snj 	    RXQ_CFG_RD_BURST_MASK) |
   1837  1.28.2.2  snj 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1838  1.28.2.2  snj 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1839  1.28.2.2  snj 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1840  1.28.2.2  snj 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1841  1.28.2.2  snj 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1842  1.28.2.2  snj 
   1843  1.28.2.2  snj 	/* Configure TxQ. */
   1844  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1845  1.28.2.2  snj 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1846  1.28.2.2  snj 	    TXQ_CFG_TPD_BURST_MASK) |
   1847  1.28.2.2  snj 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1848  1.28.2.2  snj 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1849  1.28.2.2  snj 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1850  1.28.2.2  snj 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1851  1.28.2.2  snj 	    TXQ_CFG_ENB);
   1852  1.28.2.2  snj 
   1853  1.28.2.2  snj 	/* Configure DMA parameters. */
   1854  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1855  1.28.2.2  snj 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1856  1.28.2.2  snj 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1857  1.28.2.2  snj 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1858  1.28.2.2  snj 
   1859  1.28.2.2  snj 	/* Configure CMB DMA write threshold. */
   1860  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1861  1.28.2.2  snj 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1862  1.28.2.2  snj 	    CMB_WR_THRESH_RRD_MASK) |
   1863  1.28.2.2  snj 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1864  1.28.2.2  snj 	    CMB_WR_THRESH_TPD_MASK));
   1865  1.28.2.2  snj 
   1866  1.28.2.2  snj 	/* Set CMB/SMB timer and enable them. */
   1867  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1868  1.28.2.2  snj 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1869  1.28.2.2  snj 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1870  1.28.2.2  snj 
   1871  1.28.2.2  snj 	/* Request SMB updates for every seconds. */
   1872  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1873  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1874  1.28.2.2  snj 
   1875  1.28.2.2  snj 	/*
   1876  1.28.2.2  snj 	 * Disable all WOL bits as WOL can interfere normal Rx
   1877  1.28.2.2  snj 	 * operation.
   1878  1.28.2.2  snj 	 */
   1879  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1880  1.28.2.2  snj 
   1881  1.28.2.2  snj         /*
   1882  1.28.2.2  snj 	 * Configure Tx/Rx MACs.
   1883  1.28.2.2  snj 	 *  - Auto-padding for short frames.
   1884  1.28.2.2  snj 	 *  - Enable CRC generation.
   1885  1.28.2.2  snj 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1886  1.28.2.2  snj 	 *  of MAC is followed after link establishment.
   1887  1.28.2.2  snj 	 */
   1888  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1889  1.28.2.2  snj 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1890  1.28.2.2  snj 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1891  1.28.2.2  snj 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1892  1.28.2.2  snj 	    MAC_CFG_PREAMBLE_MASK));
   1893  1.28.2.2  snj 
   1894  1.28.2.2  snj 	/* Set up the receive filter. */
   1895  1.28.2.2  snj 	age_rxfilter(sc);
   1896  1.28.2.2  snj 	age_rxvlan(sc);
   1897  1.28.2.2  snj 
   1898  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1899  1.28.2.2  snj 	reg |= MAC_CFG_RXCSUM_ENB;
   1900  1.28.2.2  snj 
   1901  1.28.2.2  snj 	/* Ack all pending interrupts and clear it. */
   1902  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1903  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1904  1.28.2.2  snj 
   1905  1.28.2.2  snj 	/* Finally enable Tx/Rx MAC. */
   1906  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1907  1.28.2.2  snj 
   1908  1.28.2.2  snj 	sc->age_flags &= ~AGE_FLAG_LINK;
   1909  1.28.2.2  snj 
   1910  1.28.2.2  snj 	/* Switch to the current media. */
   1911  1.28.2.2  snj 	mii = &sc->sc_miibus;
   1912  1.28.2.2  snj 	mii_mediachg(mii);
   1913  1.28.2.2  snj 
   1914  1.28.2.2  snj 	callout_schedule(&sc->sc_tick_ch, hz);
   1915  1.28.2.2  snj 
   1916  1.28.2.2  snj 	ifp->if_flags |= IFF_RUNNING;
   1917  1.28.2.2  snj 	ifp->if_flags &= ~IFF_OACTIVE;
   1918  1.28.2.2  snj 
   1919  1.28.2.2  snj 	return 0;
   1920  1.28.2.2  snj }
   1921  1.28.2.2  snj 
   1922  1.28.2.2  snj static void
   1923  1.28.2.2  snj age_stop(struct ifnet *ifp, int disable)
   1924  1.28.2.2  snj {
   1925  1.28.2.2  snj 	struct age_softc *sc = ifp->if_softc;
   1926  1.28.2.2  snj 	struct age_txdesc *txd;
   1927  1.28.2.2  snj 	struct age_rxdesc *rxd;
   1928  1.28.2.2  snj 	uint32_t reg;
   1929  1.28.2.2  snj 	int i;
   1930  1.28.2.2  snj 
   1931  1.28.2.2  snj 	callout_stop(&sc->sc_tick_ch);
   1932  1.28.2.2  snj 
   1933  1.28.2.2  snj 	/*
   1934  1.28.2.2  snj 	 * Mark the interface down and cancel the watchdog timer.
   1935  1.28.2.2  snj 	 */
   1936  1.28.2.2  snj 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1937  1.28.2.2  snj 	ifp->if_timer = 0;
   1938  1.28.2.2  snj 
   1939  1.28.2.2  snj 	sc->age_flags &= ~AGE_FLAG_LINK;
   1940  1.28.2.2  snj 
   1941  1.28.2.2  snj 	mii_down(&sc->sc_miibus);
   1942  1.28.2.2  snj 
   1943  1.28.2.2  snj 	/*
   1944  1.28.2.2  snj 	 * Disable interrupts.
   1945  1.28.2.2  snj 	 */
   1946  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1947  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1948  1.28.2.2  snj 
   1949  1.28.2.2  snj 	/* Stop CMB/SMB updates. */
   1950  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1951  1.28.2.2  snj 
   1952  1.28.2.2  snj 	/* Stop Rx/Tx MAC. */
   1953  1.28.2.2  snj 	age_stop_rxmac(sc);
   1954  1.28.2.2  snj 	age_stop_txmac(sc);
   1955  1.28.2.2  snj 
   1956  1.28.2.2  snj 	/* Stop DMA. */
   1957  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1958  1.28.2.2  snj 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1959  1.28.2.2  snj 
   1960  1.28.2.2  snj 	/* Stop TxQ/RxQ. */
   1961  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1962  1.28.2.2  snj 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1963  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1964  1.28.2.2  snj 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1965  1.28.2.2  snj 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1966  1.28.2.2  snj 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1967  1.28.2.2  snj 			break;
   1968  1.28.2.2  snj 		DELAY(10);
   1969  1.28.2.2  snj 	}
   1970  1.28.2.2  snj 	if (i == 0)
   1971  1.28.2.2  snj 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1972  1.28.2.2  snj 		    device_xname(sc->sc_dev), reg);
   1973  1.28.2.2  snj 
   1974  1.28.2.2  snj 	/* Reclaim Rx buffers that have been processed. */
   1975  1.28.2.2  snj 	if (sc->age_cdata.age_rxhead != NULL)
   1976  1.28.2.2  snj 		m_freem(sc->age_cdata.age_rxhead);
   1977  1.28.2.2  snj 	AGE_RXCHAIN_RESET(sc);
   1978  1.28.2.2  snj 
   1979  1.28.2.2  snj 	/*
   1980  1.28.2.2  snj 	 * Free RX and TX mbufs still in the queues.
   1981  1.28.2.2  snj 	 */
   1982  1.28.2.2  snj 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1983  1.28.2.2  snj 		rxd = &sc->age_cdata.age_rxdesc[i];
   1984  1.28.2.2  snj 		if (rxd->rx_m != NULL) {
   1985  1.28.2.2  snj 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1986  1.28.2.2  snj 			m_freem(rxd->rx_m);
   1987  1.28.2.2  snj 			rxd->rx_m = NULL;
   1988  1.28.2.2  snj 		}
   1989  1.28.2.2  snj 	}
   1990  1.28.2.2  snj 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1991  1.28.2.2  snj 		txd = &sc->age_cdata.age_txdesc[i];
   1992  1.28.2.2  snj 		if (txd->tx_m != NULL) {
   1993  1.28.2.2  snj 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1994  1.28.2.2  snj 			m_freem(txd->tx_m);
   1995  1.28.2.2  snj 			txd->tx_m = NULL;
   1996  1.28.2.2  snj 		}
   1997  1.28.2.2  snj 	}
   1998  1.28.2.2  snj }
   1999  1.28.2.2  snj 
   2000  1.28.2.2  snj static void
   2001  1.28.2.2  snj age_stats_update(struct age_softc *sc)
   2002  1.28.2.2  snj {
   2003  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2004  1.28.2.2  snj 	struct age_stats *stat;
   2005  1.28.2.2  snj 	struct smb *smb;
   2006  1.28.2.2  snj 
   2007  1.28.2.2  snj 	stat = &sc->age_stat;
   2008  1.28.2.2  snj 
   2009  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2010  1.28.2.2  snj 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2011  1.28.2.2  snj 
   2012  1.28.2.2  snj 	smb = sc->age_rdata.age_smb_block;
   2013  1.28.2.2  snj 	if (smb->updated == 0)
   2014  1.28.2.2  snj 		return;
   2015  1.28.2.2  snj 
   2016  1.28.2.2  snj 	/* Rx stats. */
   2017  1.28.2.2  snj 	stat->rx_frames += smb->rx_frames;
   2018  1.28.2.2  snj 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   2019  1.28.2.2  snj 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   2020  1.28.2.2  snj 	stat->rx_pause_frames += smb->rx_pause_frames;
   2021  1.28.2.2  snj 	stat->rx_control_frames += smb->rx_control_frames;
   2022  1.28.2.2  snj 	stat->rx_crcerrs += smb->rx_crcerrs;
   2023  1.28.2.2  snj 	stat->rx_lenerrs += smb->rx_lenerrs;
   2024  1.28.2.2  snj 	stat->rx_bytes += smb->rx_bytes;
   2025  1.28.2.2  snj 	stat->rx_runts += smb->rx_runts;
   2026  1.28.2.2  snj 	stat->rx_fragments += smb->rx_fragments;
   2027  1.28.2.2  snj 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2028  1.28.2.2  snj 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2029  1.28.2.2  snj 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2030  1.28.2.2  snj 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2031  1.28.2.2  snj 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2032  1.28.2.2  snj 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2033  1.28.2.2  snj 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2034  1.28.2.2  snj 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2035  1.28.2.2  snj 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2036  1.28.2.2  snj 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2037  1.28.2.2  snj 	stat->rx_alignerrs += smb->rx_alignerrs;
   2038  1.28.2.2  snj 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2039  1.28.2.2  snj 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2040  1.28.2.2  snj 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2041  1.28.2.2  snj 
   2042  1.28.2.2  snj 	/* Tx stats. */
   2043  1.28.2.2  snj 	stat->tx_frames += smb->tx_frames;
   2044  1.28.2.2  snj 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2045  1.28.2.2  snj 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2046  1.28.2.2  snj 	stat->tx_pause_frames += smb->tx_pause_frames;
   2047  1.28.2.2  snj 	stat->tx_excess_defer += smb->tx_excess_defer;
   2048  1.28.2.2  snj 	stat->tx_control_frames += smb->tx_control_frames;
   2049  1.28.2.2  snj 	stat->tx_deferred += smb->tx_deferred;
   2050  1.28.2.2  snj 	stat->tx_bytes += smb->tx_bytes;
   2051  1.28.2.2  snj 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2052  1.28.2.2  snj 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2053  1.28.2.2  snj 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2054  1.28.2.2  snj 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2055  1.28.2.2  snj 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2056  1.28.2.2  snj 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2057  1.28.2.2  snj 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2058  1.28.2.2  snj 	stat->tx_single_colls += smb->tx_single_colls;
   2059  1.28.2.2  snj 	stat->tx_multi_colls += smb->tx_multi_colls;
   2060  1.28.2.2  snj 	stat->tx_late_colls += smb->tx_late_colls;
   2061  1.28.2.2  snj 	stat->tx_excess_colls += smb->tx_excess_colls;
   2062  1.28.2.2  snj 	stat->tx_underrun += smb->tx_underrun;
   2063  1.28.2.2  snj 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2064  1.28.2.2  snj 	stat->tx_lenerrs += smb->tx_lenerrs;
   2065  1.28.2.2  snj 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2066  1.28.2.2  snj 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2067  1.28.2.2  snj 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2068  1.28.2.2  snj 
   2069  1.28.2.2  snj 	/* Update counters in ifnet. */
   2070  1.28.2.2  snj 	ifp->if_opackets += smb->tx_frames;
   2071  1.28.2.2  snj 
   2072  1.28.2.2  snj 	ifp->if_collisions += smb->tx_single_colls +
   2073  1.28.2.2  snj 	    smb->tx_multi_colls + smb->tx_late_colls +
   2074  1.28.2.2  snj 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2075  1.28.2.2  snj 
   2076  1.28.2.2  snj 	ifp->if_oerrors += smb->tx_excess_colls +
   2077  1.28.2.2  snj 	    smb->tx_late_colls + smb->tx_underrun +
   2078  1.28.2.2  snj 	    smb->tx_pkts_truncated;
   2079  1.28.2.2  snj 
   2080  1.28.2.2  snj 	ifp->if_ipackets += smb->rx_frames;
   2081  1.28.2.2  snj 
   2082  1.28.2.2  snj 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2083  1.28.2.2  snj 	    smb->rx_runts + smb->rx_pkts_truncated +
   2084  1.28.2.2  snj 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2085  1.28.2.2  snj 	    smb->rx_alignerrs;
   2086  1.28.2.2  snj 
   2087  1.28.2.2  snj 	/* Update done, clear. */
   2088  1.28.2.2  snj 	smb->updated = 0;
   2089  1.28.2.2  snj 
   2090  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2091  1.28.2.2  snj 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2092  1.28.2.2  snj }
   2093  1.28.2.2  snj 
   2094  1.28.2.2  snj static void
   2095  1.28.2.2  snj age_stop_txmac(struct age_softc *sc)
   2096  1.28.2.2  snj {
   2097  1.28.2.2  snj 	uint32_t reg;
   2098  1.28.2.2  snj 	int i;
   2099  1.28.2.2  snj 
   2100  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2101  1.28.2.2  snj 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2102  1.28.2.2  snj 		reg &= ~MAC_CFG_TX_ENB;
   2103  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2104  1.28.2.2  snj 	}
   2105  1.28.2.2  snj 	/* Stop Tx DMA engine. */
   2106  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2107  1.28.2.2  snj 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2108  1.28.2.2  snj 		reg &= ~DMA_CFG_RD_ENB;
   2109  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2110  1.28.2.2  snj 	}
   2111  1.28.2.2  snj 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2112  1.28.2.2  snj 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2113  1.28.2.2  snj 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2114  1.28.2.2  snj 			break;
   2115  1.28.2.2  snj 		DELAY(10);
   2116  1.28.2.2  snj 	}
   2117  1.28.2.2  snj 	if (i == 0)
   2118  1.28.2.2  snj 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2119  1.28.2.2  snj }
   2120  1.28.2.2  snj 
   2121  1.28.2.2  snj static void
   2122  1.28.2.2  snj age_stop_rxmac(struct age_softc *sc)
   2123  1.28.2.2  snj {
   2124  1.28.2.2  snj 	uint32_t reg;
   2125  1.28.2.2  snj 	int i;
   2126  1.28.2.2  snj 
   2127  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2128  1.28.2.2  snj 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2129  1.28.2.2  snj 		reg &= ~MAC_CFG_RX_ENB;
   2130  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2131  1.28.2.2  snj 	}
   2132  1.28.2.2  snj 	/* Stop Rx DMA engine. */
   2133  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2134  1.28.2.2  snj 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2135  1.28.2.2  snj 		reg &= ~DMA_CFG_WR_ENB;
   2136  1.28.2.2  snj 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2137  1.28.2.2  snj 	}
   2138  1.28.2.2  snj 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2139  1.28.2.2  snj 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2140  1.28.2.2  snj 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2141  1.28.2.2  snj 			break;
   2142  1.28.2.2  snj 		DELAY(10);
   2143  1.28.2.2  snj 	}
   2144  1.28.2.2  snj 	if (i == 0)
   2145  1.28.2.2  snj 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2146  1.28.2.2  snj }
   2147  1.28.2.2  snj 
   2148  1.28.2.2  snj static void
   2149  1.28.2.2  snj age_init_tx_ring(struct age_softc *sc)
   2150  1.28.2.2  snj {
   2151  1.28.2.2  snj 	struct age_ring_data *rd;
   2152  1.28.2.2  snj 	struct age_txdesc *txd;
   2153  1.28.2.2  snj 	int i;
   2154  1.28.2.2  snj 
   2155  1.28.2.2  snj 	sc->age_cdata.age_tx_prod = 0;
   2156  1.28.2.2  snj 	sc->age_cdata.age_tx_cons = 0;
   2157  1.28.2.2  snj 	sc->age_cdata.age_tx_cnt = 0;
   2158  1.28.2.2  snj 
   2159  1.28.2.2  snj 	rd = &sc->age_rdata;
   2160  1.28.2.2  snj 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2161  1.28.2.2  snj 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2162  1.28.2.2  snj 		txd = &sc->age_cdata.age_txdesc[i];
   2163  1.28.2.2  snj 		txd->tx_desc = &rd->age_tx_ring[i];
   2164  1.28.2.2  snj 		txd->tx_m = NULL;
   2165  1.28.2.2  snj 	}
   2166  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2167  1.28.2.2  snj 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2168  1.28.2.2  snj }
   2169  1.28.2.2  snj 
   2170  1.28.2.2  snj static int
   2171  1.28.2.2  snj age_init_rx_ring(struct age_softc *sc)
   2172  1.28.2.2  snj {
   2173  1.28.2.2  snj 	struct age_ring_data *rd;
   2174  1.28.2.2  snj 	struct age_rxdesc *rxd;
   2175  1.28.2.2  snj 	int i;
   2176  1.28.2.2  snj 
   2177  1.28.2.2  snj 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2178  1.28.2.2  snj 	rd = &sc->age_rdata;
   2179  1.28.2.2  snj 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2180  1.28.2.2  snj 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2181  1.28.2.2  snj 		rxd = &sc->age_cdata.age_rxdesc[i];
   2182  1.28.2.2  snj 		rxd->rx_m = NULL;
   2183  1.28.2.2  snj 		rxd->rx_desc = &rd->age_rx_ring[i];
   2184  1.28.2.2  snj 		if (age_newbuf(sc, rxd, 1) != 0)
   2185  1.28.2.2  snj 			return ENOBUFS;
   2186  1.28.2.2  snj 	}
   2187  1.28.2.2  snj 
   2188  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2189  1.28.2.2  snj 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2190  1.28.2.2  snj 
   2191  1.28.2.2  snj 	return 0;
   2192  1.28.2.2  snj }
   2193  1.28.2.2  snj 
   2194  1.28.2.2  snj static void
   2195  1.28.2.2  snj age_init_rr_ring(struct age_softc *sc)
   2196  1.28.2.2  snj {
   2197  1.28.2.2  snj 	struct age_ring_data *rd;
   2198  1.28.2.2  snj 
   2199  1.28.2.2  snj 	sc->age_cdata.age_rr_cons = 0;
   2200  1.28.2.2  snj 	AGE_RXCHAIN_RESET(sc);
   2201  1.28.2.2  snj 
   2202  1.28.2.2  snj 	rd = &sc->age_rdata;
   2203  1.28.2.2  snj 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2204  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2205  1.28.2.2  snj 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2206  1.28.2.2  snj }
   2207  1.28.2.2  snj 
   2208  1.28.2.2  snj static void
   2209  1.28.2.2  snj age_init_cmb_block(struct age_softc *sc)
   2210  1.28.2.2  snj {
   2211  1.28.2.2  snj 	struct age_ring_data *rd;
   2212  1.28.2.2  snj 
   2213  1.28.2.2  snj 	rd = &sc->age_rdata;
   2214  1.28.2.2  snj 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2215  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2216  1.28.2.2  snj 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2217  1.28.2.2  snj }
   2218  1.28.2.2  snj 
   2219  1.28.2.2  snj static void
   2220  1.28.2.2  snj age_init_smb_block(struct age_softc *sc)
   2221  1.28.2.2  snj {
   2222  1.28.2.2  snj 	struct age_ring_data *rd;
   2223  1.28.2.2  snj 
   2224  1.28.2.2  snj 	rd = &sc->age_rdata;
   2225  1.28.2.2  snj 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2226  1.28.2.2  snj 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2227  1.28.2.2  snj 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2228  1.28.2.2  snj }
   2229  1.28.2.2  snj 
   2230  1.28.2.2  snj static int
   2231  1.28.2.2  snj age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2232  1.28.2.2  snj {
   2233  1.28.2.2  snj 	struct rx_desc *desc;
   2234  1.28.2.2  snj 	struct mbuf *m;
   2235  1.28.2.2  snj 	bus_dmamap_t map;
   2236  1.28.2.2  snj 	int error;
   2237  1.28.2.2  snj 
   2238  1.28.2.2  snj 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2239  1.28.2.2  snj 	if (m == NULL)
   2240  1.28.2.2  snj 		return ENOBUFS;
   2241  1.28.2.2  snj 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2242  1.28.2.2  snj 	if (!(m->m_flags & M_EXT)) {
   2243  1.28.2.2  snj 		 m_freem(m);
   2244  1.28.2.2  snj 		 return ENOBUFS;
   2245  1.28.2.2  snj 	}
   2246  1.28.2.2  snj 
   2247  1.28.2.2  snj 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2248  1.28.2.2  snj 	m_adj(m, ETHER_ALIGN);
   2249  1.28.2.2  snj 
   2250  1.28.2.2  snj 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2251  1.28.2.2  snj 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2252  1.28.2.2  snj 
   2253  1.28.2.2  snj 	if (error != 0) {
   2254  1.28.2.2  snj 		if (!error) {
   2255  1.28.2.2  snj 			bus_dmamap_unload(sc->sc_dmat,
   2256  1.28.2.2  snj 			    sc->age_cdata.age_rx_sparemap);
   2257  1.28.2.2  snj 			error = EFBIG;
   2258  1.28.2.2  snj 			printf("%s: too many segments?!\n",
   2259  1.28.2.2  snj 			    device_xname(sc->sc_dev));
   2260  1.28.2.2  snj 		}
   2261  1.28.2.2  snj 		m_freem(m);
   2262  1.28.2.2  snj 
   2263  1.28.2.2  snj 		if (init)
   2264  1.28.2.2  snj 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2265  1.28.2.2  snj 		return error;
   2266  1.28.2.2  snj 	}
   2267  1.28.2.2  snj 
   2268  1.28.2.2  snj 	if (rxd->rx_m != NULL) {
   2269  1.28.2.2  snj 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2270  1.28.2.2  snj 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2271  1.28.2.2  snj 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2272  1.28.2.2  snj 	}
   2273  1.28.2.2  snj 	map = rxd->rx_dmamap;
   2274  1.28.2.2  snj 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2275  1.28.2.2  snj 	sc->age_cdata.age_rx_sparemap = map;
   2276  1.28.2.2  snj 	rxd->rx_m = m;
   2277  1.28.2.2  snj 
   2278  1.28.2.2  snj 	desc = rxd->rx_desc;
   2279  1.28.2.2  snj 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2280  1.28.2.2  snj 	desc->len =
   2281  1.28.2.2  snj 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2282  1.28.2.2  snj 	    AGE_RD_LEN_SHIFT);
   2283  1.28.2.2  snj 
   2284  1.28.2.2  snj 	return 0;
   2285  1.28.2.2  snj }
   2286  1.28.2.2  snj 
   2287  1.28.2.2  snj static void
   2288  1.28.2.2  snj age_rxvlan(struct age_softc *sc)
   2289  1.28.2.2  snj {
   2290  1.28.2.2  snj 	uint32_t reg;
   2291  1.28.2.2  snj 
   2292  1.28.2.2  snj 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2293  1.28.2.2  snj 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2294  1.28.2.2  snj 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2295  1.28.2.2  snj 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2296  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2297  1.28.2.2  snj }
   2298  1.28.2.2  snj 
   2299  1.28.2.2  snj static void
   2300  1.28.2.2  snj age_rxfilter(struct age_softc *sc)
   2301  1.28.2.2  snj {
   2302  1.28.2.2  snj 	struct ethercom *ec = &sc->sc_ec;
   2303  1.28.2.2  snj 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2304  1.28.2.2  snj 	struct ether_multi *enm;
   2305  1.28.2.2  snj 	struct ether_multistep step;
   2306  1.28.2.2  snj 	uint32_t crc;
   2307  1.28.2.2  snj 	uint32_t mchash[2];
   2308  1.28.2.2  snj 	uint32_t rxcfg;
   2309  1.28.2.2  snj 
   2310  1.28.2.2  snj 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2311  1.28.2.2  snj 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2312  1.28.2.2  snj 	ifp->if_flags &= ~IFF_ALLMULTI;
   2313  1.28.2.2  snj 
   2314  1.28.2.2  snj 	/*
   2315  1.28.2.2  snj 	 * Always accept broadcast frames.
   2316  1.28.2.2  snj 	 */
   2317  1.28.2.2  snj 	rxcfg |= MAC_CFG_BCAST;
   2318  1.28.2.2  snj 
   2319  1.28.2.2  snj 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2320  1.28.2.2  snj 		ifp->if_flags |= IFF_ALLMULTI;
   2321  1.28.2.2  snj 		if (ifp->if_flags & IFF_PROMISC)
   2322  1.28.2.2  snj 			rxcfg |= MAC_CFG_PROMISC;
   2323  1.28.2.2  snj 		else
   2324  1.28.2.2  snj 			rxcfg |= MAC_CFG_ALLMULTI;
   2325  1.28.2.2  snj 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2326  1.28.2.2  snj 	} else {
   2327  1.28.2.2  snj 		/* Program new filter. */
   2328  1.28.2.2  snj 		memset(mchash, 0, sizeof(mchash));
   2329  1.28.2.2  snj 
   2330  1.28.2.2  snj 		ETHER_FIRST_MULTI(step, ec, enm);
   2331  1.28.2.2  snj 		while (enm != NULL) {
   2332  1.28.2.2  snj 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2333  1.28.2.2  snj 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2334  1.28.2.2  snj 			ETHER_NEXT_MULTI(step, enm);
   2335  1.28.2.2  snj 		}
   2336  1.28.2.2  snj 	}
   2337  1.28.2.2  snj 
   2338  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2339  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2340  1.28.2.2  snj 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2341  1.28.2.2  snj }
   2342