if_age.c revision 1.28.2.6 1 1.28.2.6 sborrill /* $NetBSD: if_age.c,v 1.28.2.6 2011/11/18 23:25:40 sborrill Exp $ */
2 1.28.2.2 snj /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.28.2.2 snj
4 1.28.2.2 snj /*-
5 1.28.2.2 snj * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.28.2.2 snj * All rights reserved.
7 1.28.2.2 snj *
8 1.28.2.2 snj * Redistribution and use in source and binary forms, with or without
9 1.28.2.2 snj * modification, are permitted provided that the following conditions
10 1.28.2.2 snj * are met:
11 1.28.2.2 snj * 1. Redistributions of source code must retain the above copyright
12 1.28.2.2 snj * notice unmodified, this list of conditions, and the following
13 1.28.2.2 snj * disclaimer.
14 1.28.2.2 snj * 2. Redistributions in binary form must reproduce the above copyright
15 1.28.2.2 snj * notice, this list of conditions and the following disclaimer in the
16 1.28.2.2 snj * documentation and/or other materials provided with the distribution.
17 1.28.2.2 snj *
18 1.28.2.2 snj * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.28.2.2 snj * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.28.2.2 snj * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.28.2.2 snj * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.28.2.2 snj * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.28.2.2 snj * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.28.2.2 snj * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.28.2.2 snj * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.28.2.2 snj * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.28.2.2 snj * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.28.2.2 snj * SUCH DAMAGE.
29 1.28.2.2 snj */
30 1.28.2.2 snj
31 1.28.2.2 snj /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.28.2.2 snj
33 1.28.2.2 snj #include <sys/cdefs.h>
34 1.28.2.6 sborrill __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28.2.6 2011/11/18 23:25:40 sborrill Exp $");
35 1.28.2.2 snj
36 1.28.2.2 snj #include "bpfilter.h"
37 1.28.2.2 snj #include "vlan.h"
38 1.28.2.2 snj
39 1.28.2.2 snj #include <sys/param.h>
40 1.28.2.2 snj #include <sys/proc.h>
41 1.28.2.2 snj #include <sys/endian.h>
42 1.28.2.2 snj #include <sys/systm.h>
43 1.28.2.2 snj #include <sys/types.h>
44 1.28.2.2 snj #include <sys/sockio.h>
45 1.28.2.2 snj #include <sys/mbuf.h>
46 1.28.2.2 snj #include <sys/queue.h>
47 1.28.2.2 snj #include <sys/kernel.h>
48 1.28.2.2 snj #include <sys/device.h>
49 1.28.2.2 snj #include <sys/callout.h>
50 1.28.2.2 snj #include <sys/socket.h>
51 1.28.2.2 snj
52 1.28.2.2 snj #include <net/if.h>
53 1.28.2.2 snj #include <net/if_dl.h>
54 1.28.2.2 snj #include <net/if_media.h>
55 1.28.2.2 snj #include <net/if_ether.h>
56 1.28.2.2 snj
57 1.28.2.2 snj #ifdef INET
58 1.28.2.2 snj #include <netinet/in.h>
59 1.28.2.2 snj #include <netinet/in_systm.h>
60 1.28.2.2 snj #include <netinet/in_var.h>
61 1.28.2.2 snj #include <netinet/ip.h>
62 1.28.2.2 snj #endif
63 1.28.2.2 snj
64 1.28.2.2 snj #include <net/if_types.h>
65 1.28.2.2 snj #include <net/if_vlanvar.h>
66 1.28.2.2 snj
67 1.28.2.2 snj #if NBPFILTER > 0
68 1.28.2.2 snj #include <net/bpf.h>
69 1.28.2.2 snj #endif
70 1.28.2.2 snj
71 1.28.2.2 snj #include <sys/rnd.h>
72 1.28.2.2 snj
73 1.28.2.2 snj #include <dev/mii/mii.h>
74 1.28.2.2 snj #include <dev/mii/miivar.h>
75 1.28.2.2 snj
76 1.28.2.2 snj #include <dev/pci/pcireg.h>
77 1.28.2.2 snj #include <dev/pci/pcivar.h>
78 1.28.2.2 snj #include <dev/pci/pcidevs.h>
79 1.28.2.2 snj
80 1.28.2.2 snj #include <dev/pci/if_agereg.h>
81 1.28.2.2 snj
82 1.28.2.2 snj static int age_match(device_t, cfdata_t, void *);
83 1.28.2.2 snj static void age_attach(device_t, device_t, void *);
84 1.28.2.2 snj static int age_detach(device_t, int);
85 1.28.2.2 snj
86 1.28.2.2 snj static bool age_resume(device_t PMF_FN_PROTO);
87 1.28.2.2 snj
88 1.28.2.2 snj static int age_miibus_readreg(device_t, int, int);
89 1.28.2.2 snj static void age_miibus_writereg(device_t, int, int, int);
90 1.28.2.2 snj static void age_miibus_statchg(device_t);
91 1.28.2.2 snj
92 1.28.2.2 snj static int age_init(struct ifnet *);
93 1.28.2.2 snj static int age_ioctl(struct ifnet *, u_long, void *);
94 1.28.2.2 snj static void age_start(struct ifnet *);
95 1.28.2.2 snj static void age_watchdog(struct ifnet *);
96 1.28.2.6 sborrill static bool age_shutdown(device_t, int);
97 1.28.2.2 snj static void age_mediastatus(struct ifnet *, struct ifmediareq *);
98 1.28.2.2 snj static int age_mediachange(struct ifnet *);
99 1.28.2.2 snj
100 1.28.2.2 snj static int age_intr(void *);
101 1.28.2.2 snj static int age_dma_alloc(struct age_softc *);
102 1.28.2.2 snj static void age_dma_free(struct age_softc *);
103 1.28.2.2 snj static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 1.28.2.2 snj static void age_phy_reset(struct age_softc *);
105 1.28.2.2 snj
106 1.28.2.2 snj static int age_encap(struct age_softc *, struct mbuf **);
107 1.28.2.2 snj static void age_init_tx_ring(struct age_softc *);
108 1.28.2.2 snj static int age_init_rx_ring(struct age_softc *);
109 1.28.2.2 snj static void age_init_rr_ring(struct age_softc *);
110 1.28.2.2 snj static void age_init_cmb_block(struct age_softc *);
111 1.28.2.2 snj static void age_init_smb_block(struct age_softc *);
112 1.28.2.2 snj static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 1.28.2.2 snj static void age_mac_config(struct age_softc *);
114 1.28.2.2 snj static void age_txintr(struct age_softc *, int);
115 1.28.2.2 snj static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 1.28.2.2 snj static void age_rxintr(struct age_softc *, int);
117 1.28.2.2 snj static void age_tick(void *);
118 1.28.2.2 snj static void age_reset(struct age_softc *);
119 1.28.2.2 snj static void age_stop(struct ifnet *, int);
120 1.28.2.2 snj static void age_stats_update(struct age_softc *);
121 1.28.2.2 snj static void age_stop_txmac(struct age_softc *);
122 1.28.2.2 snj static void age_stop_rxmac(struct age_softc *);
123 1.28.2.2 snj static void age_rxvlan(struct age_softc *sc);
124 1.28.2.2 snj static void age_rxfilter(struct age_softc *);
125 1.28.2.2 snj
126 1.28.2.2 snj CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 1.28.2.2 snj age_match, age_attach, age_detach, NULL);
128 1.28.2.2 snj
129 1.28.2.2 snj int agedebug = 0;
130 1.28.2.2 snj #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 1.28.2.2 snj
132 1.28.2.2 snj #define ETHER_ALIGN 2
133 1.28.2.2 snj #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 1.28.2.2 snj
135 1.28.2.2 snj static int
136 1.28.2.2 snj age_match(device_t dev, cfdata_t match, void *aux)
137 1.28.2.2 snj {
138 1.28.2.2 snj struct pci_attach_args *pa = aux;
139 1.28.2.2 snj
140 1.28.2.2 snj return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 1.28.2.2 snj PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 1.28.2.2 snj }
143 1.28.2.2 snj
144 1.28.2.2 snj static void
145 1.28.2.2 snj age_attach(device_t parent, device_t self, void *aux)
146 1.28.2.2 snj {
147 1.28.2.2 snj struct age_softc *sc = device_private(self);
148 1.28.2.2 snj struct pci_attach_args *pa = aux;
149 1.28.2.2 snj pci_intr_handle_t ih;
150 1.28.2.2 snj const char *intrstr;
151 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
152 1.28.2.2 snj pcireg_t memtype;
153 1.28.2.2 snj int error = 0;
154 1.28.2.2 snj
155 1.28.2.2 snj aprint_naive("\n");
156 1.28.2.2 snj aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 1.28.2.2 snj
158 1.28.2.2 snj sc->sc_dev = self;
159 1.28.2.2 snj sc->sc_dmat = pa->pa_dmat;
160 1.28.2.2 snj sc->sc_pct = pa->pa_pc;
161 1.28.2.2 snj sc->sc_pcitag = pa->pa_tag;
162 1.28.2.2 snj
163 1.28.2.2 snj /*
164 1.28.2.2 snj * Allocate IO memory
165 1.28.2.2 snj */
166 1.28.2.2 snj memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 1.28.2.2 snj switch (memtype) {
168 1.28.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 1.28.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 1.28.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 1.28.2.2 snj break;
172 1.28.2.2 snj default:
173 1.28.2.2 snj aprint_error_dev(self, "invalid base address register\n");
174 1.28.2.2 snj break;
175 1.28.2.2 snj }
176 1.28.2.2 snj
177 1.28.2.2 snj if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 1.28.2.2 snj &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 1.28.2.2 snj aprint_error_dev(self, "could not map mem space\n");
180 1.28.2.2 snj return;
181 1.28.2.2 snj }
182 1.28.2.2 snj
183 1.28.2.2 snj if (pci_intr_map(pa, &ih) != 0) {
184 1.28.2.2 snj aprint_error_dev(self, "could not map interrupt\n");
185 1.28.2.2 snj goto fail;
186 1.28.2.2 snj }
187 1.28.2.2 snj
188 1.28.2.2 snj /*
189 1.28.2.2 snj * Allocate IRQ
190 1.28.2.2 snj */
191 1.28.2.2 snj intrstr = pci_intr_string(sc->sc_pct, ih);
192 1.28.2.2 snj sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 1.28.2.2 snj age_intr, sc);
194 1.28.2.2 snj if (sc->sc_irq_handle == NULL) {
195 1.28.2.2 snj aprint_error_dev(self, "could not establish interrupt");
196 1.28.2.2 snj if (intrstr != NULL)
197 1.28.2.2 snj aprint_error(" at %s", intrstr);
198 1.28.2.2 snj aprint_error("\n");
199 1.28.2.2 snj goto fail;
200 1.28.2.2 snj }
201 1.28.2.2 snj aprint_normal_dev(self, "%s\n", intrstr);
202 1.28.2.2 snj
203 1.28.2.2 snj /* Set PHY address. */
204 1.28.2.2 snj sc->age_phyaddr = AGE_PHY_ADDR;
205 1.28.2.2 snj
206 1.28.2.2 snj /* Reset PHY. */
207 1.28.2.2 snj age_phy_reset(sc);
208 1.28.2.2 snj
209 1.28.2.2 snj /* Reset the ethernet controller. */
210 1.28.2.2 snj age_reset(sc);
211 1.28.2.2 snj
212 1.28.2.2 snj /* Get PCI and chip id/revision. */
213 1.28.2.2 snj sc->age_rev = PCI_REVISION(pa->pa_class);
214 1.28.2.2 snj sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 1.28.2.2 snj MASTER_CHIP_REV_SHIFT;
216 1.28.2.2 snj
217 1.28.2.2 snj aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 1.28.2.2 snj aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 1.28.2.2 snj
220 1.28.2.2 snj if (agedebug) {
221 1.28.2.2 snj aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 1.28.2.2 snj CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 1.28.2.2 snj CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 1.28.2.2 snj }
225 1.28.2.2 snj
226 1.28.2.2 snj /* Set max allowable DMA size. */
227 1.28.2.2 snj sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 1.28.2.2 snj sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 1.28.2.2 snj
230 1.28.2.2 snj /* Allocate DMA stuffs */
231 1.28.2.2 snj error = age_dma_alloc(sc);
232 1.28.2.2 snj if (error)
233 1.28.2.2 snj goto fail;
234 1.28.2.2 snj
235 1.28.2.2 snj callout_init(&sc->sc_tick_ch, 0);
236 1.28.2.2 snj callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 1.28.2.2 snj
238 1.28.2.2 snj /* Load station address. */
239 1.28.2.2 snj age_get_macaddr(sc, sc->sc_enaddr);
240 1.28.2.2 snj
241 1.28.2.2 snj aprint_normal_dev(self, "Ethernet address %s\n",
242 1.28.2.2 snj ether_sprintf(sc->sc_enaddr));
243 1.28.2.2 snj
244 1.28.2.2 snj ifp->if_softc = sc;
245 1.28.2.2 snj ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 1.28.2.2 snj ifp->if_init = age_init;
247 1.28.2.2 snj ifp->if_ioctl = age_ioctl;
248 1.28.2.2 snj ifp->if_start = age_start;
249 1.28.2.2 snj ifp->if_stop = age_stop;
250 1.28.2.2 snj ifp->if_watchdog = age_watchdog;
251 1.28.2.2 snj ifp->if_baudrate = IF_Gbps(1);
252 1.28.2.2 snj IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 1.28.2.2 snj IFQ_SET_READY(&ifp->if_snd);
254 1.28.2.2 snj strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255 1.28.2.2 snj
256 1.28.2.2 snj sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257 1.28.2.2 snj
258 1.28.2.2 snj #ifdef AGE_CHECKSUM
259 1.28.2.2 snj ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 1.28.2.2 snj IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 1.28.2.2 snj IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 1.28.2.2 snj #endif
263 1.28.2.2 snj
264 1.28.2.2 snj #if NVLAN > 0
265 1.28.2.2 snj sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 1.28.2.2 snj #endif
267 1.28.2.2 snj
268 1.28.2.2 snj /* Set up MII bus. */
269 1.28.2.2 snj sc->sc_miibus.mii_ifp = ifp;
270 1.28.2.2 snj sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 1.28.2.2 snj sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 1.28.2.2 snj sc->sc_miibus.mii_statchg = age_miibus_statchg;
273 1.28.2.2 snj
274 1.28.2.2 snj sc->sc_ec.ec_mii = &sc->sc_miibus;
275 1.28.2.2 snj ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 1.28.2.2 snj age_mediastatus);
277 1.28.2.2 snj mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 1.28.2.3 snj MII_OFFSET_ANY, MIIF_DOPAUSE);
279 1.28.2.2 snj
280 1.28.2.2 snj if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 1.28.2.2 snj aprint_error_dev(self, "no PHY found!\n");
282 1.28.2.2 snj ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 1.28.2.2 snj 0, NULL);
284 1.28.2.2 snj ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 1.28.2.2 snj } else
286 1.28.2.2 snj ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287 1.28.2.2 snj
288 1.28.2.2 snj if_attach(ifp);
289 1.28.2.2 snj ether_ifattach(ifp, sc->sc_enaddr);
290 1.28.2.2 snj
291 1.28.2.6 sborrill if (!pmf_device_register1(self, NULL, age_resume, age_shutdown))
292 1.28.2.2 snj aprint_error_dev(self, "couldn't establish power handler\n");
293 1.28.2.2 snj else
294 1.28.2.2 snj pmf_class_network_register(self, ifp);
295 1.28.2.2 snj
296 1.28.2.2 snj return;
297 1.28.2.2 snj
298 1.28.2.2 snj fail:
299 1.28.2.2 snj age_dma_free(sc);
300 1.28.2.2 snj if (sc->sc_irq_handle != NULL) {
301 1.28.2.2 snj pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 1.28.2.2 snj sc->sc_irq_handle = NULL;
303 1.28.2.2 snj }
304 1.28.2.2 snj if (sc->sc_mem_size) {
305 1.28.2.2 snj bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 1.28.2.2 snj sc->sc_mem_size = 0;
307 1.28.2.2 snj }
308 1.28.2.2 snj }
309 1.28.2.2 snj
310 1.28.2.2 snj static int
311 1.28.2.2 snj age_detach(device_t self, int flags)
312 1.28.2.2 snj {
313 1.28.2.2 snj struct age_softc *sc = device_private(self);
314 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
315 1.28.2.2 snj int s;
316 1.28.2.2 snj
317 1.28.2.2 snj pmf_device_deregister(self);
318 1.28.2.2 snj s = splnet();
319 1.28.2.2 snj age_stop(ifp, 0);
320 1.28.2.2 snj splx(s);
321 1.28.2.2 snj
322 1.28.2.2 snj mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323 1.28.2.2 snj
324 1.28.2.2 snj /* Delete all remaining media. */
325 1.28.2.2 snj ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326 1.28.2.2 snj
327 1.28.2.2 snj ether_ifdetach(ifp);
328 1.28.2.2 snj if_detach(ifp);
329 1.28.2.2 snj age_dma_free(sc);
330 1.28.2.2 snj
331 1.28.2.2 snj if (sc->sc_irq_handle != NULL) {
332 1.28.2.2 snj pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 1.28.2.2 snj sc->sc_irq_handle = NULL;
334 1.28.2.2 snj }
335 1.28.2.2 snj if (sc->sc_mem_size) {
336 1.28.2.2 snj bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 1.28.2.2 snj sc->sc_mem_size = 0;
338 1.28.2.2 snj }
339 1.28.2.2 snj return 0;
340 1.28.2.2 snj }
341 1.28.2.2 snj
342 1.28.2.2 snj /*
343 1.28.2.2 snj * Read a PHY register on the MII of the L1.
344 1.28.2.2 snj */
345 1.28.2.2 snj static int
346 1.28.2.2 snj age_miibus_readreg(device_t dev, int phy, int reg)
347 1.28.2.2 snj {
348 1.28.2.2 snj struct age_softc *sc = device_private(dev);
349 1.28.2.2 snj uint32_t v;
350 1.28.2.2 snj int i;
351 1.28.2.2 snj
352 1.28.2.2 snj if (phy != sc->age_phyaddr)
353 1.28.2.2 snj return 0;
354 1.28.2.2 snj
355 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 1.28.2.2 snj MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 1.28.2.2 snj for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 1.28.2.2 snj DELAY(1);
359 1.28.2.2 snj v = CSR_READ_4(sc, AGE_MDIO);
360 1.28.2.2 snj if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 1.28.2.2 snj break;
362 1.28.2.2 snj }
363 1.28.2.2 snj
364 1.28.2.2 snj if (i == 0) {
365 1.28.2.2 snj printf("%s: phy read timeout: phy %d, reg %d\n",
366 1.28.2.2 snj device_xname(sc->sc_dev), phy, reg);
367 1.28.2.2 snj return 0;
368 1.28.2.2 snj }
369 1.28.2.2 snj
370 1.28.2.2 snj return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 1.28.2.2 snj }
372 1.28.2.2 snj
373 1.28.2.2 snj /*
374 1.28.2.2 snj * Write a PHY register on the MII of the L1.
375 1.28.2.2 snj */
376 1.28.2.2 snj static void
377 1.28.2.2 snj age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 1.28.2.2 snj {
379 1.28.2.2 snj struct age_softc *sc = device_private(dev);
380 1.28.2.2 snj uint32_t v;
381 1.28.2.2 snj int i;
382 1.28.2.2 snj
383 1.28.2.2 snj if (phy != sc->age_phyaddr)
384 1.28.2.2 snj return;
385 1.28.2.2 snj
386 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 1.28.2.2 snj (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 1.28.2.2 snj MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389 1.28.2.2 snj
390 1.28.2.2 snj for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 1.28.2.2 snj DELAY(1);
392 1.28.2.2 snj v = CSR_READ_4(sc, AGE_MDIO);
393 1.28.2.2 snj if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 1.28.2.2 snj break;
395 1.28.2.2 snj }
396 1.28.2.2 snj
397 1.28.2.2 snj if (i == 0) {
398 1.28.2.2 snj printf("%s: phy write timeout: phy %d, reg %d\n",
399 1.28.2.2 snj device_xname(sc->sc_dev), phy, reg);
400 1.28.2.2 snj }
401 1.28.2.2 snj }
402 1.28.2.2 snj
403 1.28.2.2 snj /*
404 1.28.2.2 snj * Callback from MII layer when media changes.
405 1.28.2.2 snj */
406 1.28.2.2 snj static void
407 1.28.2.2 snj age_miibus_statchg(device_t dev)
408 1.28.2.2 snj {
409 1.28.2.2 snj struct age_softc *sc = device_private(dev);
410 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
411 1.28.2.2 snj struct mii_data *mii;
412 1.28.2.2 snj
413 1.28.2.2 snj if ((ifp->if_flags & IFF_RUNNING) == 0)
414 1.28.2.2 snj return;
415 1.28.2.2 snj
416 1.28.2.2 snj mii = &sc->sc_miibus;
417 1.28.2.2 snj
418 1.28.2.2 snj sc->age_flags &= ~AGE_FLAG_LINK;
419 1.28.2.2 snj if ((mii->mii_media_status & IFM_AVALID) != 0) {
420 1.28.2.2 snj switch (IFM_SUBTYPE(mii->mii_media_active)) {
421 1.28.2.2 snj case IFM_10_T:
422 1.28.2.2 snj case IFM_100_TX:
423 1.28.2.2 snj case IFM_1000_T:
424 1.28.2.2 snj sc->age_flags |= AGE_FLAG_LINK;
425 1.28.2.2 snj break;
426 1.28.2.2 snj default:
427 1.28.2.2 snj break;
428 1.28.2.2 snj }
429 1.28.2.2 snj }
430 1.28.2.2 snj
431 1.28.2.2 snj /* Stop Rx/Tx MACs. */
432 1.28.2.2 snj age_stop_rxmac(sc);
433 1.28.2.2 snj age_stop_txmac(sc);
434 1.28.2.2 snj
435 1.28.2.2 snj /* Program MACs with resolved speed/duplex/flow-control. */
436 1.28.2.2 snj if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
437 1.28.2.2 snj uint32_t reg;
438 1.28.2.2 snj
439 1.28.2.2 snj age_mac_config(sc);
440 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
441 1.28.2.2 snj /* Restart DMA engine and Tx/Rx MAC. */
442 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
443 1.28.2.2 snj DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
444 1.28.2.2 snj reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
445 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
446 1.28.2.2 snj }
447 1.28.2.2 snj }
448 1.28.2.2 snj
449 1.28.2.2 snj /*
450 1.28.2.2 snj * Get the current interface media status.
451 1.28.2.2 snj */
452 1.28.2.2 snj static void
453 1.28.2.2 snj age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
454 1.28.2.2 snj {
455 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
456 1.28.2.2 snj struct mii_data *mii = &sc->sc_miibus;
457 1.28.2.2 snj
458 1.28.2.2 snj mii_pollstat(mii);
459 1.28.2.2 snj ifmr->ifm_status = mii->mii_media_status;
460 1.28.2.2 snj ifmr->ifm_active = mii->mii_media_active;
461 1.28.2.2 snj }
462 1.28.2.2 snj
463 1.28.2.2 snj /*
464 1.28.2.2 snj * Set hardware to newly-selected media.
465 1.28.2.2 snj */
466 1.28.2.2 snj static int
467 1.28.2.2 snj age_mediachange(struct ifnet *ifp)
468 1.28.2.2 snj {
469 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
470 1.28.2.2 snj struct mii_data *mii = &sc->sc_miibus;
471 1.28.2.2 snj int error;
472 1.28.2.2 snj
473 1.28.2.2 snj if (mii->mii_instance != 0) {
474 1.28.2.2 snj struct mii_softc *miisc;
475 1.28.2.2 snj
476 1.28.2.2 snj LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
477 1.28.2.2 snj mii_phy_reset(miisc);
478 1.28.2.2 snj }
479 1.28.2.2 snj error = mii_mediachg(mii);
480 1.28.2.2 snj
481 1.28.2.2 snj return error;
482 1.28.2.2 snj }
483 1.28.2.2 snj
484 1.28.2.2 snj static int
485 1.28.2.2 snj age_intr(void *arg)
486 1.28.2.2 snj {
487 1.28.2.2 snj struct age_softc *sc = arg;
488 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
489 1.28.2.2 snj struct cmb *cmb;
490 1.28.2.2 snj uint32_t status;
491 1.28.2.2 snj
492 1.28.2.2 snj status = CSR_READ_4(sc, AGE_INTR_STATUS);
493 1.28.2.2 snj if (status == 0 || (status & AGE_INTRS) == 0)
494 1.28.2.2 snj return 0;
495 1.28.2.2 snj
496 1.28.2.2 snj cmb = sc->age_rdata.age_cmb_block;
497 1.28.2.2 snj if (cmb == NULL) {
498 1.28.2.2 snj /* Happens when bringing up the interface
499 1.28.2.6 sborrill * w/o having a carrier. Ack the interrupt.
500 1.28.2.2 snj */
501 1.28.2.2 snj CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
502 1.28.2.2 snj return 0;
503 1.28.2.2 snj }
504 1.28.2.2 snj
505 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
506 1.28.2.2 snj sc->age_cdata.age_cmb_block_map->dm_mapsize,
507 1.28.2.6 sborrill BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
508 1.28.2.6 sborrill status = le32toh(cmb->intr_status);
509 1.28.2.6 sborrill /* ACK/reenable interrupts */
510 1.28.2.6 sborrill CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
511 1.28.2.6 sborrill while ((status & AGE_INTRS) != 0) {
512 1.28.2.6 sborrill sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
513 1.28.2.6 sborrill TPD_CONS_SHIFT;
514 1.28.2.6 sborrill sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
515 1.28.2.6 sborrill RRD_PROD_SHIFT;
516 1.28.2.6 sborrill
517 1.28.2.6 sborrill /* Let hardware know CMB was served. */
518 1.28.2.6 sborrill cmb->intr_status = 0;
519 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
520 1.28.2.6 sborrill sc->age_cdata.age_cmb_block_map->dm_mapsize,
521 1.28.2.6 sborrill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
522 1.28.2.6 sborrill
523 1.28.2.6 sborrill if (ifp->if_flags & IFF_RUNNING) {
524 1.28.2.6 sborrill if (status & INTR_CMB_RX)
525 1.28.2.6 sborrill age_rxintr(sc, sc->age_rr_prod);
526 1.28.2.6 sborrill
527 1.28.2.6 sborrill if (status & INTR_CMB_TX)
528 1.28.2.6 sborrill age_txintr(sc, sc->age_tpd_cons);
529 1.28.2.6 sborrill
530 1.28.2.6 sborrill if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
531 1.28.2.6 sborrill if (status & INTR_DMA_RD_TO_RST)
532 1.28.2.6 sborrill printf("%s: DMA read error! -- "
533 1.28.2.6 sborrill "resetting\n",
534 1.28.2.6 sborrill device_xname(sc->sc_dev));
535 1.28.2.6 sborrill if (status & INTR_DMA_WR_TO_RST)
536 1.28.2.6 sborrill printf("%s: DMA write error! -- "
537 1.28.2.6 sborrill "resetting\n",
538 1.28.2.6 sborrill device_xname(sc->sc_dev));
539 1.28.2.6 sborrill age_init(ifp);
540 1.28.2.6 sborrill }
541 1.28.2.2 snj
542 1.28.2.2 snj age_start(ifp);
543 1.28.2.2 snj
544 1.28.2.6 sborrill if (status & INTR_SMB)
545 1.28.2.6 sborrill age_stats_update(sc);
546 1.28.2.6 sborrill }
547 1.28.2.6 sborrill /* check if more interrupts did came in */
548 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
549 1.28.2.6 sborrill sc->age_cdata.age_cmb_block_map->dm_mapsize,
550 1.28.2.6 sborrill BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
551 1.28.2.6 sborrill status = le32toh(cmb->intr_status);
552 1.28.2.2 snj }
553 1.28.2.2 snj
554 1.28.2.2 snj return 1;
555 1.28.2.2 snj }
556 1.28.2.2 snj
557 1.28.2.2 snj static void
558 1.28.2.2 snj age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
559 1.28.2.2 snj {
560 1.28.2.4 snj uint32_t ea[2], reg;
561 1.28.2.4 snj int i, vpdc;
562 1.28.2.2 snj
563 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_SPI_CTRL);
564 1.28.2.2 snj if ((reg & SPI_VPD_ENB) != 0) {
565 1.28.2.2 snj /* Get VPD stored in TWSI EEPROM. */
566 1.28.2.2 snj reg &= ~SPI_VPD_ENB;
567 1.28.2.2 snj CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
568 1.28.2.2 snj }
569 1.28.2.2 snj
570 1.28.2.4 snj if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
571 1.28.2.4 snj PCI_CAP_VPD, &vpdc, NULL)) {
572 1.28.2.2 snj /*
573 1.28.2.4 snj * PCI VPD capability found, let TWSI reload EEPROM.
574 1.28.2.4 snj * This will set Ethernet address of controller.
575 1.28.2.2 snj */
576 1.28.2.4 snj CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
577 1.28.2.4 snj TWSI_CTRL_SW_LD_START);
578 1.28.2.4 snj for (i = 100; i > 0; i++) {
579 1.28.2.4 snj DELAY(1000);
580 1.28.2.4 snj reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
581 1.28.2.4 snj if ((reg & TWSI_CTRL_SW_LD_START) == 0)
582 1.28.2.2 snj break;
583 1.28.2.2 snj }
584 1.28.2.4 snj if (i == 0)
585 1.28.2.4 snj printf("%s: reloading EEPROM timeout!\n",
586 1.28.2.2 snj device_xname(sc->sc_dev));
587 1.28.2.2 snj } else {
588 1.28.2.2 snj if (agedebug)
589 1.28.2.2 snj printf("%s: PCI VPD capability not found!\n",
590 1.28.2.2 snj device_xname(sc->sc_dev));
591 1.28.2.2 snj }
592 1.28.2.2 snj
593 1.28.2.4 snj ea[0] = CSR_READ_4(sc, AGE_PAR0);
594 1.28.2.4 snj ea[1] = CSR_READ_4(sc, AGE_PAR1);
595 1.28.2.2 snj
596 1.28.2.2 snj eaddr[0] = (ea[1] >> 8) & 0xFF;
597 1.28.2.2 snj eaddr[1] = (ea[1] >> 0) & 0xFF;
598 1.28.2.2 snj eaddr[2] = (ea[0] >> 24) & 0xFF;
599 1.28.2.2 snj eaddr[3] = (ea[0] >> 16) & 0xFF;
600 1.28.2.2 snj eaddr[4] = (ea[0] >> 8) & 0xFF;
601 1.28.2.2 snj eaddr[5] = (ea[0] >> 0) & 0xFF;
602 1.28.2.2 snj }
603 1.28.2.2 snj
604 1.28.2.2 snj static void
605 1.28.2.2 snj age_phy_reset(struct age_softc *sc)
606 1.28.2.2 snj {
607 1.28.2.4 snj uint16_t reg, pn;
608 1.28.2.4 snj int i, linkup;
609 1.28.2.4 snj
610 1.28.2.2 snj /* Reset PHY. */
611 1.28.2.2 snj CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
612 1.28.2.4 snj DELAY(2000);
613 1.28.2.2 snj CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
614 1.28.2.4 snj DELAY(2000);
615 1.28.2.4 snj
616 1.28.2.4 snj #define ATPHY_DBG_ADDR 0x1D
617 1.28.2.4 snj #define ATPHY_DBG_DATA 0x1E
618 1.28.2.4 snj #define ATPHY_CDTC 0x16
619 1.28.2.4 snj #define PHY_CDTC_ENB 0x0001
620 1.28.2.4 snj #define PHY_CDTC_POFF 8
621 1.28.2.4 snj #define ATPHY_CDTS 0x1C
622 1.28.2.4 snj #define PHY_CDTS_STAT_OK 0x0000
623 1.28.2.4 snj #define PHY_CDTS_STAT_SHORT 0x0100
624 1.28.2.4 snj #define PHY_CDTS_STAT_OPEN 0x0200
625 1.28.2.4 snj #define PHY_CDTS_STAT_INVAL 0x0300
626 1.28.2.4 snj #define PHY_CDTS_STAT_MASK 0x0300
627 1.28.2.4 snj
628 1.28.2.4 snj /* Check power saving mode. Magic from Linux. */
629 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
630 1.28.2.4 snj for (linkup = 0, pn = 0; pn < 4; pn++) {
631 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
632 1.28.2.4 snj (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
633 1.28.2.4 snj for (i = 200; i > 0; i--) {
634 1.28.2.4 snj DELAY(1000);
635 1.28.2.4 snj reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
636 1.28.2.4 snj ATPHY_CDTC);
637 1.28.2.4 snj if ((reg & PHY_CDTC_ENB) == 0)
638 1.28.2.4 snj break;
639 1.28.2.4 snj }
640 1.28.2.4 snj DELAY(1000);
641 1.28.2.4 snj reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
642 1.28.2.4 snj ATPHY_CDTS);
643 1.28.2.4 snj if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
644 1.28.2.4 snj linkup++;
645 1.28.2.4 snj break;
646 1.28.2.4 snj }
647 1.28.2.4 snj }
648 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
649 1.28.2.4 snj BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
650 1.28.2.4 snj if (linkup == 0) {
651 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
652 1.28.2.4 snj ATPHY_DBG_ADDR, 0);
653 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
654 1.28.2.4 snj ATPHY_DBG_DATA, 0x124E);
655 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
656 1.28.2.4 snj ATPHY_DBG_ADDR, 1);
657 1.28.2.4 snj reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
658 1.28.2.4 snj ATPHY_DBG_DATA);
659 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 1.28.2.4 snj ATPHY_DBG_DATA, reg | 0x03);
661 1.28.2.4 snj /* XXX */
662 1.28.2.4 snj DELAY(1500 * 1000);
663 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
664 1.28.2.4 snj ATPHY_DBG_ADDR, 0);
665 1.28.2.4 snj age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
666 1.28.2.4 snj ATPHY_DBG_DATA, 0x024E);
667 1.28.2.4 snj }
668 1.28.2.4 snj
669 1.28.2.4 snj #undef ATPHY_DBG_ADDR
670 1.28.2.4 snj #undef ATPHY_DBG_DATA
671 1.28.2.4 snj #undef ATPHY_CDTC
672 1.28.2.4 snj #undef PHY_CDTC_ENB
673 1.28.2.4 snj #undef PHY_CDTC_POFF
674 1.28.2.4 snj #undef ATPHY_CDTS
675 1.28.2.4 snj #undef PHY_CDTS_STAT_OK
676 1.28.2.4 snj #undef PHY_CDTS_STAT_SHORT
677 1.28.2.4 snj #undef PHY_CDTS_STAT_OPEN
678 1.28.2.4 snj #undef PHY_CDTS_STAT_INVAL
679 1.28.2.4 snj #undef PHY_CDTS_STAT_MASK
680 1.28.2.2 snj }
681 1.28.2.2 snj
682 1.28.2.2 snj static int
683 1.28.2.2 snj age_dma_alloc(struct age_softc *sc)
684 1.28.2.2 snj {
685 1.28.2.2 snj struct age_txdesc *txd;
686 1.28.2.2 snj struct age_rxdesc *rxd;
687 1.28.2.2 snj int nsegs, error, i;
688 1.28.2.2 snj
689 1.28.2.2 snj /*
690 1.28.2.2 snj * Create DMA stuffs for TX ring
691 1.28.2.2 snj */
692 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
693 1.28.2.2 snj AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
694 1.28.2.2 snj if (error) {
695 1.28.2.2 snj sc->age_cdata.age_tx_ring_map = NULL;
696 1.28.2.2 snj return ENOBUFS;
697 1.28.2.2 snj }
698 1.28.2.2 snj
699 1.28.2.2 snj /* Allocate DMA'able memory for TX ring */
700 1.28.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
701 1.28.2.2 snj ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
702 1.28.2.6 sborrill &nsegs, BUS_DMA_NOWAIT);
703 1.28.2.2 snj if (error) {
704 1.28.2.2 snj printf("%s: could not allocate DMA'able memory for Tx ring, "
705 1.28.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
706 1.28.2.2 snj return error;
707 1.28.2.2 snj }
708 1.28.2.2 snj
709 1.28.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
710 1.28.2.2 snj nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
711 1.28.2.6 sborrill BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
712 1.28.2.2 snj if (error)
713 1.28.2.2 snj return ENOBUFS;
714 1.28.2.2 snj
715 1.28.2.2 snj memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
716 1.28.2.2 snj
717 1.28.2.2 snj /* Load the DMA map for Tx ring. */
718 1.28.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
719 1.28.2.6 sborrill sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
720 1.28.2.2 snj if (error) {
721 1.28.2.2 snj printf("%s: could not load DMA'able memory for Tx ring, "
722 1.28.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
723 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
724 1.28.2.2 snj &sc->age_rdata.age_tx_ring_seg, 1);
725 1.28.2.2 snj return error;
726 1.28.2.2 snj }
727 1.28.2.2 snj
728 1.28.2.2 snj sc->age_rdata.age_tx_ring_paddr =
729 1.28.2.2 snj sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
730 1.28.2.2 snj
731 1.28.2.2 snj /*
732 1.28.2.2 snj * Create DMA stuffs for RX ring
733 1.28.2.2 snj */
734 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
735 1.28.2.2 snj AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
736 1.28.2.2 snj if (error) {
737 1.28.2.2 snj sc->age_cdata.age_rx_ring_map = NULL;
738 1.28.2.2 snj return ENOBUFS;
739 1.28.2.2 snj }
740 1.28.2.2 snj
741 1.28.2.2 snj /* Allocate DMA'able memory for RX ring */
742 1.28.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
743 1.28.2.2 snj ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
744 1.28.2.6 sborrill &nsegs, BUS_DMA_NOWAIT);
745 1.28.2.2 snj if (error) {
746 1.28.2.2 snj printf("%s: could not allocate DMA'able memory for Rx ring, "
747 1.28.2.2 snj "error = %i.\n", device_xname(sc->sc_dev), error);
748 1.28.2.2 snj return error;
749 1.28.2.2 snj }
750 1.28.2.2 snj
751 1.28.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
752 1.28.2.2 snj nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
753 1.28.2.6 sborrill BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
754 1.28.2.2 snj if (error)
755 1.28.2.2 snj return ENOBUFS;
756 1.28.2.2 snj
757 1.28.2.2 snj memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
758 1.28.2.2 snj
759 1.28.2.2 snj /* Load the DMA map for Rx ring. */
760 1.28.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
761 1.28.2.6 sborrill sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
762 1.28.2.2 snj if (error) {
763 1.28.2.2 snj printf("%s: could not load DMA'able memory for Rx ring, "
764 1.28.2.2 snj "error = %i.\n", device_xname(sc->sc_dev), error);
765 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
766 1.28.2.2 snj &sc->age_rdata.age_rx_ring_seg, 1);
767 1.28.2.2 snj return error;
768 1.28.2.2 snj }
769 1.28.2.2 snj
770 1.28.2.2 snj sc->age_rdata.age_rx_ring_paddr =
771 1.28.2.2 snj sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
772 1.28.2.2 snj
773 1.28.2.2 snj /*
774 1.28.2.2 snj * Create DMA stuffs for RX return ring
775 1.28.2.2 snj */
776 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
777 1.28.2.2 snj AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
778 1.28.2.2 snj if (error) {
779 1.28.2.2 snj sc->age_cdata.age_rr_ring_map = NULL;
780 1.28.2.2 snj return ENOBUFS;
781 1.28.2.2 snj }
782 1.28.2.2 snj
783 1.28.2.2 snj /* Allocate DMA'able memory for RX return ring */
784 1.28.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
785 1.28.2.2 snj ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
786 1.28.2.6 sborrill &nsegs, BUS_DMA_NOWAIT);
787 1.28.2.2 snj if (error) {
788 1.28.2.2 snj printf("%s: could not allocate DMA'able memory for Rx "
789 1.28.2.2 snj "return ring, error = %i.\n",
790 1.28.2.2 snj device_xname(sc->sc_dev), error);
791 1.28.2.2 snj return error;
792 1.28.2.2 snj }
793 1.28.2.2 snj
794 1.28.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
795 1.28.2.2 snj nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
796 1.28.2.6 sborrill BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
797 1.28.2.2 snj if (error)
798 1.28.2.2 snj return ENOBUFS;
799 1.28.2.2 snj
800 1.28.2.2 snj memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
801 1.28.2.2 snj
802 1.28.2.2 snj /* Load the DMA map for Rx return ring. */
803 1.28.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
804 1.28.2.6 sborrill sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
805 1.28.2.2 snj if (error) {
806 1.28.2.2 snj printf("%s: could not load DMA'able memory for Rx return ring, "
807 1.28.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
808 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
809 1.28.2.2 snj &sc->age_rdata.age_rr_ring_seg, 1);
810 1.28.2.2 snj return error;
811 1.28.2.2 snj }
812 1.28.2.2 snj
813 1.28.2.2 snj sc->age_rdata.age_rr_ring_paddr =
814 1.28.2.2 snj sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
815 1.28.2.2 snj
816 1.28.2.2 snj /*
817 1.28.2.2 snj * Create DMA stuffs for CMB block
818 1.28.2.2 snj */
819 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
820 1.28.2.2 snj AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
821 1.28.2.2 snj &sc->age_cdata.age_cmb_block_map);
822 1.28.2.2 snj if (error) {
823 1.28.2.2 snj sc->age_cdata.age_cmb_block_map = NULL;
824 1.28.2.2 snj return ENOBUFS;
825 1.28.2.2 snj }
826 1.28.2.2 snj
827 1.28.2.2 snj /* Allocate DMA'able memory for CMB block */
828 1.28.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
829 1.28.2.2 snj ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
830 1.28.2.6 sborrill &nsegs, BUS_DMA_NOWAIT);
831 1.28.2.2 snj if (error) {
832 1.28.2.2 snj printf("%s: could not allocate DMA'able memory for "
833 1.28.2.2 snj "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
834 1.28.2.2 snj return error;
835 1.28.2.2 snj }
836 1.28.2.2 snj
837 1.28.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
838 1.28.2.2 snj nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
839 1.28.2.6 sborrill BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
840 1.28.2.2 snj if (error)
841 1.28.2.2 snj return ENOBUFS;
842 1.28.2.2 snj
843 1.28.2.2 snj memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
844 1.28.2.2 snj
845 1.28.2.2 snj /* Load the DMA map for CMB block. */
846 1.28.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
847 1.28.2.2 snj sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
848 1.28.2.6 sborrill BUS_DMA_NOWAIT);
849 1.28.2.2 snj if (error) {
850 1.28.2.2 snj printf("%s: could not load DMA'able memory for CMB block, "
851 1.28.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
852 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
853 1.28.2.2 snj &sc->age_rdata.age_cmb_block_seg, 1);
854 1.28.2.2 snj return error;
855 1.28.2.2 snj }
856 1.28.2.2 snj
857 1.28.2.2 snj sc->age_rdata.age_cmb_block_paddr =
858 1.28.2.2 snj sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
859 1.28.2.2 snj
860 1.28.2.2 snj /*
861 1.28.2.2 snj * Create DMA stuffs for SMB block
862 1.28.2.2 snj */
863 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
864 1.28.2.2 snj AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
865 1.28.2.2 snj &sc->age_cdata.age_smb_block_map);
866 1.28.2.2 snj if (error) {
867 1.28.2.2 snj sc->age_cdata.age_smb_block_map = NULL;
868 1.28.2.2 snj return ENOBUFS;
869 1.28.2.2 snj }
870 1.28.2.2 snj
871 1.28.2.2 snj /* Allocate DMA'able memory for SMB block */
872 1.28.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
873 1.28.2.2 snj ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
874 1.28.2.6 sborrill &nsegs, BUS_DMA_NOWAIT);
875 1.28.2.2 snj if (error) {
876 1.28.2.2 snj printf("%s: could not allocate DMA'able memory for "
877 1.28.2.2 snj "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
878 1.28.2.2 snj return error;
879 1.28.2.2 snj }
880 1.28.2.2 snj
881 1.28.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
882 1.28.2.2 snj nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
883 1.28.2.6 sborrill BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
884 1.28.2.2 snj if (error)
885 1.28.2.2 snj return ENOBUFS;
886 1.28.2.2 snj
887 1.28.2.2 snj memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
888 1.28.2.2 snj
889 1.28.2.2 snj /* Load the DMA map for SMB block */
890 1.28.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
891 1.28.2.2 snj sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
892 1.28.2.6 sborrill BUS_DMA_NOWAIT);
893 1.28.2.2 snj if (error) {
894 1.28.2.2 snj printf("%s: could not load DMA'able memory for SMB block, "
895 1.28.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
896 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
897 1.28.2.2 snj &sc->age_rdata.age_smb_block_seg, 1);
898 1.28.2.2 snj return error;
899 1.28.2.2 snj }
900 1.28.2.2 snj
901 1.28.2.2 snj sc->age_rdata.age_smb_block_paddr =
902 1.28.2.2 snj sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
903 1.28.2.2 snj
904 1.28.2.2 snj /* Create DMA maps for Tx buffers. */
905 1.28.2.2 snj for (i = 0; i < AGE_TX_RING_CNT; i++) {
906 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[i];
907 1.28.2.2 snj txd->tx_m = NULL;
908 1.28.2.2 snj txd->tx_dmamap = NULL;
909 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
910 1.28.2.2 snj AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
911 1.28.2.2 snj &txd->tx_dmamap);
912 1.28.2.2 snj if (error) {
913 1.28.2.2 snj txd->tx_dmamap = NULL;
914 1.28.2.2 snj printf("%s: could not create Tx dmamap, error = %i.\n",
915 1.28.2.2 snj device_xname(sc->sc_dev), error);
916 1.28.2.2 snj return error;
917 1.28.2.2 snj }
918 1.28.2.2 snj }
919 1.28.2.2 snj
920 1.28.2.2 snj /* Create DMA maps for Rx buffers. */
921 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
922 1.28.2.2 snj BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
923 1.28.2.2 snj if (error) {
924 1.28.2.2 snj sc->age_cdata.age_rx_sparemap = NULL;
925 1.28.2.2 snj printf("%s: could not create spare Rx dmamap, error = %i.\n",
926 1.28.2.2 snj device_xname(sc->sc_dev), error);
927 1.28.2.2 snj return error;
928 1.28.2.2 snj }
929 1.28.2.2 snj for (i = 0; i < AGE_RX_RING_CNT; i++) {
930 1.28.2.2 snj rxd = &sc->age_cdata.age_rxdesc[i];
931 1.28.2.2 snj rxd->rx_m = NULL;
932 1.28.2.2 snj rxd->rx_dmamap = NULL;
933 1.28.2.2 snj error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
934 1.28.2.2 snj MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
935 1.28.2.2 snj if (error) {
936 1.28.2.2 snj rxd->rx_dmamap = NULL;
937 1.28.2.2 snj printf("%s: could not create Rx dmamap, error = %i.\n",
938 1.28.2.2 snj device_xname(sc->sc_dev), error);
939 1.28.2.2 snj return error;
940 1.28.2.2 snj }
941 1.28.2.2 snj }
942 1.28.2.2 snj
943 1.28.2.2 snj return 0;
944 1.28.2.2 snj }
945 1.28.2.2 snj
946 1.28.2.2 snj static void
947 1.28.2.2 snj age_dma_free(struct age_softc *sc)
948 1.28.2.2 snj {
949 1.28.2.2 snj struct age_txdesc *txd;
950 1.28.2.2 snj struct age_rxdesc *rxd;
951 1.28.2.2 snj int i;
952 1.28.2.2 snj
953 1.28.2.2 snj /* Tx buffers */
954 1.28.2.2 snj for (i = 0; i < AGE_TX_RING_CNT; i++) {
955 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[i];
956 1.28.2.2 snj if (txd->tx_dmamap != NULL) {
957 1.28.2.2 snj bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
958 1.28.2.2 snj txd->tx_dmamap = NULL;
959 1.28.2.2 snj }
960 1.28.2.2 snj }
961 1.28.2.2 snj /* Rx buffers */
962 1.28.2.2 snj for (i = 0; i < AGE_RX_RING_CNT; i++) {
963 1.28.2.2 snj rxd = &sc->age_cdata.age_rxdesc[i];
964 1.28.2.2 snj if (rxd->rx_dmamap != NULL) {
965 1.28.2.2 snj bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
966 1.28.2.2 snj rxd->rx_dmamap = NULL;
967 1.28.2.2 snj }
968 1.28.2.2 snj }
969 1.28.2.2 snj if (sc->age_cdata.age_rx_sparemap != NULL) {
970 1.28.2.2 snj bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
971 1.28.2.2 snj sc->age_cdata.age_rx_sparemap = NULL;
972 1.28.2.2 snj }
973 1.28.2.2 snj
974 1.28.2.2 snj /* Tx ring. */
975 1.28.2.2 snj if (sc->age_cdata.age_tx_ring_map != NULL)
976 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
977 1.28.2.2 snj if (sc->age_cdata.age_tx_ring_map != NULL &&
978 1.28.2.2 snj sc->age_rdata.age_tx_ring != NULL)
979 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
980 1.28.2.2 snj &sc->age_rdata.age_tx_ring_seg, 1);
981 1.28.2.2 snj sc->age_rdata.age_tx_ring = NULL;
982 1.28.2.2 snj sc->age_cdata.age_tx_ring_map = NULL;
983 1.28.2.2 snj
984 1.28.2.2 snj /* Rx ring. */
985 1.28.2.2 snj if (sc->age_cdata.age_rx_ring_map != NULL)
986 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
987 1.28.2.2 snj if (sc->age_cdata.age_rx_ring_map != NULL &&
988 1.28.2.2 snj sc->age_rdata.age_rx_ring != NULL)
989 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
990 1.28.2.2 snj &sc->age_rdata.age_rx_ring_seg, 1);
991 1.28.2.2 snj sc->age_rdata.age_rx_ring = NULL;
992 1.28.2.2 snj sc->age_cdata.age_rx_ring_map = NULL;
993 1.28.2.2 snj
994 1.28.2.2 snj /* Rx return ring. */
995 1.28.2.2 snj if (sc->age_cdata.age_rr_ring_map != NULL)
996 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
997 1.28.2.2 snj if (sc->age_cdata.age_rr_ring_map != NULL &&
998 1.28.2.2 snj sc->age_rdata.age_rr_ring != NULL)
999 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
1000 1.28.2.2 snj &sc->age_rdata.age_rr_ring_seg, 1);
1001 1.28.2.2 snj sc->age_rdata.age_rr_ring = NULL;
1002 1.28.2.2 snj sc->age_cdata.age_rr_ring_map = NULL;
1003 1.28.2.2 snj
1004 1.28.2.2 snj /* CMB block */
1005 1.28.2.2 snj if (sc->age_cdata.age_cmb_block_map != NULL)
1006 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1007 1.28.2.2 snj if (sc->age_cdata.age_cmb_block_map != NULL &&
1008 1.28.2.2 snj sc->age_rdata.age_cmb_block != NULL)
1009 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
1010 1.28.2.2 snj &sc->age_rdata.age_cmb_block_seg, 1);
1011 1.28.2.2 snj sc->age_rdata.age_cmb_block = NULL;
1012 1.28.2.2 snj sc->age_cdata.age_cmb_block_map = NULL;
1013 1.28.2.2 snj
1014 1.28.2.2 snj /* SMB block */
1015 1.28.2.2 snj if (sc->age_cdata.age_smb_block_map != NULL)
1016 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1017 1.28.2.2 snj if (sc->age_cdata.age_smb_block_map != NULL &&
1018 1.28.2.2 snj sc->age_rdata.age_smb_block != NULL)
1019 1.28.2.2 snj bus_dmamem_free(sc->sc_dmat,
1020 1.28.2.2 snj &sc->age_rdata.age_smb_block_seg, 1);
1021 1.28.2.2 snj sc->age_rdata.age_smb_block = NULL;
1022 1.28.2.2 snj sc->age_cdata.age_smb_block_map = NULL;
1023 1.28.2.2 snj }
1024 1.28.2.2 snj
1025 1.28.2.2 snj static void
1026 1.28.2.2 snj age_start(struct ifnet *ifp)
1027 1.28.2.2 snj {
1028 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
1029 1.28.2.2 snj struct mbuf *m_head;
1030 1.28.2.2 snj int enq;
1031 1.28.2.2 snj
1032 1.28.2.2 snj if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1033 1.28.2.2 snj return;
1034 1.28.2.6 sborrill if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1035 1.28.2.6 sborrill return;
1036 1.28.2.6 sborrill if (IFQ_IS_EMPTY(&ifp->if_snd))
1037 1.28.2.6 sborrill return;
1038 1.28.2.2 snj
1039 1.28.2.2 snj enq = 0;
1040 1.28.2.2 snj for (;;) {
1041 1.28.2.2 snj IFQ_DEQUEUE(&ifp->if_snd, m_head);
1042 1.28.2.2 snj if (m_head == NULL)
1043 1.28.2.2 snj break;
1044 1.28.2.2 snj
1045 1.28.2.2 snj /*
1046 1.28.2.2 snj * Pack the data into the transmit ring. If we
1047 1.28.2.2 snj * don't have room, set the OACTIVE flag and wait
1048 1.28.2.2 snj * for the NIC to drain the ring.
1049 1.28.2.2 snj */
1050 1.28.2.2 snj if (age_encap(sc, &m_head)) {
1051 1.28.2.2 snj if (m_head == NULL)
1052 1.28.2.2 snj break;
1053 1.28.2.5 snj IF_PREPEND(&ifp->if_snd, m_head);
1054 1.28.2.2 snj ifp->if_flags |= IFF_OACTIVE;
1055 1.28.2.2 snj break;
1056 1.28.2.2 snj }
1057 1.28.2.2 snj enq = 1;
1058 1.28.2.2 snj
1059 1.28.2.2 snj #if NBPFILTER > 0
1060 1.28.2.2 snj /*
1061 1.28.2.2 snj * If there's a BPF listener, bounce a copy of this frame
1062 1.28.2.2 snj * to him.
1063 1.28.2.2 snj */
1064 1.28.2.2 snj if (ifp->if_bpf != NULL)
1065 1.28.2.2 snj bpf_mtap(ifp->if_bpf, m_head);
1066 1.28.2.2 snj #endif
1067 1.28.2.2 snj }
1068 1.28.2.2 snj
1069 1.28.2.2 snj if (enq) {
1070 1.28.2.2 snj /* Update mbox. */
1071 1.28.2.2 snj AGE_COMMIT_MBOX(sc);
1072 1.28.2.2 snj /* Set a timeout in case the chip goes out to lunch. */
1073 1.28.2.2 snj ifp->if_timer = AGE_TX_TIMEOUT;
1074 1.28.2.2 snj }
1075 1.28.2.2 snj }
1076 1.28.2.2 snj
1077 1.28.2.2 snj static void
1078 1.28.2.2 snj age_watchdog(struct ifnet *ifp)
1079 1.28.2.2 snj {
1080 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
1081 1.28.2.2 snj
1082 1.28.2.2 snj if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1083 1.28.2.2 snj printf("%s: watchdog timeout (missed link)\n",
1084 1.28.2.2 snj device_xname(sc->sc_dev));
1085 1.28.2.2 snj ifp->if_oerrors++;
1086 1.28.2.2 snj age_init(ifp);
1087 1.28.2.2 snj return;
1088 1.28.2.2 snj }
1089 1.28.2.2 snj
1090 1.28.2.2 snj if (sc->age_cdata.age_tx_cnt == 0) {
1091 1.28.2.2 snj printf("%s: watchdog timeout (missed Tx interrupts) "
1092 1.28.2.2 snj "-- recovering\n", device_xname(sc->sc_dev));
1093 1.28.2.6 sborrill age_start(ifp);
1094 1.28.2.2 snj return;
1095 1.28.2.2 snj }
1096 1.28.2.2 snj
1097 1.28.2.2 snj printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1098 1.28.2.2 snj ifp->if_oerrors++;
1099 1.28.2.2 snj age_init(ifp);
1100 1.28.2.6 sborrill age_start(ifp);
1101 1.28.2.2 snj }
1102 1.28.2.2 snj
1103 1.28.2.6 sborrill static bool
1104 1.28.2.6 sborrill age_shutdown(device_t self, int howto)
1105 1.28.2.6 sborrill {
1106 1.28.2.6 sborrill struct age_softc *sc;
1107 1.28.2.6 sborrill struct ifnet *ifp;
1108 1.28.2.6 sborrill
1109 1.28.2.6 sborrill sc = device_private(self);
1110 1.28.2.6 sborrill ifp = &sc->sc_ec.ec_if;
1111 1.28.2.6 sborrill age_stop(ifp, 1);
1112 1.28.2.6 sborrill
1113 1.28.2.6 sborrill return true;
1114 1.28.2.6 sborrill }
1115 1.28.2.6 sborrill
1116 1.28.2.6 sborrill
1117 1.28.2.2 snj static int
1118 1.28.2.2 snj age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1119 1.28.2.2 snj {
1120 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
1121 1.28.2.2 snj int s, error;
1122 1.28.2.2 snj
1123 1.28.2.2 snj s = splnet();
1124 1.28.2.2 snj
1125 1.28.2.2 snj error = ether_ioctl(ifp, cmd, data);
1126 1.28.2.2 snj if (error == ENETRESET) {
1127 1.28.2.2 snj if (ifp->if_flags & IFF_RUNNING)
1128 1.28.2.2 snj age_rxfilter(sc);
1129 1.28.2.2 snj error = 0;
1130 1.28.2.2 snj }
1131 1.28.2.2 snj
1132 1.28.2.2 snj splx(s);
1133 1.28.2.2 snj return error;
1134 1.28.2.2 snj }
1135 1.28.2.2 snj
1136 1.28.2.2 snj static void
1137 1.28.2.2 snj age_mac_config(struct age_softc *sc)
1138 1.28.2.2 snj {
1139 1.28.2.2 snj struct mii_data *mii;
1140 1.28.2.2 snj uint32_t reg;
1141 1.28.2.2 snj
1142 1.28.2.2 snj mii = &sc->sc_miibus;
1143 1.28.2.2 snj
1144 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
1145 1.28.2.2 snj reg &= ~MAC_CFG_FULL_DUPLEX;
1146 1.28.2.2 snj reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1147 1.28.2.2 snj reg &= ~MAC_CFG_SPEED_MASK;
1148 1.28.2.2 snj
1149 1.28.2.2 snj /* Reprogram MAC with resolved speed/duplex. */
1150 1.28.2.2 snj switch (IFM_SUBTYPE(mii->mii_media_active)) {
1151 1.28.2.2 snj case IFM_10_T:
1152 1.28.2.2 snj case IFM_100_TX:
1153 1.28.2.2 snj reg |= MAC_CFG_SPEED_10_100;
1154 1.28.2.2 snj break;
1155 1.28.2.2 snj case IFM_1000_T:
1156 1.28.2.2 snj reg |= MAC_CFG_SPEED_1000;
1157 1.28.2.2 snj break;
1158 1.28.2.2 snj }
1159 1.28.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1160 1.28.2.2 snj reg |= MAC_CFG_FULL_DUPLEX;
1161 1.28.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1162 1.28.2.2 snj reg |= MAC_CFG_TX_FC;
1163 1.28.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1164 1.28.2.2 snj reg |= MAC_CFG_RX_FC;
1165 1.28.2.2 snj }
1166 1.28.2.2 snj
1167 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1168 1.28.2.2 snj }
1169 1.28.2.2 snj
1170 1.28.2.2 snj static bool
1171 1.28.2.2 snj age_resume(device_t dv PMF_FN_ARGS)
1172 1.28.2.2 snj {
1173 1.28.2.2 snj struct age_softc *sc = device_private(dv);
1174 1.28.2.2 snj uint16_t cmd;
1175 1.28.2.2 snj
1176 1.28.2.2 snj /*
1177 1.28.2.2 snj * Clear INTx emulation disable for hardware that
1178 1.28.2.2 snj * is set in resume event. From Linux.
1179 1.28.2.2 snj */
1180 1.28.2.2 snj cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1181 1.28.2.2 snj if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1182 1.28.2.2 snj cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1183 1.28.2.2 snj pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1184 1.28.2.2 snj PCI_COMMAND_STATUS_REG, cmd);
1185 1.28.2.2 snj }
1186 1.28.2.2 snj
1187 1.28.2.2 snj return true;
1188 1.28.2.2 snj }
1189 1.28.2.2 snj
1190 1.28.2.2 snj static int
1191 1.28.2.2 snj age_encap(struct age_softc *sc, struct mbuf **m_head)
1192 1.28.2.2 snj {
1193 1.28.2.2 snj struct age_txdesc *txd, *txd_last;
1194 1.28.2.2 snj struct tx_desc *desc;
1195 1.28.2.2 snj struct mbuf *m;
1196 1.28.2.2 snj bus_dmamap_t map;
1197 1.28.2.2 snj uint32_t cflags, poff, vtag;
1198 1.28.2.2 snj int error, i, nsegs, prod;
1199 1.28.2.2 snj #if NVLAN > 0
1200 1.28.2.2 snj struct m_tag *mtag;
1201 1.28.2.2 snj #endif
1202 1.28.2.2 snj
1203 1.28.2.2 snj m = *m_head;
1204 1.28.2.2 snj cflags = vtag = 0;
1205 1.28.2.2 snj poff = 0;
1206 1.28.2.2 snj
1207 1.28.2.2 snj prod = sc->age_cdata.age_tx_prod;
1208 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[prod];
1209 1.28.2.2 snj txd_last = txd;
1210 1.28.2.2 snj map = txd->tx_dmamap;
1211 1.28.2.2 snj
1212 1.28.2.2 snj error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1213 1.28.2.2 snj
1214 1.28.2.2 snj if (error == EFBIG) {
1215 1.28.2.2 snj error = 0;
1216 1.28.2.2 snj
1217 1.28.2.5 snj *m_head = m_pullup(*m_head, MHLEN);
1218 1.28.2.5 snj if (*m_head == NULL) {
1219 1.28.2.2 snj printf("%s: can't defrag TX mbuf\n",
1220 1.28.2.2 snj device_xname(sc->sc_dev));
1221 1.28.2.2 snj return ENOBUFS;
1222 1.28.2.2 snj }
1223 1.28.2.2 snj
1224 1.28.2.2 snj error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1225 1.28.2.2 snj BUS_DMA_NOWAIT);
1226 1.28.2.2 snj
1227 1.28.2.2 snj if (error != 0) {
1228 1.28.2.2 snj printf("%s: could not load defragged TX mbuf\n",
1229 1.28.2.2 snj device_xname(sc->sc_dev));
1230 1.28.2.2 snj m_freem(*m_head);
1231 1.28.2.2 snj *m_head = NULL;
1232 1.28.2.2 snj return error;
1233 1.28.2.2 snj }
1234 1.28.2.2 snj } else if (error) {
1235 1.28.2.2 snj printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1236 1.28.2.2 snj return error;
1237 1.28.2.2 snj }
1238 1.28.2.2 snj
1239 1.28.2.2 snj nsegs = map->dm_nsegs;
1240 1.28.2.2 snj
1241 1.28.2.2 snj if (nsegs == 0) {
1242 1.28.2.2 snj m_freem(*m_head);
1243 1.28.2.2 snj *m_head = NULL;
1244 1.28.2.2 snj return EIO;
1245 1.28.2.2 snj }
1246 1.28.2.2 snj
1247 1.28.2.2 snj /* Check descriptor overrun. */
1248 1.28.2.2 snj if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1249 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, map);
1250 1.28.2.2 snj return ENOBUFS;
1251 1.28.2.2 snj }
1252 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1253 1.28.2.6 sborrill BUS_DMASYNC_PREWRITE);
1254 1.28.2.2 snj
1255 1.28.2.2 snj m = *m_head;
1256 1.28.2.2 snj /* Configure Tx IP/TCP/UDP checksum offload. */
1257 1.28.2.2 snj if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1258 1.28.2.2 snj cflags |= AGE_TD_CSUM;
1259 1.28.2.2 snj if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1260 1.28.2.2 snj cflags |= AGE_TD_TCPCSUM;
1261 1.28.2.2 snj if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1262 1.28.2.2 snj cflags |= AGE_TD_UDPCSUM;
1263 1.28.2.2 snj /* Set checksum start offset. */
1264 1.28.2.2 snj cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1265 1.28.2.2 snj }
1266 1.28.2.2 snj
1267 1.28.2.2 snj #if NVLAN > 0
1268 1.28.2.2 snj /* Configure VLAN hardware tag insertion. */
1269 1.28.2.2 snj if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1270 1.28.2.2 snj vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1271 1.28.2.2 snj vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1272 1.28.2.2 snj cflags |= AGE_TD_INSERT_VLAN_TAG;
1273 1.28.2.2 snj }
1274 1.28.2.2 snj #endif
1275 1.28.2.2 snj
1276 1.28.2.2 snj desc = NULL;
1277 1.28.2.6 sborrill KASSERT(nsegs > 0);
1278 1.28.2.6 sborrill for (i = 0; ; i++) {
1279 1.28.2.2 snj desc = &sc->age_rdata.age_tx_ring[prod];
1280 1.28.2.2 snj desc->addr = htole64(map->dm_segs[i].ds_addr);
1281 1.28.2.2 snj desc->len =
1282 1.28.2.2 snj htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1283 1.28.2.2 snj desc->flags = htole32(cflags);
1284 1.28.2.2 snj sc->age_cdata.age_tx_cnt++;
1285 1.28.2.6 sborrill if (i == (nsegs - 1))
1286 1.28.2.6 sborrill break;
1287 1.28.2.6 sborrill
1288 1.28.2.6 sborrill /* sync this descriptor and go to the next one */
1289 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1290 1.28.2.6 sborrill prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1291 1.28.2.6 sborrill BUS_DMASYNC_PREWRITE);
1292 1.28.2.2 snj AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1293 1.28.2.2 snj }
1294 1.28.2.2 snj
1295 1.28.2.6 sborrill /* Set EOP on the last descriptor and sync it. */
1296 1.28.2.2 snj desc->flags |= htole32(AGE_TD_EOP);
1297 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1298 1.28.2.6 sborrill prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1299 1.28.2.6 sborrill BUS_DMASYNC_PREWRITE);
1300 1.28.2.2 snj
1301 1.28.2.6 sborrill if (nsegs > 1) {
1302 1.28.2.6 sborrill /* Swap dmamap of the first and the last. */
1303 1.28.2.6 sborrill txd = &sc->age_cdata.age_txdesc[prod];
1304 1.28.2.6 sborrill map = txd_last->tx_dmamap;
1305 1.28.2.6 sborrill txd_last->tx_dmamap = txd->tx_dmamap;
1306 1.28.2.6 sborrill txd->tx_dmamap = map;
1307 1.28.2.6 sborrill txd->tx_m = m;
1308 1.28.2.6 sborrill KASSERT(txd_last->tx_m == NULL);
1309 1.28.2.6 sborrill } else {
1310 1.28.2.6 sborrill KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1311 1.28.2.6 sborrill txd_last->tx_m = m;
1312 1.28.2.6 sborrill }
1313 1.28.2.2 snj
1314 1.28.2.6 sborrill /* Update producer index. */
1315 1.28.2.6 sborrill AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1316 1.28.2.6 sborrill sc->age_cdata.age_tx_prod = prod;
1317 1.28.2.2 snj
1318 1.28.2.2 snj return 0;
1319 1.28.2.2 snj }
1320 1.28.2.2 snj
1321 1.28.2.2 snj static void
1322 1.28.2.2 snj age_txintr(struct age_softc *sc, int tpd_cons)
1323 1.28.2.2 snj {
1324 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1325 1.28.2.2 snj struct age_txdesc *txd;
1326 1.28.2.2 snj int cons, prog;
1327 1.28.2.2 snj
1328 1.28.2.6 sborrill
1329 1.28.2.6 sborrill if (sc->age_cdata.age_tx_cnt <= 0) {
1330 1.28.2.6 sborrill if (ifp->if_timer != 0)
1331 1.28.2.6 sborrill printf("timer running without packets\n");
1332 1.28.2.6 sborrill if (sc->age_cdata.age_tx_cnt)
1333 1.28.2.6 sborrill printf("age_tx_cnt corrupted\n");
1334 1.28.2.6 sborrill }
1335 1.28.2.2 snj
1336 1.28.2.2 snj /*
1337 1.28.2.2 snj * Go through our Tx list and free mbufs for those
1338 1.28.2.2 snj * frames which have been transmitted.
1339 1.28.2.2 snj */
1340 1.28.2.2 snj cons = sc->age_cdata.age_tx_cons;
1341 1.28.2.2 snj for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1342 1.28.2.2 snj if (sc->age_cdata.age_tx_cnt <= 0)
1343 1.28.2.2 snj break;
1344 1.28.2.2 snj prog++;
1345 1.28.2.2 snj ifp->if_flags &= ~IFF_OACTIVE;
1346 1.28.2.2 snj sc->age_cdata.age_tx_cnt--;
1347 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[cons];
1348 1.28.2.2 snj /*
1349 1.28.2.2 snj * Clear Tx descriptors, it's not required but would
1350 1.28.2.2 snj * help debugging in case of Tx issues.
1351 1.28.2.2 snj */
1352 1.28.2.6 sborrill bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1353 1.28.2.6 sborrill cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1354 1.28.2.6 sborrill BUS_DMASYNC_POSTWRITE);
1355 1.28.2.2 snj txd->tx_desc->addr = 0;
1356 1.28.2.2 snj txd->tx_desc->len = 0;
1357 1.28.2.2 snj txd->tx_desc->flags = 0;
1358 1.28.2.2 snj
1359 1.28.2.2 snj if (txd->tx_m == NULL)
1360 1.28.2.2 snj continue;
1361 1.28.2.2 snj /* Reclaim transmitted mbufs. */
1362 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1363 1.28.2.2 snj m_freem(txd->tx_m);
1364 1.28.2.2 snj txd->tx_m = NULL;
1365 1.28.2.2 snj }
1366 1.28.2.2 snj
1367 1.28.2.2 snj if (prog > 0) {
1368 1.28.2.2 snj sc->age_cdata.age_tx_cons = cons;
1369 1.28.2.2 snj
1370 1.28.2.2 snj /*
1371 1.28.2.2 snj * Unarm watchdog timer only when there are no pending
1372 1.28.2.2 snj * Tx descriptors in queue.
1373 1.28.2.2 snj */
1374 1.28.2.2 snj if (sc->age_cdata.age_tx_cnt == 0)
1375 1.28.2.2 snj ifp->if_timer = 0;
1376 1.28.2.2 snj }
1377 1.28.2.2 snj }
1378 1.28.2.2 snj
1379 1.28.2.2 snj /* Receive a frame. */
1380 1.28.2.2 snj static void
1381 1.28.2.2 snj age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1382 1.28.2.2 snj {
1383 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1384 1.28.2.2 snj struct age_rxdesc *rxd;
1385 1.28.2.2 snj struct rx_desc *desc;
1386 1.28.2.2 snj struct mbuf *mp, *m;
1387 1.28.2.2 snj uint32_t status, index;
1388 1.28.2.2 snj int count, nsegs, pktlen;
1389 1.28.2.2 snj int rx_cons;
1390 1.28.2.2 snj
1391 1.28.2.2 snj status = le32toh(rxrd->flags);
1392 1.28.2.2 snj index = le32toh(rxrd->index);
1393 1.28.2.2 snj rx_cons = AGE_RX_CONS(index);
1394 1.28.2.2 snj nsegs = AGE_RX_NSEGS(index);
1395 1.28.2.2 snj
1396 1.28.2.2 snj sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1397 1.28.2.2 snj if ((status & AGE_RRD_ERROR) != 0 &&
1398 1.28.2.2 snj (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1399 1.28.2.2 snj AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1400 1.28.2.2 snj /*
1401 1.28.2.2 snj * We want to pass the following frames to upper
1402 1.28.2.2 snj * layer regardless of error status of Rx return
1403 1.28.2.2 snj * ring.
1404 1.28.2.2 snj *
1405 1.28.2.2 snj * o IP/TCP/UDP checksum is bad.
1406 1.28.2.2 snj * o frame length and protocol specific length
1407 1.28.2.2 snj * does not match.
1408 1.28.2.2 snj */
1409 1.28.2.2 snj sc->age_cdata.age_rx_cons += nsegs;
1410 1.28.2.2 snj sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1411 1.28.2.2 snj return;
1412 1.28.2.2 snj }
1413 1.28.2.2 snj
1414 1.28.2.2 snj pktlen = 0;
1415 1.28.2.2 snj for (count = 0; count < nsegs; count++,
1416 1.28.2.2 snj AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1417 1.28.2.2 snj rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1418 1.28.2.2 snj mp = rxd->rx_m;
1419 1.28.2.2 snj desc = rxd->rx_desc;
1420 1.28.2.2 snj /* Add a new receive buffer to the ring. */
1421 1.28.2.2 snj if (age_newbuf(sc, rxd, 0) != 0) {
1422 1.28.2.2 snj ifp->if_iqdrops++;
1423 1.28.2.2 snj /* Reuse Rx buffers. */
1424 1.28.2.2 snj if (sc->age_cdata.age_rxhead != NULL) {
1425 1.28.2.2 snj m_freem(sc->age_cdata.age_rxhead);
1426 1.28.2.2 snj AGE_RXCHAIN_RESET(sc);
1427 1.28.2.2 snj }
1428 1.28.2.2 snj break;
1429 1.28.2.2 snj }
1430 1.28.2.2 snj
1431 1.28.2.2 snj /* The length of the first mbuf is computed last. */
1432 1.28.2.2 snj if (count != 0) {
1433 1.28.2.2 snj mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1434 1.28.2.2 snj pktlen += mp->m_len;
1435 1.28.2.2 snj }
1436 1.28.2.2 snj
1437 1.28.2.2 snj /* Chain received mbufs. */
1438 1.28.2.2 snj if (sc->age_cdata.age_rxhead == NULL) {
1439 1.28.2.2 snj sc->age_cdata.age_rxhead = mp;
1440 1.28.2.2 snj sc->age_cdata.age_rxtail = mp;
1441 1.28.2.2 snj } else {
1442 1.28.2.2 snj mp->m_flags &= ~M_PKTHDR;
1443 1.28.2.2 snj sc->age_cdata.age_rxprev_tail =
1444 1.28.2.2 snj sc->age_cdata.age_rxtail;
1445 1.28.2.2 snj sc->age_cdata.age_rxtail->m_next = mp;
1446 1.28.2.2 snj sc->age_cdata.age_rxtail = mp;
1447 1.28.2.2 snj }
1448 1.28.2.2 snj
1449 1.28.2.2 snj if (count == nsegs - 1) {
1450 1.28.2.2 snj /*
1451 1.28.2.2 snj * It seems that L1 controller has no way
1452 1.28.2.2 snj * to tell hardware to strip CRC bytes.
1453 1.28.2.2 snj */
1454 1.28.2.2 snj sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1455 1.28.2.2 snj if (nsegs > 1) {
1456 1.28.2.2 snj /* Remove the CRC bytes in chained mbufs. */
1457 1.28.2.2 snj pktlen -= ETHER_CRC_LEN;
1458 1.28.2.2 snj if (mp->m_len <= ETHER_CRC_LEN) {
1459 1.28.2.2 snj sc->age_cdata.age_rxtail =
1460 1.28.2.2 snj sc->age_cdata.age_rxprev_tail;
1461 1.28.2.2 snj sc->age_cdata.age_rxtail->m_len -=
1462 1.28.2.2 snj (ETHER_CRC_LEN - mp->m_len);
1463 1.28.2.2 snj sc->age_cdata.age_rxtail->m_next = NULL;
1464 1.28.2.2 snj m_freem(mp);
1465 1.28.2.2 snj } else {
1466 1.28.2.2 snj mp->m_len -= ETHER_CRC_LEN;
1467 1.28.2.2 snj }
1468 1.28.2.2 snj }
1469 1.28.2.2 snj
1470 1.28.2.2 snj m = sc->age_cdata.age_rxhead;
1471 1.28.2.2 snj m->m_flags |= M_PKTHDR;
1472 1.28.2.2 snj m->m_pkthdr.rcvif = ifp;
1473 1.28.2.2 snj m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1474 1.28.2.2 snj /* Set the first mbuf length. */
1475 1.28.2.2 snj m->m_len = sc->age_cdata.age_rxlen - pktlen;
1476 1.28.2.2 snj
1477 1.28.2.2 snj /*
1478 1.28.2.2 snj * Set checksum information.
1479 1.28.2.2 snj * It seems that L1 controller can compute partial
1480 1.28.2.2 snj * checksum. The partial checksum value can be used
1481 1.28.2.2 snj * to accelerate checksum computation for fragmented
1482 1.28.2.2 snj * TCP/UDP packets. Upper network stack already
1483 1.28.2.2 snj * takes advantage of the partial checksum value in
1484 1.28.2.2 snj * IP reassembly stage. But I'm not sure the
1485 1.28.2.2 snj * correctness of the partial hardware checksum
1486 1.28.2.2 snj * assistance due to lack of data sheet. If it is
1487 1.28.2.2 snj * proven to work on L1 I'll enable it.
1488 1.28.2.2 snj */
1489 1.28.2.2 snj if (status & AGE_RRD_IPV4) {
1490 1.28.2.2 snj if (status & AGE_RRD_IPCSUM_NOK)
1491 1.28.2.2 snj m->m_pkthdr.csum_flags |=
1492 1.28.2.2 snj M_CSUM_IPv4_BAD;
1493 1.28.2.2 snj if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1494 1.28.2.2 snj (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1495 1.28.2.2 snj m->m_pkthdr.csum_flags |=
1496 1.28.2.2 snj M_CSUM_TCP_UDP_BAD;
1497 1.28.2.2 snj }
1498 1.28.2.2 snj /*
1499 1.28.2.2 snj * Don't mark bad checksum for TCP/UDP frames
1500 1.28.2.2 snj * as fragmented frames may always have set
1501 1.28.2.2 snj * bad checksummed bit of descriptor status.
1502 1.28.2.2 snj */
1503 1.28.2.2 snj }
1504 1.28.2.2 snj #if NVLAN > 0
1505 1.28.2.2 snj /* Check for VLAN tagged frames. */
1506 1.28.2.2 snj if (status & AGE_RRD_VLAN) {
1507 1.28.2.2 snj uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1508 1.28.2.2 snj VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1509 1.28.2.2 snj continue);
1510 1.28.2.2 snj }
1511 1.28.2.2 snj #endif
1512 1.28.2.2 snj
1513 1.28.2.2 snj #if NBPFILTER > 0
1514 1.28.2.2 snj if (ifp->if_bpf)
1515 1.28.2.2 snj bpf_mtap(ifp->if_bpf, m);
1516 1.28.2.2 snj #endif
1517 1.28.2.2 snj /* Pass it on. */
1518 1.28.2.2 snj ether_input(ifp, m);
1519 1.28.2.2 snj
1520 1.28.2.2 snj /* Reset mbuf chains. */
1521 1.28.2.2 snj AGE_RXCHAIN_RESET(sc);
1522 1.28.2.2 snj }
1523 1.28.2.2 snj }
1524 1.28.2.2 snj
1525 1.28.2.2 snj if (count != nsegs) {
1526 1.28.2.2 snj sc->age_cdata.age_rx_cons += nsegs;
1527 1.28.2.2 snj sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1528 1.28.2.2 snj } else
1529 1.28.2.2 snj sc->age_cdata.age_rx_cons = rx_cons;
1530 1.28.2.2 snj }
1531 1.28.2.2 snj
1532 1.28.2.2 snj static void
1533 1.28.2.2 snj age_rxintr(struct age_softc *sc, int rr_prod)
1534 1.28.2.2 snj {
1535 1.28.2.2 snj struct rx_rdesc *rxrd;
1536 1.28.2.2 snj int rr_cons, nsegs, pktlen, prog;
1537 1.28.2.2 snj
1538 1.28.2.2 snj rr_cons = sc->age_cdata.age_rr_cons;
1539 1.28.2.2 snj if (rr_cons == rr_prod)
1540 1.28.2.2 snj return;
1541 1.28.2.2 snj
1542 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1543 1.28.2.2 snj sc->age_cdata.age_rr_ring_map->dm_mapsize,
1544 1.28.2.2 snj BUS_DMASYNC_POSTREAD);
1545 1.28.2.2 snj
1546 1.28.2.2 snj for (prog = 0; rr_cons != rr_prod; prog++) {
1547 1.28.2.2 snj rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1548 1.28.2.2 snj nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1549 1.28.2.2 snj if (nsegs == 0)
1550 1.28.2.2 snj break;
1551 1.28.2.2 snj /*
1552 1.28.2.2 snj * Check number of segments against received bytes
1553 1.28.2.2 snj * Non-matching value would indicate that hardware
1554 1.28.2.2 snj * is still trying to update Rx return descriptors.
1555 1.28.2.2 snj * I'm not sure whether this check is really needed.
1556 1.28.2.2 snj */
1557 1.28.2.2 snj pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1558 1.28.2.2 snj if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1559 1.28.2.2 snj (MCLBYTES - ETHER_ALIGN)))
1560 1.28.2.2 snj break;
1561 1.28.2.2 snj
1562 1.28.2.2 snj /* Received a frame. */
1563 1.28.2.2 snj age_rxeof(sc, rxrd);
1564 1.28.2.2 snj
1565 1.28.2.2 snj /* Clear return ring. */
1566 1.28.2.2 snj rxrd->index = 0;
1567 1.28.2.2 snj AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1568 1.28.2.2 snj }
1569 1.28.2.2 snj
1570 1.28.2.2 snj if (prog > 0) {
1571 1.28.2.2 snj /* Update the consumer index. */
1572 1.28.2.2 snj sc->age_cdata.age_rr_cons = rr_cons;
1573 1.28.2.2 snj
1574 1.28.2.2 snj /* Sync descriptors. */
1575 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1576 1.28.2.2 snj sc->age_cdata.age_rr_ring_map->dm_mapsize,
1577 1.28.2.2 snj BUS_DMASYNC_PREWRITE);
1578 1.28.2.2 snj
1579 1.28.2.2 snj /* Notify hardware availability of new Rx buffers. */
1580 1.28.2.2 snj AGE_COMMIT_MBOX(sc);
1581 1.28.2.2 snj }
1582 1.28.2.2 snj }
1583 1.28.2.2 snj
1584 1.28.2.2 snj static void
1585 1.28.2.2 snj age_tick(void *xsc)
1586 1.28.2.2 snj {
1587 1.28.2.2 snj struct age_softc *sc = xsc;
1588 1.28.2.2 snj struct mii_data *mii = &sc->sc_miibus;
1589 1.28.2.2 snj int s;
1590 1.28.2.2 snj
1591 1.28.2.2 snj s = splnet();
1592 1.28.2.2 snj mii_tick(mii);
1593 1.28.2.2 snj splx(s);
1594 1.28.2.2 snj
1595 1.28.2.2 snj callout_schedule(&sc->sc_tick_ch, hz);
1596 1.28.2.2 snj }
1597 1.28.2.2 snj
1598 1.28.2.2 snj static void
1599 1.28.2.2 snj age_reset(struct age_softc *sc)
1600 1.28.2.2 snj {
1601 1.28.2.2 snj uint32_t reg;
1602 1.28.2.2 snj int i;
1603 1.28.2.2 snj
1604 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1605 1.28.2.4 snj CSR_READ_4(sc, AGE_MASTER_CFG);
1606 1.28.2.4 snj DELAY(1000);
1607 1.28.2.2 snj for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1608 1.28.2.2 snj if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1609 1.28.2.2 snj break;
1610 1.28.2.2 snj DELAY(10);
1611 1.28.2.2 snj }
1612 1.28.2.2 snj
1613 1.28.2.2 snj if (i == 0)
1614 1.28.2.2 snj printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1615 1.28.2.2 snj reg);
1616 1.28.2.2 snj
1617 1.28.2.2 snj /* Initialize PCIe module. From Linux. */
1618 1.28.2.2 snj CSR_WRITE_4(sc, 0x12FC, 0x6500);
1619 1.28.2.2 snj CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1620 1.28.2.2 snj }
1621 1.28.2.2 snj
1622 1.28.2.2 snj static int
1623 1.28.2.2 snj age_init(struct ifnet *ifp)
1624 1.28.2.2 snj {
1625 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
1626 1.28.2.2 snj struct mii_data *mii;
1627 1.28.2.2 snj uint8_t eaddr[ETHER_ADDR_LEN];
1628 1.28.2.2 snj bus_addr_t paddr;
1629 1.28.2.2 snj uint32_t reg, fsize;
1630 1.28.2.2 snj uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1631 1.28.2.2 snj int error;
1632 1.28.2.2 snj
1633 1.28.2.2 snj /*
1634 1.28.2.2 snj * Cancel any pending I/O.
1635 1.28.2.2 snj */
1636 1.28.2.2 snj age_stop(ifp, 0);
1637 1.28.2.2 snj
1638 1.28.2.2 snj /*
1639 1.28.2.2 snj * Reset the chip to a known state.
1640 1.28.2.2 snj */
1641 1.28.2.2 snj age_reset(sc);
1642 1.28.2.2 snj
1643 1.28.2.2 snj /* Initialize descriptors. */
1644 1.28.2.2 snj error = age_init_rx_ring(sc);
1645 1.28.2.2 snj if (error != 0) {
1646 1.28.2.2 snj printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1647 1.28.2.2 snj age_stop(ifp, 0);
1648 1.28.2.2 snj return error;
1649 1.28.2.2 snj }
1650 1.28.2.2 snj age_init_rr_ring(sc);
1651 1.28.2.2 snj age_init_tx_ring(sc);
1652 1.28.2.2 snj age_init_cmb_block(sc);
1653 1.28.2.2 snj age_init_smb_block(sc);
1654 1.28.2.2 snj
1655 1.28.2.2 snj /* Reprogram the station address. */
1656 1.28.2.2 snj memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1657 1.28.2.2 snj CSR_WRITE_4(sc, AGE_PAR0,
1658 1.28.2.2 snj eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1659 1.28.2.2 snj CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1660 1.28.2.2 snj
1661 1.28.2.2 snj /* Set descriptor base addresses. */
1662 1.28.2.2 snj paddr = sc->age_rdata.age_tx_ring_paddr;
1663 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1664 1.28.2.2 snj paddr = sc->age_rdata.age_rx_ring_paddr;
1665 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1666 1.28.2.2 snj paddr = sc->age_rdata.age_rr_ring_paddr;
1667 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1668 1.28.2.2 snj paddr = sc->age_rdata.age_tx_ring_paddr;
1669 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1670 1.28.2.2 snj paddr = sc->age_rdata.age_cmb_block_paddr;
1671 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1672 1.28.2.2 snj paddr = sc->age_rdata.age_smb_block_paddr;
1673 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1674 1.28.2.2 snj
1675 1.28.2.2 snj /* Set Rx/Rx return descriptor counter. */
1676 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1677 1.28.2.2 snj ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1678 1.28.2.2 snj DESC_RRD_CNT_MASK) |
1679 1.28.2.2 snj ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1680 1.28.2.2 snj
1681 1.28.2.2 snj /* Set Tx descriptor counter. */
1682 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1683 1.28.2.2 snj (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1684 1.28.2.2 snj
1685 1.28.2.2 snj /* Tell hardware that we're ready to load descriptors. */
1686 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1687 1.28.2.2 snj
1688 1.28.2.2 snj /*
1689 1.28.2.2 snj * Initialize mailbox register.
1690 1.28.2.2 snj * Updated producer/consumer index information is exchanged
1691 1.28.2.2 snj * through this mailbox register. However Tx producer and
1692 1.28.2.2 snj * Rx return consumer/Rx producer are all shared such that
1693 1.28.2.2 snj * it's hard to separate code path between Tx and Rx without
1694 1.28.2.2 snj * locking. If L1 hardware have a separate mail box register
1695 1.28.2.2 snj * for Tx and Rx consumer/producer management we could have
1696 1.28.2.2 snj * indepent Tx/Rx handler which in turn Rx handler could have
1697 1.28.2.2 snj * been run without any locking.
1698 1.28.2.2 snj */
1699 1.28.2.2 snj AGE_COMMIT_MBOX(sc);
1700 1.28.2.2 snj
1701 1.28.2.2 snj /* Configure IPG/IFG parameters. */
1702 1.28.2.2 snj CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1703 1.28.2.2 snj ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1704 1.28.2.2 snj ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1705 1.28.2.2 snj ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1706 1.28.2.2 snj ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1707 1.28.2.2 snj
1708 1.28.2.2 snj /* Set parameters for half-duplex media. */
1709 1.28.2.2 snj CSR_WRITE_4(sc, AGE_HDPX_CFG,
1710 1.28.2.2 snj ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1711 1.28.2.2 snj HDPX_CFG_LCOL_MASK) |
1712 1.28.2.2 snj ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1713 1.28.2.2 snj HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1714 1.28.2.2 snj ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1715 1.28.2.2 snj HDPX_CFG_ABEBT_MASK) |
1716 1.28.2.2 snj ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1717 1.28.2.2 snj HDPX_CFG_JAMIPG_MASK));
1718 1.28.2.2 snj
1719 1.28.2.2 snj /* Configure interrupt moderation timer. */
1720 1.28.2.2 snj sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1721 1.28.2.2 snj CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1722 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1723 1.28.2.2 snj reg &= ~MASTER_MTIMER_ENB;
1724 1.28.2.2 snj if (AGE_USECS(sc->age_int_mod) == 0)
1725 1.28.2.2 snj reg &= ~MASTER_ITIMER_ENB;
1726 1.28.2.2 snj else
1727 1.28.2.2 snj reg |= MASTER_ITIMER_ENB;
1728 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1729 1.28.2.2 snj if (agedebug)
1730 1.28.2.2 snj printf("%s: interrupt moderation is %d us.\n",
1731 1.28.2.2 snj device_xname(sc->sc_dev), sc->age_int_mod);
1732 1.28.2.2 snj CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1733 1.28.2.2 snj
1734 1.28.2.2 snj /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1735 1.28.2.2 snj if (ifp->if_mtu < ETHERMTU)
1736 1.28.2.2 snj sc->age_max_frame_size = ETHERMTU;
1737 1.28.2.2 snj else
1738 1.28.2.2 snj sc->age_max_frame_size = ifp->if_mtu;
1739 1.28.2.2 snj sc->age_max_frame_size += ETHER_HDR_LEN +
1740 1.28.2.2 snj sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1741 1.28.2.2 snj CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1742 1.28.2.2 snj
1743 1.28.2.2 snj /* Configure jumbo frame. */
1744 1.28.2.2 snj fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1745 1.28.2.2 snj CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1746 1.28.2.2 snj (((fsize / sizeof(uint64_t)) <<
1747 1.28.2.2 snj RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1748 1.28.2.2 snj ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1749 1.28.2.2 snj RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1750 1.28.2.2 snj ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1751 1.28.2.2 snj RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1752 1.28.2.2 snj
1753 1.28.2.2 snj /* Configure flow-control parameters. From Linux. */
1754 1.28.2.2 snj if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1755 1.28.2.2 snj /*
1756 1.28.2.2 snj * Magic workaround for old-L1.
1757 1.28.2.2 snj * Don't know which hw revision requires this magic.
1758 1.28.2.2 snj */
1759 1.28.2.2 snj CSR_WRITE_4(sc, 0x12FC, 0x6500);
1760 1.28.2.2 snj /*
1761 1.28.2.2 snj * Another magic workaround for flow-control mode
1762 1.28.2.2 snj * change. From Linux.
1763 1.28.2.2 snj */
1764 1.28.2.2 snj CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1765 1.28.2.2 snj }
1766 1.28.2.2 snj /*
1767 1.28.2.2 snj * TODO
1768 1.28.2.2 snj * Should understand pause parameter relationships between FIFO
1769 1.28.2.2 snj * size and number of Rx descriptors and Rx return descriptors.
1770 1.28.2.2 snj *
1771 1.28.2.2 snj * Magic parameters came from Linux.
1772 1.28.2.2 snj */
1773 1.28.2.2 snj switch (sc->age_chip_rev) {
1774 1.28.2.2 snj case 0x8001:
1775 1.28.2.2 snj case 0x9001:
1776 1.28.2.2 snj case 0x9002:
1777 1.28.2.2 snj case 0x9003:
1778 1.28.2.2 snj rxf_hi = AGE_RX_RING_CNT / 16;
1779 1.28.2.2 snj rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1780 1.28.2.2 snj rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1781 1.28.2.2 snj rrd_lo = AGE_RR_RING_CNT / 16;
1782 1.28.2.2 snj break;
1783 1.28.2.2 snj default:
1784 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1785 1.28.2.2 snj rxf_lo = reg / 16;
1786 1.28.2.2 snj if (rxf_lo < 192)
1787 1.28.2.2 snj rxf_lo = 192;
1788 1.28.2.2 snj rxf_hi = (reg * 7) / 8;
1789 1.28.2.2 snj if (rxf_hi < rxf_lo)
1790 1.28.2.2 snj rxf_hi = rxf_lo + 16;
1791 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1792 1.28.2.2 snj rrd_lo = reg / 8;
1793 1.28.2.2 snj rrd_hi = (reg * 7) / 8;
1794 1.28.2.2 snj if (rrd_lo < 2)
1795 1.28.2.2 snj rrd_lo = 2;
1796 1.28.2.2 snj if (rrd_hi < rrd_lo)
1797 1.28.2.2 snj rrd_hi = rrd_lo + 3;
1798 1.28.2.2 snj break;
1799 1.28.2.2 snj }
1800 1.28.2.2 snj CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1801 1.28.2.2 snj ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1802 1.28.2.2 snj RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1803 1.28.2.2 snj ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1804 1.28.2.2 snj RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1805 1.28.2.2 snj CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1806 1.28.2.2 snj ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1807 1.28.2.2 snj RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1808 1.28.2.2 snj ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1809 1.28.2.2 snj RXQ_RRD_PAUSE_THRESH_HI_MASK));
1810 1.28.2.2 snj
1811 1.28.2.2 snj /* Configure RxQ. */
1812 1.28.2.2 snj CSR_WRITE_4(sc, AGE_RXQ_CFG,
1813 1.28.2.2 snj ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1814 1.28.2.2 snj RXQ_CFG_RD_BURST_MASK) |
1815 1.28.2.2 snj ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1816 1.28.2.2 snj RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1817 1.28.2.2 snj ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1818 1.28.2.2 snj RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1819 1.28.2.2 snj RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1820 1.28.2.2 snj
1821 1.28.2.2 snj /* Configure TxQ. */
1822 1.28.2.2 snj CSR_WRITE_4(sc, AGE_TXQ_CFG,
1823 1.28.2.2 snj ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1824 1.28.2.2 snj TXQ_CFG_TPD_BURST_MASK) |
1825 1.28.2.2 snj ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1826 1.28.2.2 snj TXQ_CFG_TX_FIFO_BURST_MASK) |
1827 1.28.2.2 snj ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1828 1.28.2.2 snj TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1829 1.28.2.2 snj TXQ_CFG_ENB);
1830 1.28.2.2 snj
1831 1.28.2.2 snj /* Configure DMA parameters. */
1832 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_CFG,
1833 1.28.2.2 snj DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1834 1.28.2.2 snj sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1835 1.28.2.2 snj sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1836 1.28.2.2 snj
1837 1.28.2.2 snj /* Configure CMB DMA write threshold. */
1838 1.28.2.2 snj CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1839 1.28.2.2 snj ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1840 1.28.2.2 snj CMB_WR_THRESH_RRD_MASK) |
1841 1.28.2.2 snj ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1842 1.28.2.2 snj CMB_WR_THRESH_TPD_MASK));
1843 1.28.2.2 snj
1844 1.28.2.2 snj /* Set CMB/SMB timer and enable them. */
1845 1.28.2.2 snj CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1846 1.28.2.2 snj ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1847 1.28.2.2 snj ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1848 1.28.2.2 snj
1849 1.28.2.2 snj /* Request SMB updates for every seconds. */
1850 1.28.2.2 snj CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1851 1.28.2.2 snj CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1852 1.28.2.2 snj
1853 1.28.2.2 snj /*
1854 1.28.2.2 snj * Disable all WOL bits as WOL can interfere normal Rx
1855 1.28.2.2 snj * operation.
1856 1.28.2.2 snj */
1857 1.28.2.2 snj CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1858 1.28.2.2 snj
1859 1.28.2.2 snj /*
1860 1.28.2.2 snj * Configure Tx/Rx MACs.
1861 1.28.2.2 snj * - Auto-padding for short frames.
1862 1.28.2.2 snj * - Enable CRC generation.
1863 1.28.2.2 snj * Start with full-duplex/1000Mbps media. Actual reconfiguration
1864 1.28.2.2 snj * of MAC is followed after link establishment.
1865 1.28.2.2 snj */
1866 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG,
1867 1.28.2.2 snj MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1868 1.28.2.2 snj MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1869 1.28.2.2 snj ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1870 1.28.2.2 snj MAC_CFG_PREAMBLE_MASK));
1871 1.28.2.2 snj
1872 1.28.2.2 snj /* Set up the receive filter. */
1873 1.28.2.2 snj age_rxfilter(sc);
1874 1.28.2.2 snj age_rxvlan(sc);
1875 1.28.2.2 snj
1876 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
1877 1.28.2.2 snj reg |= MAC_CFG_RXCSUM_ENB;
1878 1.28.2.2 snj
1879 1.28.2.2 snj /* Ack all pending interrupts and clear it. */
1880 1.28.2.2 snj CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1881 1.28.2.2 snj CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1882 1.28.2.2 snj
1883 1.28.2.2 snj /* Finally enable Tx/Rx MAC. */
1884 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1885 1.28.2.2 snj
1886 1.28.2.2 snj sc->age_flags &= ~AGE_FLAG_LINK;
1887 1.28.2.2 snj
1888 1.28.2.2 snj /* Switch to the current media. */
1889 1.28.2.2 snj mii = &sc->sc_miibus;
1890 1.28.2.2 snj mii_mediachg(mii);
1891 1.28.2.2 snj
1892 1.28.2.2 snj callout_schedule(&sc->sc_tick_ch, hz);
1893 1.28.2.2 snj
1894 1.28.2.2 snj ifp->if_flags |= IFF_RUNNING;
1895 1.28.2.2 snj ifp->if_flags &= ~IFF_OACTIVE;
1896 1.28.2.2 snj
1897 1.28.2.2 snj return 0;
1898 1.28.2.2 snj }
1899 1.28.2.2 snj
1900 1.28.2.2 snj static void
1901 1.28.2.2 snj age_stop(struct ifnet *ifp, int disable)
1902 1.28.2.2 snj {
1903 1.28.2.2 snj struct age_softc *sc = ifp->if_softc;
1904 1.28.2.2 snj struct age_txdesc *txd;
1905 1.28.2.2 snj struct age_rxdesc *rxd;
1906 1.28.2.2 snj uint32_t reg;
1907 1.28.2.2 snj int i;
1908 1.28.2.2 snj
1909 1.28.2.2 snj callout_stop(&sc->sc_tick_ch);
1910 1.28.2.2 snj
1911 1.28.2.2 snj /*
1912 1.28.2.2 snj * Mark the interface down and cancel the watchdog timer.
1913 1.28.2.2 snj */
1914 1.28.2.2 snj ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1915 1.28.2.2 snj ifp->if_timer = 0;
1916 1.28.2.2 snj
1917 1.28.2.2 snj sc->age_flags &= ~AGE_FLAG_LINK;
1918 1.28.2.2 snj
1919 1.28.2.2 snj mii_down(&sc->sc_miibus);
1920 1.28.2.2 snj
1921 1.28.2.2 snj /*
1922 1.28.2.2 snj * Disable interrupts.
1923 1.28.2.2 snj */
1924 1.28.2.2 snj CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1925 1.28.2.2 snj CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1926 1.28.2.2 snj
1927 1.28.2.2 snj /* Stop CMB/SMB updates. */
1928 1.28.2.2 snj CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1929 1.28.2.2 snj
1930 1.28.2.2 snj /* Stop Rx/Tx MAC. */
1931 1.28.2.2 snj age_stop_rxmac(sc);
1932 1.28.2.2 snj age_stop_txmac(sc);
1933 1.28.2.2 snj
1934 1.28.2.2 snj /* Stop DMA. */
1935 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_CFG,
1936 1.28.2.2 snj CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1937 1.28.2.2 snj
1938 1.28.2.2 snj /* Stop TxQ/RxQ. */
1939 1.28.2.2 snj CSR_WRITE_4(sc, AGE_TXQ_CFG,
1940 1.28.2.2 snj CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1941 1.28.2.2 snj CSR_WRITE_4(sc, AGE_RXQ_CFG,
1942 1.28.2.2 snj CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1943 1.28.2.2 snj for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1944 1.28.2.2 snj if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1945 1.28.2.2 snj break;
1946 1.28.2.2 snj DELAY(10);
1947 1.28.2.2 snj }
1948 1.28.2.2 snj if (i == 0)
1949 1.28.2.2 snj printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1950 1.28.2.2 snj device_xname(sc->sc_dev), reg);
1951 1.28.2.2 snj
1952 1.28.2.2 snj /* Reclaim Rx buffers that have been processed. */
1953 1.28.2.2 snj if (sc->age_cdata.age_rxhead != NULL)
1954 1.28.2.2 snj m_freem(sc->age_cdata.age_rxhead);
1955 1.28.2.2 snj AGE_RXCHAIN_RESET(sc);
1956 1.28.2.2 snj
1957 1.28.2.2 snj /*
1958 1.28.2.2 snj * Free RX and TX mbufs still in the queues.
1959 1.28.2.2 snj */
1960 1.28.2.2 snj for (i = 0; i < AGE_RX_RING_CNT; i++) {
1961 1.28.2.2 snj rxd = &sc->age_cdata.age_rxdesc[i];
1962 1.28.2.2 snj if (rxd->rx_m != NULL) {
1963 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1964 1.28.2.2 snj m_freem(rxd->rx_m);
1965 1.28.2.2 snj rxd->rx_m = NULL;
1966 1.28.2.2 snj }
1967 1.28.2.2 snj }
1968 1.28.2.2 snj for (i = 0; i < AGE_TX_RING_CNT; i++) {
1969 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[i];
1970 1.28.2.2 snj if (txd->tx_m != NULL) {
1971 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1972 1.28.2.2 snj m_freem(txd->tx_m);
1973 1.28.2.2 snj txd->tx_m = NULL;
1974 1.28.2.2 snj }
1975 1.28.2.2 snj }
1976 1.28.2.2 snj }
1977 1.28.2.2 snj
1978 1.28.2.2 snj static void
1979 1.28.2.2 snj age_stats_update(struct age_softc *sc)
1980 1.28.2.2 snj {
1981 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1982 1.28.2.2 snj struct age_stats *stat;
1983 1.28.2.2 snj struct smb *smb;
1984 1.28.2.2 snj
1985 1.28.2.2 snj stat = &sc->age_stat;
1986 1.28.2.2 snj
1987 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1988 1.28.2.6 sborrill sc->age_cdata.age_smb_block_map->dm_mapsize,
1989 1.28.2.6 sborrill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1990 1.28.2.2 snj
1991 1.28.2.2 snj smb = sc->age_rdata.age_smb_block;
1992 1.28.2.2 snj if (smb->updated == 0)
1993 1.28.2.2 snj return;
1994 1.28.2.2 snj
1995 1.28.2.2 snj /* Rx stats. */
1996 1.28.2.2 snj stat->rx_frames += smb->rx_frames;
1997 1.28.2.2 snj stat->rx_bcast_frames += smb->rx_bcast_frames;
1998 1.28.2.2 snj stat->rx_mcast_frames += smb->rx_mcast_frames;
1999 1.28.2.2 snj stat->rx_pause_frames += smb->rx_pause_frames;
2000 1.28.2.2 snj stat->rx_control_frames += smb->rx_control_frames;
2001 1.28.2.2 snj stat->rx_crcerrs += smb->rx_crcerrs;
2002 1.28.2.2 snj stat->rx_lenerrs += smb->rx_lenerrs;
2003 1.28.2.2 snj stat->rx_bytes += smb->rx_bytes;
2004 1.28.2.2 snj stat->rx_runts += smb->rx_runts;
2005 1.28.2.2 snj stat->rx_fragments += smb->rx_fragments;
2006 1.28.2.2 snj stat->rx_pkts_64 += smb->rx_pkts_64;
2007 1.28.2.2 snj stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2008 1.28.2.2 snj stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2009 1.28.2.2 snj stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2010 1.28.2.2 snj stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2011 1.28.2.2 snj stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2012 1.28.2.2 snj stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2013 1.28.2.2 snj stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2014 1.28.2.2 snj stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2015 1.28.2.2 snj stat->rx_desc_oflows += smb->rx_desc_oflows;
2016 1.28.2.2 snj stat->rx_alignerrs += smb->rx_alignerrs;
2017 1.28.2.2 snj stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2018 1.28.2.2 snj stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2019 1.28.2.2 snj stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2020 1.28.2.2 snj
2021 1.28.2.2 snj /* Tx stats. */
2022 1.28.2.2 snj stat->tx_frames += smb->tx_frames;
2023 1.28.2.2 snj stat->tx_bcast_frames += smb->tx_bcast_frames;
2024 1.28.2.2 snj stat->tx_mcast_frames += smb->tx_mcast_frames;
2025 1.28.2.2 snj stat->tx_pause_frames += smb->tx_pause_frames;
2026 1.28.2.2 snj stat->tx_excess_defer += smb->tx_excess_defer;
2027 1.28.2.2 snj stat->tx_control_frames += smb->tx_control_frames;
2028 1.28.2.2 snj stat->tx_deferred += smb->tx_deferred;
2029 1.28.2.2 snj stat->tx_bytes += smb->tx_bytes;
2030 1.28.2.2 snj stat->tx_pkts_64 += smb->tx_pkts_64;
2031 1.28.2.2 snj stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2032 1.28.2.2 snj stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2033 1.28.2.2 snj stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2034 1.28.2.2 snj stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2035 1.28.2.2 snj stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2036 1.28.2.2 snj stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2037 1.28.2.2 snj stat->tx_single_colls += smb->tx_single_colls;
2038 1.28.2.2 snj stat->tx_multi_colls += smb->tx_multi_colls;
2039 1.28.2.2 snj stat->tx_late_colls += smb->tx_late_colls;
2040 1.28.2.2 snj stat->tx_excess_colls += smb->tx_excess_colls;
2041 1.28.2.2 snj stat->tx_underrun += smb->tx_underrun;
2042 1.28.2.2 snj stat->tx_desc_underrun += smb->tx_desc_underrun;
2043 1.28.2.2 snj stat->tx_lenerrs += smb->tx_lenerrs;
2044 1.28.2.2 snj stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2045 1.28.2.2 snj stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2046 1.28.2.2 snj stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2047 1.28.2.2 snj
2048 1.28.2.2 snj /* Update counters in ifnet. */
2049 1.28.2.2 snj ifp->if_opackets += smb->tx_frames;
2050 1.28.2.2 snj
2051 1.28.2.2 snj ifp->if_collisions += smb->tx_single_colls +
2052 1.28.2.2 snj smb->tx_multi_colls + smb->tx_late_colls +
2053 1.28.2.2 snj smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2054 1.28.2.2 snj
2055 1.28.2.2 snj ifp->if_oerrors += smb->tx_excess_colls +
2056 1.28.2.2 snj smb->tx_late_colls + smb->tx_underrun +
2057 1.28.2.2 snj smb->tx_pkts_truncated;
2058 1.28.2.2 snj
2059 1.28.2.2 snj ifp->if_ipackets += smb->rx_frames;
2060 1.28.2.2 snj
2061 1.28.2.2 snj ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2062 1.28.2.2 snj smb->rx_runts + smb->rx_pkts_truncated +
2063 1.28.2.2 snj smb->rx_fifo_oflows + smb->rx_desc_oflows +
2064 1.28.2.2 snj smb->rx_alignerrs;
2065 1.28.2.2 snj
2066 1.28.2.2 snj /* Update done, clear. */
2067 1.28.2.2 snj smb->updated = 0;
2068 1.28.2.2 snj
2069 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2070 1.28.2.6 sborrill sc->age_cdata.age_smb_block_map->dm_mapsize,
2071 1.28.2.6 sborrill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2072 1.28.2.2 snj }
2073 1.28.2.2 snj
2074 1.28.2.2 snj static void
2075 1.28.2.2 snj age_stop_txmac(struct age_softc *sc)
2076 1.28.2.2 snj {
2077 1.28.2.2 snj uint32_t reg;
2078 1.28.2.2 snj int i;
2079 1.28.2.2 snj
2080 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
2081 1.28.2.2 snj if ((reg & MAC_CFG_TX_ENB) != 0) {
2082 1.28.2.2 snj reg &= ~MAC_CFG_TX_ENB;
2083 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2084 1.28.2.2 snj }
2085 1.28.2.2 snj /* Stop Tx DMA engine. */
2086 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_DMA_CFG);
2087 1.28.2.2 snj if ((reg & DMA_CFG_RD_ENB) != 0) {
2088 1.28.2.2 snj reg &= ~DMA_CFG_RD_ENB;
2089 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2090 1.28.2.2 snj }
2091 1.28.2.2 snj for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2092 1.28.2.2 snj if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2093 1.28.2.2 snj (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2094 1.28.2.2 snj break;
2095 1.28.2.2 snj DELAY(10);
2096 1.28.2.2 snj }
2097 1.28.2.2 snj if (i == 0)
2098 1.28.2.2 snj printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2099 1.28.2.2 snj }
2100 1.28.2.2 snj
2101 1.28.2.2 snj static void
2102 1.28.2.2 snj age_stop_rxmac(struct age_softc *sc)
2103 1.28.2.2 snj {
2104 1.28.2.2 snj uint32_t reg;
2105 1.28.2.2 snj int i;
2106 1.28.2.2 snj
2107 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
2108 1.28.2.2 snj if ((reg & MAC_CFG_RX_ENB) != 0) {
2109 1.28.2.2 snj reg &= ~MAC_CFG_RX_ENB;
2110 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2111 1.28.2.2 snj }
2112 1.28.2.2 snj /* Stop Rx DMA engine. */
2113 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_DMA_CFG);
2114 1.28.2.2 snj if ((reg & DMA_CFG_WR_ENB) != 0) {
2115 1.28.2.2 snj reg &= ~DMA_CFG_WR_ENB;
2116 1.28.2.2 snj CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2117 1.28.2.2 snj }
2118 1.28.2.2 snj for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2119 1.28.2.2 snj if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2120 1.28.2.2 snj (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2121 1.28.2.2 snj break;
2122 1.28.2.2 snj DELAY(10);
2123 1.28.2.2 snj }
2124 1.28.2.2 snj if (i == 0)
2125 1.28.2.2 snj printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2126 1.28.2.2 snj }
2127 1.28.2.2 snj
2128 1.28.2.2 snj static void
2129 1.28.2.2 snj age_init_tx_ring(struct age_softc *sc)
2130 1.28.2.2 snj {
2131 1.28.2.2 snj struct age_ring_data *rd;
2132 1.28.2.2 snj struct age_txdesc *txd;
2133 1.28.2.2 snj int i;
2134 1.28.2.2 snj
2135 1.28.2.2 snj sc->age_cdata.age_tx_prod = 0;
2136 1.28.2.2 snj sc->age_cdata.age_tx_cons = 0;
2137 1.28.2.2 snj sc->age_cdata.age_tx_cnt = 0;
2138 1.28.2.2 snj
2139 1.28.2.2 snj rd = &sc->age_rdata;
2140 1.28.2.2 snj memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2141 1.28.2.2 snj for (i = 0; i < AGE_TX_RING_CNT; i++) {
2142 1.28.2.2 snj txd = &sc->age_cdata.age_txdesc[i];
2143 1.28.2.2 snj txd->tx_desc = &rd->age_tx_ring[i];
2144 1.28.2.2 snj txd->tx_m = NULL;
2145 1.28.2.2 snj }
2146 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2147 1.28.2.2 snj sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2148 1.28.2.2 snj }
2149 1.28.2.2 snj
2150 1.28.2.2 snj static int
2151 1.28.2.2 snj age_init_rx_ring(struct age_softc *sc)
2152 1.28.2.2 snj {
2153 1.28.2.2 snj struct age_ring_data *rd;
2154 1.28.2.2 snj struct age_rxdesc *rxd;
2155 1.28.2.2 snj int i;
2156 1.28.2.2 snj
2157 1.28.2.2 snj sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2158 1.28.2.2 snj rd = &sc->age_rdata;
2159 1.28.2.2 snj memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2160 1.28.2.2 snj for (i = 0; i < AGE_RX_RING_CNT; i++) {
2161 1.28.2.2 snj rxd = &sc->age_cdata.age_rxdesc[i];
2162 1.28.2.2 snj rxd->rx_m = NULL;
2163 1.28.2.2 snj rxd->rx_desc = &rd->age_rx_ring[i];
2164 1.28.2.2 snj if (age_newbuf(sc, rxd, 1) != 0)
2165 1.28.2.2 snj return ENOBUFS;
2166 1.28.2.2 snj }
2167 1.28.2.2 snj
2168 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2169 1.28.2.2 snj sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2170 1.28.2.2 snj
2171 1.28.2.2 snj return 0;
2172 1.28.2.2 snj }
2173 1.28.2.2 snj
2174 1.28.2.2 snj static void
2175 1.28.2.2 snj age_init_rr_ring(struct age_softc *sc)
2176 1.28.2.2 snj {
2177 1.28.2.2 snj struct age_ring_data *rd;
2178 1.28.2.2 snj
2179 1.28.2.2 snj sc->age_cdata.age_rr_cons = 0;
2180 1.28.2.2 snj AGE_RXCHAIN_RESET(sc);
2181 1.28.2.2 snj
2182 1.28.2.2 snj rd = &sc->age_rdata;
2183 1.28.2.2 snj memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2184 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2185 1.28.2.2 snj sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2186 1.28.2.2 snj }
2187 1.28.2.2 snj
2188 1.28.2.2 snj static void
2189 1.28.2.2 snj age_init_cmb_block(struct age_softc *sc)
2190 1.28.2.2 snj {
2191 1.28.2.2 snj struct age_ring_data *rd;
2192 1.28.2.2 snj
2193 1.28.2.2 snj rd = &sc->age_rdata;
2194 1.28.2.2 snj memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2195 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2196 1.28.2.6 sborrill sc->age_cdata.age_cmb_block_map->dm_mapsize,
2197 1.28.2.6 sborrill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2198 1.28.2.2 snj }
2199 1.28.2.2 snj
2200 1.28.2.2 snj static void
2201 1.28.2.2 snj age_init_smb_block(struct age_softc *sc)
2202 1.28.2.2 snj {
2203 1.28.2.2 snj struct age_ring_data *rd;
2204 1.28.2.2 snj
2205 1.28.2.2 snj rd = &sc->age_rdata;
2206 1.28.2.2 snj memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2207 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2208 1.28.2.2 snj sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2209 1.28.2.2 snj }
2210 1.28.2.2 snj
2211 1.28.2.2 snj static int
2212 1.28.2.2 snj age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2213 1.28.2.2 snj {
2214 1.28.2.2 snj struct rx_desc *desc;
2215 1.28.2.2 snj struct mbuf *m;
2216 1.28.2.2 snj bus_dmamap_t map;
2217 1.28.2.2 snj int error;
2218 1.28.2.2 snj
2219 1.28.2.6 sborrill MGETHDR(m, M_DONTWAIT, MT_DATA);
2220 1.28.2.2 snj if (m == NULL)
2221 1.28.2.2 snj return ENOBUFS;
2222 1.28.2.6 sborrill MCLGET(m, M_DONTWAIT);
2223 1.28.2.2 snj if (!(m->m_flags & M_EXT)) {
2224 1.28.2.2 snj m_freem(m);
2225 1.28.2.2 snj return ENOBUFS;
2226 1.28.2.2 snj }
2227 1.28.2.2 snj
2228 1.28.2.2 snj m->m_len = m->m_pkthdr.len = MCLBYTES;
2229 1.28.2.2 snj m_adj(m, ETHER_ALIGN);
2230 1.28.2.2 snj
2231 1.28.2.2 snj error = bus_dmamap_load_mbuf(sc->sc_dmat,
2232 1.28.2.2 snj sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2233 1.28.2.2 snj
2234 1.28.2.2 snj if (error != 0) {
2235 1.28.2.2 snj if (!error) {
2236 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat,
2237 1.28.2.2 snj sc->age_cdata.age_rx_sparemap);
2238 1.28.2.2 snj error = EFBIG;
2239 1.28.2.2 snj printf("%s: too many segments?!\n",
2240 1.28.2.2 snj device_xname(sc->sc_dev));
2241 1.28.2.2 snj }
2242 1.28.2.2 snj m_freem(m);
2243 1.28.2.2 snj
2244 1.28.2.2 snj if (init)
2245 1.28.2.2 snj printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2246 1.28.2.2 snj return error;
2247 1.28.2.2 snj }
2248 1.28.2.2 snj
2249 1.28.2.2 snj if (rxd->rx_m != NULL) {
2250 1.28.2.2 snj bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2251 1.28.2.2 snj rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2252 1.28.2.2 snj bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2253 1.28.2.2 snj }
2254 1.28.2.2 snj map = rxd->rx_dmamap;
2255 1.28.2.2 snj rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2256 1.28.2.2 snj sc->age_cdata.age_rx_sparemap = map;
2257 1.28.2.2 snj rxd->rx_m = m;
2258 1.28.2.2 snj
2259 1.28.2.2 snj desc = rxd->rx_desc;
2260 1.28.2.2 snj desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2261 1.28.2.2 snj desc->len =
2262 1.28.2.2 snj htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2263 1.28.2.2 snj AGE_RD_LEN_SHIFT);
2264 1.28.2.2 snj
2265 1.28.2.2 snj return 0;
2266 1.28.2.2 snj }
2267 1.28.2.2 snj
2268 1.28.2.2 snj static void
2269 1.28.2.2 snj age_rxvlan(struct age_softc *sc)
2270 1.28.2.2 snj {
2271 1.28.2.2 snj uint32_t reg;
2272 1.28.2.2 snj
2273 1.28.2.2 snj reg = CSR_READ_4(sc, AGE_MAC_CFG);
2274 1.28.2.2 snj reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2275 1.28.2.2 snj if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2276 1.28.2.2 snj reg |= MAC_CFG_VLAN_TAG_STRIP;
2277 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2278 1.28.2.2 snj }
2279 1.28.2.2 snj
2280 1.28.2.2 snj static void
2281 1.28.2.2 snj age_rxfilter(struct age_softc *sc)
2282 1.28.2.2 snj {
2283 1.28.2.2 snj struct ethercom *ec = &sc->sc_ec;
2284 1.28.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
2285 1.28.2.2 snj struct ether_multi *enm;
2286 1.28.2.2 snj struct ether_multistep step;
2287 1.28.2.2 snj uint32_t crc;
2288 1.28.2.2 snj uint32_t mchash[2];
2289 1.28.2.2 snj uint32_t rxcfg;
2290 1.28.2.2 snj
2291 1.28.2.2 snj rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2292 1.28.2.2 snj rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2293 1.28.2.2 snj ifp->if_flags &= ~IFF_ALLMULTI;
2294 1.28.2.2 snj
2295 1.28.2.2 snj /*
2296 1.28.2.2 snj * Always accept broadcast frames.
2297 1.28.2.2 snj */
2298 1.28.2.2 snj rxcfg |= MAC_CFG_BCAST;
2299 1.28.2.2 snj
2300 1.28.2.2 snj if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2301 1.28.2.2 snj ifp->if_flags |= IFF_ALLMULTI;
2302 1.28.2.2 snj if (ifp->if_flags & IFF_PROMISC)
2303 1.28.2.2 snj rxcfg |= MAC_CFG_PROMISC;
2304 1.28.2.2 snj else
2305 1.28.2.2 snj rxcfg |= MAC_CFG_ALLMULTI;
2306 1.28.2.2 snj mchash[0] = mchash[1] = 0xFFFFFFFF;
2307 1.28.2.2 snj } else {
2308 1.28.2.2 snj /* Program new filter. */
2309 1.28.2.2 snj memset(mchash, 0, sizeof(mchash));
2310 1.28.2.2 snj
2311 1.28.2.2 snj ETHER_FIRST_MULTI(step, ec, enm);
2312 1.28.2.2 snj while (enm != NULL) {
2313 1.28.2.2 snj crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2314 1.28.2.2 snj mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2315 1.28.2.2 snj ETHER_NEXT_MULTI(step, enm);
2316 1.28.2.2 snj }
2317 1.28.2.2 snj }
2318 1.28.2.2 snj
2319 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2320 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2321 1.28.2.2 snj CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2322 1.28.2.2 snj }
2323