if_age.c revision 1.8.2.2 1 1.8.2.2 skrll /* $NetBSD: if_age.c,v 1.8.2.2 2009/01/19 13:18:25 skrll Exp $ */
2 1.8.2.2 skrll /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.8.2.2 skrll
4 1.8.2.2 skrll /*-
5 1.8.2.2 skrll * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.8.2.2 skrll * All rights reserved.
7 1.8.2.2 skrll *
8 1.8.2.2 skrll * Redistribution and use in source and binary forms, with or without
9 1.8.2.2 skrll * modification, are permitted provided that the following conditions
10 1.8.2.2 skrll * are met:
11 1.8.2.2 skrll * 1. Redistributions of source code must retain the above copyright
12 1.8.2.2 skrll * notice unmodified, this list of conditions, and the following
13 1.8.2.2 skrll * disclaimer.
14 1.8.2.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
15 1.8.2.2 skrll * notice, this list of conditions and the following disclaimer in the
16 1.8.2.2 skrll * documentation and/or other materials provided with the distribution.
17 1.8.2.2 skrll *
18 1.8.2.2 skrll * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.8.2.2 skrll * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.8.2.2 skrll * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.8.2.2 skrll * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.8.2.2 skrll * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.8.2.2 skrll * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.8.2.2 skrll * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.8.2.2 skrll * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.8.2.2 skrll * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.8.2.2 skrll * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.8.2.2 skrll * SUCH DAMAGE.
29 1.8.2.2 skrll */
30 1.8.2.2 skrll
31 1.8.2.2 skrll /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.8.2.2 skrll
33 1.8.2.2 skrll #include <sys/cdefs.h>
34 1.8.2.2 skrll __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.8.2.2 2009/01/19 13:18:25 skrll Exp $");
35 1.8.2.2 skrll
36 1.8.2.2 skrll #include "bpfilter.h"
37 1.8.2.2 skrll #include "vlan.h"
38 1.8.2.2 skrll
39 1.8.2.2 skrll #include <sys/param.h>
40 1.8.2.2 skrll #include <sys/proc.h>
41 1.8.2.2 skrll #include <sys/endian.h>
42 1.8.2.2 skrll #include <sys/systm.h>
43 1.8.2.2 skrll #include <sys/types.h>
44 1.8.2.2 skrll #include <sys/sockio.h>
45 1.8.2.2 skrll #include <sys/mbuf.h>
46 1.8.2.2 skrll #include <sys/queue.h>
47 1.8.2.2 skrll #include <sys/kernel.h>
48 1.8.2.2 skrll #include <sys/device.h>
49 1.8.2.2 skrll #include <sys/callout.h>
50 1.8.2.2 skrll #include <sys/socket.h>
51 1.8.2.2 skrll
52 1.8.2.2 skrll #include <net/if.h>
53 1.8.2.2 skrll #include <net/if_dl.h>
54 1.8.2.2 skrll #include <net/if_media.h>
55 1.8.2.2 skrll #include <net/if_ether.h>
56 1.8.2.2 skrll
57 1.8.2.2 skrll #ifdef INET
58 1.8.2.2 skrll #include <netinet/in.h>
59 1.8.2.2 skrll #include <netinet/in_systm.h>
60 1.8.2.2 skrll #include <netinet/in_var.h>
61 1.8.2.2 skrll #include <netinet/ip.h>
62 1.8.2.2 skrll #endif
63 1.8.2.2 skrll
64 1.8.2.2 skrll #include <net/if_types.h>
65 1.8.2.2 skrll #include <net/if_vlanvar.h>
66 1.8.2.2 skrll
67 1.8.2.2 skrll #if NBPFILTER > 0
68 1.8.2.2 skrll #include <net/bpf.h>
69 1.8.2.2 skrll #endif
70 1.8.2.2 skrll
71 1.8.2.2 skrll #include <sys/rnd.h>
72 1.8.2.2 skrll
73 1.8.2.2 skrll #include <dev/mii/mii.h>
74 1.8.2.2 skrll #include <dev/mii/miivar.h>
75 1.8.2.2 skrll
76 1.8.2.2 skrll #include <dev/pci/pcireg.h>
77 1.8.2.2 skrll #include <dev/pci/pcivar.h>
78 1.8.2.2 skrll #include <dev/pci/pcidevs.h>
79 1.8.2.2 skrll
80 1.8.2.2 skrll #include <dev/pci/if_agereg.h>
81 1.8.2.2 skrll
82 1.8.2.2 skrll static int age_match(device_t, cfdata_t, void *);
83 1.8.2.2 skrll static void age_attach(device_t, device_t, void *);
84 1.8.2.2 skrll static int age_detach(device_t, int);
85 1.8.2.2 skrll
86 1.8.2.2 skrll static bool age_resume(device_t PMF_FN_PROTO);
87 1.8.2.2 skrll
88 1.8.2.2 skrll static int age_miibus_readreg(device_t, int, int);
89 1.8.2.2 skrll static void age_miibus_writereg(device_t, int, int, int);
90 1.8.2.2 skrll static void age_miibus_statchg(device_t);
91 1.8.2.2 skrll
92 1.8.2.2 skrll static int age_init(struct ifnet *);
93 1.8.2.2 skrll static int age_ioctl(struct ifnet *, u_long, void *);
94 1.8.2.2 skrll static void age_start(struct ifnet *);
95 1.8.2.2 skrll static void age_watchdog(struct ifnet *);
96 1.8.2.2 skrll static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 1.8.2.2 skrll static int age_mediachange(struct ifnet *);
98 1.8.2.2 skrll
99 1.8.2.2 skrll static int age_intr(void *);
100 1.8.2.2 skrll static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 1.8.2.2 skrll static int age_dma_alloc(struct age_softc *);
102 1.8.2.2 skrll static void age_dma_free(struct age_softc *);
103 1.8.2.2 skrll static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 1.8.2.2 skrll static void age_phy_reset(struct age_softc *);
105 1.8.2.2 skrll
106 1.8.2.2 skrll static int age_encap(struct age_softc *, struct mbuf **);
107 1.8.2.2 skrll static void age_init_tx_ring(struct age_softc *);
108 1.8.2.2 skrll static int age_init_rx_ring(struct age_softc *);
109 1.8.2.2 skrll static void age_init_rr_ring(struct age_softc *);
110 1.8.2.2 skrll static void age_init_cmb_block(struct age_softc *);
111 1.8.2.2 skrll static void age_init_smb_block(struct age_softc *);
112 1.8.2.2 skrll static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 1.8.2.2 skrll static void age_mac_config(struct age_softc *);
114 1.8.2.2 skrll static void age_txintr(struct age_softc *, int);
115 1.8.2.2 skrll static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 1.8.2.2 skrll static void age_rxintr(struct age_softc *, int);
117 1.8.2.2 skrll static void age_tick(void *);
118 1.8.2.2 skrll static void age_reset(struct age_softc *);
119 1.8.2.2 skrll static void age_stop(struct age_softc *);
120 1.8.2.2 skrll static void age_stats_update(struct age_softc *);
121 1.8.2.2 skrll static void age_stop_txmac(struct age_softc *);
122 1.8.2.2 skrll static void age_stop_rxmac(struct age_softc *);
123 1.8.2.2 skrll static void age_rxvlan(struct age_softc *sc);
124 1.8.2.2 skrll static void age_rxfilter(struct age_softc *);
125 1.8.2.2 skrll
126 1.8.2.2 skrll CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 1.8.2.2 skrll age_match, age_attach, age_detach, NULL);
128 1.8.2.2 skrll
129 1.8.2.2 skrll int agedebug = 0;
130 1.8.2.2 skrll #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 1.8.2.2 skrll
132 1.8.2.2 skrll #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
133 1.8.2.2 skrll
134 1.8.2.2 skrll static int
135 1.8.2.2 skrll age_match(device_t dev, cfdata_t match, void *aux)
136 1.8.2.2 skrll {
137 1.8.2.2 skrll struct pci_attach_args *pa = aux;
138 1.8.2.2 skrll
139 1.8.2.2 skrll return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 1.8.2.2 skrll PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 1.8.2.2 skrll }
142 1.8.2.2 skrll
143 1.8.2.2 skrll static void
144 1.8.2.2 skrll age_attach(device_t parent, device_t self, void *aux)
145 1.8.2.2 skrll {
146 1.8.2.2 skrll struct age_softc *sc = device_private(self);
147 1.8.2.2 skrll struct pci_attach_args *pa = aux;
148 1.8.2.2 skrll pci_intr_handle_t ih;
149 1.8.2.2 skrll const char *intrstr;
150 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
151 1.8.2.2 skrll pcireg_t memtype;
152 1.8.2.2 skrll int error = 0;
153 1.8.2.2 skrll
154 1.8.2.2 skrll aprint_naive("\n");
155 1.8.2.2 skrll aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156 1.8.2.2 skrll
157 1.8.2.2 skrll sc->sc_dev = self;
158 1.8.2.2 skrll sc->sc_dmat = pa->pa_dmat;
159 1.8.2.2 skrll sc->sc_pct = pa->pa_pc;
160 1.8.2.2 skrll sc->sc_pcitag = pa->pa_tag;
161 1.8.2.2 skrll
162 1.8.2.2 skrll /*
163 1.8.2.2 skrll * Allocate IO memory
164 1.8.2.2 skrll */
165 1.8.2.2 skrll memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 1.8.2.2 skrll switch (memtype) {
167 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 1.8.2.2 skrll break;
171 1.8.2.2 skrll default:
172 1.8.2.2 skrll aprint_error_dev(self, "invalid base address register\n");
173 1.8.2.2 skrll break;
174 1.8.2.2 skrll }
175 1.8.2.2 skrll
176 1.8.2.2 skrll if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 1.8.2.2 skrll &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 1.8.2.2 skrll aprint_error_dev(self, "could not map mem space\n");
179 1.8.2.2 skrll return;
180 1.8.2.2 skrll }
181 1.8.2.2 skrll
182 1.8.2.2 skrll if (pci_intr_map(pa, &ih) != 0) {
183 1.8.2.2 skrll aprint_error_dev(self, "could not map interrupt\n");
184 1.8.2.2 skrll return;
185 1.8.2.2 skrll }
186 1.8.2.2 skrll
187 1.8.2.2 skrll /*
188 1.8.2.2 skrll * Allocate IRQ
189 1.8.2.2 skrll */
190 1.8.2.2 skrll intrstr = pci_intr_string(sc->sc_pct, ih);
191 1.8.2.2 skrll sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 1.8.2.2 skrll age_intr, sc);
193 1.8.2.2 skrll if (sc->sc_irq_handle == NULL) {
194 1.8.2.2 skrll aprint_error_dev(self, "could not establish interrupt");
195 1.8.2.2 skrll if (intrstr != NULL)
196 1.8.2.2 skrll aprint_error(" at %s", intrstr);
197 1.8.2.2 skrll aprint_error("\n");
198 1.8.2.2 skrll return;
199 1.8.2.2 skrll }
200 1.8.2.2 skrll aprint_normal_dev(self, "%s\n", intrstr);
201 1.8.2.2 skrll
202 1.8.2.2 skrll /* Set PHY address. */
203 1.8.2.2 skrll sc->age_phyaddr = AGE_PHY_ADDR;
204 1.8.2.2 skrll
205 1.8.2.2 skrll /* Reset PHY. */
206 1.8.2.2 skrll age_phy_reset(sc);
207 1.8.2.2 skrll
208 1.8.2.2 skrll /* Reset the ethernet controller. */
209 1.8.2.2 skrll age_reset(sc);
210 1.8.2.2 skrll
211 1.8.2.2 skrll /* Get PCI and chip id/revision. */
212 1.8.2.2 skrll sc->age_rev = PCI_REVISION(pa->pa_class);
213 1.8.2.2 skrll sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 1.8.2.2 skrll MASTER_CHIP_REV_SHIFT;
215 1.8.2.2 skrll
216 1.8.2.2 skrll aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 1.8.2.2 skrll aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218 1.8.2.2 skrll
219 1.8.2.2 skrll if (agedebug) {
220 1.8.2.2 skrll aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 1.8.2.2 skrll CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 1.8.2.2 skrll CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 1.8.2.2 skrll }
224 1.8.2.2 skrll
225 1.8.2.2 skrll /* Set max allowable DMA size. */
226 1.8.2.2 skrll sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 1.8.2.2 skrll sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228 1.8.2.2 skrll
229 1.8.2.2 skrll /* Allocate DMA stuffs */
230 1.8.2.2 skrll error = age_dma_alloc(sc);
231 1.8.2.2 skrll if (error)
232 1.8.2.2 skrll goto fail;
233 1.8.2.2 skrll
234 1.8.2.2 skrll callout_init(&sc->sc_tick_ch, 0);
235 1.8.2.2 skrll callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236 1.8.2.2 skrll
237 1.8.2.2 skrll /* Load station address. */
238 1.8.2.2 skrll age_get_macaddr(sc, sc->sc_enaddr);
239 1.8.2.2 skrll
240 1.8.2.2 skrll aprint_normal_dev(self, "Ethernet address %s\n",
241 1.8.2.2 skrll ether_sprintf(sc->sc_enaddr));
242 1.8.2.2 skrll
243 1.8.2.2 skrll ifp->if_softc = sc;
244 1.8.2.2 skrll ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 1.8.2.2 skrll ifp->if_init = age_init;
246 1.8.2.2 skrll ifp->if_ioctl = age_ioctl;
247 1.8.2.2 skrll ifp->if_start = age_start;
248 1.8.2.2 skrll ifp->if_watchdog = age_watchdog;
249 1.8.2.2 skrll ifp->if_baudrate = IF_Gbps(1);
250 1.8.2.2 skrll IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
251 1.8.2.2 skrll IFQ_SET_READY(&ifp->if_snd);
252 1.8.2.2 skrll strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
253 1.8.2.2 skrll
254 1.8.2.2 skrll sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
255 1.8.2.2 skrll
256 1.8.2.2 skrll #ifdef AGE_CHECKSUM
257 1.8.2.2 skrll ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
258 1.8.2.2 skrll IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
259 1.8.2.2 skrll IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
260 1.8.2.2 skrll #endif
261 1.8.2.2 skrll
262 1.8.2.2 skrll #if NVLAN > 0
263 1.8.2.2 skrll sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
264 1.8.2.2 skrll #endif
265 1.8.2.2 skrll
266 1.8.2.2 skrll /* Set up MII bus. */
267 1.8.2.2 skrll sc->sc_miibus.mii_ifp = ifp;
268 1.8.2.2 skrll sc->sc_miibus.mii_readreg = age_miibus_readreg;
269 1.8.2.2 skrll sc->sc_miibus.mii_writereg = age_miibus_writereg;
270 1.8.2.2 skrll sc->sc_miibus.mii_statchg = age_miibus_statchg;
271 1.8.2.2 skrll
272 1.8.2.2 skrll ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
273 1.8.2.2 skrll age_mediastatus);
274 1.8.2.2 skrll mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
275 1.8.2.2 skrll MII_OFFSET_ANY, 0);
276 1.8.2.2 skrll
277 1.8.2.2 skrll if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
278 1.8.2.2 skrll aprint_error_dev(self, "no PHY found!\n");
279 1.8.2.2 skrll ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
280 1.8.2.2 skrll 0, NULL);
281 1.8.2.2 skrll ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
282 1.8.2.2 skrll } else
283 1.8.2.2 skrll ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
284 1.8.2.2 skrll
285 1.8.2.2 skrll if_attach(ifp);
286 1.8.2.2 skrll ether_ifattach(ifp, sc->sc_enaddr);
287 1.8.2.2 skrll
288 1.8.2.2 skrll if (!pmf_device_register(self, NULL, age_resume))
289 1.8.2.2 skrll aprint_error_dev(self, "couldn't establish power handler\n");
290 1.8.2.2 skrll else
291 1.8.2.2 skrll pmf_class_network_register(self, ifp);
292 1.8.2.2 skrll
293 1.8.2.2 skrll return;
294 1.8.2.2 skrll fail:
295 1.8.2.2 skrll age_detach(sc->sc_dev, 0);
296 1.8.2.2 skrll }
297 1.8.2.2 skrll
298 1.8.2.2 skrll static int
299 1.8.2.2 skrll age_detach(device_t self, int flags)
300 1.8.2.2 skrll {
301 1.8.2.2 skrll struct age_softc *sc = device_private(self);
302 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
303 1.8.2.2 skrll int s;
304 1.8.2.2 skrll
305 1.8.2.2 skrll s = splnet();
306 1.8.2.2 skrll age_stop(sc);
307 1.8.2.2 skrll splx(s);
308 1.8.2.2 skrll
309 1.8.2.2 skrll mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
310 1.8.2.2 skrll
311 1.8.2.2 skrll /* Delete all remaining media. */
312 1.8.2.2 skrll ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
313 1.8.2.2 skrll
314 1.8.2.2 skrll ether_ifdetach(ifp);
315 1.8.2.2 skrll if_detach(ifp);
316 1.8.2.2 skrll age_dma_free(sc);
317 1.8.2.2 skrll
318 1.8.2.2 skrll if (sc->sc_irq_handle != NULL) {
319 1.8.2.2 skrll pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
320 1.8.2.2 skrll sc->sc_irq_handle = NULL;
321 1.8.2.2 skrll }
322 1.8.2.2 skrll
323 1.8.2.2 skrll return (0);
324 1.8.2.2 skrll }
325 1.8.2.2 skrll
326 1.8.2.2 skrll /*
327 1.8.2.2 skrll * Read a PHY register on the MII of the L1.
328 1.8.2.2 skrll */
329 1.8.2.2 skrll static int
330 1.8.2.2 skrll age_miibus_readreg(struct device *dev, int phy, int reg)
331 1.8.2.2 skrll {
332 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
333 1.8.2.2 skrll uint32_t v;
334 1.8.2.2 skrll int i;
335 1.8.2.2 skrll
336 1.8.2.2 skrll if (phy != sc->age_phyaddr)
337 1.8.2.2 skrll return (0);
338 1.8.2.2 skrll
339 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
340 1.8.2.2 skrll MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
341 1.8.2.2 skrll for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
342 1.8.2.2 skrll DELAY(1);
343 1.8.2.2 skrll v = CSR_READ_4(sc, AGE_MDIO);
344 1.8.2.2 skrll if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
345 1.8.2.2 skrll break;
346 1.8.2.2 skrll }
347 1.8.2.2 skrll
348 1.8.2.2 skrll if (i == 0) {
349 1.8.2.2 skrll printf("%s: phy read timeout: phy %d, reg %d\n",
350 1.8.2.2 skrll device_xname(sc->sc_dev), phy, reg);
351 1.8.2.2 skrll return (0);
352 1.8.2.2 skrll }
353 1.8.2.2 skrll
354 1.8.2.2 skrll return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
355 1.8.2.2 skrll }
356 1.8.2.2 skrll
357 1.8.2.2 skrll /*
358 1.8.2.2 skrll * Write a PHY register on the MII of the L1.
359 1.8.2.2 skrll */
360 1.8.2.2 skrll static void
361 1.8.2.2 skrll age_miibus_writereg(struct device *dev, int phy, int reg, int val)
362 1.8.2.2 skrll {
363 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
364 1.8.2.2 skrll uint32_t v;
365 1.8.2.2 skrll int i;
366 1.8.2.2 skrll
367 1.8.2.2 skrll if (phy != sc->age_phyaddr)
368 1.8.2.2 skrll return;
369 1.8.2.2 skrll
370 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
371 1.8.2.2 skrll (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
372 1.8.2.2 skrll MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
373 1.8.2.2 skrll
374 1.8.2.2 skrll for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
375 1.8.2.2 skrll DELAY(1);
376 1.8.2.2 skrll v = CSR_READ_4(sc, AGE_MDIO);
377 1.8.2.2 skrll if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
378 1.8.2.2 skrll break;
379 1.8.2.2 skrll }
380 1.8.2.2 skrll
381 1.8.2.2 skrll if (i == 0) {
382 1.8.2.2 skrll printf("%s: phy write timeout: phy %d, reg %d\n",
383 1.8.2.2 skrll device_xname(sc->sc_dev), phy, reg);
384 1.8.2.2 skrll }
385 1.8.2.2 skrll }
386 1.8.2.2 skrll
387 1.8.2.2 skrll /*
388 1.8.2.2 skrll * Callback from MII layer when media changes.
389 1.8.2.2 skrll */
390 1.8.2.2 skrll static void
391 1.8.2.2 skrll age_miibus_statchg(device_t dev)
392 1.8.2.2 skrll {
393 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
394 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
395 1.8.2.2 skrll struct mii_data *mii;
396 1.8.2.2 skrll
397 1.8.2.2 skrll if ((ifp->if_flags & IFF_RUNNING) == 0)
398 1.8.2.2 skrll return;
399 1.8.2.2 skrll
400 1.8.2.2 skrll mii = &sc->sc_miibus;
401 1.8.2.2 skrll
402 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
403 1.8.2.2 skrll if ((mii->mii_media_status & IFM_AVALID) != 0) {
404 1.8.2.2 skrll switch (IFM_SUBTYPE(mii->mii_media_active)) {
405 1.8.2.2 skrll case IFM_10_T:
406 1.8.2.2 skrll case IFM_100_TX:
407 1.8.2.2 skrll case IFM_1000_T:
408 1.8.2.2 skrll sc->age_flags |= AGE_FLAG_LINK;
409 1.8.2.2 skrll break;
410 1.8.2.2 skrll default:
411 1.8.2.2 skrll break;
412 1.8.2.2 skrll }
413 1.8.2.2 skrll }
414 1.8.2.2 skrll
415 1.8.2.2 skrll /* Stop Rx/Tx MACs. */
416 1.8.2.2 skrll age_stop_rxmac(sc);
417 1.8.2.2 skrll age_stop_txmac(sc);
418 1.8.2.2 skrll
419 1.8.2.2 skrll /* Program MACs with resolved speed/duplex/flow-control. */
420 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
421 1.8.2.2 skrll uint32_t reg;
422 1.8.2.2 skrll
423 1.8.2.2 skrll age_mac_config(sc);
424 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
425 1.8.2.2 skrll /* Restart DMA engine and Tx/Rx MAC. */
426 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
427 1.8.2.2 skrll DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
428 1.8.2.2 skrll reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
429 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
430 1.8.2.2 skrll }
431 1.8.2.2 skrll }
432 1.8.2.2 skrll
433 1.8.2.2 skrll /*
434 1.8.2.2 skrll * Get the current interface media status.
435 1.8.2.2 skrll */
436 1.8.2.2 skrll static void
437 1.8.2.2 skrll age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
438 1.8.2.2 skrll {
439 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
440 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
441 1.8.2.2 skrll
442 1.8.2.2 skrll mii_pollstat(mii);
443 1.8.2.2 skrll ifmr->ifm_status = mii->mii_media_status;
444 1.8.2.2 skrll ifmr->ifm_active = mii->mii_media_active;
445 1.8.2.2 skrll }
446 1.8.2.2 skrll
447 1.8.2.2 skrll /*
448 1.8.2.2 skrll * Set hardware to newly-selected media.
449 1.8.2.2 skrll */
450 1.8.2.2 skrll static int
451 1.8.2.2 skrll age_mediachange(struct ifnet *ifp)
452 1.8.2.2 skrll {
453 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
454 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
455 1.8.2.2 skrll int error;
456 1.8.2.2 skrll
457 1.8.2.2 skrll if (mii->mii_instance != 0) {
458 1.8.2.2 skrll struct mii_softc *miisc;
459 1.8.2.2 skrll
460 1.8.2.2 skrll LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
461 1.8.2.2 skrll mii_phy_reset(miisc);
462 1.8.2.2 skrll }
463 1.8.2.2 skrll error = mii_mediachg(mii);
464 1.8.2.2 skrll
465 1.8.2.2 skrll return (error);
466 1.8.2.2 skrll }
467 1.8.2.2 skrll
468 1.8.2.2 skrll static int
469 1.8.2.2 skrll age_intr(void *arg)
470 1.8.2.2 skrll {
471 1.8.2.2 skrll struct age_softc *sc = arg;
472 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
473 1.8.2.2 skrll struct cmb *cmb;
474 1.8.2.2 skrll uint32_t status;
475 1.8.2.2 skrll
476 1.8.2.2 skrll status = CSR_READ_4(sc, AGE_INTR_STATUS);
477 1.8.2.2 skrll if (status == 0 || (status & AGE_INTRS) == 0)
478 1.8.2.2 skrll return (0);
479 1.8.2.2 skrll
480 1.8.2.2 skrll /* Disable interrupts. */
481 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
482 1.8.2.2 skrll
483 1.8.2.2 skrll cmb = sc->age_rdata.age_cmb_block;
484 1.8.2.2 skrll
485 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
486 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
487 1.8.2.2 skrll status = le32toh(cmb->intr_status);
488 1.8.2.2 skrll if ((status & AGE_INTRS) == 0)
489 1.8.2.2 skrll goto back;
490 1.8.2.2 skrll
491 1.8.2.2 skrll sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
492 1.8.2.2 skrll TPD_CONS_SHIFT;
493 1.8.2.2 skrll sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
494 1.8.2.2 skrll RRD_PROD_SHIFT;
495 1.8.2.2 skrll
496 1.8.2.2 skrll /* Let hardware know CMB was served. */
497 1.8.2.2 skrll cmb->intr_status = 0;
498 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
499 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize,
500 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
501 1.8.2.2 skrll
502 1.8.2.2 skrll if (ifp->if_flags & IFF_RUNNING) {
503 1.8.2.2 skrll if (status & INTR_CMB_RX)
504 1.8.2.2 skrll age_rxintr(sc, sc->age_rr_prod);
505 1.8.2.2 skrll
506 1.8.2.2 skrll if (status & INTR_CMB_TX)
507 1.8.2.2 skrll age_txintr(sc, sc->age_tpd_cons);
508 1.8.2.2 skrll
509 1.8.2.2 skrll if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
510 1.8.2.2 skrll if (status & INTR_DMA_RD_TO_RST)
511 1.8.2.2 skrll printf("%s: DMA read error! -- resetting\n",
512 1.8.2.2 skrll device_xname(sc->sc_dev));
513 1.8.2.2 skrll if (status & INTR_DMA_WR_TO_RST)
514 1.8.2.2 skrll printf("%s: DMA write error! -- resetting\n",
515 1.8.2.2 skrll device_xname(sc->sc_dev));
516 1.8.2.2 skrll age_init(ifp);
517 1.8.2.2 skrll }
518 1.8.2.2 skrll
519 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
520 1.8.2.2 skrll age_start(ifp);
521 1.8.2.2 skrll
522 1.8.2.2 skrll if (status & INTR_SMB)
523 1.8.2.2 skrll age_stats_update(sc);
524 1.8.2.2 skrll }
525 1.8.2.2 skrll
526 1.8.2.2 skrll /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
527 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
528 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize,
529 1.8.2.2 skrll BUS_DMASYNC_POSTREAD);
530 1.8.2.2 skrll
531 1.8.2.2 skrll back:
532 1.8.2.2 skrll /* Re-enable interrupts. */
533 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
534 1.8.2.2 skrll
535 1.8.2.2 skrll return (1);
536 1.8.2.2 skrll }
537 1.8.2.2 skrll
538 1.8.2.2 skrll static int
539 1.8.2.2 skrll age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
540 1.8.2.2 skrll uint32_t *word)
541 1.8.2.2 skrll {
542 1.8.2.2 skrll int i;
543 1.8.2.2 skrll pcireg_t rv;
544 1.8.2.2 skrll
545 1.8.2.2 skrll pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
546 1.8.2.2 skrll offset << PCI_VPD_ADDRESS_SHIFT);
547 1.8.2.2 skrll for (i = AGE_TIMEOUT; i > 0; i--) {
548 1.8.2.2 skrll DELAY(10);
549 1.8.2.2 skrll rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
550 1.8.2.2 skrll PCI_VPD_ADDRESS(vpdc));
551 1.8.2.2 skrll if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
552 1.8.2.2 skrll break;
553 1.8.2.2 skrll }
554 1.8.2.2 skrll if (i == 0) {
555 1.8.2.2 skrll printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
556 1.8.2.2 skrll *word = 0;
557 1.8.2.2 skrll return ETIMEDOUT;
558 1.8.2.2 skrll }
559 1.8.2.2 skrll
560 1.8.2.2 skrll *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
561 1.8.2.2 skrll return 0;
562 1.8.2.2 skrll }
563 1.8.2.2 skrll
564 1.8.2.2 skrll static void
565 1.8.2.2 skrll age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
566 1.8.2.2 skrll {
567 1.8.2.2 skrll uint32_t ea[2], off, reg, word;
568 1.8.2.2 skrll int vpd_error, match, vpdc;
569 1.8.2.2 skrll
570 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SPI_CTRL);
571 1.8.2.2 skrll if ((reg & SPI_VPD_ENB) != 0) {
572 1.8.2.2 skrll /* Get VPD stored in TWSI EEPROM. */
573 1.8.2.2 skrll reg &= ~SPI_VPD_ENB;
574 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
575 1.8.2.2 skrll }
576 1.8.2.2 skrll
577 1.8.2.2 skrll vpd_error = 0;
578 1.8.2.2 skrll ea[0] = ea[1] = 0;
579 1.8.2.2 skrll if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
580 1.8.2.2 skrll PCI_CAP_VPD, &vpdc, NULL))) {
581 1.8.2.2 skrll /*
582 1.8.2.2 skrll * PCI VPD capability exists, but it seems that it's
583 1.8.2.2 skrll * not in the standard form as stated in PCI VPD
584 1.8.2.2 skrll * specification such that driver could not use
585 1.8.2.2 skrll * pci_get_vpd_readonly(9) with keyword 'NA'.
586 1.8.2.2 skrll * Search VPD data starting at address 0x0100. The data
587 1.8.2.2 skrll * should be used as initializers to set AGE_PAR0,
588 1.8.2.2 skrll * AGE_PAR1 register including other PCI configuration
589 1.8.2.2 skrll * registers.
590 1.8.2.2 skrll */
591 1.8.2.2 skrll word = 0;
592 1.8.2.2 skrll match = 0;
593 1.8.2.2 skrll reg = 0;
594 1.8.2.2 skrll for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
595 1.8.2.2 skrll off += sizeof(uint32_t)) {
596 1.8.2.2 skrll vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
597 1.8.2.2 skrll if (vpd_error != 0)
598 1.8.2.2 skrll break;
599 1.8.2.2 skrll if (match != 0) {
600 1.8.2.2 skrll switch (reg) {
601 1.8.2.2 skrll case AGE_PAR0:
602 1.8.2.2 skrll ea[0] = word;
603 1.8.2.2 skrll break;
604 1.8.2.2 skrll case AGE_PAR1:
605 1.8.2.2 skrll ea[1] = word;
606 1.8.2.2 skrll break;
607 1.8.2.2 skrll default:
608 1.8.2.2 skrll break;
609 1.8.2.2 skrll }
610 1.8.2.2 skrll match = 0;
611 1.8.2.2 skrll } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
612 1.8.2.2 skrll match = 1;
613 1.8.2.2 skrll reg = word >> 16;
614 1.8.2.2 skrll } else
615 1.8.2.2 skrll break;
616 1.8.2.2 skrll }
617 1.8.2.2 skrll if (off >= AGE_VPD_REG_CONF_END)
618 1.8.2.2 skrll vpd_error = ENOENT;
619 1.8.2.2 skrll if (vpd_error == 0) {
620 1.8.2.2 skrll /*
621 1.8.2.2 skrll * Don't blindly trust ethernet address obtained
622 1.8.2.2 skrll * from VPD. Check whether ethernet address is
623 1.8.2.2 skrll * valid one. Otherwise fall-back to reading
624 1.8.2.2 skrll * PAR register.
625 1.8.2.2 skrll */
626 1.8.2.2 skrll ea[1] &= 0xFFFF;
627 1.8.2.2 skrll if ((ea[0] == 0 && ea[1] == 0) ||
628 1.8.2.2 skrll (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
629 1.8.2.2 skrll if (agedebug)
630 1.8.2.2 skrll printf("%s: invalid ethernet address "
631 1.8.2.2 skrll "returned from VPD.\n",
632 1.8.2.2 skrll device_xname(sc->sc_dev));
633 1.8.2.2 skrll vpd_error = EINVAL;
634 1.8.2.2 skrll }
635 1.8.2.2 skrll }
636 1.8.2.2 skrll if (vpd_error != 0 && (agedebug))
637 1.8.2.2 skrll printf("%s: VPD access failure!\n",
638 1.8.2.2 skrll device_xname(sc->sc_dev));
639 1.8.2.2 skrll } else {
640 1.8.2.2 skrll if (agedebug)
641 1.8.2.2 skrll printf("%s: PCI VPD capability not found!\n",
642 1.8.2.2 skrll device_xname(sc->sc_dev));
643 1.8.2.2 skrll }
644 1.8.2.2 skrll
645 1.8.2.2 skrll /*
646 1.8.2.2 skrll * It seems that L1 also provides a way to extract ethernet
647 1.8.2.2 skrll * address via SPI flash interface. Because SPI flash memory
648 1.8.2.2 skrll * device of different vendors vary in their instruction
649 1.8.2.2 skrll * codes for read ID instruction, it's very hard to get
650 1.8.2.2 skrll * instructions codes without detailed information for the
651 1.8.2.2 skrll * flash memory device used on ethernet controller. To simplify
652 1.8.2.2 skrll * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
653 1.8.2.2 skrll * address which is supposed to be set by hardware during
654 1.8.2.2 skrll * power on reset.
655 1.8.2.2 skrll */
656 1.8.2.2 skrll if (vpd_error != 0) {
657 1.8.2.2 skrll /*
658 1.8.2.2 skrll * VPD is mapped to SPI flash memory or BIOS set it.
659 1.8.2.2 skrll */
660 1.8.2.2 skrll ea[0] = CSR_READ_4(sc, AGE_PAR0);
661 1.8.2.2 skrll ea[1] = CSR_READ_4(sc, AGE_PAR1);
662 1.8.2.2 skrll }
663 1.8.2.2 skrll
664 1.8.2.2 skrll ea[1] &= 0xFFFF;
665 1.8.2.2 skrll eaddr[0] = (ea[1] >> 8) & 0xFF;
666 1.8.2.2 skrll eaddr[1] = (ea[1] >> 0) & 0xFF;
667 1.8.2.2 skrll eaddr[2] = (ea[0] >> 24) & 0xFF;
668 1.8.2.2 skrll eaddr[3] = (ea[0] >> 16) & 0xFF;
669 1.8.2.2 skrll eaddr[4] = (ea[0] >> 8) & 0xFF;
670 1.8.2.2 skrll eaddr[5] = (ea[0] >> 0) & 0xFF;
671 1.8.2.2 skrll }
672 1.8.2.2 skrll
673 1.8.2.2 skrll static void
674 1.8.2.2 skrll age_phy_reset(struct age_softc *sc)
675 1.8.2.2 skrll {
676 1.8.2.2 skrll /* Reset PHY. */
677 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
678 1.8.2.2 skrll DELAY(1000);
679 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
680 1.8.2.2 skrll DELAY(1000);
681 1.8.2.2 skrll }
682 1.8.2.2 skrll
683 1.8.2.2 skrll static int
684 1.8.2.2 skrll age_dma_alloc(struct age_softc *sc)
685 1.8.2.2 skrll {
686 1.8.2.2 skrll struct age_txdesc *txd;
687 1.8.2.2 skrll struct age_rxdesc *rxd;
688 1.8.2.2 skrll int nsegs, error, i;
689 1.8.2.2 skrll
690 1.8.2.2 skrll /*
691 1.8.2.2 skrll * Create DMA stuffs for TX ring
692 1.8.2.2 skrll */
693 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
694 1.8.2.2 skrll AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
695 1.8.2.2 skrll if (error)
696 1.8.2.2 skrll return (ENOBUFS);
697 1.8.2.2 skrll
698 1.8.2.2 skrll /* Allocate DMA'able memory for TX ring */
699 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
700 1.8.2.2 skrll PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
701 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
702 1.8.2.2 skrll if (error) {
703 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for Tx ring.\n",
704 1.8.2.2 skrll device_xname(sc->sc_dev));
705 1.8.2.2 skrll return error;
706 1.8.2.2 skrll }
707 1.8.2.2 skrll
708 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
709 1.8.2.2 skrll nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
710 1.8.2.2 skrll BUS_DMA_NOWAIT);
711 1.8.2.2 skrll if (error)
712 1.8.2.2 skrll return (ENOBUFS);
713 1.8.2.2 skrll
714 1.8.2.2 skrll memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
715 1.8.2.2 skrll
716 1.8.2.2 skrll /* Load the DMA map for Tx ring. */
717 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
718 1.8.2.2 skrll sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
719 1.8.2.2 skrll if (error) {
720 1.8.2.2 skrll printf("%s: could not load DMA'able memory for Tx ring.\n",
721 1.8.2.2 skrll device_xname(sc->sc_dev));
722 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
723 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
724 1.8.2.2 skrll return error;
725 1.8.2.2 skrll }
726 1.8.2.2 skrll
727 1.8.2.2 skrll sc->age_rdata.age_tx_ring_paddr =
728 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
729 1.8.2.2 skrll
730 1.8.2.2 skrll /*
731 1.8.2.2 skrll * Create DMA stuffs for RX ring
732 1.8.2.2 skrll */
733 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
734 1.8.2.2 skrll AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
735 1.8.2.2 skrll if (error)
736 1.8.2.2 skrll return (ENOBUFS);
737 1.8.2.2 skrll
738 1.8.2.2 skrll /* Allocate DMA'able memory for RX ring */
739 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
740 1.8.2.2 skrll PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
741 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
742 1.8.2.2 skrll if (error) {
743 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for Rx ring.\n",
744 1.8.2.2 skrll device_xname(sc->sc_dev));
745 1.8.2.2 skrll return error;
746 1.8.2.2 skrll }
747 1.8.2.2 skrll
748 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
749 1.8.2.2 skrll nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
750 1.8.2.2 skrll BUS_DMA_NOWAIT);
751 1.8.2.2 skrll if (error)
752 1.8.2.2 skrll return (ENOBUFS);
753 1.8.2.2 skrll
754 1.8.2.2 skrll memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
755 1.8.2.2 skrll
756 1.8.2.2 skrll /* Load the DMA map for Rx ring. */
757 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
758 1.8.2.2 skrll sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
759 1.8.2.2 skrll if (error) {
760 1.8.2.2 skrll printf("%s: could not load DMA'able memory for Rx ring.\n",
761 1.8.2.2 skrll device_xname(sc->sc_dev));
762 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
763 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
764 1.8.2.2 skrll return error;
765 1.8.2.2 skrll }
766 1.8.2.2 skrll
767 1.8.2.2 skrll sc->age_rdata.age_rx_ring_paddr =
768 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
769 1.8.2.2 skrll
770 1.8.2.2 skrll /*
771 1.8.2.2 skrll * Create DMA stuffs for RX return ring
772 1.8.2.2 skrll */
773 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
774 1.8.2.2 skrll AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
775 1.8.2.2 skrll if (error)
776 1.8.2.2 skrll return (ENOBUFS);
777 1.8.2.2 skrll
778 1.8.2.2 skrll /* Allocate DMA'able memory for RX return ring */
779 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
780 1.8.2.2 skrll PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
781 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
782 1.8.2.2 skrll if (error) {
783 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for Rx "
784 1.8.2.2 skrll "return ring.\n", device_xname(sc->sc_dev));
785 1.8.2.2 skrll return error;
786 1.8.2.2 skrll }
787 1.8.2.2 skrll
788 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
789 1.8.2.2 skrll nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
790 1.8.2.2 skrll BUS_DMA_NOWAIT);
791 1.8.2.2 skrll if (error)
792 1.8.2.2 skrll return (ENOBUFS);
793 1.8.2.2 skrll
794 1.8.2.2 skrll memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
795 1.8.2.2 skrll
796 1.8.2.2 skrll /* Load the DMA map for Rx return ring. */
797 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
798 1.8.2.2 skrll sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
799 1.8.2.2 skrll if (error) {
800 1.8.2.2 skrll printf("%s: could not load DMA'able memory for Rx return ring."
801 1.8.2.2 skrll "\n", device_xname(sc->sc_dev));
802 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
803 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
804 1.8.2.2 skrll return error;
805 1.8.2.2 skrll }
806 1.8.2.2 skrll
807 1.8.2.2 skrll sc->age_rdata.age_rr_ring_paddr =
808 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
809 1.8.2.2 skrll
810 1.8.2.2 skrll /*
811 1.8.2.2 skrll * Create DMA stuffs for CMB block
812 1.8.2.2 skrll */
813 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
814 1.8.2.2 skrll AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
815 1.8.2.2 skrll &sc->age_cdata.age_cmb_block_map);
816 1.8.2.2 skrll if (error)
817 1.8.2.2 skrll return (ENOBUFS);
818 1.8.2.2 skrll
819 1.8.2.2 skrll /* Allocate DMA'able memory for CMB block */
820 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
821 1.8.2.2 skrll PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
822 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
823 1.8.2.2 skrll if (error) {
824 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for "
825 1.8.2.2 skrll "CMB block\n", device_xname(sc->sc_dev));
826 1.8.2.2 skrll return error;
827 1.8.2.2 skrll }
828 1.8.2.2 skrll
829 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
830 1.8.2.2 skrll nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
831 1.8.2.2 skrll BUS_DMA_NOWAIT);
832 1.8.2.2 skrll if (error)
833 1.8.2.2 skrll return (ENOBUFS);
834 1.8.2.2 skrll
835 1.8.2.2 skrll memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
836 1.8.2.2 skrll
837 1.8.2.2 skrll /* Load the DMA map for CMB block. */
838 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
839 1.8.2.2 skrll sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
840 1.8.2.2 skrll BUS_DMA_WAITOK);
841 1.8.2.2 skrll if (error) {
842 1.8.2.2 skrll printf("%s: could not load DMA'able memory for CMB block\n",
843 1.8.2.2 skrll device_xname(sc->sc_dev));
844 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
845 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
846 1.8.2.2 skrll return error;
847 1.8.2.2 skrll }
848 1.8.2.2 skrll
849 1.8.2.2 skrll sc->age_rdata.age_cmb_block_paddr =
850 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
851 1.8.2.2 skrll
852 1.8.2.2 skrll /*
853 1.8.2.2 skrll * Create DMA stuffs for SMB block
854 1.8.2.2 skrll */
855 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
856 1.8.2.2 skrll AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
857 1.8.2.2 skrll &sc->age_cdata.age_smb_block_map);
858 1.8.2.2 skrll if (error)
859 1.8.2.2 skrll return (ENOBUFS);
860 1.8.2.2 skrll
861 1.8.2.2 skrll /* Allocate DMA'able memory for SMB block */
862 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
863 1.8.2.2 skrll PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
864 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
865 1.8.2.2 skrll if (error) {
866 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for "
867 1.8.2.2 skrll "SMB block\n", device_xname(sc->sc_dev));
868 1.8.2.2 skrll return error;
869 1.8.2.2 skrll }
870 1.8.2.2 skrll
871 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
872 1.8.2.2 skrll nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
873 1.8.2.2 skrll BUS_DMA_NOWAIT);
874 1.8.2.2 skrll if (error)
875 1.8.2.2 skrll return (ENOBUFS);
876 1.8.2.2 skrll
877 1.8.2.2 skrll memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
878 1.8.2.2 skrll
879 1.8.2.2 skrll /* Load the DMA map for SMB block */
880 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
881 1.8.2.2 skrll sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
882 1.8.2.2 skrll BUS_DMA_WAITOK);
883 1.8.2.2 skrll if (error) {
884 1.8.2.2 skrll printf("%s: could not load DMA'able memory for SMB block\n",
885 1.8.2.2 skrll device_xname(sc->sc_dev));
886 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
887 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
888 1.8.2.2 skrll return error;
889 1.8.2.2 skrll }
890 1.8.2.2 skrll
891 1.8.2.2 skrll sc->age_rdata.age_smb_block_paddr =
892 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
893 1.8.2.2 skrll
894 1.8.2.2 skrll /* Create DMA maps for Tx buffers. */
895 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
896 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
897 1.8.2.2 skrll txd->tx_m = NULL;
898 1.8.2.2 skrll txd->tx_dmamap = NULL;
899 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
900 1.8.2.2 skrll AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
901 1.8.2.2 skrll &txd->tx_dmamap);
902 1.8.2.2 skrll if (error) {
903 1.8.2.2 skrll printf("%s: could not create Tx dmamap.\n",
904 1.8.2.2 skrll device_xname(sc->sc_dev));
905 1.8.2.2 skrll return error;
906 1.8.2.2 skrll }
907 1.8.2.2 skrll }
908 1.8.2.2 skrll
909 1.8.2.2 skrll /* Create DMA maps for Rx buffers. */
910 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
911 1.8.2.2 skrll BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
912 1.8.2.2 skrll if (error) {
913 1.8.2.2 skrll printf("%s: could not create spare Rx dmamap.\n",
914 1.8.2.2 skrll device_xname(sc->sc_dev));
915 1.8.2.2 skrll return error;
916 1.8.2.2 skrll }
917 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
918 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
919 1.8.2.2 skrll rxd->rx_m = NULL;
920 1.8.2.2 skrll rxd->rx_dmamap = NULL;
921 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
922 1.8.2.2 skrll MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
923 1.8.2.2 skrll if (error) {
924 1.8.2.2 skrll printf("%s: could not create Rx dmamap.\n",
925 1.8.2.2 skrll device_xname(sc->sc_dev));
926 1.8.2.2 skrll return error;
927 1.8.2.2 skrll }
928 1.8.2.2 skrll }
929 1.8.2.2 skrll
930 1.8.2.2 skrll return (0);
931 1.8.2.2 skrll }
932 1.8.2.2 skrll
933 1.8.2.2 skrll static void
934 1.8.2.2 skrll age_dma_free(struct age_softc *sc)
935 1.8.2.2 skrll {
936 1.8.2.2 skrll struct age_txdesc *txd;
937 1.8.2.2 skrll struct age_rxdesc *rxd;
938 1.8.2.2 skrll int i;
939 1.8.2.2 skrll
940 1.8.2.2 skrll /* Tx buffers */
941 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
942 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
943 1.8.2.2 skrll if (txd->tx_dmamap != NULL) {
944 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
945 1.8.2.2 skrll txd->tx_dmamap = NULL;
946 1.8.2.2 skrll }
947 1.8.2.2 skrll }
948 1.8.2.2 skrll /* Rx buffers */
949 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
950 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
951 1.8.2.2 skrll if (rxd->rx_dmamap != NULL) {
952 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
953 1.8.2.2 skrll rxd->rx_dmamap = NULL;
954 1.8.2.2 skrll }
955 1.8.2.2 skrll }
956 1.8.2.2 skrll if (sc->age_cdata.age_rx_sparemap != NULL) {
957 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
958 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap = NULL;
959 1.8.2.2 skrll }
960 1.8.2.2 skrll
961 1.8.2.2 skrll /* Tx ring. */
962 1.8.2.2 skrll if (sc->age_cdata.age_tx_ring_map != NULL)
963 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
964 1.8.2.2 skrll if (sc->age_cdata.age_tx_ring_map != NULL &&
965 1.8.2.2 skrll sc->age_rdata.age_tx_ring != NULL)
966 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
967 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
968 1.8.2.2 skrll sc->age_rdata.age_tx_ring = NULL;
969 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map = NULL;
970 1.8.2.2 skrll
971 1.8.2.2 skrll /* Rx ring. */
972 1.8.2.2 skrll if (sc->age_cdata.age_rx_ring_map != NULL)
973 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
974 1.8.2.2 skrll if (sc->age_cdata.age_rx_ring_map != NULL &&
975 1.8.2.2 skrll sc->age_rdata.age_rx_ring != NULL)
976 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
977 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
978 1.8.2.2 skrll sc->age_rdata.age_rx_ring = NULL;
979 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map = NULL;
980 1.8.2.2 skrll
981 1.8.2.2 skrll /* Rx return ring. */
982 1.8.2.2 skrll if (sc->age_cdata.age_rr_ring_map != NULL)
983 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
984 1.8.2.2 skrll if (sc->age_cdata.age_rr_ring_map != NULL &&
985 1.8.2.2 skrll sc->age_rdata.age_rr_ring != NULL)
986 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
987 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
988 1.8.2.2 skrll sc->age_rdata.age_rr_ring = NULL;
989 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map = NULL;
990 1.8.2.2 skrll
991 1.8.2.2 skrll /* CMB block */
992 1.8.2.2 skrll if (sc->age_cdata.age_cmb_block_map != NULL)
993 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
994 1.8.2.2 skrll if (sc->age_cdata.age_cmb_block_map != NULL &&
995 1.8.2.2 skrll sc->age_rdata.age_cmb_block != NULL)
996 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
997 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
998 1.8.2.2 skrll sc->age_rdata.age_cmb_block = NULL;
999 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map = NULL;
1000 1.8.2.2 skrll
1001 1.8.2.2 skrll /* SMB block */
1002 1.8.2.2 skrll if (sc->age_cdata.age_smb_block_map != NULL)
1003 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1004 1.8.2.2 skrll if (sc->age_cdata.age_smb_block_map != NULL &&
1005 1.8.2.2 skrll sc->age_rdata.age_smb_block != NULL)
1006 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
1007 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1008 1.8.2.2 skrll }
1009 1.8.2.2 skrll
1010 1.8.2.2 skrll static void
1011 1.8.2.2 skrll age_start(struct ifnet *ifp)
1012 1.8.2.2 skrll {
1013 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1014 1.8.2.2 skrll struct mbuf *m_head;
1015 1.8.2.2 skrll int enq;
1016 1.8.2.2 skrll
1017 1.8.2.2 skrll if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1018 1.8.2.2 skrll return;
1019 1.8.2.2 skrll
1020 1.8.2.2 skrll enq = 0;
1021 1.8.2.2 skrll for (;;) {
1022 1.8.2.2 skrll IFQ_DEQUEUE(&ifp->if_snd, m_head);
1023 1.8.2.2 skrll if (m_head == NULL)
1024 1.8.2.2 skrll break;
1025 1.8.2.2 skrll
1026 1.8.2.2 skrll /*
1027 1.8.2.2 skrll * Pack the data into the transmit ring. If we
1028 1.8.2.2 skrll * don't have room, set the OACTIVE flag and wait
1029 1.8.2.2 skrll * for the NIC to drain the ring.
1030 1.8.2.2 skrll */
1031 1.8.2.2 skrll if (age_encap(sc, &m_head)) {
1032 1.8.2.2 skrll if (m_head == NULL)
1033 1.8.2.2 skrll break;
1034 1.8.2.2 skrll ifp->if_flags |= IFF_OACTIVE;
1035 1.8.2.2 skrll break;
1036 1.8.2.2 skrll }
1037 1.8.2.2 skrll enq = 1;
1038 1.8.2.2 skrll
1039 1.8.2.2 skrll #if NBPFILTER > 0
1040 1.8.2.2 skrll /*
1041 1.8.2.2 skrll * If there's a BPF listener, bounce a copy of this frame
1042 1.8.2.2 skrll * to him.
1043 1.8.2.2 skrll */
1044 1.8.2.2 skrll if (ifp->if_bpf != NULL)
1045 1.8.2.2 skrll bpf_mtap(ifp->if_bpf, m_head);
1046 1.8.2.2 skrll #endif
1047 1.8.2.2 skrll }
1048 1.8.2.2 skrll
1049 1.8.2.2 skrll if (enq) {
1050 1.8.2.2 skrll /* Update mbox. */
1051 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1052 1.8.2.2 skrll /* Set a timeout in case the chip goes out to lunch. */
1053 1.8.2.2 skrll ifp->if_timer = AGE_TX_TIMEOUT;
1054 1.8.2.2 skrll }
1055 1.8.2.2 skrll }
1056 1.8.2.2 skrll
1057 1.8.2.2 skrll static void
1058 1.8.2.2 skrll age_watchdog(struct ifnet *ifp)
1059 1.8.2.2 skrll {
1060 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1061 1.8.2.2 skrll
1062 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1063 1.8.2.2 skrll printf("%s: watchdog timeout (missed link)\n",
1064 1.8.2.2 skrll device_xname(sc->sc_dev));
1065 1.8.2.2 skrll ifp->if_oerrors++;
1066 1.8.2.2 skrll age_init(ifp);
1067 1.8.2.2 skrll return;
1068 1.8.2.2 skrll }
1069 1.8.2.2 skrll
1070 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt == 0) {
1071 1.8.2.2 skrll printf("%s: watchdog timeout (missed Tx interrupts) "
1072 1.8.2.2 skrll "-- recovering\n", device_xname(sc->sc_dev));
1073 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
1074 1.8.2.2 skrll age_start(ifp);
1075 1.8.2.2 skrll return;
1076 1.8.2.2 skrll }
1077 1.8.2.2 skrll
1078 1.8.2.2 skrll printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1079 1.8.2.2 skrll ifp->if_oerrors++;
1080 1.8.2.2 skrll age_init(ifp);
1081 1.8.2.2 skrll
1082 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
1083 1.8.2.2 skrll age_start(ifp);
1084 1.8.2.2 skrll }
1085 1.8.2.2 skrll
1086 1.8.2.2 skrll static int
1087 1.8.2.2 skrll age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1088 1.8.2.2 skrll {
1089 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1090 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
1091 1.8.2.2 skrll struct ifreq *ifr = (struct ifreq *)data;
1092 1.8.2.2 skrll int s, error = 0;
1093 1.8.2.2 skrll
1094 1.8.2.2 skrll s = splnet();
1095 1.8.2.2 skrll
1096 1.8.2.2 skrll switch (cmd) {
1097 1.8.2.2 skrll case SIOCSIFMEDIA:
1098 1.8.2.2 skrll case SIOCGIFMEDIA:
1099 1.8.2.2 skrll error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1100 1.8.2.2 skrll break;
1101 1.8.2.2 skrll default:
1102 1.8.2.2 skrll error = ether_ioctl(ifp, cmd, data);
1103 1.8.2.2 skrll if (error == ENETRESET) {
1104 1.8.2.2 skrll if (ifp->if_flags & IFF_RUNNING)
1105 1.8.2.2 skrll age_rxfilter(sc);
1106 1.8.2.2 skrll error = 0;
1107 1.8.2.2 skrll }
1108 1.8.2.2 skrll break;
1109 1.8.2.2 skrll }
1110 1.8.2.2 skrll
1111 1.8.2.2 skrll splx(s);
1112 1.8.2.2 skrll return error;
1113 1.8.2.2 skrll }
1114 1.8.2.2 skrll
1115 1.8.2.2 skrll static void
1116 1.8.2.2 skrll age_mac_config(struct age_softc *sc)
1117 1.8.2.2 skrll {
1118 1.8.2.2 skrll struct mii_data *mii;
1119 1.8.2.2 skrll uint32_t reg;
1120 1.8.2.2 skrll
1121 1.8.2.2 skrll mii = &sc->sc_miibus;
1122 1.8.2.2 skrll
1123 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
1124 1.8.2.2 skrll reg &= ~MAC_CFG_FULL_DUPLEX;
1125 1.8.2.2 skrll reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1126 1.8.2.2 skrll reg &= ~MAC_CFG_SPEED_MASK;
1127 1.8.2.2 skrll
1128 1.8.2.2 skrll /* Reprogram MAC with resolved speed/duplex. */
1129 1.8.2.2 skrll switch (IFM_SUBTYPE(mii->mii_media_active)) {
1130 1.8.2.2 skrll case IFM_10_T:
1131 1.8.2.2 skrll case IFM_100_TX:
1132 1.8.2.2 skrll reg |= MAC_CFG_SPEED_10_100;
1133 1.8.2.2 skrll break;
1134 1.8.2.2 skrll case IFM_1000_T:
1135 1.8.2.2 skrll reg |= MAC_CFG_SPEED_1000;
1136 1.8.2.2 skrll break;
1137 1.8.2.2 skrll }
1138 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1139 1.8.2.2 skrll reg |= MAC_CFG_FULL_DUPLEX;
1140 1.8.2.2 skrll #ifdef notyet
1141 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1142 1.8.2.2 skrll reg |= MAC_CFG_TX_FC;
1143 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1144 1.8.2.2 skrll reg |= MAC_CFG_RX_FC;
1145 1.8.2.2 skrll #endif
1146 1.8.2.2 skrll }
1147 1.8.2.2 skrll
1148 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1149 1.8.2.2 skrll }
1150 1.8.2.2 skrll
1151 1.8.2.2 skrll static bool
1152 1.8.2.2 skrll age_resume(device_t dv PMF_FN_ARGS)
1153 1.8.2.2 skrll {
1154 1.8.2.2 skrll struct age_softc *sc = device_private(dv);
1155 1.8.2.2 skrll uint16_t cmd;
1156 1.8.2.2 skrll
1157 1.8.2.2 skrll /*
1158 1.8.2.2 skrll * Clear INTx emulation disable for hardware that
1159 1.8.2.2 skrll * is set in resume event. From Linux.
1160 1.8.2.2 skrll */
1161 1.8.2.2 skrll cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1162 1.8.2.2 skrll if ((cmd & 0x0400) != 0) {
1163 1.8.2.2 skrll cmd &= ~0x0400;
1164 1.8.2.2 skrll pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1165 1.8.2.2 skrll PCI_COMMAND_STATUS_REG, cmd);
1166 1.8.2.2 skrll }
1167 1.8.2.2 skrll
1168 1.8.2.2 skrll return true;
1169 1.8.2.2 skrll }
1170 1.8.2.2 skrll
1171 1.8.2.2 skrll static int
1172 1.8.2.2 skrll age_encap(struct age_softc *sc, struct mbuf **m_head)
1173 1.8.2.2 skrll {
1174 1.8.2.2 skrll struct age_txdesc *txd, *txd_last;
1175 1.8.2.2 skrll struct tx_desc *desc;
1176 1.8.2.2 skrll struct mbuf *m;
1177 1.8.2.2 skrll bus_dmamap_t map;
1178 1.8.2.2 skrll uint32_t cflags, poff, vtag;
1179 1.8.2.2 skrll int error, i, nsegs, prod;
1180 1.8.2.2 skrll struct m_tag *mtag;
1181 1.8.2.2 skrll
1182 1.8.2.2 skrll m = *m_head;
1183 1.8.2.2 skrll cflags = vtag = 0;
1184 1.8.2.2 skrll poff = 0;
1185 1.8.2.2 skrll
1186 1.8.2.2 skrll prod = sc->age_cdata.age_tx_prod;
1187 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[prod];
1188 1.8.2.2 skrll txd_last = txd;
1189 1.8.2.2 skrll map = txd->tx_dmamap;
1190 1.8.2.2 skrll
1191 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1192 1.8.2.2 skrll
1193 1.8.2.2 skrll if (error != 0) {
1194 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, map);
1195 1.8.2.2 skrll error = EFBIG;
1196 1.8.2.2 skrll }
1197 1.8.2.2 skrll if (error == EFBIG) {
1198 1.8.2.2 skrll error = 0;
1199 1.8.2.2 skrll
1200 1.8.2.2 skrll MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 1.8.2.2 skrll if (m == NULL) {
1202 1.8.2.2 skrll printf("%s: can't defrag TX mbuf\n",
1203 1.8.2.2 skrll device_xname(sc->sc_dev));
1204 1.8.2.2 skrll m_freem(*m_head);
1205 1.8.2.2 skrll *m_head = NULL;
1206 1.8.2.2 skrll return (ENOBUFS);
1207 1.8.2.2 skrll }
1208 1.8.2.2 skrll
1209 1.8.2.2 skrll MCLGET(m, M_DONTWAIT);
1210 1.8.2.2 skrll if (!(m->m_flags & M_EXT)) {
1211 1.8.2.2 skrll m_freem(m);
1212 1.8.2.2 skrll *m_head = NULL;
1213 1.8.2.2 skrll return (ENOBUFS);
1214 1.8.2.2 skrll }
1215 1.8.2.2 skrll m->m_len = m->m_pkthdr.len;
1216 1.8.2.2 skrll *m_head = m;
1217 1.8.2.2 skrll
1218 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1219 1.8.2.2 skrll BUS_DMA_NOWAIT);
1220 1.8.2.2 skrll
1221 1.8.2.2 skrll if (error != 0) {
1222 1.8.2.2 skrll printf("%s: could not load defragged TX mbuf\n",
1223 1.8.2.2 skrll device_xname(sc->sc_dev));
1224 1.8.2.2 skrll if (!error) {
1225 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, map);
1226 1.8.2.2 skrll error = EFBIG;
1227 1.8.2.2 skrll }
1228 1.8.2.2 skrll m_freem(*m_head);
1229 1.8.2.2 skrll *m_head = NULL;
1230 1.8.2.2 skrll return (error);
1231 1.8.2.2 skrll }
1232 1.8.2.2 skrll } else if (error) {
1233 1.8.2.2 skrll printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1234 1.8.2.2 skrll return (error);
1235 1.8.2.2 skrll }
1236 1.8.2.2 skrll
1237 1.8.2.2 skrll nsegs = map->dm_nsegs;
1238 1.8.2.2 skrll
1239 1.8.2.2 skrll if (nsegs == 0) {
1240 1.8.2.2 skrll m_freem(*m_head);
1241 1.8.2.2 skrll *m_head = NULL;
1242 1.8.2.2 skrll return (EIO);
1243 1.8.2.2 skrll }
1244 1.8.2.2 skrll
1245 1.8.2.2 skrll /* Check descriptor overrun. */
1246 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1247 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, map);
1248 1.8.2.2 skrll return (ENOBUFS);
1249 1.8.2.2 skrll }
1250 1.8.2.2 skrll
1251 1.8.2.2 skrll m = *m_head;
1252 1.8.2.2 skrll /* Configure Tx IP/TCP/UDP checksum offload. */
1253 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1254 1.8.2.2 skrll cflags |= AGE_TD_CSUM;
1255 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1256 1.8.2.2 skrll cflags |= AGE_TD_TCPCSUM;
1257 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1258 1.8.2.2 skrll cflags |= AGE_TD_UDPCSUM;
1259 1.8.2.2 skrll /* Set checksum start offset. */
1260 1.8.2.2 skrll cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1261 1.8.2.2 skrll }
1262 1.8.2.2 skrll
1263 1.8.2.2 skrll #if NVLAN > 0
1264 1.8.2.2 skrll /* Configure VLAN hardware tag insertion. */
1265 1.8.2.2 skrll if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1266 1.8.2.2 skrll vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1267 1.8.2.2 skrll vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1268 1.8.2.2 skrll cflags |= AGE_TD_INSERT_VLAN_TAG;
1269 1.8.2.2 skrll }
1270 1.8.2.2 skrll #endif
1271 1.8.2.2 skrll
1272 1.8.2.2 skrll desc = NULL;
1273 1.8.2.2 skrll for (i = 0; i < nsegs; i++) {
1274 1.8.2.2 skrll desc = &sc->age_rdata.age_tx_ring[prod];
1275 1.8.2.2 skrll desc->addr = htole64(map->dm_segs[i].ds_addr);
1276 1.8.2.2 skrll desc->len =
1277 1.8.2.2 skrll htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1278 1.8.2.2 skrll desc->flags = htole32(cflags);
1279 1.8.2.2 skrll sc->age_cdata.age_tx_cnt++;
1280 1.8.2.2 skrll AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1281 1.8.2.2 skrll }
1282 1.8.2.2 skrll
1283 1.8.2.2 skrll /* Update producer index. */
1284 1.8.2.2 skrll sc->age_cdata.age_tx_prod = prod;
1285 1.8.2.2 skrll
1286 1.8.2.2 skrll /* Set EOP on the last descriptor. */
1287 1.8.2.2 skrll prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1288 1.8.2.2 skrll desc = &sc->age_rdata.age_tx_ring[prod];
1289 1.8.2.2 skrll desc->flags |= htole32(AGE_TD_EOP);
1290 1.8.2.2 skrll
1291 1.8.2.2 skrll /* Swap dmamap of the first and the last. */
1292 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[prod];
1293 1.8.2.2 skrll map = txd_last->tx_dmamap;
1294 1.8.2.2 skrll txd_last->tx_dmamap = txd->tx_dmamap;
1295 1.8.2.2 skrll txd->tx_dmamap = map;
1296 1.8.2.2 skrll txd->tx_m = m;
1297 1.8.2.2 skrll
1298 1.8.2.2 skrll /* Sync descriptors. */
1299 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1300 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1301 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1302 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1303 1.8.2.2 skrll
1304 1.8.2.2 skrll return (0);
1305 1.8.2.2 skrll }
1306 1.8.2.2 skrll
1307 1.8.2.2 skrll static void
1308 1.8.2.2 skrll age_txintr(struct age_softc *sc, int tpd_cons)
1309 1.8.2.2 skrll {
1310 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1311 1.8.2.2 skrll struct age_txdesc *txd;
1312 1.8.2.2 skrll int cons, prog;
1313 1.8.2.2 skrll
1314 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1315 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1316 1.8.2.2 skrll
1317 1.8.2.2 skrll /*
1318 1.8.2.2 skrll * Go through our Tx list and free mbufs for those
1319 1.8.2.2 skrll * frames which have been transmitted.
1320 1.8.2.2 skrll */
1321 1.8.2.2 skrll cons = sc->age_cdata.age_tx_cons;
1322 1.8.2.2 skrll for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1323 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt <= 0)
1324 1.8.2.2 skrll break;
1325 1.8.2.2 skrll prog++;
1326 1.8.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
1327 1.8.2.2 skrll sc->age_cdata.age_tx_cnt--;
1328 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[cons];
1329 1.8.2.2 skrll /*
1330 1.8.2.2 skrll * Clear Tx descriptors, it's not required but would
1331 1.8.2.2 skrll * help debugging in case of Tx issues.
1332 1.8.2.2 skrll */
1333 1.8.2.2 skrll txd->tx_desc->addr = 0;
1334 1.8.2.2 skrll txd->tx_desc->len = 0;
1335 1.8.2.2 skrll txd->tx_desc->flags = 0;
1336 1.8.2.2 skrll
1337 1.8.2.2 skrll if (txd->tx_m == NULL)
1338 1.8.2.2 skrll continue;
1339 1.8.2.2 skrll /* Reclaim transmitted mbufs. */
1340 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1341 1.8.2.2 skrll m_freem(txd->tx_m);
1342 1.8.2.2 skrll txd->tx_m = NULL;
1343 1.8.2.2 skrll }
1344 1.8.2.2 skrll
1345 1.8.2.2 skrll if (prog > 0) {
1346 1.8.2.2 skrll sc->age_cdata.age_tx_cons = cons;
1347 1.8.2.2 skrll
1348 1.8.2.2 skrll /*
1349 1.8.2.2 skrll * Unarm watchdog timer only when there are no pending
1350 1.8.2.2 skrll * Tx descriptors in queue.
1351 1.8.2.2 skrll */
1352 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt == 0)
1353 1.8.2.2 skrll ifp->if_timer = 0;
1354 1.8.2.2 skrll
1355 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1356 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize,
1357 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1358 1.8.2.2 skrll }
1359 1.8.2.2 skrll }
1360 1.8.2.2 skrll
1361 1.8.2.2 skrll /* Receive a frame. */
1362 1.8.2.2 skrll static void
1363 1.8.2.2 skrll age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1364 1.8.2.2 skrll {
1365 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1366 1.8.2.2 skrll struct age_rxdesc *rxd;
1367 1.8.2.2 skrll struct rx_desc *desc;
1368 1.8.2.2 skrll struct mbuf *mp, *m;
1369 1.8.2.2 skrll uint32_t status, index, vtag;
1370 1.8.2.2 skrll int count, nsegs, pktlen;
1371 1.8.2.2 skrll int rx_cons;
1372 1.8.2.2 skrll
1373 1.8.2.2 skrll status = le32toh(rxrd->flags);
1374 1.8.2.2 skrll index = le32toh(rxrd->index);
1375 1.8.2.2 skrll rx_cons = AGE_RX_CONS(index);
1376 1.8.2.2 skrll nsegs = AGE_RX_NSEGS(index);
1377 1.8.2.2 skrll
1378 1.8.2.2 skrll sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1379 1.8.2.2 skrll if ((status & AGE_RRD_ERROR) != 0 &&
1380 1.8.2.2 skrll (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1381 1.8.2.2 skrll AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1382 1.8.2.2 skrll /*
1383 1.8.2.2 skrll * We want to pass the following frames to upper
1384 1.8.2.2 skrll * layer regardless of error status of Rx return
1385 1.8.2.2 skrll * ring.
1386 1.8.2.2 skrll *
1387 1.8.2.2 skrll * o IP/TCP/UDP checksum is bad.
1388 1.8.2.2 skrll * o frame length and protocol specific length
1389 1.8.2.2 skrll * does not match.
1390 1.8.2.2 skrll */
1391 1.8.2.2 skrll sc->age_cdata.age_rx_cons += nsegs;
1392 1.8.2.2 skrll sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1393 1.8.2.2 skrll return;
1394 1.8.2.2 skrll }
1395 1.8.2.2 skrll
1396 1.8.2.2 skrll pktlen = 0;
1397 1.8.2.2 skrll for (count = 0; count < nsegs; count++,
1398 1.8.2.2 skrll AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1399 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1400 1.8.2.2 skrll mp = rxd->rx_m;
1401 1.8.2.2 skrll desc = rxd->rx_desc;
1402 1.8.2.2 skrll /* Add a new receive buffer to the ring. */
1403 1.8.2.2 skrll if (age_newbuf(sc, rxd, 0) != 0) {
1404 1.8.2.2 skrll ifp->if_iqdrops++;
1405 1.8.2.2 skrll /* Reuse Rx buffers. */
1406 1.8.2.2 skrll if (sc->age_cdata.age_rxhead != NULL) {
1407 1.8.2.2 skrll m_freem(sc->age_cdata.age_rxhead);
1408 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1409 1.8.2.2 skrll }
1410 1.8.2.2 skrll break;
1411 1.8.2.2 skrll }
1412 1.8.2.2 skrll
1413 1.8.2.2 skrll /* The length of the first mbuf is computed last. */
1414 1.8.2.2 skrll if (count != 0) {
1415 1.8.2.2 skrll mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1416 1.8.2.2 skrll pktlen += mp->m_len;
1417 1.8.2.2 skrll }
1418 1.8.2.2 skrll
1419 1.8.2.2 skrll /* Chain received mbufs. */
1420 1.8.2.2 skrll if (sc->age_cdata.age_rxhead == NULL) {
1421 1.8.2.2 skrll sc->age_cdata.age_rxhead = mp;
1422 1.8.2.2 skrll sc->age_cdata.age_rxtail = mp;
1423 1.8.2.2 skrll } else {
1424 1.8.2.2 skrll mp->m_flags &= ~M_PKTHDR;
1425 1.8.2.2 skrll sc->age_cdata.age_rxprev_tail =
1426 1.8.2.2 skrll sc->age_cdata.age_rxtail;
1427 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_next = mp;
1428 1.8.2.2 skrll sc->age_cdata.age_rxtail = mp;
1429 1.8.2.2 skrll }
1430 1.8.2.2 skrll
1431 1.8.2.2 skrll if (count == nsegs - 1) {
1432 1.8.2.2 skrll /*
1433 1.8.2.2 skrll * It seems that L1 controller has no way
1434 1.8.2.2 skrll * to tell hardware to strip CRC bytes.
1435 1.8.2.2 skrll */
1436 1.8.2.2 skrll sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1437 1.8.2.2 skrll if (nsegs > 1) {
1438 1.8.2.2 skrll /* Remove the CRC bytes in chained mbufs. */
1439 1.8.2.2 skrll pktlen -= ETHER_CRC_LEN;
1440 1.8.2.2 skrll if (mp->m_len <= ETHER_CRC_LEN) {
1441 1.8.2.2 skrll sc->age_cdata.age_rxtail =
1442 1.8.2.2 skrll sc->age_cdata.age_rxprev_tail;
1443 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_len -=
1444 1.8.2.2 skrll (ETHER_CRC_LEN - mp->m_len);
1445 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_next = NULL;
1446 1.8.2.2 skrll m_freem(mp);
1447 1.8.2.2 skrll } else {
1448 1.8.2.2 skrll mp->m_len -= ETHER_CRC_LEN;
1449 1.8.2.2 skrll }
1450 1.8.2.2 skrll }
1451 1.8.2.2 skrll
1452 1.8.2.2 skrll m = sc->age_cdata.age_rxhead;
1453 1.8.2.2 skrll m->m_flags |= M_PKTHDR;
1454 1.8.2.2 skrll m->m_pkthdr.rcvif = ifp;
1455 1.8.2.2 skrll m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1456 1.8.2.2 skrll /* Set the first mbuf length. */
1457 1.8.2.2 skrll m->m_len = sc->age_cdata.age_rxlen - pktlen;
1458 1.8.2.2 skrll
1459 1.8.2.2 skrll /*
1460 1.8.2.2 skrll * Set checksum information.
1461 1.8.2.2 skrll * It seems that L1 controller can compute partial
1462 1.8.2.2 skrll * checksum. The partial checksum value can be used
1463 1.8.2.2 skrll * to accelerate checksum computation for fragmented
1464 1.8.2.2 skrll * TCP/UDP packets. Upper network stack already
1465 1.8.2.2 skrll * takes advantage of the partial checksum value in
1466 1.8.2.2 skrll * IP reassembly stage. But I'm not sure the
1467 1.8.2.2 skrll * correctness of the partial hardware checksum
1468 1.8.2.2 skrll * assistance due to lack of data sheet. If it is
1469 1.8.2.2 skrll * proven to work on L1 I'll enable it.
1470 1.8.2.2 skrll */
1471 1.8.2.2 skrll if (status & AGE_RRD_IPV4) {
1472 1.8.2.2 skrll if (!(status & AGE_RRD_IPCSUM_NOK))
1473 1.8.2.2 skrll m->m_pkthdr.csum_flags |=
1474 1.8.2.2 skrll M_CSUM_IPv4_BAD;
1475 1.8.2.2 skrll if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1476 1.8.2.2 skrll (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
1477 1.8.2.2 skrll m->m_pkthdr.csum_flags |=
1478 1.8.2.2 skrll M_CSUM_TCP_UDP_BAD;
1479 1.8.2.2 skrll }
1480 1.8.2.2 skrll /*
1481 1.8.2.2 skrll * Don't mark bad checksum for TCP/UDP frames
1482 1.8.2.2 skrll * as fragmented frames may always have set
1483 1.8.2.2 skrll * bad checksummed bit of descriptor status.
1484 1.8.2.2 skrll */
1485 1.8.2.2 skrll }
1486 1.8.2.2 skrll #if NVLAN > 0
1487 1.8.2.2 skrll /* Check for VLAN tagged frames. */
1488 1.8.2.2 skrll if (status & AGE_RRD_VLAN) {
1489 1.8.2.2 skrll vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1490 1.8.2.2 skrll VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1491 1.8.2.2 skrll continue);
1492 1.8.2.2 skrll }
1493 1.8.2.2 skrll #endif
1494 1.8.2.2 skrll
1495 1.8.2.2 skrll #if NBPFILTER > 0
1496 1.8.2.2 skrll if (ifp->if_bpf)
1497 1.8.2.2 skrll bpf_mtap(ifp->if_bpf, m);
1498 1.8.2.2 skrll #endif
1499 1.8.2.2 skrll /* Pass it on. */
1500 1.8.2.2 skrll ether_input(ifp, m);
1501 1.8.2.2 skrll
1502 1.8.2.2 skrll /* Reset mbuf chains. */
1503 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1504 1.8.2.2 skrll }
1505 1.8.2.2 skrll }
1506 1.8.2.2 skrll
1507 1.8.2.2 skrll if (count != nsegs) {
1508 1.8.2.2 skrll sc->age_cdata.age_rx_cons += nsegs;
1509 1.8.2.2 skrll sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1510 1.8.2.2 skrll } else
1511 1.8.2.2 skrll sc->age_cdata.age_rx_cons = rx_cons;
1512 1.8.2.2 skrll }
1513 1.8.2.2 skrll
1514 1.8.2.2 skrll static void
1515 1.8.2.2 skrll age_rxintr(struct age_softc *sc, int rr_prod)
1516 1.8.2.2 skrll {
1517 1.8.2.2 skrll struct rx_rdesc *rxrd;
1518 1.8.2.2 skrll int rr_cons, nsegs, pktlen, prog;
1519 1.8.2.2 skrll
1520 1.8.2.2 skrll rr_cons = sc->age_cdata.age_rr_cons;
1521 1.8.2.2 skrll if (rr_cons == rr_prod)
1522 1.8.2.2 skrll return;
1523 1.8.2.2 skrll
1524 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1525 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize,
1526 1.8.2.2 skrll BUS_DMASYNC_POSTREAD);
1527 1.8.2.2 skrll
1528 1.8.2.2 skrll for (prog = 0; rr_cons != rr_prod; prog++) {
1529 1.8.2.2 skrll rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1530 1.8.2.2 skrll nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1531 1.8.2.2 skrll if (nsegs == 0)
1532 1.8.2.2 skrll break;
1533 1.8.2.2 skrll /*
1534 1.8.2.2 skrll * Check number of segments against received bytes
1535 1.8.2.2 skrll * Non-matching value would indicate that hardware
1536 1.8.2.2 skrll * is still trying to update Rx return descriptors.
1537 1.8.2.2 skrll * I'm not sure whether this check is really needed.
1538 1.8.2.2 skrll */
1539 1.8.2.2 skrll pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1540 1.8.2.2 skrll if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
1541 1.8.2.2 skrll (MCLBYTES - ETHER_HDR_LEN)))
1542 1.8.2.2 skrll break;
1543 1.8.2.2 skrll
1544 1.8.2.2 skrll /* Received a frame. */
1545 1.8.2.2 skrll age_rxeof(sc, rxrd);
1546 1.8.2.2 skrll
1547 1.8.2.2 skrll /* Clear return ring. */
1548 1.8.2.2 skrll rxrd->index = 0;
1549 1.8.2.2 skrll AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1550 1.8.2.2 skrll }
1551 1.8.2.2 skrll
1552 1.8.2.2 skrll if (prog > 0) {
1553 1.8.2.2 skrll /* Update the consumer index. */
1554 1.8.2.2 skrll sc->age_cdata.age_rr_cons = rr_cons;
1555 1.8.2.2 skrll
1556 1.8.2.2 skrll /* Sync descriptors. */
1557 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1558 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize,
1559 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1560 1.8.2.2 skrll
1561 1.8.2.2 skrll /* Notify hardware availability of new Rx buffers. */
1562 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1563 1.8.2.2 skrll }
1564 1.8.2.2 skrll }
1565 1.8.2.2 skrll
1566 1.8.2.2 skrll static void
1567 1.8.2.2 skrll age_tick(void *xsc)
1568 1.8.2.2 skrll {
1569 1.8.2.2 skrll struct age_softc *sc = xsc;
1570 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
1571 1.8.2.2 skrll int s;
1572 1.8.2.2 skrll
1573 1.8.2.2 skrll s = splnet();
1574 1.8.2.2 skrll mii_tick(mii);
1575 1.8.2.2 skrll splx(s);
1576 1.8.2.2 skrll
1577 1.8.2.2 skrll callout_schedule(&sc->sc_tick_ch, hz);
1578 1.8.2.2 skrll }
1579 1.8.2.2 skrll
1580 1.8.2.2 skrll static void
1581 1.8.2.2 skrll age_reset(struct age_softc *sc)
1582 1.8.2.2 skrll {
1583 1.8.2.2 skrll uint32_t reg;
1584 1.8.2.2 skrll int i;
1585 1.8.2.2 skrll
1586 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1587 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1588 1.8.2.2 skrll DELAY(1);
1589 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1590 1.8.2.2 skrll break;
1591 1.8.2.2 skrll }
1592 1.8.2.2 skrll if (i == 0)
1593 1.8.2.2 skrll printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1594 1.8.2.2 skrll
1595 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1596 1.8.2.2 skrll if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1597 1.8.2.2 skrll break;
1598 1.8.2.2 skrll DELAY(10);
1599 1.8.2.2 skrll }
1600 1.8.2.2 skrll
1601 1.8.2.2 skrll if (i == 0)
1602 1.8.2.2 skrll printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1603 1.8.2.2 skrll reg);
1604 1.8.2.2 skrll
1605 1.8.2.2 skrll /* Initialize PCIe module. From Linux. */
1606 1.8.2.2 skrll CSR_WRITE_4(sc, 0x12FC, 0x6500);
1607 1.8.2.2 skrll CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1608 1.8.2.2 skrll }
1609 1.8.2.2 skrll
1610 1.8.2.2 skrll static int
1611 1.8.2.2 skrll age_init(struct ifnet *ifp)
1612 1.8.2.2 skrll {
1613 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1614 1.8.2.2 skrll struct mii_data *mii;
1615 1.8.2.2 skrll uint8_t eaddr[ETHER_ADDR_LEN];
1616 1.8.2.2 skrll bus_addr_t paddr;
1617 1.8.2.2 skrll uint32_t reg, fsize;
1618 1.8.2.2 skrll uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1619 1.8.2.2 skrll int error;
1620 1.8.2.2 skrll
1621 1.8.2.2 skrll /*
1622 1.8.2.2 skrll * Cancel any pending I/O.
1623 1.8.2.2 skrll */
1624 1.8.2.2 skrll age_stop(sc);
1625 1.8.2.2 skrll
1626 1.8.2.2 skrll /*
1627 1.8.2.2 skrll * Reset the chip to a known state.
1628 1.8.2.2 skrll */
1629 1.8.2.2 skrll age_reset(sc);
1630 1.8.2.2 skrll
1631 1.8.2.2 skrll /* Initialize descriptors. */
1632 1.8.2.2 skrll error = age_init_rx_ring(sc);
1633 1.8.2.2 skrll if (error != 0) {
1634 1.8.2.2 skrll printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1635 1.8.2.2 skrll age_stop(sc);
1636 1.8.2.2 skrll return (error);
1637 1.8.2.2 skrll }
1638 1.8.2.2 skrll age_init_rr_ring(sc);
1639 1.8.2.2 skrll age_init_tx_ring(sc);
1640 1.8.2.2 skrll age_init_cmb_block(sc);
1641 1.8.2.2 skrll age_init_smb_block(sc);
1642 1.8.2.2 skrll
1643 1.8.2.2 skrll /* Reprogram the station address. */
1644 1.8.2.2 skrll memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1645 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_PAR0,
1646 1.8.2.2 skrll eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1647 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1648 1.8.2.2 skrll
1649 1.8.2.2 skrll /* Set descriptor base addresses. */
1650 1.8.2.2 skrll paddr = sc->age_rdata.age_tx_ring_paddr;
1651 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1652 1.8.2.2 skrll paddr = sc->age_rdata.age_rx_ring_paddr;
1653 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1654 1.8.2.2 skrll paddr = sc->age_rdata.age_rr_ring_paddr;
1655 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1656 1.8.2.2 skrll paddr = sc->age_rdata.age_tx_ring_paddr;
1657 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1658 1.8.2.2 skrll paddr = sc->age_rdata.age_cmb_block_paddr;
1659 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1660 1.8.2.2 skrll paddr = sc->age_rdata.age_smb_block_paddr;
1661 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1662 1.8.2.2 skrll
1663 1.8.2.2 skrll /* Set Rx/Rx return descriptor counter. */
1664 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1665 1.8.2.2 skrll ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1666 1.8.2.2 skrll DESC_RRD_CNT_MASK) |
1667 1.8.2.2 skrll ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1668 1.8.2.2 skrll
1669 1.8.2.2 skrll /* Set Tx descriptor counter. */
1670 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1671 1.8.2.2 skrll (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1672 1.8.2.2 skrll
1673 1.8.2.2 skrll /* Tell hardware that we're ready to load descriptors. */
1674 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1675 1.8.2.2 skrll
1676 1.8.2.2 skrll /*
1677 1.8.2.2 skrll * Initialize mailbox register.
1678 1.8.2.2 skrll * Updated producer/consumer index information is exchanged
1679 1.8.2.2 skrll * through this mailbox register. However Tx producer and
1680 1.8.2.2 skrll * Rx return consumer/Rx producer are all shared such that
1681 1.8.2.2 skrll * it's hard to separate code path between Tx and Rx without
1682 1.8.2.2 skrll * locking. If L1 hardware have a separate mail box register
1683 1.8.2.2 skrll * for Tx and Rx consumer/producer management we could have
1684 1.8.2.2 skrll * indepent Tx/Rx handler which in turn Rx handler could have
1685 1.8.2.2 skrll * been run without any locking.
1686 1.8.2.2 skrll */
1687 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1688 1.8.2.2 skrll
1689 1.8.2.2 skrll /* Configure IPG/IFG parameters. */
1690 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1691 1.8.2.2 skrll ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1692 1.8.2.2 skrll ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1693 1.8.2.2 skrll ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1694 1.8.2.2 skrll ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1695 1.8.2.2 skrll
1696 1.8.2.2 skrll /* Set parameters for half-duplex media. */
1697 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_HDPX_CFG,
1698 1.8.2.2 skrll ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1699 1.8.2.2 skrll HDPX_CFG_LCOL_MASK) |
1700 1.8.2.2 skrll ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1701 1.8.2.2 skrll HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1702 1.8.2.2 skrll ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1703 1.8.2.2 skrll HDPX_CFG_ABEBT_MASK) |
1704 1.8.2.2 skrll ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1705 1.8.2.2 skrll HDPX_CFG_JAMIPG_MASK));
1706 1.8.2.2 skrll
1707 1.8.2.2 skrll /* Configure interrupt moderation timer. */
1708 1.8.2.2 skrll sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1709 1.8.2.2 skrll CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1710 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1711 1.8.2.2 skrll reg &= ~MASTER_MTIMER_ENB;
1712 1.8.2.2 skrll if (AGE_USECS(sc->age_int_mod) == 0)
1713 1.8.2.2 skrll reg &= ~MASTER_ITIMER_ENB;
1714 1.8.2.2 skrll else
1715 1.8.2.2 skrll reg |= MASTER_ITIMER_ENB;
1716 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1717 1.8.2.2 skrll if (agedebug)
1718 1.8.2.2 skrll printf("%s: interrupt moderation is %d us.\n",
1719 1.8.2.2 skrll device_xname(sc->sc_dev), sc->age_int_mod);
1720 1.8.2.2 skrll CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1721 1.8.2.2 skrll
1722 1.8.2.2 skrll /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1723 1.8.2.2 skrll if (ifp->if_mtu < ETHERMTU)
1724 1.8.2.2 skrll sc->age_max_frame_size = ETHERMTU;
1725 1.8.2.2 skrll else
1726 1.8.2.2 skrll sc->age_max_frame_size = ifp->if_mtu;
1727 1.8.2.2 skrll sc->age_max_frame_size += ETHER_HDR_LEN +
1728 1.8.2.2 skrll sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1729 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1730 1.8.2.2 skrll
1731 1.8.2.2 skrll /* Configure jumbo frame. */
1732 1.8.2.2 skrll fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1733 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1734 1.8.2.2 skrll (((fsize / sizeof(uint64_t)) <<
1735 1.8.2.2 skrll RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1736 1.8.2.2 skrll ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1737 1.8.2.2 skrll RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1738 1.8.2.2 skrll ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1739 1.8.2.2 skrll RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1740 1.8.2.2 skrll
1741 1.8.2.2 skrll /* Configure flow-control parameters. From Linux. */
1742 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1743 1.8.2.2 skrll /*
1744 1.8.2.2 skrll * Magic workaround for old-L1.
1745 1.8.2.2 skrll * Don't know which hw revision requires this magic.
1746 1.8.2.2 skrll */
1747 1.8.2.2 skrll CSR_WRITE_4(sc, 0x12FC, 0x6500);
1748 1.8.2.2 skrll /*
1749 1.8.2.2 skrll * Another magic workaround for flow-control mode
1750 1.8.2.2 skrll * change. From Linux.
1751 1.8.2.2 skrll */
1752 1.8.2.2 skrll CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1753 1.8.2.2 skrll }
1754 1.8.2.2 skrll /*
1755 1.8.2.2 skrll * TODO
1756 1.8.2.2 skrll * Should understand pause parameter relationships between FIFO
1757 1.8.2.2 skrll * size and number of Rx descriptors and Rx return descriptors.
1758 1.8.2.2 skrll *
1759 1.8.2.2 skrll * Magic parameters came from Linux.
1760 1.8.2.2 skrll */
1761 1.8.2.2 skrll switch (sc->age_chip_rev) {
1762 1.8.2.2 skrll case 0x8001:
1763 1.8.2.2 skrll case 0x9001:
1764 1.8.2.2 skrll case 0x9002:
1765 1.8.2.2 skrll case 0x9003:
1766 1.8.2.2 skrll rxf_hi = AGE_RX_RING_CNT / 16;
1767 1.8.2.2 skrll rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1768 1.8.2.2 skrll rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1769 1.8.2.2 skrll rrd_lo = AGE_RR_RING_CNT / 16;
1770 1.8.2.2 skrll break;
1771 1.8.2.2 skrll default:
1772 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1773 1.8.2.2 skrll rxf_lo = reg / 16;
1774 1.8.2.2 skrll if (rxf_lo < 192)
1775 1.8.2.2 skrll rxf_lo = 192;
1776 1.8.2.2 skrll rxf_hi = (reg * 7) / 8;
1777 1.8.2.2 skrll if (rxf_hi < rxf_lo)
1778 1.8.2.2 skrll rxf_hi = rxf_lo + 16;
1779 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1780 1.8.2.2 skrll rrd_lo = reg / 8;
1781 1.8.2.2 skrll rrd_hi = (reg * 7) / 8;
1782 1.8.2.2 skrll if (rrd_lo < 2)
1783 1.8.2.2 skrll rrd_lo = 2;
1784 1.8.2.2 skrll if (rrd_hi < rrd_lo)
1785 1.8.2.2 skrll rrd_hi = rrd_lo + 3;
1786 1.8.2.2 skrll break;
1787 1.8.2.2 skrll }
1788 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1789 1.8.2.2 skrll ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1790 1.8.2.2 skrll RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1791 1.8.2.2 skrll ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1792 1.8.2.2 skrll RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1793 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1794 1.8.2.2 skrll ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1795 1.8.2.2 skrll RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1796 1.8.2.2 skrll ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1797 1.8.2.2 skrll RXQ_RRD_PAUSE_THRESH_HI_MASK));
1798 1.8.2.2 skrll
1799 1.8.2.2 skrll /* Configure RxQ. */
1800 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_CFG,
1801 1.8.2.2 skrll ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1802 1.8.2.2 skrll RXQ_CFG_RD_BURST_MASK) |
1803 1.8.2.2 skrll ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1804 1.8.2.2 skrll RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1805 1.8.2.2 skrll ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1806 1.8.2.2 skrll RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1807 1.8.2.2 skrll RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1808 1.8.2.2 skrll
1809 1.8.2.2 skrll /* Configure TxQ. */
1810 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_TXQ_CFG,
1811 1.8.2.2 skrll ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1812 1.8.2.2 skrll TXQ_CFG_TPD_BURST_MASK) |
1813 1.8.2.2 skrll ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1814 1.8.2.2 skrll TXQ_CFG_TX_FIFO_BURST_MASK) |
1815 1.8.2.2 skrll ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1816 1.8.2.2 skrll TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1817 1.8.2.2 skrll TXQ_CFG_ENB);
1818 1.8.2.2 skrll
1819 1.8.2.2 skrll /* Configure DMA parameters. */
1820 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG,
1821 1.8.2.2 skrll DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1822 1.8.2.2 skrll sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1823 1.8.2.2 skrll sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1824 1.8.2.2 skrll
1825 1.8.2.2 skrll /* Configure CMB DMA write threshold. */
1826 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1827 1.8.2.2 skrll ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1828 1.8.2.2 skrll CMB_WR_THRESH_RRD_MASK) |
1829 1.8.2.2 skrll ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1830 1.8.2.2 skrll CMB_WR_THRESH_TPD_MASK));
1831 1.8.2.2 skrll
1832 1.8.2.2 skrll /* Set CMB/SMB timer and enable them. */
1833 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1834 1.8.2.2 skrll ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1835 1.8.2.2 skrll ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1836 1.8.2.2 skrll
1837 1.8.2.2 skrll /* Request SMB updates for every seconds. */
1838 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1839 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1840 1.8.2.2 skrll
1841 1.8.2.2 skrll /*
1842 1.8.2.2 skrll * Disable all WOL bits as WOL can interfere normal Rx
1843 1.8.2.2 skrll * operation.
1844 1.8.2.2 skrll */
1845 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1846 1.8.2.2 skrll
1847 1.8.2.2 skrll /*
1848 1.8.2.2 skrll * Configure Tx/Rx MACs.
1849 1.8.2.2 skrll * - Auto-padding for short frames.
1850 1.8.2.2 skrll * - Enable CRC generation.
1851 1.8.2.2 skrll * Start with full-duplex/1000Mbps media. Actual reconfiguration
1852 1.8.2.2 skrll * of MAC is followed after link establishment.
1853 1.8.2.2 skrll */
1854 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG,
1855 1.8.2.2 skrll MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1856 1.8.2.2 skrll MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1857 1.8.2.2 skrll ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1858 1.8.2.2 skrll MAC_CFG_PREAMBLE_MASK));
1859 1.8.2.2 skrll
1860 1.8.2.2 skrll /* Set up the receive filter. */
1861 1.8.2.2 skrll age_rxfilter(sc);
1862 1.8.2.2 skrll age_rxvlan(sc);
1863 1.8.2.2 skrll
1864 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
1865 1.8.2.2 skrll reg |= MAC_CFG_RXCSUM_ENB;
1866 1.8.2.2 skrll
1867 1.8.2.2 skrll /* Ack all pending interrupts and clear it. */
1868 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1869 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1870 1.8.2.2 skrll
1871 1.8.2.2 skrll /* Finally enable Tx/Rx MAC. */
1872 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1873 1.8.2.2 skrll
1874 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
1875 1.8.2.2 skrll
1876 1.8.2.2 skrll /* Switch to the current media. */
1877 1.8.2.2 skrll mii = &sc->sc_miibus;
1878 1.8.2.2 skrll mii_mediachg(mii);
1879 1.8.2.2 skrll
1880 1.8.2.2 skrll callout_schedule(&sc->sc_tick_ch, hz);
1881 1.8.2.2 skrll
1882 1.8.2.2 skrll ifp->if_flags |= IFF_RUNNING;
1883 1.8.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
1884 1.8.2.2 skrll
1885 1.8.2.2 skrll return (0);
1886 1.8.2.2 skrll }
1887 1.8.2.2 skrll
1888 1.8.2.2 skrll static void
1889 1.8.2.2 skrll age_stop(struct age_softc *sc)
1890 1.8.2.2 skrll {
1891 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1892 1.8.2.2 skrll struct age_txdesc *txd;
1893 1.8.2.2 skrll struct age_rxdesc *rxd;
1894 1.8.2.2 skrll uint32_t reg;
1895 1.8.2.2 skrll int i;
1896 1.8.2.2 skrll
1897 1.8.2.2 skrll callout_stop(&sc->sc_tick_ch);
1898 1.8.2.2 skrll
1899 1.8.2.2 skrll /*
1900 1.8.2.2 skrll * Mark the interface down and cancel the watchdog timer.
1901 1.8.2.2 skrll */
1902 1.8.2.2 skrll ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1903 1.8.2.2 skrll ifp->if_timer = 0;
1904 1.8.2.2 skrll
1905 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
1906 1.8.2.2 skrll
1907 1.8.2.2 skrll /*
1908 1.8.2.2 skrll * Disable interrupts.
1909 1.8.2.2 skrll */
1910 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1911 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1912 1.8.2.2 skrll
1913 1.8.2.2 skrll /* Stop CMB/SMB updates. */
1914 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1915 1.8.2.2 skrll
1916 1.8.2.2 skrll /* Stop Rx/Tx MAC. */
1917 1.8.2.2 skrll age_stop_rxmac(sc);
1918 1.8.2.2 skrll age_stop_txmac(sc);
1919 1.8.2.2 skrll
1920 1.8.2.2 skrll /* Stop DMA. */
1921 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG,
1922 1.8.2.2 skrll CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1923 1.8.2.2 skrll
1924 1.8.2.2 skrll /* Stop TxQ/RxQ. */
1925 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_TXQ_CFG,
1926 1.8.2.2 skrll CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1927 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_CFG,
1928 1.8.2.2 skrll CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1929 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1930 1.8.2.2 skrll if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1931 1.8.2.2 skrll break;
1932 1.8.2.2 skrll DELAY(10);
1933 1.8.2.2 skrll }
1934 1.8.2.2 skrll if (i == 0)
1935 1.8.2.2 skrll printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1936 1.8.2.2 skrll device_xname(sc->sc_dev), reg);
1937 1.8.2.2 skrll
1938 1.8.2.2 skrll /* Reclaim Rx buffers that have been processed. */
1939 1.8.2.2 skrll if (sc->age_cdata.age_rxhead != NULL)
1940 1.8.2.2 skrll m_freem(sc->age_cdata.age_rxhead);
1941 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1942 1.8.2.2 skrll
1943 1.8.2.2 skrll /*
1944 1.8.2.2 skrll * Free RX and TX mbufs still in the queues.
1945 1.8.2.2 skrll */
1946 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
1947 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
1948 1.8.2.2 skrll if (rxd->rx_m != NULL) {
1949 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1950 1.8.2.2 skrll m_freem(rxd->rx_m);
1951 1.8.2.2 skrll rxd->rx_m = NULL;
1952 1.8.2.2 skrll }
1953 1.8.2.2 skrll }
1954 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
1955 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
1956 1.8.2.2 skrll if (txd->tx_m != NULL) {
1957 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1958 1.8.2.2 skrll m_freem(txd->tx_m);
1959 1.8.2.2 skrll txd->tx_m = NULL;
1960 1.8.2.2 skrll }
1961 1.8.2.2 skrll }
1962 1.8.2.2 skrll }
1963 1.8.2.2 skrll
1964 1.8.2.2 skrll static void
1965 1.8.2.2 skrll age_stats_update(struct age_softc *sc)
1966 1.8.2.2 skrll {
1967 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1968 1.8.2.2 skrll struct age_stats *stat;
1969 1.8.2.2 skrll struct smb *smb;
1970 1.8.2.2 skrll
1971 1.8.2.2 skrll stat = &sc->age_stat;
1972 1.8.2.2 skrll
1973 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1974 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1975 1.8.2.2 skrll
1976 1.8.2.2 skrll smb = sc->age_rdata.age_smb_block;
1977 1.8.2.2 skrll if (smb->updated == 0)
1978 1.8.2.2 skrll return;
1979 1.8.2.2 skrll
1980 1.8.2.2 skrll /* Rx stats. */
1981 1.8.2.2 skrll stat->rx_frames += smb->rx_frames;
1982 1.8.2.2 skrll stat->rx_bcast_frames += smb->rx_bcast_frames;
1983 1.8.2.2 skrll stat->rx_mcast_frames += smb->rx_mcast_frames;
1984 1.8.2.2 skrll stat->rx_pause_frames += smb->rx_pause_frames;
1985 1.8.2.2 skrll stat->rx_control_frames += smb->rx_control_frames;
1986 1.8.2.2 skrll stat->rx_crcerrs += smb->rx_crcerrs;
1987 1.8.2.2 skrll stat->rx_lenerrs += smb->rx_lenerrs;
1988 1.8.2.2 skrll stat->rx_bytes += smb->rx_bytes;
1989 1.8.2.2 skrll stat->rx_runts += smb->rx_runts;
1990 1.8.2.2 skrll stat->rx_fragments += smb->rx_fragments;
1991 1.8.2.2 skrll stat->rx_pkts_64 += smb->rx_pkts_64;
1992 1.8.2.2 skrll stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1993 1.8.2.2 skrll stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1994 1.8.2.2 skrll stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1995 1.8.2.2 skrll stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1996 1.8.2.2 skrll stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1997 1.8.2.2 skrll stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1998 1.8.2.2 skrll stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1999 1.8.2.2 skrll stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2000 1.8.2.2 skrll stat->rx_desc_oflows += smb->rx_desc_oflows;
2001 1.8.2.2 skrll stat->rx_alignerrs += smb->rx_alignerrs;
2002 1.8.2.2 skrll stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2003 1.8.2.2 skrll stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2004 1.8.2.2 skrll stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2005 1.8.2.2 skrll
2006 1.8.2.2 skrll /* Tx stats. */
2007 1.8.2.2 skrll stat->tx_frames += smb->tx_frames;
2008 1.8.2.2 skrll stat->tx_bcast_frames += smb->tx_bcast_frames;
2009 1.8.2.2 skrll stat->tx_mcast_frames += smb->tx_mcast_frames;
2010 1.8.2.2 skrll stat->tx_pause_frames += smb->tx_pause_frames;
2011 1.8.2.2 skrll stat->tx_excess_defer += smb->tx_excess_defer;
2012 1.8.2.2 skrll stat->tx_control_frames += smb->tx_control_frames;
2013 1.8.2.2 skrll stat->tx_deferred += smb->tx_deferred;
2014 1.8.2.2 skrll stat->tx_bytes += smb->tx_bytes;
2015 1.8.2.2 skrll stat->tx_pkts_64 += smb->tx_pkts_64;
2016 1.8.2.2 skrll stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2017 1.8.2.2 skrll stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2018 1.8.2.2 skrll stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2019 1.8.2.2 skrll stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2020 1.8.2.2 skrll stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2021 1.8.2.2 skrll stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2022 1.8.2.2 skrll stat->tx_single_colls += smb->tx_single_colls;
2023 1.8.2.2 skrll stat->tx_multi_colls += smb->tx_multi_colls;
2024 1.8.2.2 skrll stat->tx_late_colls += smb->tx_late_colls;
2025 1.8.2.2 skrll stat->tx_excess_colls += smb->tx_excess_colls;
2026 1.8.2.2 skrll stat->tx_underrun += smb->tx_underrun;
2027 1.8.2.2 skrll stat->tx_desc_underrun += smb->tx_desc_underrun;
2028 1.8.2.2 skrll stat->tx_lenerrs += smb->tx_lenerrs;
2029 1.8.2.2 skrll stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2030 1.8.2.2 skrll stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2031 1.8.2.2 skrll stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2032 1.8.2.2 skrll
2033 1.8.2.2 skrll /* Update counters in ifnet. */
2034 1.8.2.2 skrll ifp->if_opackets += smb->tx_frames;
2035 1.8.2.2 skrll
2036 1.8.2.2 skrll ifp->if_collisions += smb->tx_single_colls +
2037 1.8.2.2 skrll smb->tx_multi_colls + smb->tx_late_colls +
2038 1.8.2.2 skrll smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2039 1.8.2.2 skrll
2040 1.8.2.2 skrll ifp->if_oerrors += smb->tx_excess_colls +
2041 1.8.2.2 skrll smb->tx_late_colls + smb->tx_underrun +
2042 1.8.2.2 skrll smb->tx_pkts_truncated;
2043 1.8.2.2 skrll
2044 1.8.2.2 skrll ifp->if_ipackets += smb->rx_frames;
2045 1.8.2.2 skrll
2046 1.8.2.2 skrll ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2047 1.8.2.2 skrll smb->rx_runts + smb->rx_pkts_truncated +
2048 1.8.2.2 skrll smb->rx_fifo_oflows + smb->rx_desc_oflows +
2049 1.8.2.2 skrll smb->rx_alignerrs;
2050 1.8.2.2 skrll
2051 1.8.2.2 skrll /* Update done, clear. */
2052 1.8.2.2 skrll smb->updated = 0;
2053 1.8.2.2 skrll
2054 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2055 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2056 1.8.2.2 skrll }
2057 1.8.2.2 skrll
2058 1.8.2.2 skrll static void
2059 1.8.2.2 skrll age_stop_txmac(struct age_softc *sc)
2060 1.8.2.2 skrll {
2061 1.8.2.2 skrll uint32_t reg;
2062 1.8.2.2 skrll int i;
2063 1.8.2.2 skrll
2064 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2065 1.8.2.2 skrll if ((reg & MAC_CFG_TX_ENB) != 0) {
2066 1.8.2.2 skrll reg &= ~MAC_CFG_TX_ENB;
2067 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2068 1.8.2.2 skrll }
2069 1.8.2.2 skrll /* Stop Tx DMA engine. */
2070 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_DMA_CFG);
2071 1.8.2.2 skrll if ((reg & DMA_CFG_RD_ENB) != 0) {
2072 1.8.2.2 skrll reg &= ~DMA_CFG_RD_ENB;
2073 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2074 1.8.2.2 skrll }
2075 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2076 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2077 1.8.2.2 skrll (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2078 1.8.2.2 skrll break;
2079 1.8.2.2 skrll DELAY(10);
2080 1.8.2.2 skrll }
2081 1.8.2.2 skrll if (i == 0)
2082 1.8.2.2 skrll printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2083 1.8.2.2 skrll }
2084 1.8.2.2 skrll
2085 1.8.2.2 skrll static void
2086 1.8.2.2 skrll age_stop_rxmac(struct age_softc *sc)
2087 1.8.2.2 skrll {
2088 1.8.2.2 skrll uint32_t reg;
2089 1.8.2.2 skrll int i;
2090 1.8.2.2 skrll
2091 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2092 1.8.2.2 skrll if ((reg & MAC_CFG_RX_ENB) != 0) {
2093 1.8.2.2 skrll reg &= ~MAC_CFG_RX_ENB;
2094 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2095 1.8.2.2 skrll }
2096 1.8.2.2 skrll /* Stop Rx DMA engine. */
2097 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_DMA_CFG);
2098 1.8.2.2 skrll if ((reg & DMA_CFG_WR_ENB) != 0) {
2099 1.8.2.2 skrll reg &= ~DMA_CFG_WR_ENB;
2100 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2101 1.8.2.2 skrll }
2102 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2103 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2104 1.8.2.2 skrll (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2105 1.8.2.2 skrll break;
2106 1.8.2.2 skrll DELAY(10);
2107 1.8.2.2 skrll }
2108 1.8.2.2 skrll if (i == 0)
2109 1.8.2.2 skrll printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2110 1.8.2.2 skrll }
2111 1.8.2.2 skrll
2112 1.8.2.2 skrll static void
2113 1.8.2.2 skrll age_init_tx_ring(struct age_softc *sc)
2114 1.8.2.2 skrll {
2115 1.8.2.2 skrll struct age_ring_data *rd;
2116 1.8.2.2 skrll struct age_txdesc *txd;
2117 1.8.2.2 skrll int i;
2118 1.8.2.2 skrll
2119 1.8.2.2 skrll sc->age_cdata.age_tx_prod = 0;
2120 1.8.2.2 skrll sc->age_cdata.age_tx_cons = 0;
2121 1.8.2.2 skrll sc->age_cdata.age_tx_cnt = 0;
2122 1.8.2.2 skrll
2123 1.8.2.2 skrll rd = &sc->age_rdata;
2124 1.8.2.2 skrll memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2125 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
2126 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
2127 1.8.2.2 skrll txd->tx_desc = &rd->age_tx_ring[i];
2128 1.8.2.2 skrll txd->tx_m = NULL;
2129 1.8.2.2 skrll }
2130 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2131 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2132 1.8.2.2 skrll }
2133 1.8.2.2 skrll
2134 1.8.2.2 skrll static int
2135 1.8.2.2 skrll age_init_rx_ring(struct age_softc *sc)
2136 1.8.2.2 skrll {
2137 1.8.2.2 skrll struct age_ring_data *rd;
2138 1.8.2.2 skrll struct age_rxdesc *rxd;
2139 1.8.2.2 skrll int i;
2140 1.8.2.2 skrll
2141 1.8.2.2 skrll sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2142 1.8.2.2 skrll rd = &sc->age_rdata;
2143 1.8.2.2 skrll memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2144 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
2145 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
2146 1.8.2.2 skrll rxd->rx_m = NULL;
2147 1.8.2.2 skrll rxd->rx_desc = &rd->age_rx_ring[i];
2148 1.8.2.2 skrll if (age_newbuf(sc, rxd, 1) != 0)
2149 1.8.2.2 skrll return (ENOBUFS);
2150 1.8.2.2 skrll }
2151 1.8.2.2 skrll
2152 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2153 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2154 1.8.2.2 skrll
2155 1.8.2.2 skrll return (0);
2156 1.8.2.2 skrll }
2157 1.8.2.2 skrll
2158 1.8.2.2 skrll static void
2159 1.8.2.2 skrll age_init_rr_ring(struct age_softc *sc)
2160 1.8.2.2 skrll {
2161 1.8.2.2 skrll struct age_ring_data *rd;
2162 1.8.2.2 skrll
2163 1.8.2.2 skrll sc->age_cdata.age_rr_cons = 0;
2164 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
2165 1.8.2.2 skrll
2166 1.8.2.2 skrll rd = &sc->age_rdata;
2167 1.8.2.2 skrll memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2168 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2169 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2170 1.8.2.2 skrll }
2171 1.8.2.2 skrll
2172 1.8.2.2 skrll static void
2173 1.8.2.2 skrll age_init_cmb_block(struct age_softc *sc)
2174 1.8.2.2 skrll {
2175 1.8.2.2 skrll struct age_ring_data *rd;
2176 1.8.2.2 skrll
2177 1.8.2.2 skrll rd = &sc->age_rdata;
2178 1.8.2.2 skrll memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2179 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2180 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2181 1.8.2.2 skrll }
2182 1.8.2.2 skrll
2183 1.8.2.2 skrll static void
2184 1.8.2.2 skrll age_init_smb_block(struct age_softc *sc)
2185 1.8.2.2 skrll {
2186 1.8.2.2 skrll struct age_ring_data *rd;
2187 1.8.2.2 skrll
2188 1.8.2.2 skrll rd = &sc->age_rdata;
2189 1.8.2.2 skrll memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2190 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2191 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2192 1.8.2.2 skrll }
2193 1.8.2.2 skrll
2194 1.8.2.2 skrll static int
2195 1.8.2.2 skrll age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2196 1.8.2.2 skrll {
2197 1.8.2.2 skrll struct rx_desc *desc;
2198 1.8.2.2 skrll struct mbuf *m;
2199 1.8.2.2 skrll bus_dmamap_t map;
2200 1.8.2.2 skrll int error;
2201 1.8.2.2 skrll
2202 1.8.2.2 skrll MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2203 1.8.2.2 skrll if (m == NULL)
2204 1.8.2.2 skrll return (ENOBUFS);
2205 1.8.2.2 skrll MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2206 1.8.2.2 skrll if (!(m->m_flags & M_EXT)) {
2207 1.8.2.2 skrll m_freem(m);
2208 1.8.2.2 skrll return (ENOBUFS);
2209 1.8.2.2 skrll }
2210 1.8.2.2 skrll
2211 1.8.2.2 skrll m->m_len = m->m_pkthdr.len = MCLBYTES;
2212 1.8.2.2 skrll m_adj(m, PAGE_SIZE);
2213 1.8.2.2 skrll
2214 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat,
2215 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2216 1.8.2.2 skrll
2217 1.8.2.2 skrll if (error != 0) {
2218 1.8.2.2 skrll if (!error) {
2219 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat,
2220 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap);
2221 1.8.2.2 skrll error = EFBIG;
2222 1.8.2.2 skrll printf("%s: too many segments?!\n",
2223 1.8.2.2 skrll device_xname(sc->sc_dev));
2224 1.8.2.2 skrll }
2225 1.8.2.2 skrll m_freem(m);
2226 1.8.2.2 skrll
2227 1.8.2.2 skrll if (init)
2228 1.8.2.2 skrll printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2229 1.8.2.2 skrll return (error);
2230 1.8.2.2 skrll }
2231 1.8.2.2 skrll
2232 1.8.2.2 skrll if (rxd->rx_m != NULL) {
2233 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2234 1.8.2.2 skrll rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2235 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2236 1.8.2.2 skrll }
2237 1.8.2.2 skrll map = rxd->rx_dmamap;
2238 1.8.2.2 skrll rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2239 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap = map;
2240 1.8.2.2 skrll rxd->rx_m = m;
2241 1.8.2.2 skrll
2242 1.8.2.2 skrll desc = rxd->rx_desc;
2243 1.8.2.2 skrll desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2244 1.8.2.2 skrll desc->len =
2245 1.8.2.2 skrll htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2246 1.8.2.2 skrll AGE_RD_LEN_SHIFT);
2247 1.8.2.2 skrll
2248 1.8.2.2 skrll return (0);
2249 1.8.2.2 skrll }
2250 1.8.2.2 skrll
2251 1.8.2.2 skrll static void
2252 1.8.2.2 skrll age_rxvlan(struct age_softc *sc)
2253 1.8.2.2 skrll {
2254 1.8.2.2 skrll uint32_t reg;
2255 1.8.2.2 skrll
2256 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2257 1.8.2.2 skrll reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2258 1.8.2.2 skrll if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2259 1.8.2.2 skrll reg |= MAC_CFG_VLAN_TAG_STRIP;
2260 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2261 1.8.2.2 skrll }
2262 1.8.2.2 skrll
2263 1.8.2.2 skrll static void
2264 1.8.2.2 skrll age_rxfilter(struct age_softc *sc)
2265 1.8.2.2 skrll {
2266 1.8.2.2 skrll struct ethercom *ec = &sc->sc_ec;
2267 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
2268 1.8.2.2 skrll struct ether_multi *enm;
2269 1.8.2.2 skrll struct ether_multistep step;
2270 1.8.2.2 skrll uint32_t crc;
2271 1.8.2.2 skrll uint32_t mchash[2];
2272 1.8.2.2 skrll uint32_t rxcfg;
2273 1.8.2.2 skrll
2274 1.8.2.2 skrll rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2275 1.8.2.2 skrll rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2276 1.8.2.2 skrll
2277 1.8.2.2 skrll if (ifp->if_flags & IFF_BROADCAST)
2278 1.8.2.2 skrll rxcfg |= MAC_CFG_BCAST;
2279 1.8.2.2 skrll if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2280 1.8.2.2 skrll if (ifp->if_flags & IFF_PROMISC)
2281 1.8.2.2 skrll rxcfg |= MAC_CFG_PROMISC;
2282 1.8.2.2 skrll if (ifp->if_flags & IFF_ALLMULTI)
2283 1.8.2.2 skrll rxcfg |= MAC_CFG_ALLMULTI;
2284 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2285 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2286 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2287 1.8.2.2 skrll return;
2288 1.8.2.2 skrll }
2289 1.8.2.2 skrll
2290 1.8.2.2 skrll /* Program new filter. */
2291 1.8.2.2 skrll memset(mchash, 0, sizeof(mchash));
2292 1.8.2.2 skrll
2293 1.8.2.2 skrll ETHER_FIRST_MULTI(step, ec, enm);
2294 1.8.2.2 skrll while (enm != NULL) {
2295 1.8.2.2 skrll crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2296 1.8.2.2 skrll enm->enm_addrlo), ETHER_ADDR_LEN);
2297 1.8.2.2 skrll
2298 1.8.2.2 skrll mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2299 1.8.2.2 skrll ETHER_NEXT_MULTI(step, enm);
2300 1.8.2.2 skrll }
2301 1.8.2.2 skrll
2302 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2303 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2304 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2305 1.8.2.2 skrll }
2306