if_age.c revision 1.8.2.3 1 1.8.2.3 skrll /* $NetBSD: if_age.c,v 1.8.2.3 2009/03/03 18:31:07 skrll Exp $ */
2 1.8.2.2 skrll /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.8.2.2 skrll
4 1.8.2.2 skrll /*-
5 1.8.2.2 skrll * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.8.2.2 skrll * All rights reserved.
7 1.8.2.2 skrll *
8 1.8.2.2 skrll * Redistribution and use in source and binary forms, with or without
9 1.8.2.2 skrll * modification, are permitted provided that the following conditions
10 1.8.2.2 skrll * are met:
11 1.8.2.2 skrll * 1. Redistributions of source code must retain the above copyright
12 1.8.2.2 skrll * notice unmodified, this list of conditions, and the following
13 1.8.2.2 skrll * disclaimer.
14 1.8.2.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
15 1.8.2.2 skrll * notice, this list of conditions and the following disclaimer in the
16 1.8.2.2 skrll * documentation and/or other materials provided with the distribution.
17 1.8.2.2 skrll *
18 1.8.2.2 skrll * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.8.2.2 skrll * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.8.2.2 skrll * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.8.2.2 skrll * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.8.2.2 skrll * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.8.2.2 skrll * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.8.2.2 skrll * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.8.2.2 skrll * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.8.2.2 skrll * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.8.2.2 skrll * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.8.2.2 skrll * SUCH DAMAGE.
29 1.8.2.2 skrll */
30 1.8.2.2 skrll
31 1.8.2.2 skrll /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.8.2.2 skrll
33 1.8.2.2 skrll #include <sys/cdefs.h>
34 1.8.2.3 skrll __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.8.2.3 2009/03/03 18:31:07 skrll Exp $");
35 1.8.2.2 skrll
36 1.8.2.2 skrll #include "bpfilter.h"
37 1.8.2.2 skrll #include "vlan.h"
38 1.8.2.2 skrll
39 1.8.2.2 skrll #include <sys/param.h>
40 1.8.2.2 skrll #include <sys/proc.h>
41 1.8.2.2 skrll #include <sys/endian.h>
42 1.8.2.2 skrll #include <sys/systm.h>
43 1.8.2.2 skrll #include <sys/types.h>
44 1.8.2.2 skrll #include <sys/sockio.h>
45 1.8.2.2 skrll #include <sys/mbuf.h>
46 1.8.2.2 skrll #include <sys/queue.h>
47 1.8.2.2 skrll #include <sys/kernel.h>
48 1.8.2.2 skrll #include <sys/device.h>
49 1.8.2.2 skrll #include <sys/callout.h>
50 1.8.2.2 skrll #include <sys/socket.h>
51 1.8.2.2 skrll
52 1.8.2.2 skrll #include <net/if.h>
53 1.8.2.2 skrll #include <net/if_dl.h>
54 1.8.2.2 skrll #include <net/if_media.h>
55 1.8.2.2 skrll #include <net/if_ether.h>
56 1.8.2.2 skrll
57 1.8.2.2 skrll #ifdef INET
58 1.8.2.2 skrll #include <netinet/in.h>
59 1.8.2.2 skrll #include <netinet/in_systm.h>
60 1.8.2.2 skrll #include <netinet/in_var.h>
61 1.8.2.2 skrll #include <netinet/ip.h>
62 1.8.2.2 skrll #endif
63 1.8.2.2 skrll
64 1.8.2.2 skrll #include <net/if_types.h>
65 1.8.2.2 skrll #include <net/if_vlanvar.h>
66 1.8.2.2 skrll
67 1.8.2.2 skrll #if NBPFILTER > 0
68 1.8.2.2 skrll #include <net/bpf.h>
69 1.8.2.2 skrll #endif
70 1.8.2.2 skrll
71 1.8.2.2 skrll #include <sys/rnd.h>
72 1.8.2.2 skrll
73 1.8.2.2 skrll #include <dev/mii/mii.h>
74 1.8.2.2 skrll #include <dev/mii/miivar.h>
75 1.8.2.2 skrll
76 1.8.2.2 skrll #include <dev/pci/pcireg.h>
77 1.8.2.2 skrll #include <dev/pci/pcivar.h>
78 1.8.2.2 skrll #include <dev/pci/pcidevs.h>
79 1.8.2.2 skrll
80 1.8.2.2 skrll #include <dev/pci/if_agereg.h>
81 1.8.2.2 skrll
82 1.8.2.2 skrll static int age_match(device_t, cfdata_t, void *);
83 1.8.2.2 skrll static void age_attach(device_t, device_t, void *);
84 1.8.2.2 skrll static int age_detach(device_t, int);
85 1.8.2.2 skrll
86 1.8.2.2 skrll static bool age_resume(device_t PMF_FN_PROTO);
87 1.8.2.2 skrll
88 1.8.2.2 skrll static int age_miibus_readreg(device_t, int, int);
89 1.8.2.2 skrll static void age_miibus_writereg(device_t, int, int, int);
90 1.8.2.2 skrll static void age_miibus_statchg(device_t);
91 1.8.2.2 skrll
92 1.8.2.2 skrll static int age_init(struct ifnet *);
93 1.8.2.2 skrll static int age_ioctl(struct ifnet *, u_long, void *);
94 1.8.2.2 skrll static void age_start(struct ifnet *);
95 1.8.2.2 skrll static void age_watchdog(struct ifnet *);
96 1.8.2.2 skrll static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 1.8.2.2 skrll static int age_mediachange(struct ifnet *);
98 1.8.2.2 skrll
99 1.8.2.2 skrll static int age_intr(void *);
100 1.8.2.2 skrll static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 1.8.2.2 skrll static int age_dma_alloc(struct age_softc *);
102 1.8.2.2 skrll static void age_dma_free(struct age_softc *);
103 1.8.2.2 skrll static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 1.8.2.2 skrll static void age_phy_reset(struct age_softc *);
105 1.8.2.2 skrll
106 1.8.2.2 skrll static int age_encap(struct age_softc *, struct mbuf **);
107 1.8.2.2 skrll static void age_init_tx_ring(struct age_softc *);
108 1.8.2.2 skrll static int age_init_rx_ring(struct age_softc *);
109 1.8.2.2 skrll static void age_init_rr_ring(struct age_softc *);
110 1.8.2.2 skrll static void age_init_cmb_block(struct age_softc *);
111 1.8.2.2 skrll static void age_init_smb_block(struct age_softc *);
112 1.8.2.2 skrll static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 1.8.2.2 skrll static void age_mac_config(struct age_softc *);
114 1.8.2.2 skrll static void age_txintr(struct age_softc *, int);
115 1.8.2.2 skrll static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 1.8.2.2 skrll static void age_rxintr(struct age_softc *, int);
117 1.8.2.2 skrll static void age_tick(void *);
118 1.8.2.2 skrll static void age_reset(struct age_softc *);
119 1.8.2.3 skrll static void age_stop(struct ifnet *, int);
120 1.8.2.2 skrll static void age_stats_update(struct age_softc *);
121 1.8.2.2 skrll static void age_stop_txmac(struct age_softc *);
122 1.8.2.2 skrll static void age_stop_rxmac(struct age_softc *);
123 1.8.2.2 skrll static void age_rxvlan(struct age_softc *sc);
124 1.8.2.2 skrll static void age_rxfilter(struct age_softc *);
125 1.8.2.2 skrll
126 1.8.2.2 skrll CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 1.8.2.2 skrll age_match, age_attach, age_detach, NULL);
128 1.8.2.2 skrll
129 1.8.2.2 skrll int agedebug = 0;
130 1.8.2.2 skrll #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 1.8.2.2 skrll
132 1.8.2.3 skrll #define ETHER_ALIGN 2
133 1.8.2.2 skrll #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 1.8.2.2 skrll
135 1.8.2.2 skrll static int
136 1.8.2.2 skrll age_match(device_t dev, cfdata_t match, void *aux)
137 1.8.2.2 skrll {
138 1.8.2.2 skrll struct pci_attach_args *pa = aux;
139 1.8.2.2 skrll
140 1.8.2.2 skrll return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 1.8.2.2 skrll PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 1.8.2.2 skrll }
143 1.8.2.2 skrll
144 1.8.2.2 skrll static void
145 1.8.2.2 skrll age_attach(device_t parent, device_t self, void *aux)
146 1.8.2.2 skrll {
147 1.8.2.2 skrll struct age_softc *sc = device_private(self);
148 1.8.2.2 skrll struct pci_attach_args *pa = aux;
149 1.8.2.2 skrll pci_intr_handle_t ih;
150 1.8.2.2 skrll const char *intrstr;
151 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
152 1.8.2.2 skrll pcireg_t memtype;
153 1.8.2.2 skrll int error = 0;
154 1.8.2.2 skrll
155 1.8.2.2 skrll aprint_naive("\n");
156 1.8.2.2 skrll aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 1.8.2.2 skrll
158 1.8.2.2 skrll sc->sc_dev = self;
159 1.8.2.2 skrll sc->sc_dmat = pa->pa_dmat;
160 1.8.2.2 skrll sc->sc_pct = pa->pa_pc;
161 1.8.2.2 skrll sc->sc_pcitag = pa->pa_tag;
162 1.8.2.2 skrll
163 1.8.2.2 skrll /*
164 1.8.2.2 skrll * Allocate IO memory
165 1.8.2.2 skrll */
166 1.8.2.2 skrll memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 1.8.2.2 skrll switch (memtype) {
168 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 1.8.2.2 skrll case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 1.8.2.2 skrll break;
172 1.8.2.2 skrll default:
173 1.8.2.2 skrll aprint_error_dev(self, "invalid base address register\n");
174 1.8.2.2 skrll break;
175 1.8.2.2 skrll }
176 1.8.2.2 skrll
177 1.8.2.2 skrll if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 1.8.2.2 skrll &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 1.8.2.2 skrll aprint_error_dev(self, "could not map mem space\n");
180 1.8.2.2 skrll return;
181 1.8.2.2 skrll }
182 1.8.2.2 skrll
183 1.8.2.2 skrll if (pci_intr_map(pa, &ih) != 0) {
184 1.8.2.2 skrll aprint_error_dev(self, "could not map interrupt\n");
185 1.8.2.3 skrll goto fail;
186 1.8.2.2 skrll }
187 1.8.2.2 skrll
188 1.8.2.2 skrll /*
189 1.8.2.2 skrll * Allocate IRQ
190 1.8.2.2 skrll */
191 1.8.2.2 skrll intrstr = pci_intr_string(sc->sc_pct, ih);
192 1.8.2.2 skrll sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 1.8.2.2 skrll age_intr, sc);
194 1.8.2.2 skrll if (sc->sc_irq_handle == NULL) {
195 1.8.2.2 skrll aprint_error_dev(self, "could not establish interrupt");
196 1.8.2.2 skrll if (intrstr != NULL)
197 1.8.2.2 skrll aprint_error(" at %s", intrstr);
198 1.8.2.2 skrll aprint_error("\n");
199 1.8.2.3 skrll goto fail;
200 1.8.2.2 skrll }
201 1.8.2.2 skrll aprint_normal_dev(self, "%s\n", intrstr);
202 1.8.2.2 skrll
203 1.8.2.2 skrll /* Set PHY address. */
204 1.8.2.2 skrll sc->age_phyaddr = AGE_PHY_ADDR;
205 1.8.2.2 skrll
206 1.8.2.2 skrll /* Reset PHY. */
207 1.8.2.2 skrll age_phy_reset(sc);
208 1.8.2.2 skrll
209 1.8.2.2 skrll /* Reset the ethernet controller. */
210 1.8.2.2 skrll age_reset(sc);
211 1.8.2.2 skrll
212 1.8.2.2 skrll /* Get PCI and chip id/revision. */
213 1.8.2.2 skrll sc->age_rev = PCI_REVISION(pa->pa_class);
214 1.8.2.2 skrll sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 1.8.2.2 skrll MASTER_CHIP_REV_SHIFT;
216 1.8.2.2 skrll
217 1.8.2.2 skrll aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 1.8.2.2 skrll aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 1.8.2.2 skrll
220 1.8.2.2 skrll if (agedebug) {
221 1.8.2.2 skrll aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 1.8.2.2 skrll CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 1.8.2.2 skrll CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 1.8.2.2 skrll }
225 1.8.2.2 skrll
226 1.8.2.2 skrll /* Set max allowable DMA size. */
227 1.8.2.2 skrll sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 1.8.2.2 skrll sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 1.8.2.2 skrll
230 1.8.2.2 skrll /* Allocate DMA stuffs */
231 1.8.2.2 skrll error = age_dma_alloc(sc);
232 1.8.2.2 skrll if (error)
233 1.8.2.2 skrll goto fail;
234 1.8.2.2 skrll
235 1.8.2.2 skrll callout_init(&sc->sc_tick_ch, 0);
236 1.8.2.2 skrll callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 1.8.2.2 skrll
238 1.8.2.2 skrll /* Load station address. */
239 1.8.2.2 skrll age_get_macaddr(sc, sc->sc_enaddr);
240 1.8.2.2 skrll
241 1.8.2.2 skrll aprint_normal_dev(self, "Ethernet address %s\n",
242 1.8.2.2 skrll ether_sprintf(sc->sc_enaddr));
243 1.8.2.2 skrll
244 1.8.2.2 skrll ifp->if_softc = sc;
245 1.8.2.2 skrll ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 1.8.2.2 skrll ifp->if_init = age_init;
247 1.8.2.2 skrll ifp->if_ioctl = age_ioctl;
248 1.8.2.2 skrll ifp->if_start = age_start;
249 1.8.2.3 skrll ifp->if_stop = age_stop;
250 1.8.2.2 skrll ifp->if_watchdog = age_watchdog;
251 1.8.2.2 skrll ifp->if_baudrate = IF_Gbps(1);
252 1.8.2.2 skrll IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 1.8.2.2 skrll IFQ_SET_READY(&ifp->if_snd);
254 1.8.2.2 skrll strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255 1.8.2.2 skrll
256 1.8.2.2 skrll sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257 1.8.2.2 skrll
258 1.8.2.2 skrll #ifdef AGE_CHECKSUM
259 1.8.2.2 skrll ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 1.8.2.2 skrll IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 1.8.2.2 skrll IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 1.8.2.2 skrll #endif
263 1.8.2.2 skrll
264 1.8.2.2 skrll #if NVLAN > 0
265 1.8.2.2 skrll sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 1.8.2.2 skrll #endif
267 1.8.2.2 skrll
268 1.8.2.2 skrll /* Set up MII bus. */
269 1.8.2.2 skrll sc->sc_miibus.mii_ifp = ifp;
270 1.8.2.2 skrll sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 1.8.2.2 skrll sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 1.8.2.2 skrll sc->sc_miibus.mii_statchg = age_miibus_statchg;
273 1.8.2.2 skrll
274 1.8.2.3 skrll sc->sc_ec.ec_mii = &sc->sc_miibus;
275 1.8.2.2 skrll ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 1.8.2.2 skrll age_mediastatus);
277 1.8.2.2 skrll mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 1.8.2.2 skrll MII_OFFSET_ANY, 0);
279 1.8.2.2 skrll
280 1.8.2.2 skrll if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 1.8.2.2 skrll aprint_error_dev(self, "no PHY found!\n");
282 1.8.2.2 skrll ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 1.8.2.2 skrll 0, NULL);
284 1.8.2.2 skrll ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 1.8.2.2 skrll } else
286 1.8.2.2 skrll ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287 1.8.2.2 skrll
288 1.8.2.2 skrll if_attach(ifp);
289 1.8.2.2 skrll ether_ifattach(ifp, sc->sc_enaddr);
290 1.8.2.2 skrll
291 1.8.2.2 skrll if (!pmf_device_register(self, NULL, age_resume))
292 1.8.2.2 skrll aprint_error_dev(self, "couldn't establish power handler\n");
293 1.8.2.2 skrll else
294 1.8.2.2 skrll pmf_class_network_register(self, ifp);
295 1.8.2.2 skrll
296 1.8.2.2 skrll return;
297 1.8.2.3 skrll
298 1.8.2.2 skrll fail:
299 1.8.2.3 skrll age_dma_free(sc);
300 1.8.2.3 skrll if (sc->sc_irq_handle != NULL) {
301 1.8.2.3 skrll pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 1.8.2.3 skrll sc->sc_irq_handle = NULL;
303 1.8.2.3 skrll }
304 1.8.2.3 skrll if (sc->sc_mem_size) {
305 1.8.2.3 skrll bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 1.8.2.3 skrll sc->sc_mem_size = 0;
307 1.8.2.3 skrll }
308 1.8.2.2 skrll }
309 1.8.2.2 skrll
310 1.8.2.2 skrll static int
311 1.8.2.2 skrll age_detach(device_t self, int flags)
312 1.8.2.2 skrll {
313 1.8.2.2 skrll struct age_softc *sc = device_private(self);
314 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
315 1.8.2.2 skrll int s;
316 1.8.2.2 skrll
317 1.8.2.2 skrll s = splnet();
318 1.8.2.3 skrll age_stop(ifp, 0);
319 1.8.2.2 skrll splx(s);
320 1.8.2.2 skrll
321 1.8.2.2 skrll mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
322 1.8.2.2 skrll
323 1.8.2.2 skrll /* Delete all remaining media. */
324 1.8.2.2 skrll ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
325 1.8.2.2 skrll
326 1.8.2.2 skrll ether_ifdetach(ifp);
327 1.8.2.2 skrll if_detach(ifp);
328 1.8.2.2 skrll age_dma_free(sc);
329 1.8.2.2 skrll
330 1.8.2.2 skrll if (sc->sc_irq_handle != NULL) {
331 1.8.2.2 skrll pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
332 1.8.2.2 skrll sc->sc_irq_handle = NULL;
333 1.8.2.2 skrll }
334 1.8.2.2 skrll
335 1.8.2.3 skrll return 0;
336 1.8.2.2 skrll }
337 1.8.2.2 skrll
338 1.8.2.2 skrll /*
339 1.8.2.2 skrll * Read a PHY register on the MII of the L1.
340 1.8.2.2 skrll */
341 1.8.2.2 skrll static int
342 1.8.2.3 skrll age_miibus_readreg(device_t dev, int phy, int reg)
343 1.8.2.2 skrll {
344 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
345 1.8.2.2 skrll uint32_t v;
346 1.8.2.2 skrll int i;
347 1.8.2.2 skrll
348 1.8.2.2 skrll if (phy != sc->age_phyaddr)
349 1.8.2.3 skrll return 0;
350 1.8.2.2 skrll
351 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
352 1.8.2.2 skrll MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
353 1.8.2.2 skrll for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
354 1.8.2.2 skrll DELAY(1);
355 1.8.2.2 skrll v = CSR_READ_4(sc, AGE_MDIO);
356 1.8.2.2 skrll if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
357 1.8.2.2 skrll break;
358 1.8.2.2 skrll }
359 1.8.2.2 skrll
360 1.8.2.2 skrll if (i == 0) {
361 1.8.2.2 skrll printf("%s: phy read timeout: phy %d, reg %d\n",
362 1.8.2.2 skrll device_xname(sc->sc_dev), phy, reg);
363 1.8.2.3 skrll return 0;
364 1.8.2.2 skrll }
365 1.8.2.2 skrll
366 1.8.2.2 skrll return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
367 1.8.2.2 skrll }
368 1.8.2.2 skrll
369 1.8.2.2 skrll /*
370 1.8.2.2 skrll * Write a PHY register on the MII of the L1.
371 1.8.2.2 skrll */
372 1.8.2.2 skrll static void
373 1.8.2.3 skrll age_miibus_writereg(device_t dev, int phy, int reg, int val)
374 1.8.2.2 skrll {
375 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
376 1.8.2.2 skrll uint32_t v;
377 1.8.2.2 skrll int i;
378 1.8.2.2 skrll
379 1.8.2.2 skrll if (phy != sc->age_phyaddr)
380 1.8.2.2 skrll return;
381 1.8.2.2 skrll
382 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
383 1.8.2.2 skrll (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
384 1.8.2.2 skrll MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
385 1.8.2.2 skrll
386 1.8.2.2 skrll for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
387 1.8.2.2 skrll DELAY(1);
388 1.8.2.2 skrll v = CSR_READ_4(sc, AGE_MDIO);
389 1.8.2.2 skrll if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
390 1.8.2.2 skrll break;
391 1.8.2.2 skrll }
392 1.8.2.2 skrll
393 1.8.2.2 skrll if (i == 0) {
394 1.8.2.2 skrll printf("%s: phy write timeout: phy %d, reg %d\n",
395 1.8.2.2 skrll device_xname(sc->sc_dev), phy, reg);
396 1.8.2.2 skrll }
397 1.8.2.2 skrll }
398 1.8.2.2 skrll
399 1.8.2.2 skrll /*
400 1.8.2.2 skrll * Callback from MII layer when media changes.
401 1.8.2.2 skrll */
402 1.8.2.2 skrll static void
403 1.8.2.2 skrll age_miibus_statchg(device_t dev)
404 1.8.2.2 skrll {
405 1.8.2.2 skrll struct age_softc *sc = device_private(dev);
406 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
407 1.8.2.2 skrll struct mii_data *mii;
408 1.8.2.2 skrll
409 1.8.2.2 skrll if ((ifp->if_flags & IFF_RUNNING) == 0)
410 1.8.2.2 skrll return;
411 1.8.2.2 skrll
412 1.8.2.2 skrll mii = &sc->sc_miibus;
413 1.8.2.2 skrll
414 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
415 1.8.2.2 skrll if ((mii->mii_media_status & IFM_AVALID) != 0) {
416 1.8.2.2 skrll switch (IFM_SUBTYPE(mii->mii_media_active)) {
417 1.8.2.2 skrll case IFM_10_T:
418 1.8.2.2 skrll case IFM_100_TX:
419 1.8.2.2 skrll case IFM_1000_T:
420 1.8.2.2 skrll sc->age_flags |= AGE_FLAG_LINK;
421 1.8.2.2 skrll break;
422 1.8.2.2 skrll default:
423 1.8.2.2 skrll break;
424 1.8.2.2 skrll }
425 1.8.2.2 skrll }
426 1.8.2.2 skrll
427 1.8.2.2 skrll /* Stop Rx/Tx MACs. */
428 1.8.2.2 skrll age_stop_rxmac(sc);
429 1.8.2.2 skrll age_stop_txmac(sc);
430 1.8.2.2 skrll
431 1.8.2.2 skrll /* Program MACs with resolved speed/duplex/flow-control. */
432 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
433 1.8.2.2 skrll uint32_t reg;
434 1.8.2.2 skrll
435 1.8.2.2 skrll age_mac_config(sc);
436 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
437 1.8.2.2 skrll /* Restart DMA engine and Tx/Rx MAC. */
438 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
439 1.8.2.2 skrll DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
440 1.8.2.2 skrll reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
441 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
442 1.8.2.2 skrll }
443 1.8.2.2 skrll }
444 1.8.2.2 skrll
445 1.8.2.2 skrll /*
446 1.8.2.2 skrll * Get the current interface media status.
447 1.8.2.2 skrll */
448 1.8.2.2 skrll static void
449 1.8.2.2 skrll age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
450 1.8.2.2 skrll {
451 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
452 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
453 1.8.2.2 skrll
454 1.8.2.2 skrll mii_pollstat(mii);
455 1.8.2.2 skrll ifmr->ifm_status = mii->mii_media_status;
456 1.8.2.2 skrll ifmr->ifm_active = mii->mii_media_active;
457 1.8.2.2 skrll }
458 1.8.2.2 skrll
459 1.8.2.2 skrll /*
460 1.8.2.2 skrll * Set hardware to newly-selected media.
461 1.8.2.2 skrll */
462 1.8.2.2 skrll static int
463 1.8.2.2 skrll age_mediachange(struct ifnet *ifp)
464 1.8.2.2 skrll {
465 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
466 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
467 1.8.2.2 skrll int error;
468 1.8.2.2 skrll
469 1.8.2.2 skrll if (mii->mii_instance != 0) {
470 1.8.2.2 skrll struct mii_softc *miisc;
471 1.8.2.2 skrll
472 1.8.2.2 skrll LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
473 1.8.2.2 skrll mii_phy_reset(miisc);
474 1.8.2.2 skrll }
475 1.8.2.2 skrll error = mii_mediachg(mii);
476 1.8.2.2 skrll
477 1.8.2.3 skrll return error;
478 1.8.2.2 skrll }
479 1.8.2.2 skrll
480 1.8.2.2 skrll static int
481 1.8.2.2 skrll age_intr(void *arg)
482 1.8.2.2 skrll {
483 1.8.2.2 skrll struct age_softc *sc = arg;
484 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
485 1.8.2.2 skrll struct cmb *cmb;
486 1.8.2.2 skrll uint32_t status;
487 1.8.2.2 skrll
488 1.8.2.2 skrll status = CSR_READ_4(sc, AGE_INTR_STATUS);
489 1.8.2.2 skrll if (status == 0 || (status & AGE_INTRS) == 0)
490 1.8.2.3 skrll return 0;
491 1.8.2.3 skrll
492 1.8.2.3 skrll cmb = sc->age_rdata.age_cmb_block;
493 1.8.2.3 skrll if (cmb == NULL)
494 1.8.2.3 skrll return 0;
495 1.8.2.2 skrll
496 1.8.2.2 skrll /* Disable interrupts. */
497 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
498 1.8.2.2 skrll
499 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
500 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
501 1.8.2.2 skrll status = le32toh(cmb->intr_status);
502 1.8.2.2 skrll if ((status & AGE_INTRS) == 0)
503 1.8.2.2 skrll goto back;
504 1.8.2.2 skrll
505 1.8.2.2 skrll sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
506 1.8.2.2 skrll TPD_CONS_SHIFT;
507 1.8.2.2 skrll sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
508 1.8.2.2 skrll RRD_PROD_SHIFT;
509 1.8.2.2 skrll
510 1.8.2.2 skrll /* Let hardware know CMB was served. */
511 1.8.2.2 skrll cmb->intr_status = 0;
512 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
513 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize,
514 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
515 1.8.2.2 skrll
516 1.8.2.2 skrll if (ifp->if_flags & IFF_RUNNING) {
517 1.8.2.2 skrll if (status & INTR_CMB_RX)
518 1.8.2.2 skrll age_rxintr(sc, sc->age_rr_prod);
519 1.8.2.2 skrll
520 1.8.2.2 skrll if (status & INTR_CMB_TX)
521 1.8.2.2 skrll age_txintr(sc, sc->age_tpd_cons);
522 1.8.2.2 skrll
523 1.8.2.2 skrll if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
524 1.8.2.2 skrll if (status & INTR_DMA_RD_TO_RST)
525 1.8.2.2 skrll printf("%s: DMA read error! -- resetting\n",
526 1.8.2.2 skrll device_xname(sc->sc_dev));
527 1.8.2.2 skrll if (status & INTR_DMA_WR_TO_RST)
528 1.8.2.2 skrll printf("%s: DMA write error! -- resetting\n",
529 1.8.2.2 skrll device_xname(sc->sc_dev));
530 1.8.2.2 skrll age_init(ifp);
531 1.8.2.2 skrll }
532 1.8.2.2 skrll
533 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
534 1.8.2.2 skrll age_start(ifp);
535 1.8.2.2 skrll
536 1.8.2.2 skrll if (status & INTR_SMB)
537 1.8.2.2 skrll age_stats_update(sc);
538 1.8.2.2 skrll }
539 1.8.2.2 skrll
540 1.8.2.2 skrll /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
541 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
542 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize,
543 1.8.2.2 skrll BUS_DMASYNC_POSTREAD);
544 1.8.2.2 skrll
545 1.8.2.2 skrll back:
546 1.8.2.2 skrll /* Re-enable interrupts. */
547 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
548 1.8.2.2 skrll
549 1.8.2.3 skrll return 1;
550 1.8.2.2 skrll }
551 1.8.2.2 skrll
552 1.8.2.2 skrll static int
553 1.8.2.2 skrll age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
554 1.8.2.2 skrll uint32_t *word)
555 1.8.2.2 skrll {
556 1.8.2.2 skrll int i;
557 1.8.2.2 skrll pcireg_t rv;
558 1.8.2.2 skrll
559 1.8.2.2 skrll pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
560 1.8.2.2 skrll offset << PCI_VPD_ADDRESS_SHIFT);
561 1.8.2.2 skrll for (i = AGE_TIMEOUT; i > 0; i--) {
562 1.8.2.2 skrll DELAY(10);
563 1.8.2.2 skrll rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
564 1.8.2.2 skrll PCI_VPD_ADDRESS(vpdc));
565 1.8.2.2 skrll if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
566 1.8.2.2 skrll break;
567 1.8.2.2 skrll }
568 1.8.2.2 skrll if (i == 0) {
569 1.8.2.2 skrll printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
570 1.8.2.2 skrll *word = 0;
571 1.8.2.2 skrll return ETIMEDOUT;
572 1.8.2.2 skrll }
573 1.8.2.2 skrll
574 1.8.2.2 skrll *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
575 1.8.2.2 skrll return 0;
576 1.8.2.2 skrll }
577 1.8.2.2 skrll
578 1.8.2.2 skrll static void
579 1.8.2.2 skrll age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
580 1.8.2.2 skrll {
581 1.8.2.2 skrll uint32_t ea[2], off, reg, word;
582 1.8.2.2 skrll int vpd_error, match, vpdc;
583 1.8.2.2 skrll
584 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SPI_CTRL);
585 1.8.2.2 skrll if ((reg & SPI_VPD_ENB) != 0) {
586 1.8.2.2 skrll /* Get VPD stored in TWSI EEPROM. */
587 1.8.2.2 skrll reg &= ~SPI_VPD_ENB;
588 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
589 1.8.2.2 skrll }
590 1.8.2.2 skrll
591 1.8.2.2 skrll vpd_error = 0;
592 1.8.2.2 skrll ea[0] = ea[1] = 0;
593 1.8.2.2 skrll if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
594 1.8.2.2 skrll PCI_CAP_VPD, &vpdc, NULL))) {
595 1.8.2.2 skrll /*
596 1.8.2.2 skrll * PCI VPD capability exists, but it seems that it's
597 1.8.2.2 skrll * not in the standard form as stated in PCI VPD
598 1.8.2.2 skrll * specification such that driver could not use
599 1.8.2.2 skrll * pci_get_vpd_readonly(9) with keyword 'NA'.
600 1.8.2.2 skrll * Search VPD data starting at address 0x0100. The data
601 1.8.2.2 skrll * should be used as initializers to set AGE_PAR0,
602 1.8.2.2 skrll * AGE_PAR1 register including other PCI configuration
603 1.8.2.2 skrll * registers.
604 1.8.2.2 skrll */
605 1.8.2.2 skrll word = 0;
606 1.8.2.2 skrll match = 0;
607 1.8.2.2 skrll reg = 0;
608 1.8.2.2 skrll for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
609 1.8.2.2 skrll off += sizeof(uint32_t)) {
610 1.8.2.2 skrll vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
611 1.8.2.2 skrll if (vpd_error != 0)
612 1.8.2.2 skrll break;
613 1.8.2.2 skrll if (match != 0) {
614 1.8.2.2 skrll switch (reg) {
615 1.8.2.2 skrll case AGE_PAR0:
616 1.8.2.2 skrll ea[0] = word;
617 1.8.2.2 skrll break;
618 1.8.2.2 skrll case AGE_PAR1:
619 1.8.2.2 skrll ea[1] = word;
620 1.8.2.2 skrll break;
621 1.8.2.2 skrll default:
622 1.8.2.2 skrll break;
623 1.8.2.2 skrll }
624 1.8.2.2 skrll match = 0;
625 1.8.2.2 skrll } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
626 1.8.2.2 skrll match = 1;
627 1.8.2.2 skrll reg = word >> 16;
628 1.8.2.2 skrll } else
629 1.8.2.2 skrll break;
630 1.8.2.2 skrll }
631 1.8.2.2 skrll if (off >= AGE_VPD_REG_CONF_END)
632 1.8.2.2 skrll vpd_error = ENOENT;
633 1.8.2.2 skrll if (vpd_error == 0) {
634 1.8.2.2 skrll /*
635 1.8.2.2 skrll * Don't blindly trust ethernet address obtained
636 1.8.2.2 skrll * from VPD. Check whether ethernet address is
637 1.8.2.2 skrll * valid one. Otherwise fall-back to reading
638 1.8.2.2 skrll * PAR register.
639 1.8.2.2 skrll */
640 1.8.2.2 skrll ea[1] &= 0xFFFF;
641 1.8.2.2 skrll if ((ea[0] == 0 && ea[1] == 0) ||
642 1.8.2.2 skrll (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
643 1.8.2.2 skrll if (agedebug)
644 1.8.2.2 skrll printf("%s: invalid ethernet address "
645 1.8.2.2 skrll "returned from VPD.\n",
646 1.8.2.2 skrll device_xname(sc->sc_dev));
647 1.8.2.2 skrll vpd_error = EINVAL;
648 1.8.2.2 skrll }
649 1.8.2.2 skrll }
650 1.8.2.2 skrll if (vpd_error != 0 && (agedebug))
651 1.8.2.2 skrll printf("%s: VPD access failure!\n",
652 1.8.2.2 skrll device_xname(sc->sc_dev));
653 1.8.2.2 skrll } else {
654 1.8.2.2 skrll if (agedebug)
655 1.8.2.2 skrll printf("%s: PCI VPD capability not found!\n",
656 1.8.2.2 skrll device_xname(sc->sc_dev));
657 1.8.2.2 skrll }
658 1.8.2.2 skrll
659 1.8.2.2 skrll /*
660 1.8.2.2 skrll * It seems that L1 also provides a way to extract ethernet
661 1.8.2.2 skrll * address via SPI flash interface. Because SPI flash memory
662 1.8.2.2 skrll * device of different vendors vary in their instruction
663 1.8.2.2 skrll * codes for read ID instruction, it's very hard to get
664 1.8.2.2 skrll * instructions codes without detailed information for the
665 1.8.2.2 skrll * flash memory device used on ethernet controller. To simplify
666 1.8.2.2 skrll * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
667 1.8.2.2 skrll * address which is supposed to be set by hardware during
668 1.8.2.2 skrll * power on reset.
669 1.8.2.2 skrll */
670 1.8.2.2 skrll if (vpd_error != 0) {
671 1.8.2.2 skrll /*
672 1.8.2.2 skrll * VPD is mapped to SPI flash memory or BIOS set it.
673 1.8.2.2 skrll */
674 1.8.2.2 skrll ea[0] = CSR_READ_4(sc, AGE_PAR0);
675 1.8.2.2 skrll ea[1] = CSR_READ_4(sc, AGE_PAR1);
676 1.8.2.2 skrll }
677 1.8.2.2 skrll
678 1.8.2.2 skrll ea[1] &= 0xFFFF;
679 1.8.2.2 skrll eaddr[0] = (ea[1] >> 8) & 0xFF;
680 1.8.2.2 skrll eaddr[1] = (ea[1] >> 0) & 0xFF;
681 1.8.2.2 skrll eaddr[2] = (ea[0] >> 24) & 0xFF;
682 1.8.2.2 skrll eaddr[3] = (ea[0] >> 16) & 0xFF;
683 1.8.2.2 skrll eaddr[4] = (ea[0] >> 8) & 0xFF;
684 1.8.2.2 skrll eaddr[5] = (ea[0] >> 0) & 0xFF;
685 1.8.2.2 skrll }
686 1.8.2.2 skrll
687 1.8.2.2 skrll static void
688 1.8.2.2 skrll age_phy_reset(struct age_softc *sc)
689 1.8.2.2 skrll {
690 1.8.2.2 skrll /* Reset PHY. */
691 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
692 1.8.2.2 skrll DELAY(1000);
693 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
694 1.8.2.2 skrll DELAY(1000);
695 1.8.2.2 skrll }
696 1.8.2.2 skrll
697 1.8.2.2 skrll static int
698 1.8.2.2 skrll age_dma_alloc(struct age_softc *sc)
699 1.8.2.2 skrll {
700 1.8.2.2 skrll struct age_txdesc *txd;
701 1.8.2.2 skrll struct age_rxdesc *rxd;
702 1.8.2.2 skrll int nsegs, error, i;
703 1.8.2.2 skrll
704 1.8.2.2 skrll /*
705 1.8.2.2 skrll * Create DMA stuffs for TX ring
706 1.8.2.2 skrll */
707 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
708 1.8.2.2 skrll AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
709 1.8.2.2 skrll if (error)
710 1.8.2.3 skrll return ENOBUFS;
711 1.8.2.2 skrll
712 1.8.2.2 skrll /* Allocate DMA'able memory for TX ring */
713 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
714 1.8.2.3 skrll ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
715 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
716 1.8.2.2 skrll if (error) {
717 1.8.2.3 skrll printf("%s: could not allocate DMA'able memory for Tx ring, "
718 1.8.2.3 skrll "error = %i\n", device_xname(sc->sc_dev), error);
719 1.8.2.2 skrll return error;
720 1.8.2.2 skrll }
721 1.8.2.2 skrll
722 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
723 1.8.2.2 skrll nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
724 1.8.2.2 skrll BUS_DMA_NOWAIT);
725 1.8.2.2 skrll if (error)
726 1.8.2.3 skrll return ENOBUFS;
727 1.8.2.2 skrll
728 1.8.2.2 skrll memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
729 1.8.2.2 skrll
730 1.8.2.2 skrll /* Load the DMA map for Tx ring. */
731 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
732 1.8.2.2 skrll sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
733 1.8.2.2 skrll if (error) {
734 1.8.2.3 skrll printf("%s: could not load DMA'able memory for Tx ring, "
735 1.8.2.3 skrll "error = %i\n", device_xname(sc->sc_dev), error);
736 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
737 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
738 1.8.2.2 skrll return error;
739 1.8.2.2 skrll }
740 1.8.2.2 skrll
741 1.8.2.2 skrll sc->age_rdata.age_tx_ring_paddr =
742 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
743 1.8.2.2 skrll
744 1.8.2.2 skrll /*
745 1.8.2.2 skrll * Create DMA stuffs for RX ring
746 1.8.2.2 skrll */
747 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
748 1.8.2.2 skrll AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
749 1.8.2.2 skrll if (error)
750 1.8.2.3 skrll return ENOBUFS;
751 1.8.2.2 skrll
752 1.8.2.2 skrll /* Allocate DMA'able memory for RX ring */
753 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
754 1.8.2.3 skrll ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
755 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
756 1.8.2.2 skrll if (error) {
757 1.8.2.3 skrll printf("%s: could not allocate DMA'able memory for Rx ring, "
758 1.8.2.3 skrll "error = %i.\n", device_xname(sc->sc_dev), error);
759 1.8.2.2 skrll return error;
760 1.8.2.2 skrll }
761 1.8.2.2 skrll
762 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
763 1.8.2.2 skrll nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
764 1.8.2.2 skrll BUS_DMA_NOWAIT);
765 1.8.2.2 skrll if (error)
766 1.8.2.3 skrll return ENOBUFS;
767 1.8.2.2 skrll
768 1.8.2.2 skrll memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
769 1.8.2.2 skrll
770 1.8.2.2 skrll /* Load the DMA map for Rx ring. */
771 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
772 1.8.2.2 skrll sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
773 1.8.2.2 skrll if (error) {
774 1.8.2.3 skrll printf("%s: could not load DMA'able memory for Rx ring, "
775 1.8.2.3 skrll "error = %i.\n", device_xname(sc->sc_dev), error);
776 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
777 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
778 1.8.2.2 skrll return error;
779 1.8.2.2 skrll }
780 1.8.2.2 skrll
781 1.8.2.2 skrll sc->age_rdata.age_rx_ring_paddr =
782 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
783 1.8.2.2 skrll
784 1.8.2.2 skrll /*
785 1.8.2.2 skrll * Create DMA stuffs for RX return ring
786 1.8.2.2 skrll */
787 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
788 1.8.2.2 skrll AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
789 1.8.2.2 skrll if (error)
790 1.8.2.3 skrll return ENOBUFS;
791 1.8.2.2 skrll
792 1.8.2.2 skrll /* Allocate DMA'able memory for RX return ring */
793 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
794 1.8.2.3 skrll ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
795 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
796 1.8.2.2 skrll if (error) {
797 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for Rx "
798 1.8.2.3 skrll "return ring, error = %i.\n",
799 1.8.2.3 skrll device_xname(sc->sc_dev), error);
800 1.8.2.2 skrll return error;
801 1.8.2.2 skrll }
802 1.8.2.2 skrll
803 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
804 1.8.2.2 skrll nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
805 1.8.2.2 skrll BUS_DMA_NOWAIT);
806 1.8.2.2 skrll if (error)
807 1.8.2.3 skrll return ENOBUFS;
808 1.8.2.2 skrll
809 1.8.2.2 skrll memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
810 1.8.2.2 skrll
811 1.8.2.2 skrll /* Load the DMA map for Rx return ring. */
812 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
813 1.8.2.2 skrll sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
814 1.8.2.2 skrll if (error) {
815 1.8.2.3 skrll printf("%s: could not load DMA'able memory for Rx return ring, "
816 1.8.2.3 skrll "error = %i\n", device_xname(sc->sc_dev), error);
817 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
818 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
819 1.8.2.2 skrll return error;
820 1.8.2.2 skrll }
821 1.8.2.2 skrll
822 1.8.2.2 skrll sc->age_rdata.age_rr_ring_paddr =
823 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
824 1.8.2.2 skrll
825 1.8.2.2 skrll /*
826 1.8.2.2 skrll * Create DMA stuffs for CMB block
827 1.8.2.2 skrll */
828 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
829 1.8.2.2 skrll AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
830 1.8.2.2 skrll &sc->age_cdata.age_cmb_block_map);
831 1.8.2.2 skrll if (error)
832 1.8.2.3 skrll return ENOBUFS;
833 1.8.2.2 skrll
834 1.8.2.2 skrll /* Allocate DMA'able memory for CMB block */
835 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
836 1.8.2.3 skrll ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
837 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
838 1.8.2.2 skrll if (error) {
839 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for "
840 1.8.2.3 skrll "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
841 1.8.2.2 skrll return error;
842 1.8.2.2 skrll }
843 1.8.2.2 skrll
844 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
845 1.8.2.2 skrll nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
846 1.8.2.2 skrll BUS_DMA_NOWAIT);
847 1.8.2.2 skrll if (error)
848 1.8.2.3 skrll return ENOBUFS;
849 1.8.2.2 skrll
850 1.8.2.2 skrll memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
851 1.8.2.2 skrll
852 1.8.2.2 skrll /* Load the DMA map for CMB block. */
853 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
854 1.8.2.2 skrll sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
855 1.8.2.2 skrll BUS_DMA_WAITOK);
856 1.8.2.2 skrll if (error) {
857 1.8.2.3 skrll printf("%s: could not load DMA'able memory for CMB block, "
858 1.8.2.3 skrll "error = %i\n", device_xname(sc->sc_dev), error);
859 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
860 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
861 1.8.2.2 skrll return error;
862 1.8.2.2 skrll }
863 1.8.2.2 skrll
864 1.8.2.2 skrll sc->age_rdata.age_cmb_block_paddr =
865 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
866 1.8.2.2 skrll
867 1.8.2.2 skrll /*
868 1.8.2.2 skrll * Create DMA stuffs for SMB block
869 1.8.2.2 skrll */
870 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
871 1.8.2.2 skrll AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
872 1.8.2.2 skrll &sc->age_cdata.age_smb_block_map);
873 1.8.2.2 skrll if (error)
874 1.8.2.3 skrll return ENOBUFS;
875 1.8.2.2 skrll
876 1.8.2.2 skrll /* Allocate DMA'able memory for SMB block */
877 1.8.2.2 skrll error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
878 1.8.2.3 skrll ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
879 1.8.2.2 skrll &nsegs, BUS_DMA_WAITOK);
880 1.8.2.2 skrll if (error) {
881 1.8.2.2 skrll printf("%s: could not allocate DMA'able memory for "
882 1.8.2.3 skrll "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
883 1.8.2.2 skrll return error;
884 1.8.2.2 skrll }
885 1.8.2.2 skrll
886 1.8.2.2 skrll error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
887 1.8.2.2 skrll nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
888 1.8.2.2 skrll BUS_DMA_NOWAIT);
889 1.8.2.2 skrll if (error)
890 1.8.2.3 skrll return ENOBUFS;
891 1.8.2.2 skrll
892 1.8.2.2 skrll memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
893 1.8.2.2 skrll
894 1.8.2.2 skrll /* Load the DMA map for SMB block */
895 1.8.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
896 1.8.2.2 skrll sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
897 1.8.2.2 skrll BUS_DMA_WAITOK);
898 1.8.2.2 skrll if (error) {
899 1.8.2.3 skrll printf("%s: could not load DMA'able memory for SMB block, "
900 1.8.2.3 skrll "error = %i\n", device_xname(sc->sc_dev), error);
901 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
902 1.8.2.2 skrll (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
903 1.8.2.2 skrll return error;
904 1.8.2.2 skrll }
905 1.8.2.2 skrll
906 1.8.2.2 skrll sc->age_rdata.age_smb_block_paddr =
907 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
908 1.8.2.2 skrll
909 1.8.2.2 skrll /* Create DMA maps for Tx buffers. */
910 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
911 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
912 1.8.2.2 skrll txd->tx_m = NULL;
913 1.8.2.2 skrll txd->tx_dmamap = NULL;
914 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
915 1.8.2.2 skrll AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
916 1.8.2.2 skrll &txd->tx_dmamap);
917 1.8.2.2 skrll if (error) {
918 1.8.2.3 skrll printf("%s: could not create Tx dmamap, error = %i.\n",
919 1.8.2.3 skrll device_xname(sc->sc_dev), error);
920 1.8.2.2 skrll return error;
921 1.8.2.2 skrll }
922 1.8.2.2 skrll }
923 1.8.2.2 skrll
924 1.8.2.2 skrll /* Create DMA maps for Rx buffers. */
925 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
926 1.8.2.2 skrll BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
927 1.8.2.2 skrll if (error) {
928 1.8.2.3 skrll printf("%s: could not create spare Rx dmamap, error = %i.\n",
929 1.8.2.3 skrll device_xname(sc->sc_dev), error);
930 1.8.2.2 skrll return error;
931 1.8.2.2 skrll }
932 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
933 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
934 1.8.2.2 skrll rxd->rx_m = NULL;
935 1.8.2.2 skrll rxd->rx_dmamap = NULL;
936 1.8.2.2 skrll error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
937 1.8.2.2 skrll MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
938 1.8.2.2 skrll if (error) {
939 1.8.2.3 skrll printf("%s: could not create Rx dmamap, error = %i.\n",
940 1.8.2.3 skrll device_xname(sc->sc_dev), error);
941 1.8.2.2 skrll return error;
942 1.8.2.2 skrll }
943 1.8.2.2 skrll }
944 1.8.2.2 skrll
945 1.8.2.3 skrll return 0;
946 1.8.2.2 skrll }
947 1.8.2.2 skrll
948 1.8.2.2 skrll static void
949 1.8.2.2 skrll age_dma_free(struct age_softc *sc)
950 1.8.2.2 skrll {
951 1.8.2.2 skrll struct age_txdesc *txd;
952 1.8.2.2 skrll struct age_rxdesc *rxd;
953 1.8.2.2 skrll int i;
954 1.8.2.2 skrll
955 1.8.2.2 skrll /* Tx buffers */
956 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
957 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
958 1.8.2.2 skrll if (txd->tx_dmamap != NULL) {
959 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
960 1.8.2.2 skrll txd->tx_dmamap = NULL;
961 1.8.2.2 skrll }
962 1.8.2.2 skrll }
963 1.8.2.2 skrll /* Rx buffers */
964 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
965 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
966 1.8.2.2 skrll if (rxd->rx_dmamap != NULL) {
967 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
968 1.8.2.2 skrll rxd->rx_dmamap = NULL;
969 1.8.2.2 skrll }
970 1.8.2.2 skrll }
971 1.8.2.2 skrll if (sc->age_cdata.age_rx_sparemap != NULL) {
972 1.8.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
973 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap = NULL;
974 1.8.2.2 skrll }
975 1.8.2.2 skrll
976 1.8.2.2 skrll /* Tx ring. */
977 1.8.2.2 skrll if (sc->age_cdata.age_tx_ring_map != NULL)
978 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
979 1.8.2.2 skrll if (sc->age_cdata.age_tx_ring_map != NULL &&
980 1.8.2.2 skrll sc->age_rdata.age_tx_ring != NULL)
981 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
982 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
983 1.8.2.2 skrll sc->age_rdata.age_tx_ring = NULL;
984 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map = NULL;
985 1.8.2.2 skrll
986 1.8.2.2 skrll /* Rx ring. */
987 1.8.2.2 skrll if (sc->age_cdata.age_rx_ring_map != NULL)
988 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
989 1.8.2.2 skrll if (sc->age_cdata.age_rx_ring_map != NULL &&
990 1.8.2.2 skrll sc->age_rdata.age_rx_ring != NULL)
991 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
992 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
993 1.8.2.2 skrll sc->age_rdata.age_rx_ring = NULL;
994 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map = NULL;
995 1.8.2.2 skrll
996 1.8.2.2 skrll /* Rx return ring. */
997 1.8.2.2 skrll if (sc->age_cdata.age_rr_ring_map != NULL)
998 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
999 1.8.2.2 skrll if (sc->age_cdata.age_rr_ring_map != NULL &&
1000 1.8.2.2 skrll sc->age_rdata.age_rr_ring != NULL)
1001 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
1002 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
1003 1.8.2.2 skrll sc->age_rdata.age_rr_ring = NULL;
1004 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map = NULL;
1005 1.8.2.2 skrll
1006 1.8.2.2 skrll /* CMB block */
1007 1.8.2.2 skrll if (sc->age_cdata.age_cmb_block_map != NULL)
1008 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1009 1.8.2.2 skrll if (sc->age_cdata.age_cmb_block_map != NULL &&
1010 1.8.2.2 skrll sc->age_rdata.age_cmb_block != NULL)
1011 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
1012 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1013 1.8.2.2 skrll sc->age_rdata.age_cmb_block = NULL;
1014 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map = NULL;
1015 1.8.2.2 skrll
1016 1.8.2.2 skrll /* SMB block */
1017 1.8.2.2 skrll if (sc->age_cdata.age_smb_block_map != NULL)
1018 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1019 1.8.2.2 skrll if (sc->age_cdata.age_smb_block_map != NULL &&
1020 1.8.2.2 skrll sc->age_rdata.age_smb_block != NULL)
1021 1.8.2.2 skrll bus_dmamem_free(sc->sc_dmat,
1022 1.8.2.2 skrll (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1023 1.8.2.3 skrll sc->age_rdata.age_smb_block = NULL;
1024 1.8.2.3 skrll sc->age_cdata.age_smb_block_map = NULL;
1025 1.8.2.2 skrll }
1026 1.8.2.2 skrll
1027 1.8.2.2 skrll static void
1028 1.8.2.2 skrll age_start(struct ifnet *ifp)
1029 1.8.2.2 skrll {
1030 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1031 1.8.2.2 skrll struct mbuf *m_head;
1032 1.8.2.2 skrll int enq;
1033 1.8.2.2 skrll
1034 1.8.2.2 skrll if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1035 1.8.2.2 skrll return;
1036 1.8.2.2 skrll
1037 1.8.2.2 skrll enq = 0;
1038 1.8.2.2 skrll for (;;) {
1039 1.8.2.2 skrll IFQ_DEQUEUE(&ifp->if_snd, m_head);
1040 1.8.2.2 skrll if (m_head == NULL)
1041 1.8.2.2 skrll break;
1042 1.8.2.2 skrll
1043 1.8.2.2 skrll /*
1044 1.8.2.2 skrll * Pack the data into the transmit ring. If we
1045 1.8.2.2 skrll * don't have room, set the OACTIVE flag and wait
1046 1.8.2.2 skrll * for the NIC to drain the ring.
1047 1.8.2.2 skrll */
1048 1.8.2.2 skrll if (age_encap(sc, &m_head)) {
1049 1.8.2.2 skrll if (m_head == NULL)
1050 1.8.2.2 skrll break;
1051 1.8.2.2 skrll ifp->if_flags |= IFF_OACTIVE;
1052 1.8.2.2 skrll break;
1053 1.8.2.2 skrll }
1054 1.8.2.2 skrll enq = 1;
1055 1.8.2.2 skrll
1056 1.8.2.2 skrll #if NBPFILTER > 0
1057 1.8.2.2 skrll /*
1058 1.8.2.2 skrll * If there's a BPF listener, bounce a copy of this frame
1059 1.8.2.2 skrll * to him.
1060 1.8.2.2 skrll */
1061 1.8.2.2 skrll if (ifp->if_bpf != NULL)
1062 1.8.2.2 skrll bpf_mtap(ifp->if_bpf, m_head);
1063 1.8.2.2 skrll #endif
1064 1.8.2.2 skrll }
1065 1.8.2.2 skrll
1066 1.8.2.2 skrll if (enq) {
1067 1.8.2.2 skrll /* Update mbox. */
1068 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1069 1.8.2.2 skrll /* Set a timeout in case the chip goes out to lunch. */
1070 1.8.2.2 skrll ifp->if_timer = AGE_TX_TIMEOUT;
1071 1.8.2.2 skrll }
1072 1.8.2.2 skrll }
1073 1.8.2.2 skrll
1074 1.8.2.2 skrll static void
1075 1.8.2.2 skrll age_watchdog(struct ifnet *ifp)
1076 1.8.2.2 skrll {
1077 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1078 1.8.2.2 skrll
1079 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1080 1.8.2.2 skrll printf("%s: watchdog timeout (missed link)\n",
1081 1.8.2.2 skrll device_xname(sc->sc_dev));
1082 1.8.2.2 skrll ifp->if_oerrors++;
1083 1.8.2.2 skrll age_init(ifp);
1084 1.8.2.2 skrll return;
1085 1.8.2.2 skrll }
1086 1.8.2.2 skrll
1087 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt == 0) {
1088 1.8.2.2 skrll printf("%s: watchdog timeout (missed Tx interrupts) "
1089 1.8.2.2 skrll "-- recovering\n", device_xname(sc->sc_dev));
1090 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
1091 1.8.2.2 skrll age_start(ifp);
1092 1.8.2.2 skrll return;
1093 1.8.2.2 skrll }
1094 1.8.2.2 skrll
1095 1.8.2.2 skrll printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1096 1.8.2.2 skrll ifp->if_oerrors++;
1097 1.8.2.2 skrll age_init(ifp);
1098 1.8.2.2 skrll
1099 1.8.2.2 skrll if (!IFQ_IS_EMPTY(&ifp->if_snd))
1100 1.8.2.2 skrll age_start(ifp);
1101 1.8.2.2 skrll }
1102 1.8.2.2 skrll
1103 1.8.2.2 skrll static int
1104 1.8.2.2 skrll age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1105 1.8.2.2 skrll {
1106 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1107 1.8.2.3 skrll int s, error;
1108 1.8.2.2 skrll
1109 1.8.2.2 skrll s = splnet();
1110 1.8.2.2 skrll
1111 1.8.2.3 skrll error = ether_ioctl(ifp, cmd, data);
1112 1.8.2.3 skrll if (error == ENETRESET) {
1113 1.8.2.3 skrll if (ifp->if_flags & IFF_RUNNING)
1114 1.8.2.3 skrll age_rxfilter(sc);
1115 1.8.2.3 skrll error = 0;
1116 1.8.2.2 skrll }
1117 1.8.2.2 skrll
1118 1.8.2.2 skrll splx(s);
1119 1.8.2.2 skrll return error;
1120 1.8.2.2 skrll }
1121 1.8.2.2 skrll
1122 1.8.2.2 skrll static void
1123 1.8.2.2 skrll age_mac_config(struct age_softc *sc)
1124 1.8.2.2 skrll {
1125 1.8.2.2 skrll struct mii_data *mii;
1126 1.8.2.2 skrll uint32_t reg;
1127 1.8.2.2 skrll
1128 1.8.2.2 skrll mii = &sc->sc_miibus;
1129 1.8.2.2 skrll
1130 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
1131 1.8.2.2 skrll reg &= ~MAC_CFG_FULL_DUPLEX;
1132 1.8.2.2 skrll reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1133 1.8.2.2 skrll reg &= ~MAC_CFG_SPEED_MASK;
1134 1.8.2.2 skrll
1135 1.8.2.2 skrll /* Reprogram MAC with resolved speed/duplex. */
1136 1.8.2.2 skrll switch (IFM_SUBTYPE(mii->mii_media_active)) {
1137 1.8.2.2 skrll case IFM_10_T:
1138 1.8.2.2 skrll case IFM_100_TX:
1139 1.8.2.2 skrll reg |= MAC_CFG_SPEED_10_100;
1140 1.8.2.2 skrll break;
1141 1.8.2.2 skrll case IFM_1000_T:
1142 1.8.2.2 skrll reg |= MAC_CFG_SPEED_1000;
1143 1.8.2.2 skrll break;
1144 1.8.2.2 skrll }
1145 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1146 1.8.2.2 skrll reg |= MAC_CFG_FULL_DUPLEX;
1147 1.8.2.2 skrll #ifdef notyet
1148 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1149 1.8.2.2 skrll reg |= MAC_CFG_TX_FC;
1150 1.8.2.2 skrll if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1151 1.8.2.2 skrll reg |= MAC_CFG_RX_FC;
1152 1.8.2.2 skrll #endif
1153 1.8.2.2 skrll }
1154 1.8.2.2 skrll
1155 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1156 1.8.2.2 skrll }
1157 1.8.2.2 skrll
1158 1.8.2.2 skrll static bool
1159 1.8.2.2 skrll age_resume(device_t dv PMF_FN_ARGS)
1160 1.8.2.2 skrll {
1161 1.8.2.2 skrll struct age_softc *sc = device_private(dv);
1162 1.8.2.2 skrll uint16_t cmd;
1163 1.8.2.2 skrll
1164 1.8.2.2 skrll /*
1165 1.8.2.2 skrll * Clear INTx emulation disable for hardware that
1166 1.8.2.2 skrll * is set in resume event. From Linux.
1167 1.8.2.2 skrll */
1168 1.8.2.2 skrll cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1169 1.8.2.3 skrll if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1170 1.8.2.3 skrll cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1171 1.8.2.2 skrll pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1172 1.8.2.2 skrll PCI_COMMAND_STATUS_REG, cmd);
1173 1.8.2.2 skrll }
1174 1.8.2.2 skrll
1175 1.8.2.2 skrll return true;
1176 1.8.2.2 skrll }
1177 1.8.2.2 skrll
1178 1.8.2.2 skrll static int
1179 1.8.2.2 skrll age_encap(struct age_softc *sc, struct mbuf **m_head)
1180 1.8.2.2 skrll {
1181 1.8.2.2 skrll struct age_txdesc *txd, *txd_last;
1182 1.8.2.2 skrll struct tx_desc *desc;
1183 1.8.2.2 skrll struct mbuf *m;
1184 1.8.2.2 skrll bus_dmamap_t map;
1185 1.8.2.2 skrll uint32_t cflags, poff, vtag;
1186 1.8.2.2 skrll int error, i, nsegs, prod;
1187 1.8.2.3 skrll #if NVLAN > 0
1188 1.8.2.2 skrll struct m_tag *mtag;
1189 1.8.2.3 skrll #endif
1190 1.8.2.2 skrll
1191 1.8.2.2 skrll m = *m_head;
1192 1.8.2.2 skrll cflags = vtag = 0;
1193 1.8.2.2 skrll poff = 0;
1194 1.8.2.2 skrll
1195 1.8.2.2 skrll prod = sc->age_cdata.age_tx_prod;
1196 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[prod];
1197 1.8.2.2 skrll txd_last = txd;
1198 1.8.2.2 skrll map = txd->tx_dmamap;
1199 1.8.2.2 skrll
1200 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1201 1.8.2.2 skrll
1202 1.8.2.2 skrll if (error == EFBIG) {
1203 1.8.2.2 skrll error = 0;
1204 1.8.2.2 skrll
1205 1.8.2.2 skrll MGETHDR(m, M_DONTWAIT, MT_DATA);
1206 1.8.2.2 skrll if (m == NULL) {
1207 1.8.2.2 skrll printf("%s: can't defrag TX mbuf\n",
1208 1.8.2.2 skrll device_xname(sc->sc_dev));
1209 1.8.2.2 skrll m_freem(*m_head);
1210 1.8.2.2 skrll *m_head = NULL;
1211 1.8.2.3 skrll return ENOBUFS;
1212 1.8.2.2 skrll }
1213 1.8.2.2 skrll
1214 1.8.2.3 skrll M_COPY_PKTHDR(m, *m_head);
1215 1.8.2.3 skrll if ((*m_head)->m_pkthdr.len > MHLEN) {
1216 1.8.2.3 skrll MCLGET(m, M_DONTWAIT);
1217 1.8.2.3 skrll if (!(m->m_flags & M_EXT)) {
1218 1.8.2.3 skrll m_freem(*m_head);
1219 1.8.2.3 skrll m_freem(m);
1220 1.8.2.3 skrll *m_head = NULL;
1221 1.8.2.3 skrll return ENOBUFS;
1222 1.8.2.3 skrll }
1223 1.8.2.2 skrll }
1224 1.8.2.3 skrll m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1225 1.8.2.3 skrll mtod(m, void *));
1226 1.8.2.3 skrll m_freem(*m_head);
1227 1.8.2.2 skrll m->m_len = m->m_pkthdr.len;
1228 1.8.2.2 skrll *m_head = m;
1229 1.8.2.2 skrll
1230 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1231 1.8.2.2 skrll BUS_DMA_NOWAIT);
1232 1.8.2.2 skrll
1233 1.8.2.2 skrll if (error != 0) {
1234 1.8.2.2 skrll printf("%s: could not load defragged TX mbuf\n",
1235 1.8.2.2 skrll device_xname(sc->sc_dev));
1236 1.8.2.2 skrll if (!error) {
1237 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, map);
1238 1.8.2.2 skrll error = EFBIG;
1239 1.8.2.2 skrll }
1240 1.8.2.2 skrll m_freem(*m_head);
1241 1.8.2.2 skrll *m_head = NULL;
1242 1.8.2.3 skrll return error;
1243 1.8.2.2 skrll }
1244 1.8.2.2 skrll } else if (error) {
1245 1.8.2.2 skrll printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1246 1.8.2.3 skrll return error;
1247 1.8.2.2 skrll }
1248 1.8.2.2 skrll
1249 1.8.2.2 skrll nsegs = map->dm_nsegs;
1250 1.8.2.2 skrll
1251 1.8.2.2 skrll if (nsegs == 0) {
1252 1.8.2.2 skrll m_freem(*m_head);
1253 1.8.2.2 skrll *m_head = NULL;
1254 1.8.2.3 skrll return EIO;
1255 1.8.2.2 skrll }
1256 1.8.2.2 skrll
1257 1.8.2.2 skrll /* Check descriptor overrun. */
1258 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1259 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, map);
1260 1.8.2.3 skrll return ENOBUFS;
1261 1.8.2.2 skrll }
1262 1.8.2.2 skrll
1263 1.8.2.2 skrll m = *m_head;
1264 1.8.2.2 skrll /* Configure Tx IP/TCP/UDP checksum offload. */
1265 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1266 1.8.2.2 skrll cflags |= AGE_TD_CSUM;
1267 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1268 1.8.2.2 skrll cflags |= AGE_TD_TCPCSUM;
1269 1.8.2.2 skrll if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1270 1.8.2.2 skrll cflags |= AGE_TD_UDPCSUM;
1271 1.8.2.2 skrll /* Set checksum start offset. */
1272 1.8.2.2 skrll cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1273 1.8.2.2 skrll }
1274 1.8.2.2 skrll
1275 1.8.2.2 skrll #if NVLAN > 0
1276 1.8.2.2 skrll /* Configure VLAN hardware tag insertion. */
1277 1.8.2.2 skrll if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1278 1.8.2.2 skrll vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1279 1.8.2.2 skrll vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1280 1.8.2.2 skrll cflags |= AGE_TD_INSERT_VLAN_TAG;
1281 1.8.2.2 skrll }
1282 1.8.2.2 skrll #endif
1283 1.8.2.2 skrll
1284 1.8.2.2 skrll desc = NULL;
1285 1.8.2.2 skrll for (i = 0; i < nsegs; i++) {
1286 1.8.2.2 skrll desc = &sc->age_rdata.age_tx_ring[prod];
1287 1.8.2.2 skrll desc->addr = htole64(map->dm_segs[i].ds_addr);
1288 1.8.2.2 skrll desc->len =
1289 1.8.2.2 skrll htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1290 1.8.2.2 skrll desc->flags = htole32(cflags);
1291 1.8.2.2 skrll sc->age_cdata.age_tx_cnt++;
1292 1.8.2.2 skrll AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1293 1.8.2.2 skrll }
1294 1.8.2.2 skrll
1295 1.8.2.2 skrll /* Update producer index. */
1296 1.8.2.2 skrll sc->age_cdata.age_tx_prod = prod;
1297 1.8.2.2 skrll
1298 1.8.2.2 skrll /* Set EOP on the last descriptor. */
1299 1.8.2.2 skrll prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1300 1.8.2.2 skrll desc = &sc->age_rdata.age_tx_ring[prod];
1301 1.8.2.2 skrll desc->flags |= htole32(AGE_TD_EOP);
1302 1.8.2.2 skrll
1303 1.8.2.2 skrll /* Swap dmamap of the first and the last. */
1304 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[prod];
1305 1.8.2.2 skrll map = txd_last->tx_dmamap;
1306 1.8.2.2 skrll txd_last->tx_dmamap = txd->tx_dmamap;
1307 1.8.2.2 skrll txd->tx_dmamap = map;
1308 1.8.2.2 skrll txd->tx_m = m;
1309 1.8.2.2 skrll
1310 1.8.2.2 skrll /* Sync descriptors. */
1311 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1312 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1313 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1314 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1315 1.8.2.2 skrll
1316 1.8.2.3 skrll return 0;
1317 1.8.2.2 skrll }
1318 1.8.2.2 skrll
1319 1.8.2.2 skrll static void
1320 1.8.2.2 skrll age_txintr(struct age_softc *sc, int tpd_cons)
1321 1.8.2.2 skrll {
1322 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1323 1.8.2.2 skrll struct age_txdesc *txd;
1324 1.8.2.2 skrll int cons, prog;
1325 1.8.2.2 skrll
1326 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1327 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1328 1.8.2.2 skrll
1329 1.8.2.2 skrll /*
1330 1.8.2.2 skrll * Go through our Tx list and free mbufs for those
1331 1.8.2.2 skrll * frames which have been transmitted.
1332 1.8.2.2 skrll */
1333 1.8.2.2 skrll cons = sc->age_cdata.age_tx_cons;
1334 1.8.2.2 skrll for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1335 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt <= 0)
1336 1.8.2.2 skrll break;
1337 1.8.2.2 skrll prog++;
1338 1.8.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
1339 1.8.2.2 skrll sc->age_cdata.age_tx_cnt--;
1340 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[cons];
1341 1.8.2.2 skrll /*
1342 1.8.2.2 skrll * Clear Tx descriptors, it's not required but would
1343 1.8.2.2 skrll * help debugging in case of Tx issues.
1344 1.8.2.2 skrll */
1345 1.8.2.2 skrll txd->tx_desc->addr = 0;
1346 1.8.2.2 skrll txd->tx_desc->len = 0;
1347 1.8.2.2 skrll txd->tx_desc->flags = 0;
1348 1.8.2.2 skrll
1349 1.8.2.2 skrll if (txd->tx_m == NULL)
1350 1.8.2.2 skrll continue;
1351 1.8.2.2 skrll /* Reclaim transmitted mbufs. */
1352 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1353 1.8.2.2 skrll m_freem(txd->tx_m);
1354 1.8.2.2 skrll txd->tx_m = NULL;
1355 1.8.2.2 skrll }
1356 1.8.2.2 skrll
1357 1.8.2.2 skrll if (prog > 0) {
1358 1.8.2.2 skrll sc->age_cdata.age_tx_cons = cons;
1359 1.8.2.2 skrll
1360 1.8.2.2 skrll /*
1361 1.8.2.2 skrll * Unarm watchdog timer only when there are no pending
1362 1.8.2.2 skrll * Tx descriptors in queue.
1363 1.8.2.2 skrll */
1364 1.8.2.2 skrll if (sc->age_cdata.age_tx_cnt == 0)
1365 1.8.2.2 skrll ifp->if_timer = 0;
1366 1.8.2.2 skrll
1367 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1368 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize,
1369 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1370 1.8.2.2 skrll }
1371 1.8.2.2 skrll }
1372 1.8.2.2 skrll
1373 1.8.2.2 skrll /* Receive a frame. */
1374 1.8.2.2 skrll static void
1375 1.8.2.2 skrll age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1376 1.8.2.2 skrll {
1377 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1378 1.8.2.2 skrll struct age_rxdesc *rxd;
1379 1.8.2.2 skrll struct rx_desc *desc;
1380 1.8.2.2 skrll struct mbuf *mp, *m;
1381 1.8.2.3 skrll uint32_t status, index;
1382 1.8.2.2 skrll int count, nsegs, pktlen;
1383 1.8.2.2 skrll int rx_cons;
1384 1.8.2.2 skrll
1385 1.8.2.2 skrll status = le32toh(rxrd->flags);
1386 1.8.2.2 skrll index = le32toh(rxrd->index);
1387 1.8.2.2 skrll rx_cons = AGE_RX_CONS(index);
1388 1.8.2.2 skrll nsegs = AGE_RX_NSEGS(index);
1389 1.8.2.2 skrll
1390 1.8.2.2 skrll sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1391 1.8.2.2 skrll if ((status & AGE_RRD_ERROR) != 0 &&
1392 1.8.2.2 skrll (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1393 1.8.2.2 skrll AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1394 1.8.2.2 skrll /*
1395 1.8.2.2 skrll * We want to pass the following frames to upper
1396 1.8.2.2 skrll * layer regardless of error status of Rx return
1397 1.8.2.2 skrll * ring.
1398 1.8.2.2 skrll *
1399 1.8.2.2 skrll * o IP/TCP/UDP checksum is bad.
1400 1.8.2.2 skrll * o frame length and protocol specific length
1401 1.8.2.2 skrll * does not match.
1402 1.8.2.2 skrll */
1403 1.8.2.2 skrll sc->age_cdata.age_rx_cons += nsegs;
1404 1.8.2.2 skrll sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1405 1.8.2.2 skrll return;
1406 1.8.2.2 skrll }
1407 1.8.2.2 skrll
1408 1.8.2.2 skrll pktlen = 0;
1409 1.8.2.2 skrll for (count = 0; count < nsegs; count++,
1410 1.8.2.2 skrll AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1411 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1412 1.8.2.2 skrll mp = rxd->rx_m;
1413 1.8.2.2 skrll desc = rxd->rx_desc;
1414 1.8.2.2 skrll /* Add a new receive buffer to the ring. */
1415 1.8.2.2 skrll if (age_newbuf(sc, rxd, 0) != 0) {
1416 1.8.2.2 skrll ifp->if_iqdrops++;
1417 1.8.2.2 skrll /* Reuse Rx buffers. */
1418 1.8.2.2 skrll if (sc->age_cdata.age_rxhead != NULL) {
1419 1.8.2.2 skrll m_freem(sc->age_cdata.age_rxhead);
1420 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1421 1.8.2.2 skrll }
1422 1.8.2.2 skrll break;
1423 1.8.2.2 skrll }
1424 1.8.2.2 skrll
1425 1.8.2.2 skrll /* The length of the first mbuf is computed last. */
1426 1.8.2.2 skrll if (count != 0) {
1427 1.8.2.2 skrll mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1428 1.8.2.2 skrll pktlen += mp->m_len;
1429 1.8.2.2 skrll }
1430 1.8.2.2 skrll
1431 1.8.2.2 skrll /* Chain received mbufs. */
1432 1.8.2.2 skrll if (sc->age_cdata.age_rxhead == NULL) {
1433 1.8.2.2 skrll sc->age_cdata.age_rxhead = mp;
1434 1.8.2.2 skrll sc->age_cdata.age_rxtail = mp;
1435 1.8.2.2 skrll } else {
1436 1.8.2.2 skrll mp->m_flags &= ~M_PKTHDR;
1437 1.8.2.2 skrll sc->age_cdata.age_rxprev_tail =
1438 1.8.2.2 skrll sc->age_cdata.age_rxtail;
1439 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_next = mp;
1440 1.8.2.2 skrll sc->age_cdata.age_rxtail = mp;
1441 1.8.2.2 skrll }
1442 1.8.2.2 skrll
1443 1.8.2.2 skrll if (count == nsegs - 1) {
1444 1.8.2.2 skrll /*
1445 1.8.2.2 skrll * It seems that L1 controller has no way
1446 1.8.2.2 skrll * to tell hardware to strip CRC bytes.
1447 1.8.2.2 skrll */
1448 1.8.2.2 skrll sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1449 1.8.2.2 skrll if (nsegs > 1) {
1450 1.8.2.2 skrll /* Remove the CRC bytes in chained mbufs. */
1451 1.8.2.2 skrll pktlen -= ETHER_CRC_LEN;
1452 1.8.2.2 skrll if (mp->m_len <= ETHER_CRC_LEN) {
1453 1.8.2.2 skrll sc->age_cdata.age_rxtail =
1454 1.8.2.2 skrll sc->age_cdata.age_rxprev_tail;
1455 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_len -=
1456 1.8.2.2 skrll (ETHER_CRC_LEN - mp->m_len);
1457 1.8.2.2 skrll sc->age_cdata.age_rxtail->m_next = NULL;
1458 1.8.2.2 skrll m_freem(mp);
1459 1.8.2.2 skrll } else {
1460 1.8.2.2 skrll mp->m_len -= ETHER_CRC_LEN;
1461 1.8.2.2 skrll }
1462 1.8.2.2 skrll }
1463 1.8.2.2 skrll
1464 1.8.2.2 skrll m = sc->age_cdata.age_rxhead;
1465 1.8.2.2 skrll m->m_flags |= M_PKTHDR;
1466 1.8.2.2 skrll m->m_pkthdr.rcvif = ifp;
1467 1.8.2.2 skrll m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1468 1.8.2.2 skrll /* Set the first mbuf length. */
1469 1.8.2.2 skrll m->m_len = sc->age_cdata.age_rxlen - pktlen;
1470 1.8.2.2 skrll
1471 1.8.2.2 skrll /*
1472 1.8.2.2 skrll * Set checksum information.
1473 1.8.2.2 skrll * It seems that L1 controller can compute partial
1474 1.8.2.2 skrll * checksum. The partial checksum value can be used
1475 1.8.2.2 skrll * to accelerate checksum computation for fragmented
1476 1.8.2.2 skrll * TCP/UDP packets. Upper network stack already
1477 1.8.2.2 skrll * takes advantage of the partial checksum value in
1478 1.8.2.2 skrll * IP reassembly stage. But I'm not sure the
1479 1.8.2.2 skrll * correctness of the partial hardware checksum
1480 1.8.2.2 skrll * assistance due to lack of data sheet. If it is
1481 1.8.2.2 skrll * proven to work on L1 I'll enable it.
1482 1.8.2.2 skrll */
1483 1.8.2.2 skrll if (status & AGE_RRD_IPV4) {
1484 1.8.2.3 skrll if (status & AGE_RRD_IPCSUM_NOK)
1485 1.8.2.2 skrll m->m_pkthdr.csum_flags |=
1486 1.8.2.2 skrll M_CSUM_IPv4_BAD;
1487 1.8.2.3 skrll if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1488 1.8.2.3 skrll (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1489 1.8.2.2 skrll m->m_pkthdr.csum_flags |=
1490 1.8.2.2 skrll M_CSUM_TCP_UDP_BAD;
1491 1.8.2.2 skrll }
1492 1.8.2.2 skrll /*
1493 1.8.2.2 skrll * Don't mark bad checksum for TCP/UDP frames
1494 1.8.2.2 skrll * as fragmented frames may always have set
1495 1.8.2.2 skrll * bad checksummed bit of descriptor status.
1496 1.8.2.2 skrll */
1497 1.8.2.2 skrll }
1498 1.8.2.2 skrll #if NVLAN > 0
1499 1.8.2.2 skrll /* Check for VLAN tagged frames. */
1500 1.8.2.2 skrll if (status & AGE_RRD_VLAN) {
1501 1.8.2.3 skrll uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1502 1.8.2.2 skrll VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1503 1.8.2.2 skrll continue);
1504 1.8.2.2 skrll }
1505 1.8.2.2 skrll #endif
1506 1.8.2.2 skrll
1507 1.8.2.2 skrll #if NBPFILTER > 0
1508 1.8.2.2 skrll if (ifp->if_bpf)
1509 1.8.2.2 skrll bpf_mtap(ifp->if_bpf, m);
1510 1.8.2.2 skrll #endif
1511 1.8.2.2 skrll /* Pass it on. */
1512 1.8.2.2 skrll ether_input(ifp, m);
1513 1.8.2.2 skrll
1514 1.8.2.2 skrll /* Reset mbuf chains. */
1515 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1516 1.8.2.2 skrll }
1517 1.8.2.2 skrll }
1518 1.8.2.2 skrll
1519 1.8.2.2 skrll if (count != nsegs) {
1520 1.8.2.2 skrll sc->age_cdata.age_rx_cons += nsegs;
1521 1.8.2.2 skrll sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1522 1.8.2.2 skrll } else
1523 1.8.2.2 skrll sc->age_cdata.age_rx_cons = rx_cons;
1524 1.8.2.2 skrll }
1525 1.8.2.2 skrll
1526 1.8.2.2 skrll static void
1527 1.8.2.2 skrll age_rxintr(struct age_softc *sc, int rr_prod)
1528 1.8.2.2 skrll {
1529 1.8.2.2 skrll struct rx_rdesc *rxrd;
1530 1.8.2.2 skrll int rr_cons, nsegs, pktlen, prog;
1531 1.8.2.2 skrll
1532 1.8.2.2 skrll rr_cons = sc->age_cdata.age_rr_cons;
1533 1.8.2.2 skrll if (rr_cons == rr_prod)
1534 1.8.2.2 skrll return;
1535 1.8.2.2 skrll
1536 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1537 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize,
1538 1.8.2.2 skrll BUS_DMASYNC_POSTREAD);
1539 1.8.2.2 skrll
1540 1.8.2.2 skrll for (prog = 0; rr_cons != rr_prod; prog++) {
1541 1.8.2.2 skrll rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1542 1.8.2.2 skrll nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1543 1.8.2.2 skrll if (nsegs == 0)
1544 1.8.2.2 skrll break;
1545 1.8.2.2 skrll /*
1546 1.8.2.2 skrll * Check number of segments against received bytes
1547 1.8.2.2 skrll * Non-matching value would indicate that hardware
1548 1.8.2.2 skrll * is still trying to update Rx return descriptors.
1549 1.8.2.2 skrll * I'm not sure whether this check is really needed.
1550 1.8.2.2 skrll */
1551 1.8.2.2 skrll pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1552 1.8.2.3 skrll if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1553 1.8.2.3 skrll (MCLBYTES - ETHER_ALIGN)))
1554 1.8.2.2 skrll break;
1555 1.8.2.2 skrll
1556 1.8.2.2 skrll /* Received a frame. */
1557 1.8.2.2 skrll age_rxeof(sc, rxrd);
1558 1.8.2.2 skrll
1559 1.8.2.2 skrll /* Clear return ring. */
1560 1.8.2.2 skrll rxrd->index = 0;
1561 1.8.2.2 skrll AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1562 1.8.2.2 skrll }
1563 1.8.2.2 skrll
1564 1.8.2.2 skrll if (prog > 0) {
1565 1.8.2.2 skrll /* Update the consumer index. */
1566 1.8.2.2 skrll sc->age_cdata.age_rr_cons = rr_cons;
1567 1.8.2.2 skrll
1568 1.8.2.2 skrll /* Sync descriptors. */
1569 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1570 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize,
1571 1.8.2.2 skrll BUS_DMASYNC_PREWRITE);
1572 1.8.2.2 skrll
1573 1.8.2.2 skrll /* Notify hardware availability of new Rx buffers. */
1574 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1575 1.8.2.2 skrll }
1576 1.8.2.2 skrll }
1577 1.8.2.2 skrll
1578 1.8.2.2 skrll static void
1579 1.8.2.2 skrll age_tick(void *xsc)
1580 1.8.2.2 skrll {
1581 1.8.2.2 skrll struct age_softc *sc = xsc;
1582 1.8.2.2 skrll struct mii_data *mii = &sc->sc_miibus;
1583 1.8.2.2 skrll int s;
1584 1.8.2.2 skrll
1585 1.8.2.2 skrll s = splnet();
1586 1.8.2.2 skrll mii_tick(mii);
1587 1.8.2.2 skrll splx(s);
1588 1.8.2.2 skrll
1589 1.8.2.2 skrll callout_schedule(&sc->sc_tick_ch, hz);
1590 1.8.2.2 skrll }
1591 1.8.2.2 skrll
1592 1.8.2.2 skrll static void
1593 1.8.2.2 skrll age_reset(struct age_softc *sc)
1594 1.8.2.2 skrll {
1595 1.8.2.2 skrll uint32_t reg;
1596 1.8.2.2 skrll int i;
1597 1.8.2.2 skrll
1598 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1599 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1600 1.8.2.2 skrll DELAY(1);
1601 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1602 1.8.2.2 skrll break;
1603 1.8.2.2 skrll }
1604 1.8.2.2 skrll if (i == 0)
1605 1.8.2.2 skrll printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1606 1.8.2.2 skrll
1607 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1608 1.8.2.2 skrll if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1609 1.8.2.2 skrll break;
1610 1.8.2.2 skrll DELAY(10);
1611 1.8.2.2 skrll }
1612 1.8.2.2 skrll
1613 1.8.2.2 skrll if (i == 0)
1614 1.8.2.2 skrll printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1615 1.8.2.2 skrll reg);
1616 1.8.2.2 skrll
1617 1.8.2.2 skrll /* Initialize PCIe module. From Linux. */
1618 1.8.2.2 skrll CSR_WRITE_4(sc, 0x12FC, 0x6500);
1619 1.8.2.2 skrll CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1620 1.8.2.2 skrll }
1621 1.8.2.2 skrll
1622 1.8.2.2 skrll static int
1623 1.8.2.2 skrll age_init(struct ifnet *ifp)
1624 1.8.2.2 skrll {
1625 1.8.2.2 skrll struct age_softc *sc = ifp->if_softc;
1626 1.8.2.2 skrll struct mii_data *mii;
1627 1.8.2.2 skrll uint8_t eaddr[ETHER_ADDR_LEN];
1628 1.8.2.2 skrll bus_addr_t paddr;
1629 1.8.2.2 skrll uint32_t reg, fsize;
1630 1.8.2.2 skrll uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1631 1.8.2.2 skrll int error;
1632 1.8.2.2 skrll
1633 1.8.2.2 skrll /*
1634 1.8.2.2 skrll * Cancel any pending I/O.
1635 1.8.2.2 skrll */
1636 1.8.2.3 skrll age_stop(ifp, 0);
1637 1.8.2.2 skrll
1638 1.8.2.2 skrll /*
1639 1.8.2.2 skrll * Reset the chip to a known state.
1640 1.8.2.2 skrll */
1641 1.8.2.2 skrll age_reset(sc);
1642 1.8.2.2 skrll
1643 1.8.2.2 skrll /* Initialize descriptors. */
1644 1.8.2.2 skrll error = age_init_rx_ring(sc);
1645 1.8.2.2 skrll if (error != 0) {
1646 1.8.2.2 skrll printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1647 1.8.2.3 skrll age_stop(ifp, 0);
1648 1.8.2.3 skrll return error;
1649 1.8.2.2 skrll }
1650 1.8.2.2 skrll age_init_rr_ring(sc);
1651 1.8.2.2 skrll age_init_tx_ring(sc);
1652 1.8.2.2 skrll age_init_cmb_block(sc);
1653 1.8.2.2 skrll age_init_smb_block(sc);
1654 1.8.2.2 skrll
1655 1.8.2.2 skrll /* Reprogram the station address. */
1656 1.8.2.2 skrll memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1657 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_PAR0,
1658 1.8.2.2 skrll eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1659 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1660 1.8.2.2 skrll
1661 1.8.2.2 skrll /* Set descriptor base addresses. */
1662 1.8.2.2 skrll paddr = sc->age_rdata.age_tx_ring_paddr;
1663 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1664 1.8.2.2 skrll paddr = sc->age_rdata.age_rx_ring_paddr;
1665 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1666 1.8.2.2 skrll paddr = sc->age_rdata.age_rr_ring_paddr;
1667 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1668 1.8.2.2 skrll paddr = sc->age_rdata.age_tx_ring_paddr;
1669 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1670 1.8.2.2 skrll paddr = sc->age_rdata.age_cmb_block_paddr;
1671 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1672 1.8.2.2 skrll paddr = sc->age_rdata.age_smb_block_paddr;
1673 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1674 1.8.2.2 skrll
1675 1.8.2.2 skrll /* Set Rx/Rx return descriptor counter. */
1676 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1677 1.8.2.2 skrll ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1678 1.8.2.2 skrll DESC_RRD_CNT_MASK) |
1679 1.8.2.2 skrll ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1680 1.8.2.2 skrll
1681 1.8.2.2 skrll /* Set Tx descriptor counter. */
1682 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1683 1.8.2.2 skrll (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1684 1.8.2.2 skrll
1685 1.8.2.2 skrll /* Tell hardware that we're ready to load descriptors. */
1686 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1687 1.8.2.2 skrll
1688 1.8.2.2 skrll /*
1689 1.8.2.2 skrll * Initialize mailbox register.
1690 1.8.2.2 skrll * Updated producer/consumer index information is exchanged
1691 1.8.2.2 skrll * through this mailbox register. However Tx producer and
1692 1.8.2.2 skrll * Rx return consumer/Rx producer are all shared such that
1693 1.8.2.2 skrll * it's hard to separate code path between Tx and Rx without
1694 1.8.2.2 skrll * locking. If L1 hardware have a separate mail box register
1695 1.8.2.2 skrll * for Tx and Rx consumer/producer management we could have
1696 1.8.2.2 skrll * indepent Tx/Rx handler which in turn Rx handler could have
1697 1.8.2.2 skrll * been run without any locking.
1698 1.8.2.2 skrll */
1699 1.8.2.2 skrll AGE_COMMIT_MBOX(sc);
1700 1.8.2.2 skrll
1701 1.8.2.2 skrll /* Configure IPG/IFG parameters. */
1702 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1703 1.8.2.2 skrll ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1704 1.8.2.2 skrll ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1705 1.8.2.2 skrll ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1706 1.8.2.2 skrll ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1707 1.8.2.2 skrll
1708 1.8.2.2 skrll /* Set parameters for half-duplex media. */
1709 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_HDPX_CFG,
1710 1.8.2.2 skrll ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1711 1.8.2.2 skrll HDPX_CFG_LCOL_MASK) |
1712 1.8.2.2 skrll ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1713 1.8.2.2 skrll HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1714 1.8.2.2 skrll ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1715 1.8.2.2 skrll HDPX_CFG_ABEBT_MASK) |
1716 1.8.2.2 skrll ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1717 1.8.2.2 skrll HDPX_CFG_JAMIPG_MASK));
1718 1.8.2.2 skrll
1719 1.8.2.2 skrll /* Configure interrupt moderation timer. */
1720 1.8.2.2 skrll sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1721 1.8.2.2 skrll CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1722 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1723 1.8.2.2 skrll reg &= ~MASTER_MTIMER_ENB;
1724 1.8.2.2 skrll if (AGE_USECS(sc->age_int_mod) == 0)
1725 1.8.2.2 skrll reg &= ~MASTER_ITIMER_ENB;
1726 1.8.2.2 skrll else
1727 1.8.2.2 skrll reg |= MASTER_ITIMER_ENB;
1728 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1729 1.8.2.2 skrll if (agedebug)
1730 1.8.2.2 skrll printf("%s: interrupt moderation is %d us.\n",
1731 1.8.2.2 skrll device_xname(sc->sc_dev), sc->age_int_mod);
1732 1.8.2.2 skrll CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1733 1.8.2.2 skrll
1734 1.8.2.2 skrll /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1735 1.8.2.2 skrll if (ifp->if_mtu < ETHERMTU)
1736 1.8.2.2 skrll sc->age_max_frame_size = ETHERMTU;
1737 1.8.2.2 skrll else
1738 1.8.2.2 skrll sc->age_max_frame_size = ifp->if_mtu;
1739 1.8.2.2 skrll sc->age_max_frame_size += ETHER_HDR_LEN +
1740 1.8.2.2 skrll sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1741 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1742 1.8.2.2 skrll
1743 1.8.2.2 skrll /* Configure jumbo frame. */
1744 1.8.2.2 skrll fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1745 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1746 1.8.2.2 skrll (((fsize / sizeof(uint64_t)) <<
1747 1.8.2.2 skrll RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1748 1.8.2.2 skrll ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1749 1.8.2.2 skrll RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1750 1.8.2.2 skrll ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1751 1.8.2.2 skrll RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1752 1.8.2.2 skrll
1753 1.8.2.2 skrll /* Configure flow-control parameters. From Linux. */
1754 1.8.2.2 skrll if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1755 1.8.2.2 skrll /*
1756 1.8.2.2 skrll * Magic workaround for old-L1.
1757 1.8.2.2 skrll * Don't know which hw revision requires this magic.
1758 1.8.2.2 skrll */
1759 1.8.2.2 skrll CSR_WRITE_4(sc, 0x12FC, 0x6500);
1760 1.8.2.2 skrll /*
1761 1.8.2.2 skrll * Another magic workaround for flow-control mode
1762 1.8.2.2 skrll * change. From Linux.
1763 1.8.2.2 skrll */
1764 1.8.2.2 skrll CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1765 1.8.2.2 skrll }
1766 1.8.2.2 skrll /*
1767 1.8.2.2 skrll * TODO
1768 1.8.2.2 skrll * Should understand pause parameter relationships between FIFO
1769 1.8.2.2 skrll * size and number of Rx descriptors and Rx return descriptors.
1770 1.8.2.2 skrll *
1771 1.8.2.2 skrll * Magic parameters came from Linux.
1772 1.8.2.2 skrll */
1773 1.8.2.2 skrll switch (sc->age_chip_rev) {
1774 1.8.2.2 skrll case 0x8001:
1775 1.8.2.2 skrll case 0x9001:
1776 1.8.2.2 skrll case 0x9002:
1777 1.8.2.2 skrll case 0x9003:
1778 1.8.2.2 skrll rxf_hi = AGE_RX_RING_CNT / 16;
1779 1.8.2.2 skrll rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1780 1.8.2.2 skrll rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1781 1.8.2.2 skrll rrd_lo = AGE_RR_RING_CNT / 16;
1782 1.8.2.2 skrll break;
1783 1.8.2.2 skrll default:
1784 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1785 1.8.2.2 skrll rxf_lo = reg / 16;
1786 1.8.2.2 skrll if (rxf_lo < 192)
1787 1.8.2.2 skrll rxf_lo = 192;
1788 1.8.2.2 skrll rxf_hi = (reg * 7) / 8;
1789 1.8.2.2 skrll if (rxf_hi < rxf_lo)
1790 1.8.2.2 skrll rxf_hi = rxf_lo + 16;
1791 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1792 1.8.2.2 skrll rrd_lo = reg / 8;
1793 1.8.2.2 skrll rrd_hi = (reg * 7) / 8;
1794 1.8.2.2 skrll if (rrd_lo < 2)
1795 1.8.2.2 skrll rrd_lo = 2;
1796 1.8.2.2 skrll if (rrd_hi < rrd_lo)
1797 1.8.2.2 skrll rrd_hi = rrd_lo + 3;
1798 1.8.2.2 skrll break;
1799 1.8.2.2 skrll }
1800 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1801 1.8.2.2 skrll ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1802 1.8.2.2 skrll RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1803 1.8.2.2 skrll ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1804 1.8.2.2 skrll RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1805 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1806 1.8.2.2 skrll ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1807 1.8.2.2 skrll RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1808 1.8.2.2 skrll ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1809 1.8.2.2 skrll RXQ_RRD_PAUSE_THRESH_HI_MASK));
1810 1.8.2.2 skrll
1811 1.8.2.2 skrll /* Configure RxQ. */
1812 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_CFG,
1813 1.8.2.2 skrll ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1814 1.8.2.2 skrll RXQ_CFG_RD_BURST_MASK) |
1815 1.8.2.2 skrll ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1816 1.8.2.2 skrll RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1817 1.8.2.2 skrll ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1818 1.8.2.2 skrll RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1819 1.8.2.2 skrll RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1820 1.8.2.2 skrll
1821 1.8.2.2 skrll /* Configure TxQ. */
1822 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_TXQ_CFG,
1823 1.8.2.2 skrll ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1824 1.8.2.2 skrll TXQ_CFG_TPD_BURST_MASK) |
1825 1.8.2.2 skrll ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1826 1.8.2.2 skrll TXQ_CFG_TX_FIFO_BURST_MASK) |
1827 1.8.2.2 skrll ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1828 1.8.2.2 skrll TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1829 1.8.2.2 skrll TXQ_CFG_ENB);
1830 1.8.2.2 skrll
1831 1.8.2.2 skrll /* Configure DMA parameters. */
1832 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG,
1833 1.8.2.2 skrll DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1834 1.8.2.2 skrll sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1835 1.8.2.2 skrll sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1836 1.8.2.2 skrll
1837 1.8.2.2 skrll /* Configure CMB DMA write threshold. */
1838 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1839 1.8.2.2 skrll ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1840 1.8.2.2 skrll CMB_WR_THRESH_RRD_MASK) |
1841 1.8.2.2 skrll ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1842 1.8.2.2 skrll CMB_WR_THRESH_TPD_MASK));
1843 1.8.2.2 skrll
1844 1.8.2.2 skrll /* Set CMB/SMB timer and enable them. */
1845 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1846 1.8.2.2 skrll ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1847 1.8.2.2 skrll ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1848 1.8.2.2 skrll
1849 1.8.2.2 skrll /* Request SMB updates for every seconds. */
1850 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1851 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1852 1.8.2.2 skrll
1853 1.8.2.2 skrll /*
1854 1.8.2.2 skrll * Disable all WOL bits as WOL can interfere normal Rx
1855 1.8.2.2 skrll * operation.
1856 1.8.2.2 skrll */
1857 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1858 1.8.2.2 skrll
1859 1.8.2.2 skrll /*
1860 1.8.2.2 skrll * Configure Tx/Rx MACs.
1861 1.8.2.2 skrll * - Auto-padding for short frames.
1862 1.8.2.2 skrll * - Enable CRC generation.
1863 1.8.2.2 skrll * Start with full-duplex/1000Mbps media. Actual reconfiguration
1864 1.8.2.2 skrll * of MAC is followed after link establishment.
1865 1.8.2.2 skrll */
1866 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG,
1867 1.8.2.2 skrll MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1868 1.8.2.2 skrll MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1869 1.8.2.2 skrll ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1870 1.8.2.2 skrll MAC_CFG_PREAMBLE_MASK));
1871 1.8.2.2 skrll
1872 1.8.2.2 skrll /* Set up the receive filter. */
1873 1.8.2.2 skrll age_rxfilter(sc);
1874 1.8.2.2 skrll age_rxvlan(sc);
1875 1.8.2.2 skrll
1876 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
1877 1.8.2.2 skrll reg |= MAC_CFG_RXCSUM_ENB;
1878 1.8.2.2 skrll
1879 1.8.2.2 skrll /* Ack all pending interrupts and clear it. */
1880 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1881 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1882 1.8.2.2 skrll
1883 1.8.2.2 skrll /* Finally enable Tx/Rx MAC. */
1884 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1885 1.8.2.2 skrll
1886 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
1887 1.8.2.2 skrll
1888 1.8.2.2 skrll /* Switch to the current media. */
1889 1.8.2.2 skrll mii = &sc->sc_miibus;
1890 1.8.2.2 skrll mii_mediachg(mii);
1891 1.8.2.2 skrll
1892 1.8.2.2 skrll callout_schedule(&sc->sc_tick_ch, hz);
1893 1.8.2.2 skrll
1894 1.8.2.2 skrll ifp->if_flags |= IFF_RUNNING;
1895 1.8.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
1896 1.8.2.2 skrll
1897 1.8.2.3 skrll return 0;
1898 1.8.2.2 skrll }
1899 1.8.2.2 skrll
1900 1.8.2.2 skrll static void
1901 1.8.2.3 skrll age_stop(struct ifnet *ifp, int disable)
1902 1.8.2.2 skrll {
1903 1.8.2.3 skrll struct age_softc *sc = ifp->if_softc;
1904 1.8.2.2 skrll struct age_txdesc *txd;
1905 1.8.2.2 skrll struct age_rxdesc *rxd;
1906 1.8.2.2 skrll uint32_t reg;
1907 1.8.2.2 skrll int i;
1908 1.8.2.2 skrll
1909 1.8.2.2 skrll callout_stop(&sc->sc_tick_ch);
1910 1.8.2.2 skrll
1911 1.8.2.2 skrll /*
1912 1.8.2.2 skrll * Mark the interface down and cancel the watchdog timer.
1913 1.8.2.2 skrll */
1914 1.8.2.2 skrll ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1915 1.8.2.2 skrll ifp->if_timer = 0;
1916 1.8.2.2 skrll
1917 1.8.2.2 skrll sc->age_flags &= ~AGE_FLAG_LINK;
1918 1.8.2.2 skrll
1919 1.8.2.3 skrll mii_down(&sc->sc_miibus);
1920 1.8.2.3 skrll
1921 1.8.2.2 skrll /*
1922 1.8.2.2 skrll * Disable interrupts.
1923 1.8.2.2 skrll */
1924 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1925 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1926 1.8.2.2 skrll
1927 1.8.2.2 skrll /* Stop CMB/SMB updates. */
1928 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1929 1.8.2.2 skrll
1930 1.8.2.2 skrll /* Stop Rx/Tx MAC. */
1931 1.8.2.2 skrll age_stop_rxmac(sc);
1932 1.8.2.2 skrll age_stop_txmac(sc);
1933 1.8.2.2 skrll
1934 1.8.2.2 skrll /* Stop DMA. */
1935 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG,
1936 1.8.2.2 skrll CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1937 1.8.2.2 skrll
1938 1.8.2.2 skrll /* Stop TxQ/RxQ. */
1939 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_TXQ_CFG,
1940 1.8.2.2 skrll CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1941 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_RXQ_CFG,
1942 1.8.2.2 skrll CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1943 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1944 1.8.2.2 skrll if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1945 1.8.2.2 skrll break;
1946 1.8.2.2 skrll DELAY(10);
1947 1.8.2.2 skrll }
1948 1.8.2.2 skrll if (i == 0)
1949 1.8.2.2 skrll printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1950 1.8.2.2 skrll device_xname(sc->sc_dev), reg);
1951 1.8.2.2 skrll
1952 1.8.2.2 skrll /* Reclaim Rx buffers that have been processed. */
1953 1.8.2.2 skrll if (sc->age_cdata.age_rxhead != NULL)
1954 1.8.2.2 skrll m_freem(sc->age_cdata.age_rxhead);
1955 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
1956 1.8.2.2 skrll
1957 1.8.2.2 skrll /*
1958 1.8.2.2 skrll * Free RX and TX mbufs still in the queues.
1959 1.8.2.2 skrll */
1960 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
1961 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
1962 1.8.2.2 skrll if (rxd->rx_m != NULL) {
1963 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1964 1.8.2.2 skrll m_freem(rxd->rx_m);
1965 1.8.2.2 skrll rxd->rx_m = NULL;
1966 1.8.2.2 skrll }
1967 1.8.2.2 skrll }
1968 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
1969 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
1970 1.8.2.2 skrll if (txd->tx_m != NULL) {
1971 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1972 1.8.2.2 skrll m_freem(txd->tx_m);
1973 1.8.2.2 skrll txd->tx_m = NULL;
1974 1.8.2.2 skrll }
1975 1.8.2.2 skrll }
1976 1.8.2.2 skrll }
1977 1.8.2.2 skrll
1978 1.8.2.2 skrll static void
1979 1.8.2.2 skrll age_stats_update(struct age_softc *sc)
1980 1.8.2.2 skrll {
1981 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
1982 1.8.2.2 skrll struct age_stats *stat;
1983 1.8.2.2 skrll struct smb *smb;
1984 1.8.2.2 skrll
1985 1.8.2.2 skrll stat = &sc->age_stat;
1986 1.8.2.2 skrll
1987 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1988 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1989 1.8.2.2 skrll
1990 1.8.2.2 skrll smb = sc->age_rdata.age_smb_block;
1991 1.8.2.2 skrll if (smb->updated == 0)
1992 1.8.2.2 skrll return;
1993 1.8.2.2 skrll
1994 1.8.2.2 skrll /* Rx stats. */
1995 1.8.2.2 skrll stat->rx_frames += smb->rx_frames;
1996 1.8.2.2 skrll stat->rx_bcast_frames += smb->rx_bcast_frames;
1997 1.8.2.2 skrll stat->rx_mcast_frames += smb->rx_mcast_frames;
1998 1.8.2.2 skrll stat->rx_pause_frames += smb->rx_pause_frames;
1999 1.8.2.2 skrll stat->rx_control_frames += smb->rx_control_frames;
2000 1.8.2.2 skrll stat->rx_crcerrs += smb->rx_crcerrs;
2001 1.8.2.2 skrll stat->rx_lenerrs += smb->rx_lenerrs;
2002 1.8.2.2 skrll stat->rx_bytes += smb->rx_bytes;
2003 1.8.2.2 skrll stat->rx_runts += smb->rx_runts;
2004 1.8.2.2 skrll stat->rx_fragments += smb->rx_fragments;
2005 1.8.2.2 skrll stat->rx_pkts_64 += smb->rx_pkts_64;
2006 1.8.2.2 skrll stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2007 1.8.2.2 skrll stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2008 1.8.2.2 skrll stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2009 1.8.2.2 skrll stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2010 1.8.2.2 skrll stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2011 1.8.2.2 skrll stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2012 1.8.2.2 skrll stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2013 1.8.2.2 skrll stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2014 1.8.2.2 skrll stat->rx_desc_oflows += smb->rx_desc_oflows;
2015 1.8.2.2 skrll stat->rx_alignerrs += smb->rx_alignerrs;
2016 1.8.2.2 skrll stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2017 1.8.2.2 skrll stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2018 1.8.2.2 skrll stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2019 1.8.2.2 skrll
2020 1.8.2.2 skrll /* Tx stats. */
2021 1.8.2.2 skrll stat->tx_frames += smb->tx_frames;
2022 1.8.2.2 skrll stat->tx_bcast_frames += smb->tx_bcast_frames;
2023 1.8.2.2 skrll stat->tx_mcast_frames += smb->tx_mcast_frames;
2024 1.8.2.2 skrll stat->tx_pause_frames += smb->tx_pause_frames;
2025 1.8.2.2 skrll stat->tx_excess_defer += smb->tx_excess_defer;
2026 1.8.2.2 skrll stat->tx_control_frames += smb->tx_control_frames;
2027 1.8.2.2 skrll stat->tx_deferred += smb->tx_deferred;
2028 1.8.2.2 skrll stat->tx_bytes += smb->tx_bytes;
2029 1.8.2.2 skrll stat->tx_pkts_64 += smb->tx_pkts_64;
2030 1.8.2.2 skrll stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2031 1.8.2.2 skrll stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2032 1.8.2.2 skrll stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2033 1.8.2.2 skrll stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2034 1.8.2.2 skrll stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2035 1.8.2.2 skrll stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2036 1.8.2.2 skrll stat->tx_single_colls += smb->tx_single_colls;
2037 1.8.2.2 skrll stat->tx_multi_colls += smb->tx_multi_colls;
2038 1.8.2.2 skrll stat->tx_late_colls += smb->tx_late_colls;
2039 1.8.2.2 skrll stat->tx_excess_colls += smb->tx_excess_colls;
2040 1.8.2.2 skrll stat->tx_underrun += smb->tx_underrun;
2041 1.8.2.2 skrll stat->tx_desc_underrun += smb->tx_desc_underrun;
2042 1.8.2.2 skrll stat->tx_lenerrs += smb->tx_lenerrs;
2043 1.8.2.2 skrll stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2044 1.8.2.2 skrll stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2045 1.8.2.2 skrll stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2046 1.8.2.2 skrll
2047 1.8.2.2 skrll /* Update counters in ifnet. */
2048 1.8.2.2 skrll ifp->if_opackets += smb->tx_frames;
2049 1.8.2.2 skrll
2050 1.8.2.2 skrll ifp->if_collisions += smb->tx_single_colls +
2051 1.8.2.2 skrll smb->tx_multi_colls + smb->tx_late_colls +
2052 1.8.2.2 skrll smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2053 1.8.2.2 skrll
2054 1.8.2.2 skrll ifp->if_oerrors += smb->tx_excess_colls +
2055 1.8.2.2 skrll smb->tx_late_colls + smb->tx_underrun +
2056 1.8.2.2 skrll smb->tx_pkts_truncated;
2057 1.8.2.2 skrll
2058 1.8.2.2 skrll ifp->if_ipackets += smb->rx_frames;
2059 1.8.2.2 skrll
2060 1.8.2.2 skrll ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2061 1.8.2.2 skrll smb->rx_runts + smb->rx_pkts_truncated +
2062 1.8.2.2 skrll smb->rx_fifo_oflows + smb->rx_desc_oflows +
2063 1.8.2.2 skrll smb->rx_alignerrs;
2064 1.8.2.2 skrll
2065 1.8.2.2 skrll /* Update done, clear. */
2066 1.8.2.2 skrll smb->updated = 0;
2067 1.8.2.2 skrll
2068 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2069 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2070 1.8.2.2 skrll }
2071 1.8.2.2 skrll
2072 1.8.2.2 skrll static void
2073 1.8.2.2 skrll age_stop_txmac(struct age_softc *sc)
2074 1.8.2.2 skrll {
2075 1.8.2.2 skrll uint32_t reg;
2076 1.8.2.2 skrll int i;
2077 1.8.2.2 skrll
2078 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2079 1.8.2.2 skrll if ((reg & MAC_CFG_TX_ENB) != 0) {
2080 1.8.2.2 skrll reg &= ~MAC_CFG_TX_ENB;
2081 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2082 1.8.2.2 skrll }
2083 1.8.2.2 skrll /* Stop Tx DMA engine. */
2084 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_DMA_CFG);
2085 1.8.2.2 skrll if ((reg & DMA_CFG_RD_ENB) != 0) {
2086 1.8.2.2 skrll reg &= ~DMA_CFG_RD_ENB;
2087 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2088 1.8.2.2 skrll }
2089 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2090 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2091 1.8.2.2 skrll (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2092 1.8.2.2 skrll break;
2093 1.8.2.2 skrll DELAY(10);
2094 1.8.2.2 skrll }
2095 1.8.2.2 skrll if (i == 0)
2096 1.8.2.2 skrll printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2097 1.8.2.2 skrll }
2098 1.8.2.2 skrll
2099 1.8.2.2 skrll static void
2100 1.8.2.2 skrll age_stop_rxmac(struct age_softc *sc)
2101 1.8.2.2 skrll {
2102 1.8.2.2 skrll uint32_t reg;
2103 1.8.2.2 skrll int i;
2104 1.8.2.2 skrll
2105 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2106 1.8.2.2 skrll if ((reg & MAC_CFG_RX_ENB) != 0) {
2107 1.8.2.2 skrll reg &= ~MAC_CFG_RX_ENB;
2108 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2109 1.8.2.2 skrll }
2110 1.8.2.2 skrll /* Stop Rx DMA engine. */
2111 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_DMA_CFG);
2112 1.8.2.2 skrll if ((reg & DMA_CFG_WR_ENB) != 0) {
2113 1.8.2.2 skrll reg &= ~DMA_CFG_WR_ENB;
2114 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2115 1.8.2.2 skrll }
2116 1.8.2.2 skrll for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2117 1.8.2.2 skrll if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2118 1.8.2.2 skrll (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2119 1.8.2.2 skrll break;
2120 1.8.2.2 skrll DELAY(10);
2121 1.8.2.2 skrll }
2122 1.8.2.2 skrll if (i == 0)
2123 1.8.2.2 skrll printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2124 1.8.2.2 skrll }
2125 1.8.2.2 skrll
2126 1.8.2.2 skrll static void
2127 1.8.2.2 skrll age_init_tx_ring(struct age_softc *sc)
2128 1.8.2.2 skrll {
2129 1.8.2.2 skrll struct age_ring_data *rd;
2130 1.8.2.2 skrll struct age_txdesc *txd;
2131 1.8.2.2 skrll int i;
2132 1.8.2.2 skrll
2133 1.8.2.2 skrll sc->age_cdata.age_tx_prod = 0;
2134 1.8.2.2 skrll sc->age_cdata.age_tx_cons = 0;
2135 1.8.2.2 skrll sc->age_cdata.age_tx_cnt = 0;
2136 1.8.2.2 skrll
2137 1.8.2.2 skrll rd = &sc->age_rdata;
2138 1.8.2.2 skrll memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2139 1.8.2.2 skrll for (i = 0; i < AGE_TX_RING_CNT; i++) {
2140 1.8.2.2 skrll txd = &sc->age_cdata.age_txdesc[i];
2141 1.8.2.2 skrll txd->tx_desc = &rd->age_tx_ring[i];
2142 1.8.2.2 skrll txd->tx_m = NULL;
2143 1.8.2.2 skrll }
2144 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2145 1.8.2.2 skrll sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2146 1.8.2.2 skrll }
2147 1.8.2.2 skrll
2148 1.8.2.2 skrll static int
2149 1.8.2.2 skrll age_init_rx_ring(struct age_softc *sc)
2150 1.8.2.2 skrll {
2151 1.8.2.2 skrll struct age_ring_data *rd;
2152 1.8.2.2 skrll struct age_rxdesc *rxd;
2153 1.8.2.2 skrll int i;
2154 1.8.2.2 skrll
2155 1.8.2.2 skrll sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2156 1.8.2.2 skrll rd = &sc->age_rdata;
2157 1.8.2.2 skrll memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2158 1.8.2.2 skrll for (i = 0; i < AGE_RX_RING_CNT; i++) {
2159 1.8.2.2 skrll rxd = &sc->age_cdata.age_rxdesc[i];
2160 1.8.2.2 skrll rxd->rx_m = NULL;
2161 1.8.2.2 skrll rxd->rx_desc = &rd->age_rx_ring[i];
2162 1.8.2.2 skrll if (age_newbuf(sc, rxd, 1) != 0)
2163 1.8.2.3 skrll return ENOBUFS;
2164 1.8.2.2 skrll }
2165 1.8.2.2 skrll
2166 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2167 1.8.2.2 skrll sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2168 1.8.2.2 skrll
2169 1.8.2.3 skrll return 0;
2170 1.8.2.2 skrll }
2171 1.8.2.2 skrll
2172 1.8.2.2 skrll static void
2173 1.8.2.2 skrll age_init_rr_ring(struct age_softc *sc)
2174 1.8.2.2 skrll {
2175 1.8.2.2 skrll struct age_ring_data *rd;
2176 1.8.2.2 skrll
2177 1.8.2.2 skrll sc->age_cdata.age_rr_cons = 0;
2178 1.8.2.2 skrll AGE_RXCHAIN_RESET(sc);
2179 1.8.2.2 skrll
2180 1.8.2.2 skrll rd = &sc->age_rdata;
2181 1.8.2.2 skrll memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2182 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2183 1.8.2.2 skrll sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2184 1.8.2.2 skrll }
2185 1.8.2.2 skrll
2186 1.8.2.2 skrll static void
2187 1.8.2.2 skrll age_init_cmb_block(struct age_softc *sc)
2188 1.8.2.2 skrll {
2189 1.8.2.2 skrll struct age_ring_data *rd;
2190 1.8.2.2 skrll
2191 1.8.2.2 skrll rd = &sc->age_rdata;
2192 1.8.2.2 skrll memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2193 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2194 1.8.2.2 skrll sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2195 1.8.2.2 skrll }
2196 1.8.2.2 skrll
2197 1.8.2.2 skrll static void
2198 1.8.2.2 skrll age_init_smb_block(struct age_softc *sc)
2199 1.8.2.2 skrll {
2200 1.8.2.2 skrll struct age_ring_data *rd;
2201 1.8.2.2 skrll
2202 1.8.2.2 skrll rd = &sc->age_rdata;
2203 1.8.2.2 skrll memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2204 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2205 1.8.2.2 skrll sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2206 1.8.2.2 skrll }
2207 1.8.2.2 skrll
2208 1.8.2.2 skrll static int
2209 1.8.2.2 skrll age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2210 1.8.2.2 skrll {
2211 1.8.2.2 skrll struct rx_desc *desc;
2212 1.8.2.2 skrll struct mbuf *m;
2213 1.8.2.2 skrll bus_dmamap_t map;
2214 1.8.2.2 skrll int error;
2215 1.8.2.2 skrll
2216 1.8.2.2 skrll MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2217 1.8.2.2 skrll if (m == NULL)
2218 1.8.2.3 skrll return ENOBUFS;
2219 1.8.2.2 skrll MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2220 1.8.2.2 skrll if (!(m->m_flags & M_EXT)) {
2221 1.8.2.2 skrll m_freem(m);
2222 1.8.2.3 skrll return ENOBUFS;
2223 1.8.2.2 skrll }
2224 1.8.2.2 skrll
2225 1.8.2.2 skrll m->m_len = m->m_pkthdr.len = MCLBYTES;
2226 1.8.2.3 skrll m_adj(m, ETHER_ALIGN);
2227 1.8.2.2 skrll
2228 1.8.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat,
2229 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2230 1.8.2.2 skrll
2231 1.8.2.2 skrll if (error != 0) {
2232 1.8.2.2 skrll if (!error) {
2233 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat,
2234 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap);
2235 1.8.2.2 skrll error = EFBIG;
2236 1.8.2.2 skrll printf("%s: too many segments?!\n",
2237 1.8.2.2 skrll device_xname(sc->sc_dev));
2238 1.8.2.2 skrll }
2239 1.8.2.2 skrll m_freem(m);
2240 1.8.2.2 skrll
2241 1.8.2.2 skrll if (init)
2242 1.8.2.2 skrll printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2243 1.8.2.3 skrll return error;
2244 1.8.2.2 skrll }
2245 1.8.2.2 skrll
2246 1.8.2.2 skrll if (rxd->rx_m != NULL) {
2247 1.8.2.2 skrll bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2248 1.8.2.2 skrll rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2249 1.8.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2250 1.8.2.2 skrll }
2251 1.8.2.2 skrll map = rxd->rx_dmamap;
2252 1.8.2.2 skrll rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2253 1.8.2.2 skrll sc->age_cdata.age_rx_sparemap = map;
2254 1.8.2.2 skrll rxd->rx_m = m;
2255 1.8.2.2 skrll
2256 1.8.2.2 skrll desc = rxd->rx_desc;
2257 1.8.2.2 skrll desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2258 1.8.2.2 skrll desc->len =
2259 1.8.2.2 skrll htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2260 1.8.2.2 skrll AGE_RD_LEN_SHIFT);
2261 1.8.2.2 skrll
2262 1.8.2.3 skrll return 0;
2263 1.8.2.2 skrll }
2264 1.8.2.2 skrll
2265 1.8.2.2 skrll static void
2266 1.8.2.2 skrll age_rxvlan(struct age_softc *sc)
2267 1.8.2.2 skrll {
2268 1.8.2.2 skrll uint32_t reg;
2269 1.8.2.2 skrll
2270 1.8.2.2 skrll reg = CSR_READ_4(sc, AGE_MAC_CFG);
2271 1.8.2.2 skrll reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2272 1.8.2.2 skrll if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2273 1.8.2.2 skrll reg |= MAC_CFG_VLAN_TAG_STRIP;
2274 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2275 1.8.2.2 skrll }
2276 1.8.2.2 skrll
2277 1.8.2.2 skrll static void
2278 1.8.2.2 skrll age_rxfilter(struct age_softc *sc)
2279 1.8.2.2 skrll {
2280 1.8.2.2 skrll struct ethercom *ec = &sc->sc_ec;
2281 1.8.2.2 skrll struct ifnet *ifp = &sc->sc_ec.ec_if;
2282 1.8.2.2 skrll struct ether_multi *enm;
2283 1.8.2.2 skrll struct ether_multistep step;
2284 1.8.2.2 skrll uint32_t crc;
2285 1.8.2.2 skrll uint32_t mchash[2];
2286 1.8.2.2 skrll uint32_t rxcfg;
2287 1.8.2.2 skrll
2288 1.8.2.2 skrll rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2289 1.8.2.2 skrll rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2290 1.8.2.2 skrll
2291 1.8.2.2 skrll if (ifp->if_flags & IFF_BROADCAST)
2292 1.8.2.2 skrll rxcfg |= MAC_CFG_BCAST;
2293 1.8.2.2 skrll if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2294 1.8.2.2 skrll if (ifp->if_flags & IFF_PROMISC)
2295 1.8.2.2 skrll rxcfg |= MAC_CFG_PROMISC;
2296 1.8.2.2 skrll if (ifp->if_flags & IFF_ALLMULTI)
2297 1.8.2.2 skrll rxcfg |= MAC_CFG_ALLMULTI;
2298 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2299 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2300 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2301 1.8.2.2 skrll return;
2302 1.8.2.2 skrll }
2303 1.8.2.2 skrll
2304 1.8.2.2 skrll /* Program new filter. */
2305 1.8.2.2 skrll memset(mchash, 0, sizeof(mchash));
2306 1.8.2.2 skrll
2307 1.8.2.2 skrll ETHER_FIRST_MULTI(step, ec, enm);
2308 1.8.2.2 skrll while (enm != NULL) {
2309 1.8.2.2 skrll crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2310 1.8.2.2 skrll enm->enm_addrlo), ETHER_ADDR_LEN);
2311 1.8.2.2 skrll
2312 1.8.2.2 skrll mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2313 1.8.2.2 skrll ETHER_NEXT_MULTI(step, enm);
2314 1.8.2.2 skrll }
2315 1.8.2.2 skrll
2316 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2317 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2318 1.8.2.2 skrll CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2319 1.8.2.2 skrll }
2320