Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.15
      1 /*	$NetBSD: if_age.c,v 1.15 2009/01/30 08:46:25 cegger Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.15 2009/01/30 08:46:25 cegger Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101 static int	age_dma_alloc(struct age_softc *);
    102 static void	age_dma_free(struct age_softc *);
    103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104 static void	age_phy_reset(struct age_softc *);
    105 
    106 static int	age_encap(struct age_softc *, struct mbuf **);
    107 static void	age_init_tx_ring(struct age_softc *);
    108 static int	age_init_rx_ring(struct age_softc *);
    109 static void	age_init_rr_ring(struct age_softc *);
    110 static void	age_init_cmb_block(struct age_softc *);
    111 static void	age_init_smb_block(struct age_softc *);
    112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113 static void	age_mac_config(struct age_softc *);
    114 static void	age_txintr(struct age_softc *, int);
    115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116 static void	age_rxintr(struct age_softc *, int);
    117 static void	age_tick(void *);
    118 static void	age_reset(struct age_softc *);
    119 static void	age_stop(struct age_softc *);
    120 static void	age_stats_update(struct age_softc *);
    121 static void	age_stop_txmac(struct age_softc *);
    122 static void	age_stop_rxmac(struct age_softc *);
    123 static void	age_rxvlan(struct age_softc *sc);
    124 static void	age_rxfilter(struct age_softc *);
    125 
    126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127     age_match, age_attach, age_detach, NULL);
    128 
    129 int agedebug = 0;
    130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131 
    132 #define ETHER_ALIGN 2
    133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134 
    135 static int
    136 age_match(device_t dev, cfdata_t match, void *aux)
    137 {
    138 	struct pci_attach_args *pa = aux;
    139 
    140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142 }
    143 
    144 static void
    145 age_attach(device_t parent, device_t self, void *aux)
    146 {
    147 	struct age_softc *sc = device_private(self);
    148 	struct pci_attach_args *pa = aux;
    149 	pci_intr_handle_t ih;
    150 	const char *intrstr;
    151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152 	pcireg_t memtype;
    153 	int error = 0;
    154 
    155 	aprint_naive("\n");
    156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157 
    158 	sc->sc_dev = self;
    159 	sc->sc_dmat = pa->pa_dmat;
    160 	sc->sc_pct = pa->pa_pc;
    161 	sc->sc_pcitag = pa->pa_tag;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172         default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		return;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc);
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		return;
    200 	}
    201 	aprint_normal_dev(self, "%s\n", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_watchdog = age_watchdog;
    250 	ifp->if_baudrate = IF_Gbps(1);
    251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    252 	IFQ_SET_READY(&ifp->if_snd);
    253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    254 
    255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    256 
    257 #ifdef AGE_CHECKSUM
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    259 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    260 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    261 #endif
    262 
    263 #if NVLAN > 0
    264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    265 #endif
    266 
    267 	/* Set up MII bus. */
    268 	sc->sc_miibus.mii_ifp = ifp;
    269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    272 
    273 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    274 	    age_mediastatus);
    275 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    276 	   MII_OFFSET_ANY, 0);
    277 
    278 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    279 		aprint_error_dev(self, "no PHY found!\n");
    280 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    281 		    0, NULL);
    282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    283 	} else
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    285 
    286 	if_attach(ifp);
    287 	ether_ifattach(ifp, sc->sc_enaddr);
    288 
    289 	if (!pmf_device_register(self, NULL, age_resume))
    290 		aprint_error_dev(self, "couldn't establish power handler\n");
    291 	else
    292 		pmf_class_network_register(self, ifp);
    293 
    294 	return;
    295 
    296 fail:
    297 	if (sc->sc_irq_handle != NULL) {
    298 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    299 		sc->sc_irq_handle = NULL;
    300 	}
    301 }
    302 
    303 static int
    304 age_detach(device_t self, int flags)
    305 {
    306 	struct age_softc *sc = device_private(self);
    307 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    308 	int s;
    309 
    310 	s = splnet();
    311 	age_stop(sc);
    312 	splx(s);
    313 
    314 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    315 
    316 	/* Delete all remaining media. */
    317 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    318 
    319 	ether_ifdetach(ifp);
    320 	if_detach(ifp);
    321 	age_dma_free(sc);
    322 
    323 	if (sc->sc_irq_handle != NULL) {
    324 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    325 		sc->sc_irq_handle = NULL;
    326 	}
    327 
    328 	return 0;
    329 }
    330 
    331 /*
    332  *	Read a PHY register on the MII of the L1.
    333  */
    334 static int
    335 age_miibus_readreg(device_t dev, int phy, int reg)
    336 {
    337 	struct age_softc *sc = device_private(dev);
    338 	uint32_t v;
    339 	int i;
    340 
    341 	if (phy != sc->age_phyaddr)
    342 		return 0;
    343 
    344 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    345 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    346 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    347 		DELAY(1);
    348 		v = CSR_READ_4(sc, AGE_MDIO);
    349 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    350 			break;
    351 	}
    352 
    353 	if (i == 0) {
    354 		printf("%s: phy read timeout: phy %d, reg %d\n",
    355 			device_xname(sc->sc_dev), phy, reg);
    356 		return 0;
    357 	}
    358 
    359 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    360 }
    361 
    362 /*
    363  * 	Write a PHY register on the MII of the L1.
    364  */
    365 static void
    366 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    367 {
    368 	struct age_softc *sc = device_private(dev);
    369 	uint32_t v;
    370 	int i;
    371 
    372 	if (phy != sc->age_phyaddr)
    373 		return;
    374 
    375 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    376 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    377 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    378 
    379 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    380 		DELAY(1);
    381 		v = CSR_READ_4(sc, AGE_MDIO);
    382 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    383 			break;
    384 	}
    385 
    386 	if (i == 0) {
    387 		printf("%s: phy write timeout: phy %d, reg %d\n",
    388 		    device_xname(sc->sc_dev), phy, reg);
    389 	}
    390 }
    391 
    392 /*
    393  *	Callback from MII layer when media changes.
    394  */
    395 static void
    396 age_miibus_statchg(device_t dev)
    397 {
    398 	struct age_softc *sc = device_private(dev);
    399 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    400 	struct mii_data *mii;
    401 
    402 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    403 		return;
    404 
    405 	mii = &sc->sc_miibus;
    406 
    407 	sc->age_flags &= ~AGE_FLAG_LINK;
    408 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    409 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    410 		case IFM_10_T:
    411 		case IFM_100_TX:
    412 		case IFM_1000_T:
    413 			sc->age_flags |= AGE_FLAG_LINK;
    414 			break;
    415 		default:
    416 			break;
    417 		}
    418 	}
    419 
    420 	/* Stop Rx/Tx MACs. */
    421 	age_stop_rxmac(sc);
    422 	age_stop_txmac(sc);
    423 
    424 	/* Program MACs with resolved speed/duplex/flow-control. */
    425 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    426 		uint32_t reg;
    427 
    428 		age_mac_config(sc);
    429 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    430 		/* Restart DMA engine and Tx/Rx MAC. */
    431 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    432 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    433 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    434 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    435 	}
    436 }
    437 
    438 /*
    439  *	Get the current interface media status.
    440  */
    441 static void
    442 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    443 {
    444 	struct age_softc *sc = ifp->if_softc;
    445 	struct mii_data *mii = &sc->sc_miibus;
    446 
    447 	mii_pollstat(mii);
    448 	ifmr->ifm_status = mii->mii_media_status;
    449 	ifmr->ifm_active = mii->mii_media_active;
    450 }
    451 
    452 /*
    453  *	Set hardware to newly-selected media.
    454  */
    455 static int
    456 age_mediachange(struct ifnet *ifp)
    457 {
    458 	struct age_softc *sc = ifp->if_softc;
    459 	struct mii_data *mii = &sc->sc_miibus;
    460 	int error;
    461 
    462 	if (mii->mii_instance != 0) {
    463 		struct mii_softc *miisc;
    464 
    465 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    466 			mii_phy_reset(miisc);
    467 	}
    468 	error = mii_mediachg(mii);
    469 
    470 	return error;
    471 }
    472 
    473 static int
    474 age_intr(void *arg)
    475 {
    476         struct age_softc *sc = arg;
    477         struct ifnet *ifp = &sc->sc_ec.ec_if;
    478 	struct cmb *cmb;
    479         uint32_t status;
    480 
    481 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    482 	if (status == 0 || (status & AGE_INTRS) == 0)
    483 		return 0;
    484 
    485 	cmb = sc->age_rdata.age_cmb_block;
    486 	if (cmb == NULL)
    487 		return 0;
    488 
    489 	/* Disable interrupts. */
    490 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    491 
    492 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    493 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    494 	status = le32toh(cmb->intr_status);
    495 	if ((status & AGE_INTRS) == 0)
    496 		goto back;
    497 
    498 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    499 	    TPD_CONS_SHIFT;
    500 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    501 	    RRD_PROD_SHIFT;
    502 
    503 	/* Let hardware know CMB was served. */
    504 	cmb->intr_status = 0;
    505 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    506 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    507 	    BUS_DMASYNC_PREWRITE);
    508 
    509 	if (ifp->if_flags & IFF_RUNNING) {
    510 		if (status & INTR_CMB_RX)
    511 			age_rxintr(sc, sc->age_rr_prod);
    512 
    513 		if (status & INTR_CMB_TX)
    514 			age_txintr(sc, sc->age_tpd_cons);
    515 
    516 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    517 			if (status & INTR_DMA_RD_TO_RST)
    518 				printf("%s: DMA read error! -- resetting\n",
    519 				    device_xname(sc->sc_dev));
    520 			if (status & INTR_DMA_WR_TO_RST)
    521 				printf("%s: DMA write error! -- resetting\n",
    522 				    device_xname(sc->sc_dev));
    523 			age_init(ifp);
    524 		}
    525 
    526 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    527 			age_start(ifp);
    528 
    529 		if (status & INTR_SMB)
    530 			age_stats_update(sc);
    531 	}
    532 
    533 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    534 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    535 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    536 	    BUS_DMASYNC_POSTREAD);
    537 
    538 back:
    539 	/* Re-enable interrupts. */
    540 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    541 
    542 	return 1;
    543 }
    544 
    545 static int
    546 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    547     uint32_t *word)
    548 {
    549 	int i;
    550 	pcireg_t rv;
    551 
    552 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    553 	    offset << PCI_VPD_ADDRESS_SHIFT);
    554 	for (i = AGE_TIMEOUT; i > 0; i--) {
    555 		DELAY(10);
    556 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    557 		    PCI_VPD_ADDRESS(vpdc));
    558 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    559 			break;
    560 	}
    561 	if (i == 0) {
    562 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    563 		*word = 0;
    564 		return ETIMEDOUT;
    565 	}
    566 
    567 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    568 	return 0;
    569 }
    570 
    571 static void
    572 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    573 {
    574 	uint32_t ea[2], off, reg, word;
    575 	int vpd_error, match, vpdc;
    576 
    577 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    578 	if ((reg & SPI_VPD_ENB) != 0) {
    579 		/* Get VPD stored in TWSI EEPROM. */
    580 		reg &= ~SPI_VPD_ENB;
    581 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    582 	}
    583 
    584 	vpd_error = 0;
    585 	ea[0] = ea[1] = 0;
    586 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    587 	    PCI_CAP_VPD, &vpdc, NULL))) {
    588 		/*
    589 		 * PCI VPD capability exists, but it seems that it's
    590 		 * not in the standard form as stated in PCI VPD
    591 		 * specification such that driver could not use
    592 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    593 		 * Search VPD data starting at address 0x0100. The data
    594 		 * should be used as initializers to set AGE_PAR0,
    595 		 * AGE_PAR1 register including other PCI configuration
    596 		 * registers.
    597 		 */
    598 		word = 0;
    599 		match = 0;
    600 		reg = 0;
    601 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    602 		    off += sizeof(uint32_t)) {
    603 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    604 			if (vpd_error != 0)
    605 				break;
    606 			if (match != 0) {
    607 				switch (reg) {
    608 				case AGE_PAR0:
    609 					ea[0] = word;
    610 					break;
    611 				case AGE_PAR1:
    612 					ea[1] = word;
    613 					break;
    614 				default:
    615 					break;
    616 				}
    617 				match = 0;
    618 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    619 				match = 1;
    620 				reg = word >> 16;
    621 			} else
    622 				break;
    623 		}
    624 		if (off >= AGE_VPD_REG_CONF_END)
    625 			vpd_error = ENOENT;
    626 		if (vpd_error == 0) {
    627 			/*
    628 			 * Don't blindly trust ethernet address obtained
    629 			 * from VPD. Check whether ethernet address is
    630 			 * valid one. Otherwise fall-back to reading
    631 			 * PAR register.
    632 			 */
    633 			ea[1] &= 0xFFFF;
    634 			if ((ea[0] == 0 && ea[1] == 0) ||
    635 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    636 				if (agedebug)
    637 					printf("%s: invalid ethernet address "
    638 				    	    "returned from VPD.\n",
    639 				    	    device_xname(sc->sc_dev));
    640 				vpd_error = EINVAL;
    641 			}
    642 		}
    643 		if (vpd_error != 0 && (agedebug))
    644 			printf("%s: VPD access failure!\n",
    645 			    device_xname(sc->sc_dev));
    646 	} else {
    647 		if (agedebug)
    648 			printf("%s: PCI VPD capability not found!\n",
    649 			    device_xname(sc->sc_dev));
    650 	}
    651 
    652 	/*
    653 	 * It seems that L1 also provides a way to extract ethernet
    654 	 * address via SPI flash interface. Because SPI flash memory
    655 	 * device of different vendors vary in their instruction
    656 	 * codes for read ID instruction, it's very hard to get
    657 	 * instructions codes without detailed information for the
    658 	 * flash memory device used on ethernet controller. To simplify
    659 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    660 	 * address which is supposed to be set by hardware during
    661 	 * power on reset.
    662 	 */
    663 	if (vpd_error != 0) {
    664 		/*
    665 		 * VPD is mapped to SPI flash memory or BIOS set it.
    666 		 */
    667 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    668 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    669 	}
    670 
    671 	ea[1] &= 0xFFFF;
    672 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    673 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    674 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    675 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    676 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    677 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    678 }
    679 
    680 static void
    681 age_phy_reset(struct age_softc *sc)
    682 {
    683 	/* Reset PHY. */
    684 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    685 	DELAY(1000);
    686 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    687 	DELAY(1000);
    688 }
    689 
    690 static int
    691 age_dma_alloc(struct age_softc *sc)
    692 {
    693 	struct age_txdesc *txd;
    694 	struct age_rxdesc *rxd;
    695 	int nsegs, error, i;
    696 
    697 	/*
    698 	 * Create DMA stuffs for TX ring
    699 	 */
    700 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    701 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    702 	if (error)
    703 		return ENOBUFS;
    704 
    705 	/* Allocate DMA'able memory for TX ring */
    706 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    707 	    PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    708 	    &nsegs, BUS_DMA_WAITOK);
    709 	if (error) {
    710 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    711 		    device_xname(sc->sc_dev));
    712 		return error;
    713 	}
    714 
    715 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    716 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    717 	    BUS_DMA_NOWAIT);
    718 	if (error)
    719 		return ENOBUFS;
    720 
    721 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    722 
    723 	/*  Load the DMA map for Tx ring. */
    724 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    725 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    726 	if (error) {
    727 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    728 		    device_xname(sc->sc_dev));
    729 		bus_dmamem_free(sc->sc_dmat,
    730 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
    731 		return error;
    732 	}
    733 
    734 	sc->age_rdata.age_tx_ring_paddr =
    735 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    736 
    737 	/*
    738 	 * Create DMA stuffs for RX ring
    739 	 */
    740 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    741 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    742 	if (error)
    743 		return ENOBUFS;
    744 
    745 	/* Allocate DMA'able memory for RX ring */
    746 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    747 	    PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    748 	    &nsegs, BUS_DMA_WAITOK);
    749 	if (error) {
    750 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
    751 		    device_xname(sc->sc_dev));
    752 		return error;
    753 	}
    754 
    755 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    756 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    757 	    BUS_DMA_NOWAIT);
    758 	if (error)
    759 		return ENOBUFS;
    760 
    761 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    762 
    763 	/* Load the DMA map for Rx ring. */
    764 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    765 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    766 	if (error) {
    767 		printf("%s: could not load DMA'able memory for Rx ring.\n",
    768 		    device_xname(sc->sc_dev));
    769 		bus_dmamem_free(sc->sc_dmat,
    770 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    771 		return error;
    772 	}
    773 
    774 	sc->age_rdata.age_rx_ring_paddr =
    775 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    776 
    777 	/*
    778 	 * Create DMA stuffs for RX return ring
    779 	 */
    780 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    781 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    782 	if (error)
    783 		return ENOBUFS;
    784 
    785 	/* Allocate DMA'able memory for RX return ring */
    786 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    787 	    PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    788 	    &nsegs, BUS_DMA_WAITOK);
    789 	if (error) {
    790 		printf("%s: could not allocate DMA'able memory for Rx "
    791 		    "return ring.\n", device_xname(sc->sc_dev));
    792 		return error;
    793 	}
    794 
    795 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    796 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    797 	    BUS_DMA_NOWAIT);
    798 	if (error)
    799 		return ENOBUFS;
    800 
    801 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    802 
    803 	/*  Load the DMA map for Rx return ring. */
    804 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    805 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    806 	if (error) {
    807 		printf("%s: could not load DMA'able memory for Rx return ring."
    808 		    "\n", device_xname(sc->sc_dev));
    809 		bus_dmamem_free(sc->sc_dmat,
    810 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
    811 		return error;
    812 	}
    813 
    814 	sc->age_rdata.age_rr_ring_paddr =
    815 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    816 
    817 	/*
    818 	 * Create DMA stuffs for CMB block
    819 	 */
    820 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    821 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    822 	    &sc->age_cdata.age_cmb_block_map);
    823 	if (error)
    824 		return ENOBUFS;
    825 
    826 	/* Allocate DMA'able memory for CMB block */
    827 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    828 	    PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    829 	    &nsegs, BUS_DMA_WAITOK);
    830 	if (error) {
    831 		printf("%s: could not allocate DMA'able memory for "
    832 		    "CMB block\n", device_xname(sc->sc_dev));
    833 		return error;
    834 	}
    835 
    836 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    837 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    838 	    BUS_DMA_NOWAIT);
    839 	if (error)
    840 		return ENOBUFS;
    841 
    842 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    843 
    844 	/*  Load the DMA map for CMB block. */
    845 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    846 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    847 	    BUS_DMA_WAITOK);
    848 	if (error) {
    849 		printf("%s: could not load DMA'able memory for CMB block\n",
    850 		    device_xname(sc->sc_dev));
    851 		bus_dmamem_free(sc->sc_dmat,
    852 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
    853 		return error;
    854 	}
    855 
    856 	sc->age_rdata.age_cmb_block_paddr =
    857 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    858 
    859 	/*
    860 	 * Create DMA stuffs for SMB block
    861 	 */
    862 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    863 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    864 	    &sc->age_cdata.age_smb_block_map);
    865 	if (error)
    866 		return ENOBUFS;
    867 
    868 	/* Allocate DMA'able memory for SMB block */
    869 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    870 	    PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
    871 	    &nsegs, BUS_DMA_WAITOK);
    872 	if (error) {
    873 		printf("%s: could not allocate DMA'able memory for "
    874 		    "SMB block\n", device_xname(sc->sc_dev));
    875 		return error;
    876 	}
    877 
    878 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    879 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    880 	    BUS_DMA_NOWAIT);
    881 	if (error)
    882 		return ENOBUFS;
    883 
    884 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    885 
    886 	/*  Load the DMA map for SMB block */
    887 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    888 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    889 	    BUS_DMA_WAITOK);
    890 	if (error) {
    891 		printf("%s: could not load DMA'able memory for SMB block\n",
    892 		    device_xname(sc->sc_dev));
    893 		bus_dmamem_free(sc->sc_dmat,
    894 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
    895 		return error;
    896 	}
    897 
    898 	sc->age_rdata.age_smb_block_paddr =
    899 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    900 
    901 	/* Create DMA maps for Tx buffers. */
    902 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    903 		txd = &sc->age_cdata.age_txdesc[i];
    904 		txd->tx_m = NULL;
    905 		txd->tx_dmamap = NULL;
    906 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    907 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    908 		    &txd->tx_dmamap);
    909 		if (error) {
    910 			printf("%s: could not create Tx dmamap.\n",
    911 			    device_xname(sc->sc_dev));
    912 			return error;
    913 		}
    914 	}
    915 
    916 	/* Create DMA maps for Rx buffers. */
    917 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    918 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    919 	if (error) {
    920 		printf("%s: could not create spare Rx dmamap.\n",
    921 		    device_xname(sc->sc_dev));
    922 		return error;
    923 	}
    924 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    925 		rxd = &sc->age_cdata.age_rxdesc[i];
    926 		rxd->rx_m = NULL;
    927 		rxd->rx_dmamap = NULL;
    928 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    929 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    930 		if (error) {
    931 			printf("%s: could not create Rx dmamap.\n",
    932 			    device_xname(sc->sc_dev));
    933 			return error;
    934 		}
    935 	}
    936 
    937 	return 0;
    938 }
    939 
    940 static void
    941 age_dma_free(struct age_softc *sc)
    942 {
    943 	struct age_txdesc *txd;
    944 	struct age_rxdesc *rxd;
    945 	int i;
    946 
    947 	/* Tx buffers */
    948 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    949 		txd = &sc->age_cdata.age_txdesc[i];
    950 		if (txd->tx_dmamap != NULL) {
    951 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    952 			txd->tx_dmamap = NULL;
    953 		}
    954 	}
    955 	/* Rx buffers */
    956 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    957 		rxd = &sc->age_cdata.age_rxdesc[i];
    958 		if (rxd->rx_dmamap != NULL) {
    959 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    960 			rxd->rx_dmamap = NULL;
    961 		}
    962 	}
    963 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    964 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    965 		sc->age_cdata.age_rx_sparemap = NULL;
    966 	}
    967 
    968 	/* Tx ring. */
    969 	if (sc->age_cdata.age_tx_ring_map != NULL)
    970 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    971 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    972 	    sc->age_rdata.age_tx_ring != NULL)
    973 		bus_dmamem_free(sc->sc_dmat,
    974 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
    975 	sc->age_rdata.age_tx_ring = NULL;
    976 	sc->age_cdata.age_tx_ring_map = NULL;
    977 
    978 	/* Rx ring. */
    979 	if (sc->age_cdata.age_rx_ring_map != NULL)
    980 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    981 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    982 	    sc->age_rdata.age_rx_ring != NULL)
    983 		bus_dmamem_free(sc->sc_dmat,
    984 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    985 	sc->age_rdata.age_rx_ring = NULL;
    986 	sc->age_cdata.age_rx_ring_map = NULL;
    987 
    988 	/* Rx return ring. */
    989 	if (sc->age_cdata.age_rr_ring_map != NULL)
    990 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    991 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    992 	    sc->age_rdata.age_rr_ring != NULL)
    993 		bus_dmamem_free(sc->sc_dmat,
    994 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
    995 	sc->age_rdata.age_rr_ring = NULL;
    996 	sc->age_cdata.age_rr_ring_map = NULL;
    997 
    998 	/* CMB block */
    999 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1000 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1001 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1002 	    sc->age_rdata.age_cmb_block != NULL)
   1003 		bus_dmamem_free(sc->sc_dmat,
   1004 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
   1005 	sc->age_rdata.age_cmb_block = NULL;
   1006 	sc->age_cdata.age_cmb_block_map = NULL;
   1007 
   1008 	/* SMB block */
   1009 	if (sc->age_cdata.age_smb_block_map != NULL)
   1010 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1011 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1012 	    sc->age_rdata.age_smb_block != NULL)
   1013 		bus_dmamem_free(sc->sc_dmat,
   1014 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
   1015 }
   1016 
   1017 static void
   1018 age_start(struct ifnet *ifp)
   1019 {
   1020         struct age_softc *sc = ifp->if_softc;
   1021         struct mbuf *m_head;
   1022 	int enq;
   1023 
   1024 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1025 		return;
   1026 
   1027 	enq = 0;
   1028 	for (;;) {
   1029 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1030 		if (m_head == NULL)
   1031 			break;
   1032 
   1033 		/*
   1034 		 * Pack the data into the transmit ring. If we
   1035 		 * don't have room, set the OACTIVE flag and wait
   1036 		 * for the NIC to drain the ring.
   1037 		 */
   1038 		if (age_encap(sc, &m_head)) {
   1039 			if (m_head == NULL)
   1040 				break;
   1041 			ifp->if_flags |= IFF_OACTIVE;
   1042 			break;
   1043 		}
   1044 		enq = 1;
   1045 
   1046 #if NBPFILTER > 0
   1047 		/*
   1048 		 * If there's a BPF listener, bounce a copy of this frame
   1049 		 * to him.
   1050 		 */
   1051 		if (ifp->if_bpf != NULL)
   1052 			bpf_mtap(ifp->if_bpf, m_head);
   1053 #endif
   1054 	}
   1055 
   1056 	if (enq) {
   1057 		/* Update mbox. */
   1058 		AGE_COMMIT_MBOX(sc);
   1059 		/* Set a timeout in case the chip goes out to lunch. */
   1060 		ifp->if_timer = AGE_TX_TIMEOUT;
   1061 	}
   1062 }
   1063 
   1064 static void
   1065 age_watchdog(struct ifnet *ifp)
   1066 {
   1067 	struct age_softc *sc = ifp->if_softc;
   1068 
   1069 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1070 		printf("%s: watchdog timeout (missed link)\n",
   1071 		    device_xname(sc->sc_dev));
   1072 		ifp->if_oerrors++;
   1073 		age_init(ifp);
   1074 		return;
   1075 	}
   1076 
   1077 	if (sc->age_cdata.age_tx_cnt == 0) {
   1078 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1079 		    "-- recovering\n", device_xname(sc->sc_dev));
   1080 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1081 			age_start(ifp);
   1082 		return;
   1083 	}
   1084 
   1085 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1086 	ifp->if_oerrors++;
   1087 	age_init(ifp);
   1088 
   1089 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1090 		age_start(ifp);
   1091 }
   1092 
   1093 static int
   1094 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1095 {
   1096 	struct age_softc *sc = ifp->if_softc;
   1097 	struct mii_data *mii = &sc->sc_miibus;
   1098 	struct ifreq *ifr = (struct ifreq *)data;
   1099 	int s, error = 0;
   1100 
   1101 	s = splnet();
   1102 
   1103 	switch (cmd) {
   1104 	case SIOCSIFMEDIA:
   1105 	case SIOCGIFMEDIA:
   1106 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
   1107 		break;
   1108 	default:
   1109 		error = ether_ioctl(ifp, cmd, data);
   1110 		if (error == ENETRESET) {
   1111 			if (ifp->if_flags & IFF_RUNNING)
   1112 				age_rxfilter(sc);
   1113 			error = 0;
   1114 		}
   1115 		break;
   1116 	}
   1117 
   1118 	splx(s);
   1119 	return error;
   1120 }
   1121 
   1122 static void
   1123 age_mac_config(struct age_softc *sc)
   1124 {
   1125 	struct mii_data *mii;
   1126 	uint32_t reg;
   1127 
   1128 	mii = &sc->sc_miibus;
   1129 
   1130 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1131 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1132 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1133 	reg &= ~MAC_CFG_SPEED_MASK;
   1134 
   1135 	/* Reprogram MAC with resolved speed/duplex. */
   1136 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1137 	case IFM_10_T:
   1138 	case IFM_100_TX:
   1139 		reg |= MAC_CFG_SPEED_10_100;
   1140 		break;
   1141 	case IFM_1000_T:
   1142 		reg |= MAC_CFG_SPEED_1000;
   1143 		break;
   1144 	}
   1145 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1146 		reg |= MAC_CFG_FULL_DUPLEX;
   1147 #ifdef notyet
   1148 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1149 			reg |= MAC_CFG_TX_FC;
   1150 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1151 			reg |= MAC_CFG_RX_FC;
   1152 #endif
   1153 	}
   1154 
   1155 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1156 }
   1157 
   1158 static bool
   1159 age_resume(device_t dv PMF_FN_ARGS)
   1160 {
   1161 	struct age_softc *sc = device_private(dv);
   1162 	uint16_t cmd;
   1163 
   1164 	/*
   1165 	 * Clear INTx emulation disable for hardware that
   1166 	 * is set in resume event. From Linux.
   1167 	 */
   1168 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1169 	if ((cmd & 0x0400) != 0) {
   1170 		cmd &= ~0x0400;
   1171 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1172 		    PCI_COMMAND_STATUS_REG, cmd);
   1173 	}
   1174 
   1175 	return true;
   1176 }
   1177 
   1178 static int
   1179 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1180 {
   1181 	struct age_txdesc *txd, *txd_last;
   1182 	struct tx_desc *desc;
   1183 	struct mbuf *m;
   1184 	bus_dmamap_t map;
   1185 	uint32_t cflags, poff, vtag;
   1186 	int error, i, nsegs, prod;
   1187 	struct m_tag *mtag;
   1188 
   1189 	m = *m_head;
   1190 	cflags = vtag = 0;
   1191 	poff = 0;
   1192 
   1193 	prod = sc->age_cdata.age_tx_prod;
   1194 	txd = &sc->age_cdata.age_txdesc[prod];
   1195 	txd_last = txd;
   1196 	map = txd->tx_dmamap;
   1197 
   1198 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1199 
   1200 	if (error != 0) {
   1201 		bus_dmamap_unload(sc->sc_dmat, map);
   1202 		error = EFBIG;
   1203 	}
   1204 	if (error == EFBIG) {
   1205 		error = 0;
   1206 
   1207 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1208 		if (m == NULL) {
   1209 			printf("%s: can't defrag TX mbuf\n",
   1210 			    device_xname(sc->sc_dev));
   1211 			m_freem(*m_head);
   1212 			*m_head = NULL;
   1213 			return ENOBUFS;
   1214 		}
   1215 
   1216 		M_COPY_PKTHDR(m, *m_head);
   1217 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1218 			MCLGET(m, M_DONTWAIT);
   1219 			if (!(m->m_flags & M_EXT)) {
   1220 				m_freem(*m_head);
   1221 				m_freem(m);
   1222 				*m_head = NULL;
   1223 				return ENOBUFS;
   1224 			}
   1225 		}
   1226 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1227 		    mtod(m, void *));
   1228 		m_freem(*m_head);
   1229 		m->m_len = m->m_pkthdr.len;
   1230 		*m_head = m;
   1231 
   1232 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1233 		  	    BUS_DMA_NOWAIT);
   1234 
   1235 		if (error != 0) {
   1236 			printf("%s: could not load defragged TX mbuf\n",
   1237 			    device_xname(sc->sc_dev));
   1238 			if (!error) {
   1239 				bus_dmamap_unload(sc->sc_dmat, map);
   1240 				error = EFBIG;
   1241 			}
   1242 			m_freem(*m_head);
   1243 			*m_head = NULL;
   1244 			return error;
   1245 		}
   1246 	} else if (error) {
   1247 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1248 		return error;
   1249 	}
   1250 
   1251 	nsegs = map->dm_nsegs;
   1252 
   1253 	if (nsegs == 0) {
   1254 		m_freem(*m_head);
   1255 		*m_head = NULL;
   1256 		return EIO;
   1257 	}
   1258 
   1259 	/* Check descriptor overrun. */
   1260 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1261 		bus_dmamap_unload(sc->sc_dmat, map);
   1262 		return ENOBUFS;
   1263 	}
   1264 
   1265 	m = *m_head;
   1266 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1267 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1268 		cflags |= AGE_TD_CSUM;
   1269 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1270 			cflags |= AGE_TD_TCPCSUM;
   1271 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1272 			cflags |= AGE_TD_UDPCSUM;
   1273 		/* Set checksum start offset. */
   1274 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1275 	}
   1276 
   1277 #if NVLAN > 0
   1278 	/* Configure VLAN hardware tag insertion. */
   1279 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1280 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1281 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1282 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1283 	}
   1284 #endif
   1285 
   1286 	desc = NULL;
   1287 	for (i = 0; i < nsegs; i++) {
   1288 		desc = &sc->age_rdata.age_tx_ring[prod];
   1289 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1290 		desc->len =
   1291 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1292 		desc->flags = htole32(cflags);
   1293 		sc->age_cdata.age_tx_cnt++;
   1294 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1295 	}
   1296 
   1297 	/* Update producer index. */
   1298 	sc->age_cdata.age_tx_prod = prod;
   1299 
   1300 	/* Set EOP on the last descriptor. */
   1301 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1302 	desc = &sc->age_rdata.age_tx_ring[prod];
   1303 	desc->flags |= htole32(AGE_TD_EOP);
   1304 
   1305 	/* Swap dmamap of the first and the last. */
   1306 	txd = &sc->age_cdata.age_txdesc[prod];
   1307 	map = txd_last->tx_dmamap;
   1308 	txd_last->tx_dmamap = txd->tx_dmamap;
   1309 	txd->tx_dmamap = map;
   1310 	txd->tx_m = m;
   1311 
   1312 	/* Sync descriptors. */
   1313 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1314 	    BUS_DMASYNC_PREWRITE);
   1315 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1316 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1317 
   1318 	return 0;
   1319 }
   1320 
   1321 static void
   1322 age_txintr(struct age_softc *sc, int tpd_cons)
   1323 {
   1324 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1325 	struct age_txdesc *txd;
   1326 	int cons, prog;
   1327 
   1328 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1329 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1330 
   1331 	/*
   1332 	 * Go through our Tx list and free mbufs for those
   1333 	 * frames which have been transmitted.
   1334 	 */
   1335 	cons = sc->age_cdata.age_tx_cons;
   1336 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1337 		if (sc->age_cdata.age_tx_cnt <= 0)
   1338 			break;
   1339 		prog++;
   1340 		ifp->if_flags &= ~IFF_OACTIVE;
   1341 		sc->age_cdata.age_tx_cnt--;
   1342 		txd = &sc->age_cdata.age_txdesc[cons];
   1343 		/*
   1344 		 * Clear Tx descriptors, it's not required but would
   1345 		 * help debugging in case of Tx issues.
   1346 		 */
   1347 		txd->tx_desc->addr = 0;
   1348 		txd->tx_desc->len = 0;
   1349 		txd->tx_desc->flags = 0;
   1350 
   1351 		if (txd->tx_m == NULL)
   1352 			continue;
   1353 		/* Reclaim transmitted mbufs. */
   1354 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1355 		m_freem(txd->tx_m);
   1356 		txd->tx_m = NULL;
   1357 	}
   1358 
   1359 	if (prog > 0) {
   1360 		sc->age_cdata.age_tx_cons = cons;
   1361 
   1362 		/*
   1363 		 * Unarm watchdog timer only when there are no pending
   1364 		 * Tx descriptors in queue.
   1365 		 */
   1366 		if (sc->age_cdata.age_tx_cnt == 0)
   1367 			ifp->if_timer = 0;
   1368 
   1369 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1370 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1371 		    BUS_DMASYNC_PREWRITE);
   1372 	}
   1373 }
   1374 
   1375 /* Receive a frame. */
   1376 static void
   1377 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1378 {
   1379 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1380 	struct age_rxdesc *rxd;
   1381 	struct rx_desc *desc;
   1382 	struct mbuf *mp, *m;
   1383 	uint32_t status, index, vtag;
   1384 	int count, nsegs, pktlen;
   1385 	int rx_cons;
   1386 
   1387 	status = le32toh(rxrd->flags);
   1388 	index = le32toh(rxrd->index);
   1389 	rx_cons = AGE_RX_CONS(index);
   1390 	nsegs = AGE_RX_NSEGS(index);
   1391 
   1392 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1393 	if ((status & AGE_RRD_ERROR) != 0 &&
   1394 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1395 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1396 		/*
   1397 		 * We want to pass the following frames to upper
   1398 		 * layer regardless of error status of Rx return
   1399 		 * ring.
   1400 		 *
   1401 		 *  o IP/TCP/UDP checksum is bad.
   1402 		 *  o frame length and protocol specific length
   1403 		 *     does not match.
   1404 		 */
   1405 		sc->age_cdata.age_rx_cons += nsegs;
   1406 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1407 		return;
   1408 	}
   1409 
   1410 	pktlen = 0;
   1411 	for (count = 0; count < nsegs; count++,
   1412 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1413 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1414 		mp = rxd->rx_m;
   1415 		desc = rxd->rx_desc;
   1416 		/* Add a new receive buffer to the ring. */
   1417 		if (age_newbuf(sc, rxd, 0) != 0) {
   1418 			ifp->if_iqdrops++;
   1419 			/* Reuse Rx buffers. */
   1420 			if (sc->age_cdata.age_rxhead != NULL) {
   1421 				m_freem(sc->age_cdata.age_rxhead);
   1422 				AGE_RXCHAIN_RESET(sc);
   1423 			}
   1424 			break;
   1425 		}
   1426 
   1427 		/* The length of the first mbuf is computed last. */
   1428 		if (count != 0) {
   1429 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1430 			pktlen += mp->m_len;
   1431 		}
   1432 
   1433 		/* Chain received mbufs. */
   1434 		if (sc->age_cdata.age_rxhead == NULL) {
   1435 			sc->age_cdata.age_rxhead = mp;
   1436 			sc->age_cdata.age_rxtail = mp;
   1437 		} else {
   1438 			mp->m_flags &= ~M_PKTHDR;
   1439 			sc->age_cdata.age_rxprev_tail =
   1440 			    sc->age_cdata.age_rxtail;
   1441 			sc->age_cdata.age_rxtail->m_next = mp;
   1442 			sc->age_cdata.age_rxtail = mp;
   1443 		}
   1444 
   1445 		if (count == nsegs - 1) {
   1446 			/*
   1447 			 * It seems that L1 controller has no way
   1448 			 * to tell hardware to strip CRC bytes.
   1449 			 */
   1450 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1451 			if (nsegs > 1) {
   1452 				/* Remove the CRC bytes in chained mbufs. */
   1453 				pktlen -= ETHER_CRC_LEN;
   1454 				if (mp->m_len <= ETHER_CRC_LEN) {
   1455 					sc->age_cdata.age_rxtail =
   1456 					    sc->age_cdata.age_rxprev_tail;
   1457 					sc->age_cdata.age_rxtail->m_len -=
   1458 					    (ETHER_CRC_LEN - mp->m_len);
   1459 					sc->age_cdata.age_rxtail->m_next = NULL;
   1460 					m_freem(mp);
   1461 				} else {
   1462 					mp->m_len -= ETHER_CRC_LEN;
   1463 				}
   1464 			}
   1465 
   1466 			m = sc->age_cdata.age_rxhead;
   1467 			m->m_flags |= M_PKTHDR;
   1468 			m->m_pkthdr.rcvif = ifp;
   1469 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1470 			/* Set the first mbuf length. */
   1471 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1472 
   1473 			/*
   1474 			 * Set checksum information.
   1475 			 * It seems that L1 controller can compute partial
   1476 			 * checksum. The partial checksum value can be used
   1477 			 * to accelerate checksum computation for fragmented
   1478 			 * TCP/UDP packets. Upper network stack already
   1479 			 * takes advantage of the partial checksum value in
   1480 			 * IP reassembly stage. But I'm not sure the
   1481 			 * correctness of the partial hardware checksum
   1482 			 * assistance due to lack of data sheet. If it is
   1483 			 * proven to work on L1 I'll enable it.
   1484 			 */
   1485 			if (status & AGE_RRD_IPV4) {
   1486 				if (status & AGE_RRD_IPCSUM_NOK)
   1487 					m->m_pkthdr.csum_flags |=
   1488 					    M_CSUM_IPv4_BAD;
   1489 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1490 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1491 					m->m_pkthdr.csum_flags |=
   1492 					    M_CSUM_TCP_UDP_BAD;
   1493 				}
   1494 				/*
   1495 				 * Don't mark bad checksum for TCP/UDP frames
   1496 				 * as fragmented frames may always have set
   1497 				 * bad checksummed bit of descriptor status.
   1498 				 */
   1499 			}
   1500 #if NVLAN > 0
   1501 			/* Check for VLAN tagged frames. */
   1502 			if (status & AGE_RRD_VLAN) {
   1503 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1504 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1505 					continue);
   1506 			}
   1507 #endif
   1508 
   1509 #if NBPFILTER > 0
   1510 			if (ifp->if_bpf)
   1511 				bpf_mtap(ifp->if_bpf, m);
   1512 #endif
   1513 			/* Pass it on. */
   1514 			ether_input(ifp, m);
   1515 
   1516 			/* Reset mbuf chains. */
   1517 			AGE_RXCHAIN_RESET(sc);
   1518 		}
   1519 	}
   1520 
   1521 	if (count != nsegs) {
   1522 		sc->age_cdata.age_rx_cons += nsegs;
   1523 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1524 	} else
   1525 		sc->age_cdata.age_rx_cons = rx_cons;
   1526 }
   1527 
   1528 static void
   1529 age_rxintr(struct age_softc *sc, int rr_prod)
   1530 {
   1531 	struct rx_rdesc *rxrd;
   1532 	int rr_cons, nsegs, pktlen, prog;
   1533 
   1534 	rr_cons = sc->age_cdata.age_rr_cons;
   1535 	if (rr_cons == rr_prod)
   1536 		return;
   1537 
   1538 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1539 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1540 	    BUS_DMASYNC_POSTREAD);
   1541 
   1542 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1543 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1544 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1545 		if (nsegs == 0)
   1546 			break;
   1547 		/*
   1548 		 * Check number of segments against received bytes
   1549 		 * Non-matching value would indicate that hardware
   1550 		 * is still trying to update Rx return descriptors.
   1551 		 * I'm not sure whether this check is really needed.
   1552 		 */
   1553 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1554 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1555 		    (MCLBYTES - ETHER_ALIGN)))
   1556 			break;
   1557 
   1558 		/* Received a frame. */
   1559 		age_rxeof(sc, rxrd);
   1560 
   1561 		/* Clear return ring. */
   1562 		rxrd->index = 0;
   1563 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1564 	}
   1565 
   1566 	if (prog > 0) {
   1567 		/* Update the consumer index. */
   1568 		sc->age_cdata.age_rr_cons = rr_cons;
   1569 
   1570 		/* Sync descriptors. */
   1571 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1572 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1573 		    BUS_DMASYNC_PREWRITE);
   1574 
   1575 		/* Notify hardware availability of new Rx buffers. */
   1576 		AGE_COMMIT_MBOX(sc);
   1577 	}
   1578 }
   1579 
   1580 static void
   1581 age_tick(void *xsc)
   1582 {
   1583 	struct age_softc *sc = xsc;
   1584 	struct mii_data *mii = &sc->sc_miibus;
   1585 	int s;
   1586 
   1587 	s = splnet();
   1588 	mii_tick(mii);
   1589 	splx(s);
   1590 
   1591 	callout_schedule(&sc->sc_tick_ch, hz);
   1592 }
   1593 
   1594 static void
   1595 age_reset(struct age_softc *sc)
   1596 {
   1597 	uint32_t reg;
   1598 	int i;
   1599 
   1600 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1601 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1602 		DELAY(1);
   1603 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1604 			break;
   1605 	}
   1606 	if (i == 0)
   1607 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1608 
   1609 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1610 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1611 			break;
   1612 		DELAY(10);
   1613 	}
   1614 
   1615 	if (i == 0)
   1616 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1617 		    reg);
   1618 
   1619 	/* Initialize PCIe module. From Linux. */
   1620 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1621 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1622 }
   1623 
   1624 static int
   1625 age_init(struct ifnet *ifp)
   1626 {
   1627 	struct age_softc *sc = ifp->if_softc;
   1628 	struct mii_data *mii;
   1629 	uint8_t eaddr[ETHER_ADDR_LEN];
   1630 	bus_addr_t paddr;
   1631 	uint32_t reg, fsize;
   1632 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1633 	int error;
   1634 
   1635 	/*
   1636 	 * Cancel any pending I/O.
   1637 	 */
   1638 	age_stop(sc);
   1639 
   1640 	/*
   1641 	 * Reset the chip to a known state.
   1642 	 */
   1643 	age_reset(sc);
   1644 
   1645 	/* Initialize descriptors. */
   1646 	error = age_init_rx_ring(sc);
   1647         if (error != 0) {
   1648 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1649                 age_stop(sc);
   1650 		return error;
   1651         }
   1652 	age_init_rr_ring(sc);
   1653 	age_init_tx_ring(sc);
   1654 	age_init_cmb_block(sc);
   1655 	age_init_smb_block(sc);
   1656 
   1657 	/* Reprogram the station address. */
   1658 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1659 	CSR_WRITE_4(sc, AGE_PAR0,
   1660 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1661 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1662 
   1663 	/* Set descriptor base addresses. */
   1664 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1665 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1666 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1667 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1668 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1669 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1670 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1671 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1672 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1673 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1674 	paddr = sc->age_rdata.age_smb_block_paddr;
   1675 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1676 
   1677 	/* Set Rx/Rx return descriptor counter. */
   1678 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1679 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1680 	    DESC_RRD_CNT_MASK) |
   1681 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1682 
   1683 	/* Set Tx descriptor counter. */
   1684 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1685 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1686 
   1687 	/* Tell hardware that we're ready to load descriptors. */
   1688 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1689 
   1690         /*
   1691 	 * Initialize mailbox register.
   1692 	 * Updated producer/consumer index information is exchanged
   1693 	 * through this mailbox register. However Tx producer and
   1694 	 * Rx return consumer/Rx producer are all shared such that
   1695 	 * it's hard to separate code path between Tx and Rx without
   1696 	 * locking. If L1 hardware have a separate mail box register
   1697 	 * for Tx and Rx consumer/producer management we could have
   1698 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1699 	 * been run without any locking.
   1700 	*/
   1701 	AGE_COMMIT_MBOX(sc);
   1702 
   1703 	/* Configure IPG/IFG parameters. */
   1704 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1705 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1706 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1707 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1708 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1709 
   1710 	/* Set parameters for half-duplex media. */
   1711 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1712 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1713 	    HDPX_CFG_LCOL_MASK) |
   1714 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1715 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1716 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1717 	    HDPX_CFG_ABEBT_MASK) |
   1718 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1719 	     HDPX_CFG_JAMIPG_MASK));
   1720 
   1721 	/* Configure interrupt moderation timer. */
   1722 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1723 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1724 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1725 	reg &= ~MASTER_MTIMER_ENB;
   1726 	if (AGE_USECS(sc->age_int_mod) == 0)
   1727 		reg &= ~MASTER_ITIMER_ENB;
   1728 	else
   1729 		reg |= MASTER_ITIMER_ENB;
   1730 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1731 	if (agedebug)
   1732 		printf("%s: interrupt moderation is %d us.\n",
   1733 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1734 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1735 
   1736 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1737 	if (ifp->if_mtu < ETHERMTU)
   1738 		sc->age_max_frame_size = ETHERMTU;
   1739 	else
   1740 		sc->age_max_frame_size = ifp->if_mtu;
   1741 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1742 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1743 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1744 
   1745 	/* Configure jumbo frame. */
   1746 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1747 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1748 	    (((fsize / sizeof(uint64_t)) <<
   1749 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1750 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1751 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1752 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1753 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1754 
   1755 	/* Configure flow-control parameters. From Linux. */
   1756 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1757 		/*
   1758 		 * Magic workaround for old-L1.
   1759 		 * Don't know which hw revision requires this magic.
   1760 		 */
   1761 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1762 		/*
   1763 		 * Another magic workaround for flow-control mode
   1764 		 * change. From Linux.
   1765 		 */
   1766 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1767 	}
   1768 	/*
   1769 	 * TODO
   1770 	 *  Should understand pause parameter relationships between FIFO
   1771 	 *  size and number of Rx descriptors and Rx return descriptors.
   1772 	 *
   1773 	 *  Magic parameters came from Linux.
   1774 	 */
   1775 	switch (sc->age_chip_rev) {
   1776 	case 0x8001:
   1777 	case 0x9001:
   1778 	case 0x9002:
   1779 	case 0x9003:
   1780 		rxf_hi = AGE_RX_RING_CNT / 16;
   1781 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1782 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1783 		rrd_lo = AGE_RR_RING_CNT / 16;
   1784 		break;
   1785 	default:
   1786 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1787 		rxf_lo = reg / 16;
   1788 		if (rxf_lo < 192)
   1789 			rxf_lo = 192;
   1790 		rxf_hi = (reg * 7) / 8;
   1791 		if (rxf_hi < rxf_lo)
   1792 			rxf_hi = rxf_lo + 16;
   1793 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1794 		rrd_lo = reg / 8;
   1795 		rrd_hi = (reg * 7) / 8;
   1796 		if (rrd_lo < 2)
   1797 			rrd_lo = 2;
   1798 		if (rrd_hi < rrd_lo)
   1799 			rrd_hi = rrd_lo + 3;
   1800 		break;
   1801 	}
   1802 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1803 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1804 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1805 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1806 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1807 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1808 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1809 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1810 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1811 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1812 
   1813 	/* Configure RxQ. */
   1814 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1815 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1816 	    RXQ_CFG_RD_BURST_MASK) |
   1817 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1818 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1819 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1820 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1821 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1822 
   1823 	/* Configure TxQ. */
   1824 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1825 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1826 	    TXQ_CFG_TPD_BURST_MASK) |
   1827 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1828 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1829 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1830 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1831 	    TXQ_CFG_ENB);
   1832 
   1833 	/* Configure DMA parameters. */
   1834 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1835 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1836 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1837 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1838 
   1839 	/* Configure CMB DMA write threshold. */
   1840 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1841 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1842 	    CMB_WR_THRESH_RRD_MASK) |
   1843 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1844 	    CMB_WR_THRESH_TPD_MASK));
   1845 
   1846 	/* Set CMB/SMB timer and enable them. */
   1847 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1848 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1849 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1850 
   1851 	/* Request SMB updates for every seconds. */
   1852 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1853 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1854 
   1855 	/*
   1856 	 * Disable all WOL bits as WOL can interfere normal Rx
   1857 	 * operation.
   1858 	 */
   1859 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1860 
   1861         /*
   1862 	 * Configure Tx/Rx MACs.
   1863 	 *  - Auto-padding for short frames.
   1864 	 *  - Enable CRC generation.
   1865 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1866 	 *  of MAC is followed after link establishment.
   1867 	 */
   1868 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1869 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1870 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1871 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1872 	    MAC_CFG_PREAMBLE_MASK));
   1873 
   1874 	/* Set up the receive filter. */
   1875 	age_rxfilter(sc);
   1876 	age_rxvlan(sc);
   1877 
   1878 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1879 	reg |= MAC_CFG_RXCSUM_ENB;
   1880 
   1881 	/* Ack all pending interrupts and clear it. */
   1882 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1883 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1884 
   1885 	/* Finally enable Tx/Rx MAC. */
   1886 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1887 
   1888 	sc->age_flags &= ~AGE_FLAG_LINK;
   1889 
   1890 	/* Switch to the current media. */
   1891 	mii = &sc->sc_miibus;
   1892 	mii_mediachg(mii);
   1893 
   1894 	callout_schedule(&sc->sc_tick_ch, hz);
   1895 
   1896 	ifp->if_flags |= IFF_RUNNING;
   1897 	ifp->if_flags &= ~IFF_OACTIVE;
   1898 
   1899 	return 0;
   1900 }
   1901 
   1902 static void
   1903 age_stop(struct age_softc *sc)
   1904 {
   1905 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1906 	struct age_txdesc *txd;
   1907 	struct age_rxdesc *rxd;
   1908 	uint32_t reg;
   1909 	int i;
   1910 
   1911 	callout_stop(&sc->sc_tick_ch);
   1912 
   1913 	/*
   1914 	 * Mark the interface down and cancel the watchdog timer.
   1915 	 */
   1916 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1917 	ifp->if_timer = 0;
   1918 
   1919 	sc->age_flags &= ~AGE_FLAG_LINK;
   1920 
   1921 	/*
   1922 	 * Disable interrupts.
   1923 	 */
   1924 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1925 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1926 
   1927 	/* Stop CMB/SMB updates. */
   1928 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1929 
   1930 	/* Stop Rx/Tx MAC. */
   1931 	age_stop_rxmac(sc);
   1932 	age_stop_txmac(sc);
   1933 
   1934 	/* Stop DMA. */
   1935 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1936 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1937 
   1938 	/* Stop TxQ/RxQ. */
   1939 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1940 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1941 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1942 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1943 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1944 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1945 			break;
   1946 		DELAY(10);
   1947 	}
   1948 	if (i == 0)
   1949 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1950 		    device_xname(sc->sc_dev), reg);
   1951 
   1952 	/* Reclaim Rx buffers that have been processed. */
   1953 	if (sc->age_cdata.age_rxhead != NULL)
   1954 		m_freem(sc->age_cdata.age_rxhead);
   1955 	AGE_RXCHAIN_RESET(sc);
   1956 
   1957 	/*
   1958 	 * Free RX and TX mbufs still in the queues.
   1959 	 */
   1960 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1961 		rxd = &sc->age_cdata.age_rxdesc[i];
   1962 		if (rxd->rx_m != NULL) {
   1963 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1964 			m_freem(rxd->rx_m);
   1965 			rxd->rx_m = NULL;
   1966 		}
   1967 	}
   1968 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1969 		txd = &sc->age_cdata.age_txdesc[i];
   1970 		if (txd->tx_m != NULL) {
   1971 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1972 			m_freem(txd->tx_m);
   1973 			txd->tx_m = NULL;
   1974 		}
   1975 	}
   1976 }
   1977 
   1978 static void
   1979 age_stats_update(struct age_softc *sc)
   1980 {
   1981 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1982 	struct age_stats *stat;
   1983 	struct smb *smb;
   1984 
   1985 	stat = &sc->age_stat;
   1986 
   1987 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1988 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1989 
   1990 	smb = sc->age_rdata.age_smb_block;
   1991 	if (smb->updated == 0)
   1992 		return;
   1993 
   1994 	/* Rx stats. */
   1995 	stat->rx_frames += smb->rx_frames;
   1996 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1997 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1998 	stat->rx_pause_frames += smb->rx_pause_frames;
   1999 	stat->rx_control_frames += smb->rx_control_frames;
   2000 	stat->rx_crcerrs += smb->rx_crcerrs;
   2001 	stat->rx_lenerrs += smb->rx_lenerrs;
   2002 	stat->rx_bytes += smb->rx_bytes;
   2003 	stat->rx_runts += smb->rx_runts;
   2004 	stat->rx_fragments += smb->rx_fragments;
   2005 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2006 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2007 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2008 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2009 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2010 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2011 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2012 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2013 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2014 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2015 	stat->rx_alignerrs += smb->rx_alignerrs;
   2016 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2017 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2018 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2019 
   2020 	/* Tx stats. */
   2021 	stat->tx_frames += smb->tx_frames;
   2022 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2023 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2024 	stat->tx_pause_frames += smb->tx_pause_frames;
   2025 	stat->tx_excess_defer += smb->tx_excess_defer;
   2026 	stat->tx_control_frames += smb->tx_control_frames;
   2027 	stat->tx_deferred += smb->tx_deferred;
   2028 	stat->tx_bytes += smb->tx_bytes;
   2029 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2030 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2031 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2032 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2033 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2034 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2035 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2036 	stat->tx_single_colls += smb->tx_single_colls;
   2037 	stat->tx_multi_colls += smb->tx_multi_colls;
   2038 	stat->tx_late_colls += smb->tx_late_colls;
   2039 	stat->tx_excess_colls += smb->tx_excess_colls;
   2040 	stat->tx_underrun += smb->tx_underrun;
   2041 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2042 	stat->tx_lenerrs += smb->tx_lenerrs;
   2043 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2044 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2045 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2046 
   2047 	/* Update counters in ifnet. */
   2048 	ifp->if_opackets += smb->tx_frames;
   2049 
   2050 	ifp->if_collisions += smb->tx_single_colls +
   2051 	    smb->tx_multi_colls + smb->tx_late_colls +
   2052 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2053 
   2054 	ifp->if_oerrors += smb->tx_excess_colls +
   2055 	    smb->tx_late_colls + smb->tx_underrun +
   2056 	    smb->tx_pkts_truncated;
   2057 
   2058 	ifp->if_ipackets += smb->rx_frames;
   2059 
   2060 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2061 	    smb->rx_runts + smb->rx_pkts_truncated +
   2062 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2063 	    smb->rx_alignerrs;
   2064 
   2065 	/* Update done, clear. */
   2066 	smb->updated = 0;
   2067 
   2068 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2069 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2070 }
   2071 
   2072 static void
   2073 age_stop_txmac(struct age_softc *sc)
   2074 {
   2075 	uint32_t reg;
   2076 	int i;
   2077 
   2078 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2079 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2080 		reg &= ~MAC_CFG_TX_ENB;
   2081 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2082 	}
   2083 	/* Stop Tx DMA engine. */
   2084 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2085 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2086 		reg &= ~DMA_CFG_RD_ENB;
   2087 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2088 	}
   2089 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2090 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2091 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2092 			break;
   2093 		DELAY(10);
   2094 	}
   2095 	if (i == 0)
   2096 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2097 }
   2098 
   2099 static void
   2100 age_stop_rxmac(struct age_softc *sc)
   2101 {
   2102 	uint32_t reg;
   2103 	int i;
   2104 
   2105 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2106 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2107 		reg &= ~MAC_CFG_RX_ENB;
   2108 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2109 	}
   2110 	/* Stop Rx DMA engine. */
   2111 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2112 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2113 		reg &= ~DMA_CFG_WR_ENB;
   2114 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2115 	}
   2116 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2117 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2118 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2119 			break;
   2120 		DELAY(10);
   2121 	}
   2122 	if (i == 0)
   2123 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2124 }
   2125 
   2126 static void
   2127 age_init_tx_ring(struct age_softc *sc)
   2128 {
   2129 	struct age_ring_data *rd;
   2130 	struct age_txdesc *txd;
   2131 	int i;
   2132 
   2133 	sc->age_cdata.age_tx_prod = 0;
   2134 	sc->age_cdata.age_tx_cons = 0;
   2135 	sc->age_cdata.age_tx_cnt = 0;
   2136 
   2137 	rd = &sc->age_rdata;
   2138 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2139 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2140 		txd = &sc->age_cdata.age_txdesc[i];
   2141 		txd->tx_desc = &rd->age_tx_ring[i];
   2142 		txd->tx_m = NULL;
   2143 	}
   2144 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2145 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2146 }
   2147 
   2148 static int
   2149 age_init_rx_ring(struct age_softc *sc)
   2150 {
   2151 	struct age_ring_data *rd;
   2152 	struct age_rxdesc *rxd;
   2153 	int i;
   2154 
   2155 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2156 	rd = &sc->age_rdata;
   2157 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2158 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2159 		rxd = &sc->age_cdata.age_rxdesc[i];
   2160 		rxd->rx_m = NULL;
   2161 		rxd->rx_desc = &rd->age_rx_ring[i];
   2162 		if (age_newbuf(sc, rxd, 1) != 0)
   2163 			return ENOBUFS;
   2164 	}
   2165 
   2166 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2167 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2168 
   2169 	return 0;
   2170 }
   2171 
   2172 static void
   2173 age_init_rr_ring(struct age_softc *sc)
   2174 {
   2175 	struct age_ring_data *rd;
   2176 
   2177 	sc->age_cdata.age_rr_cons = 0;
   2178 	AGE_RXCHAIN_RESET(sc);
   2179 
   2180 	rd = &sc->age_rdata;
   2181 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2182 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2183 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2184 }
   2185 
   2186 static void
   2187 age_init_cmb_block(struct age_softc *sc)
   2188 {
   2189 	struct age_ring_data *rd;
   2190 
   2191 	rd = &sc->age_rdata;
   2192 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2193 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2194 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2195 }
   2196 
   2197 static void
   2198 age_init_smb_block(struct age_softc *sc)
   2199 {
   2200 	struct age_ring_data *rd;
   2201 
   2202 	rd = &sc->age_rdata;
   2203 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2204 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2205 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2206 }
   2207 
   2208 static int
   2209 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2210 {
   2211 	struct rx_desc *desc;
   2212 	struct mbuf *m;
   2213 	bus_dmamap_t map;
   2214 	int error;
   2215 
   2216 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2217 	if (m == NULL)
   2218 		return ENOBUFS;
   2219 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2220 	if (!(m->m_flags & M_EXT)) {
   2221 		 m_freem(m);
   2222 		 return ENOBUFS;
   2223 	}
   2224 
   2225 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2226 	m_adj(m, ETHER_ALIGN);
   2227 
   2228 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2229 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2230 
   2231 	if (error != 0) {
   2232 		if (!error) {
   2233 			bus_dmamap_unload(sc->sc_dmat,
   2234 			    sc->age_cdata.age_rx_sparemap);
   2235 			error = EFBIG;
   2236 			printf("%s: too many segments?!\n",
   2237 			    device_xname(sc->sc_dev));
   2238 		}
   2239 		m_freem(m);
   2240 
   2241 		if (init)
   2242 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2243 		return error;
   2244 	}
   2245 
   2246 	if (rxd->rx_m != NULL) {
   2247 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2248 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2249 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2250 	}
   2251 	map = rxd->rx_dmamap;
   2252 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2253 	sc->age_cdata.age_rx_sparemap = map;
   2254 	rxd->rx_m = m;
   2255 
   2256 	desc = rxd->rx_desc;
   2257 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2258 	desc->len =
   2259 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2260 	    AGE_RD_LEN_SHIFT);
   2261 
   2262 	return 0;
   2263 }
   2264 
   2265 static void
   2266 age_rxvlan(struct age_softc *sc)
   2267 {
   2268 	uint32_t reg;
   2269 
   2270 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2271 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2272 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2273 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2274 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2275 }
   2276 
   2277 static void
   2278 age_rxfilter(struct age_softc *sc)
   2279 {
   2280 	struct ethercom *ec = &sc->sc_ec;
   2281 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2282 	struct ether_multi *enm;
   2283 	struct ether_multistep step;
   2284 	uint32_t crc;
   2285 	uint32_t mchash[2];
   2286 	uint32_t rxcfg;
   2287 
   2288 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2289 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2290 
   2291 	if (ifp->if_flags & IFF_BROADCAST)
   2292 		rxcfg |= MAC_CFG_BCAST;
   2293 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
   2294 		if (ifp->if_flags & IFF_PROMISC)
   2295 			rxcfg |= MAC_CFG_PROMISC;
   2296 		if (ifp->if_flags & IFF_ALLMULTI)
   2297 			rxcfg |= MAC_CFG_ALLMULTI;
   2298 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
   2299 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
   2300 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2301 		return;
   2302 	}
   2303 
   2304 	/* Program new filter. */
   2305 	memset(mchash, 0, sizeof(mchash));
   2306 
   2307 	ETHER_FIRST_MULTI(step, ec, enm);
   2308 	while (enm != NULL) {
   2309 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
   2310 		    enm->enm_addrlo), ETHER_ADDR_LEN);
   2311 
   2312 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2313 		ETHER_NEXT_MULTI(step, enm);
   2314 	}
   2315 
   2316 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2317 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2318 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2319 }
   2320