if_age.c revision 1.2 1 /* $NetBSD: if_age.c,v 1.2 2009/01/16 21:47:56 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.2 2009/01/16 21:47:56 cegger Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static int age_miibus_readreg(device_t, int, int);
87 static void age_miibus_writereg(device_t, int, int, int);
88 static void age_miibus_statchg(device_t);
89
90 static int age_init(struct ifnet *);
91 static int age_ioctl(struct ifnet *, u_long, void *);
92 static void age_start(struct ifnet *);
93 static void age_watchdog(struct ifnet *);
94 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
95 static int age_mediachange(struct ifnet *);
96
97 static int age_intr(void *);
98 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
99 static int age_dma_alloc(struct age_softc *);
100 static void age_dma_free(struct age_softc *);
101 static void age_get_macaddr(struct age_softc *, uint8_t[]);
102 static void age_phy_reset(struct age_softc *);
103
104 static int age_encap(struct age_softc *, struct mbuf **);
105 static void age_init_tx_ring(struct age_softc *);
106 static int age_init_rx_ring(struct age_softc *);
107 static void age_init_rr_ring(struct age_softc *);
108 static void age_init_cmb_block(struct age_softc *);
109 static void age_init_smb_block(struct age_softc *);
110 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
111 static void age_mac_config(struct age_softc *);
112 static void age_txintr(struct age_softc *, int);
113 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
114 static void age_rxintr(struct age_softc *, int);
115 static void age_tick(void *);
116 static void age_reset(struct age_softc *);
117 static void age_stop(struct age_softc *);
118 static void age_stats_update(struct age_softc *);
119 static void age_stop_txmac(struct age_softc *);
120 static void age_stop_rxmac(struct age_softc *);
121 static void age_rxvlan(struct age_softc *sc);
122 static void age_rxfilter(struct age_softc *);
123
124 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
125 age_match, age_attach, age_detach, NULL);
126
127 int agedebug = 0;
128 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
129
130 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 age_match(device_t dev, cfdata_t match, void *aux)
134 {
135 struct pci_attach_args *pa = aux;
136
137 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 }
140
141 static void
142 age_attach(device_t parent, device_t self, void *aux)
143 {
144 struct age_softc *sc = device_private(self);
145 struct pci_attach_args *pa = aux;
146 pci_intr_handle_t ih;
147 const char *intrstr;
148 struct ifnet *ifp = &sc->sc_ec.ec_if;
149 pcireg_t memtype;
150 int error = 0;
151
152 aprint_naive("\n");
153 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
154
155 sc->sc_dev = self;
156 sc->sc_dmat = pa->pa_dmat;
157 sc->sc_pct = pa->pa_pc;
158 sc->sc_pcitag = pa->pa_tag;
159
160 /*
161 * Allocate IO memory
162 */
163 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
164 switch (memtype) {
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
168 break;
169 default:
170 aprint_error_dev(self, "invalid base address register\n");
171 break;
172 }
173
174 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
175 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
176 aprint_error_dev(self, "could not map mem space\n");
177 return;
178 }
179
180 if (pci_intr_map(pa, &ih) != 0) {
181 aprint_error_dev(self, "could not map interrupt\n");
182 return;
183 }
184
185 /*
186 * Allocate IRQ
187 */
188 intrstr = pci_intr_string(sc->sc_pct, ih);
189 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
190 age_intr, sc);
191 if (sc->sc_irq_handle == NULL) {
192 aprint_error_dev(self, "could not establish interrupt");
193 if (intrstr != NULL)
194 aprint_error(" at %s", intrstr);
195 aprint_error("\n");
196 return;
197 }
198 aprint_normal_dev(self, "%s", intrstr);
199
200 /* Set PHY address. */
201 sc->age_phyaddr = AGE_PHY_ADDR;
202
203 /* Reset PHY. */
204 age_phy_reset(sc);
205
206 /* Reset the ethernet controller. */
207 age_reset(sc);
208
209 /* Get PCI and chip id/revision. */
210 sc->age_rev = PCI_REVISION(pa->pa_class);
211 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
212 MASTER_CHIP_REV_SHIFT;
213
214 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
215 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
216
217 if (agedebug) {
218 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
219 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
220 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
221 }
222
223 /* Set max allowable DMA size. */
224 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
225 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
226
227 /* Allocate DMA stuffs */
228 error = age_dma_alloc(sc);
229 if (error)
230 goto fail;
231
232 callout_init(&sc->sc_tick_ch, 0);
233 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
234
235 /* Load station address. */
236 age_get_macaddr(sc, sc->sc_enaddr);
237
238 aprint_normal_dev(self, "Ethernet address %s\n",
239 ether_sprintf(sc->sc_enaddr));
240
241 ifp->if_softc = sc;
242 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
243 ifp->if_init = age_init;
244 ifp->if_ioctl = age_ioctl;
245 ifp->if_start = age_start;
246 ifp->if_watchdog = age_watchdog;
247 ifp->if_baudrate = IF_Gbps(1);
248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 IFQ_SET_READY(&ifp->if_snd);
250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251
252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253
254 #ifdef AGE_CHECKSUM
255 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
256 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
257 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
258 #endif
259
260 #if NVLAN > 0
261 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
262 #endif
263
264 /* Set up MII bus. */
265 sc->sc_miibus.mii_ifp = ifp;
266 sc->sc_miibus.mii_readreg = age_miibus_readreg;
267 sc->sc_miibus.mii_writereg = age_miibus_writereg;
268 sc->sc_miibus.mii_statchg = age_miibus_statchg;
269
270 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
271 age_mediastatus);
272 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
273 MII_OFFSET_ANY, 0);
274
275 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
276 aprint_error_dev(self, "no PHY found!\n");
277 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
278 0, NULL);
279 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
280 } else
281 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
282
283 if_attach(ifp);
284 ether_ifattach(ifp, sc->sc_enaddr);
285
286 if (!pmf_device_register(self, NULL, NULL))
287 aprint_error_dev(self, "couldn't establish power handler\n");
288 else
289 pmf_class_network_register(self, ifp);
290
291 return;
292 fail:
293 age_detach(sc->sc_dev, 0);
294 }
295
296 static int
297 age_detach(device_t self, int flags)
298 {
299 struct age_softc *sc = device_private(self);
300 struct ifnet *ifp = &sc->sc_ec.ec_if;
301 int s;
302
303 s = splnet();
304 age_stop(sc);
305 splx(s);
306
307 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
308
309 /* Delete all remaining media. */
310 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
311
312 ether_ifdetach(ifp);
313 if_detach(ifp);
314 age_dma_free(sc);
315
316 if (sc->sc_irq_handle != NULL) {
317 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
318 sc->sc_irq_handle = NULL;
319 }
320
321 return (0);
322 }
323
324 /*
325 * Read a PHY register on the MII of the L1.
326 */
327 static int
328 age_miibus_readreg(struct device *dev, int phy, int reg)
329 {
330 struct age_softc *sc = device_private(dev);
331 uint32_t v;
332 int i;
333
334 if (phy != sc->age_phyaddr)
335 return (0);
336
337 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
338 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
339 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
340 DELAY(1);
341 v = CSR_READ_4(sc, AGE_MDIO);
342 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
343 break;
344 }
345
346 if (i == 0) {
347 printf("%s: phy read timeout: phy %d, reg %d\n",
348 device_xname(sc->sc_dev), phy, reg);
349 return (0);
350 }
351
352 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
353 }
354
355 /*
356 * Write a PHY register on the MII of the L1.
357 */
358 static void
359 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
360 {
361 struct age_softc *sc = device_private(dev);
362 uint32_t v;
363 int i;
364
365 if (phy != sc->age_phyaddr)
366 return;
367
368 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
369 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
370 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
371
372 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
373 DELAY(1);
374 v = CSR_READ_4(sc, AGE_MDIO);
375 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
376 break;
377 }
378
379 if (i == 0) {
380 printf("%s: phy write timeout: phy %d, reg %d\n",
381 device_xname(sc->sc_dev), phy, reg);
382 }
383 }
384
385 /*
386 * Callback from MII layer when media changes.
387 */
388 static void
389 age_miibus_statchg(device_t dev)
390 {
391 struct age_softc *sc = device_private(dev);
392 struct ifnet *ifp = &sc->sc_ec.ec_if;
393 struct mii_data *mii;
394
395 if ((ifp->if_flags & IFF_RUNNING) == 0)
396 return;
397
398 mii = &sc->sc_miibus;
399
400 sc->age_flags &= ~AGE_FLAG_LINK;
401 if ((mii->mii_media_status & IFM_AVALID) != 0) {
402 switch (IFM_SUBTYPE(mii->mii_media_active)) {
403 case IFM_10_T:
404 case IFM_100_TX:
405 case IFM_1000_T:
406 sc->age_flags |= AGE_FLAG_LINK;
407 break;
408 default:
409 break;
410 }
411 }
412
413 /* Stop Rx/Tx MACs. */
414 age_stop_rxmac(sc);
415 age_stop_txmac(sc);
416
417 /* Program MACs with resolved speed/duplex/flow-control. */
418 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
419 uint32_t reg;
420
421 age_mac_config(sc);
422 reg = CSR_READ_4(sc, AGE_MAC_CFG);
423 /* Restart DMA engine and Tx/Rx MAC. */
424 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
425 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
426 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
427 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
428 }
429 }
430
431 /*
432 * Get the current interface media status.
433 */
434 static void
435 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
436 {
437 struct age_softc *sc = ifp->if_softc;
438 struct mii_data *mii = &sc->sc_miibus;
439
440 mii_pollstat(mii);
441 ifmr->ifm_status = mii->mii_media_status;
442 ifmr->ifm_active = mii->mii_media_active;
443 }
444
445 /*
446 * Set hardware to newly-selected media.
447 */
448 static int
449 age_mediachange(struct ifnet *ifp)
450 {
451 struct age_softc *sc = ifp->if_softc;
452 struct mii_data *mii = &sc->sc_miibus;
453 int error;
454
455 if (mii->mii_instance != 0) {
456 struct mii_softc *miisc;
457
458 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
459 mii_phy_reset(miisc);
460 }
461 error = mii_mediachg(mii);
462
463 return (error);
464 }
465
466 static int
467 age_intr(void *arg)
468 {
469 struct age_softc *sc = arg;
470 struct ifnet *ifp = &sc->sc_ec.ec_if;
471 struct cmb *cmb;
472 uint32_t status;
473
474 status = CSR_READ_4(sc, AGE_INTR_STATUS);
475 if (status == 0 || (status & AGE_INTRS) == 0)
476 return (0);
477
478 /* Disable interrupts. */
479 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
480
481 cmb = sc->age_rdata.age_cmb_block;
482
483 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
484 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
485 status = le32toh(cmb->intr_status);
486 if ((status & AGE_INTRS) == 0)
487 goto back;
488
489 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
490 TPD_CONS_SHIFT;
491 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
492 RRD_PROD_SHIFT;
493
494 /* Let hardware know CMB was served. */
495 cmb->intr_status = 0;
496 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
497 sc->age_cdata.age_cmb_block_map->dm_mapsize,
498 BUS_DMASYNC_PREWRITE);
499
500 if (ifp->if_flags & IFF_RUNNING) {
501 if (status & INTR_CMB_RX)
502 age_rxintr(sc, sc->age_rr_prod);
503
504 if (status & INTR_CMB_TX)
505 age_txintr(sc, sc->age_tpd_cons);
506
507 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
508 if (status & INTR_DMA_RD_TO_RST)
509 printf("%s: DMA read error! -- resetting\n",
510 device_xname(sc->sc_dev));
511 if (status & INTR_DMA_WR_TO_RST)
512 printf("%s: DMA write error! -- resetting\n",
513 device_xname(sc->sc_dev));
514 age_init(ifp);
515 }
516
517 if (!IFQ_IS_EMPTY(&ifp->if_snd))
518 age_start(ifp);
519
520 if (status & INTR_SMB)
521 age_stats_update(sc);
522 }
523
524 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
525 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
526 sc->age_cdata.age_cmb_block_map->dm_mapsize,
527 BUS_DMASYNC_POSTREAD);
528
529 back:
530 /* Re-enable interrupts. */
531 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
532
533 return (1);
534 }
535
536 static int
537 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
538 uint32_t *word)
539 {
540 int i;
541
542 pci_conf_write(sc->sc_pct, sc->sc_pcitag, vpdc + 0x0, offset << 16);
543 for (i = AGE_TIMEOUT; i > 0; i--) {
544 DELAY(10);
545 if ((pci_conf_read(sc->sc_pct, sc->sc_pcitag,
546 vpdc + 0x0) >> 16 & 0x8000) == 0x8000)
547 break;
548 }
549 if (i == 0) {
550 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
551 *word = 0;
552 return (ETIMEDOUT);
553 }
554
555 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, vpdc + 0x4);
556 return (0);
557 }
558
559 static void
560 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
561 {
562 uint32_t ea[2], off, reg, word;
563 int vpd_error, match, vpdc;
564
565 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
566 if ((reg & SPI_VPD_ENB) != 0) {
567 /* Get VPD stored in TWSI EEPROM. */
568 reg &= ~SPI_VPD_ENB;
569 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
570 }
571
572 vpd_error = 0;
573 ea[0] = ea[1] = 0;
574 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
575 PCI_CAP_VPD, &vpdc, NULL))) {
576 /*
577 * PCI VPD capability exists, but it seems that it's
578 * not in the standard form as stated in PCI VPD
579 * specification such that driver could not use
580 * pci_get_vpd_readonly(9) with keyword 'NA'.
581 * Search VPD data starting at address 0x0100. The data
582 * should be used as initializers to set AGE_PAR0,
583 * AGE_PAR1 register including other PCI configuration
584 * registers.
585 */
586 word = 0;
587 match = 0;
588 reg = 0;
589 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
590 off += sizeof(uint32_t)) {
591 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
592 if (vpd_error != 0)
593 break;
594 if (match != 0) {
595 switch (reg) {
596 case AGE_PAR0:
597 ea[0] = word;
598 break;
599 case AGE_PAR1:
600 ea[1] = word;
601 break;
602 default:
603 break;
604 }
605 match = 0;
606 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
607 match = 1;
608 reg = word >> 16;
609 } else
610 break;
611 }
612 if (off >= AGE_VPD_REG_CONF_END)
613 vpd_error = ENOENT;
614 if (vpd_error == 0) {
615 /*
616 * Don't blindly trust ethernet address obtained
617 * from VPD. Check whether ethernet address is
618 * valid one. Otherwise fall-back to reading
619 * PAR register.
620 */
621 ea[1] &= 0xFFFF;
622 if ((ea[0] == 0 && ea[1] == 0) ||
623 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
624 if (agedebug)
625 printf("%s: invalid ethernet address "
626 "returned from VPD.\n",
627 device_xname(sc->sc_dev));
628 vpd_error = EINVAL;
629 }
630 }
631 if (vpd_error != 0 && (agedebug))
632 printf("%s: VPD access failure!\n",
633 device_xname(sc->sc_dev));
634 } else {
635 if (agedebug)
636 printf("%s: PCI VPD capability not found!\n",
637 device_xname(sc->sc_dev));
638 }
639
640 /*
641 * It seems that L1 also provides a way to extract ethernet
642 * address via SPI flash interface. Because SPI flash memory
643 * device of different vendors vary in their instruction
644 * codes for read ID instruction, it's very hard to get
645 * instructions codes without detailed information for the
646 * flash memory device used on ethernet controller. To simplify
647 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
648 * address which is supposed to be set by hardware during
649 * power on reset.
650 */
651 if (vpd_error != 0) {
652 /*
653 * VPD is mapped to SPI flash memory or BIOS set it.
654 */
655 ea[0] = CSR_READ_4(sc, AGE_PAR0);
656 ea[1] = CSR_READ_4(sc, AGE_PAR1);
657 }
658
659 ea[1] &= 0xFFFF;
660 eaddr[0] = (ea[1] >> 8) & 0xFF;
661 eaddr[1] = (ea[1] >> 0) & 0xFF;
662 eaddr[2] = (ea[0] >> 24) & 0xFF;
663 eaddr[3] = (ea[0] >> 16) & 0xFF;
664 eaddr[4] = (ea[0] >> 8) & 0xFF;
665 eaddr[5] = (ea[0] >> 0) & 0xFF;
666 }
667
668 static void
669 age_phy_reset(struct age_softc *sc)
670 {
671 /* Reset PHY. */
672 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
673 DELAY(1000);
674 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
675 DELAY(1000);
676 }
677
678 static int
679 age_dma_alloc(struct age_softc *sc)
680 {
681 struct age_txdesc *txd;
682 struct age_rxdesc *rxd;
683 int nsegs, error, i;
684
685 /*
686 * Create DMA stuffs for TX ring
687 */
688 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
689 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
690 if (error)
691 return (ENOBUFS);
692
693 /* Allocate DMA'able memory for TX ring */
694 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
695 PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
696 &nsegs, BUS_DMA_WAITOK);
697 if (error) {
698 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
699 device_xname(sc->sc_dev));
700 return error;
701 }
702
703 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
704 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
705 BUS_DMA_NOWAIT);
706 if (error)
707 return (ENOBUFS);
708
709 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
710
711 /* Load the DMA map for Tx ring. */
712 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
713 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
714 if (error) {
715 printf("%s: could not load DMA'able memory for Tx ring.\n",
716 device_xname(sc->sc_dev));
717 bus_dmamem_free(sc->sc_dmat,
718 (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
719 return error;
720 }
721
722 sc->age_rdata.age_tx_ring_paddr =
723 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
724
725 /*
726 * Create DMA stuffs for RX ring
727 */
728 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
729 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
730 if (error)
731 return (ENOBUFS);
732
733 /* Allocate DMA'able memory for RX ring */
734 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
735 PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
736 &nsegs, BUS_DMA_WAITOK);
737 if (error) {
738 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
739 device_xname(sc->sc_dev));
740 return error;
741 }
742
743 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
744 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
745 BUS_DMA_NOWAIT);
746 if (error)
747 return (ENOBUFS);
748
749 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
750
751 /* Load the DMA map for Rx ring. */
752 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
753 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
754 if (error) {
755 printf("%s: could not load DMA'able memory for Rx ring.\n",
756 device_xname(sc->sc_dev));
757 bus_dmamem_free(sc->sc_dmat,
758 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
759 return error;
760 }
761
762 sc->age_rdata.age_rx_ring_paddr =
763 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
764
765 /*
766 * Create DMA stuffs for RX return ring
767 */
768 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
769 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
770 if (error)
771 return (ENOBUFS);
772
773 /* Allocate DMA'able memory for RX return ring */
774 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
775 PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
776 &nsegs, BUS_DMA_WAITOK);
777 if (error) {
778 printf("%s: could not allocate DMA'able memory for Rx "
779 "return ring.\n", device_xname(sc->sc_dev));
780 return error;
781 }
782
783 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
784 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
785 BUS_DMA_NOWAIT);
786 if (error)
787 return (ENOBUFS);
788
789 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
790
791 /* Load the DMA map for Rx return ring. */
792 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
793 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
794 if (error) {
795 printf("%s: could not load DMA'able memory for Rx return ring."
796 "\n", device_xname(sc->sc_dev));
797 bus_dmamem_free(sc->sc_dmat,
798 (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
799 return error;
800 }
801
802 sc->age_rdata.age_rr_ring_paddr =
803 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
804
805 /*
806 * Create DMA stuffs for CMB block
807 */
808 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
809 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
810 &sc->age_cdata.age_cmb_block_map);
811 if (error)
812 return (ENOBUFS);
813
814 /* Allocate DMA'able memory for CMB block */
815 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
816 PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
817 &nsegs, BUS_DMA_WAITOK);
818 if (error) {
819 printf("%s: could not allocate DMA'able memory for "
820 "CMB block\n", device_xname(sc->sc_dev));
821 return error;
822 }
823
824 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
825 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
826 BUS_DMA_NOWAIT);
827 if (error)
828 return (ENOBUFS);
829
830 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
831
832 /* Load the DMA map for CMB block. */
833 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
834 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
835 BUS_DMA_WAITOK);
836 if (error) {
837 printf("%s: could not load DMA'able memory for CMB block\n",
838 device_xname(sc->sc_dev));
839 bus_dmamem_free(sc->sc_dmat,
840 (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
841 return error;
842 }
843
844 sc->age_rdata.age_cmb_block_paddr =
845 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
846
847 /*
848 * Create DMA stuffs for SMB block
849 */
850 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
851 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
852 &sc->age_cdata.age_smb_block_map);
853 if (error)
854 return (ENOBUFS);
855
856 /* Allocate DMA'able memory for SMB block */
857 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
858 PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
859 &nsegs, BUS_DMA_WAITOK);
860 if (error) {
861 printf("%s: could not allocate DMA'able memory for "
862 "SMB block\n", device_xname(sc->sc_dev));
863 return error;
864 }
865
866 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
867 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
868 BUS_DMA_NOWAIT);
869 if (error)
870 return (ENOBUFS);
871
872 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
873
874 /* Load the DMA map for SMB block */
875 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
876 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
877 BUS_DMA_WAITOK);
878 if (error) {
879 printf("%s: could not load DMA'able memory for SMB block\n",
880 device_xname(sc->sc_dev));
881 bus_dmamem_free(sc->sc_dmat,
882 (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
883 return error;
884 }
885
886 sc->age_rdata.age_smb_block_paddr =
887 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
888
889 /* Create DMA maps for Tx buffers. */
890 for (i = 0; i < AGE_TX_RING_CNT; i++) {
891 txd = &sc->age_cdata.age_txdesc[i];
892 txd->tx_m = NULL;
893 txd->tx_dmamap = NULL;
894 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
895 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
896 &txd->tx_dmamap);
897 if (error) {
898 printf("%s: could not create Tx dmamap.\n",
899 device_xname(sc->sc_dev));
900 return error;
901 }
902 }
903
904 /* Create DMA maps for Rx buffers. */
905 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
906 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
907 if (error) {
908 printf("%s: could not create spare Rx dmamap.\n",
909 device_xname(sc->sc_dev));
910 return error;
911 }
912 for (i = 0; i < AGE_RX_RING_CNT; i++) {
913 rxd = &sc->age_cdata.age_rxdesc[i];
914 rxd->rx_m = NULL;
915 rxd->rx_dmamap = NULL;
916 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
917 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
918 if (error) {
919 printf("%s: could not create Rx dmamap.\n",
920 device_xname(sc->sc_dev));
921 return error;
922 }
923 }
924
925 return (0);
926 }
927
928 static void
929 age_dma_free(struct age_softc *sc)
930 {
931 struct age_txdesc *txd;
932 struct age_rxdesc *rxd;
933 int i;
934
935 /* Tx buffers */
936 for (i = 0; i < AGE_TX_RING_CNT; i++) {
937 txd = &sc->age_cdata.age_txdesc[i];
938 if (txd->tx_dmamap != NULL) {
939 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
940 txd->tx_dmamap = NULL;
941 }
942 }
943 /* Rx buffers */
944 for (i = 0; i < AGE_RX_RING_CNT; i++) {
945 rxd = &sc->age_cdata.age_rxdesc[i];
946 if (rxd->rx_dmamap != NULL) {
947 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
948 rxd->rx_dmamap = NULL;
949 }
950 }
951 if (sc->age_cdata.age_rx_sparemap != NULL) {
952 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
953 sc->age_cdata.age_rx_sparemap = NULL;
954 }
955
956 /* Tx ring. */
957 if (sc->age_cdata.age_tx_ring_map != NULL)
958 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
959 if (sc->age_cdata.age_tx_ring_map != NULL &&
960 sc->age_rdata.age_tx_ring != NULL)
961 bus_dmamem_free(sc->sc_dmat,
962 (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
963 sc->age_rdata.age_tx_ring = NULL;
964 sc->age_cdata.age_tx_ring_map = NULL;
965
966 /* Rx ring. */
967 if (sc->age_cdata.age_rx_ring_map != NULL)
968 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
969 if (sc->age_cdata.age_rx_ring_map != NULL &&
970 sc->age_rdata.age_rx_ring != NULL)
971 bus_dmamem_free(sc->sc_dmat,
972 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
973 sc->age_rdata.age_rx_ring = NULL;
974 sc->age_cdata.age_rx_ring_map = NULL;
975
976 /* Rx return ring. */
977 if (sc->age_cdata.age_rr_ring_map != NULL)
978 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
979 if (sc->age_cdata.age_rr_ring_map != NULL &&
980 sc->age_rdata.age_rr_ring != NULL)
981 bus_dmamem_free(sc->sc_dmat,
982 (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
983 sc->age_rdata.age_rr_ring = NULL;
984 sc->age_cdata.age_rr_ring_map = NULL;
985
986 /* CMB block */
987 if (sc->age_cdata.age_cmb_block_map != NULL)
988 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
989 if (sc->age_cdata.age_cmb_block_map != NULL &&
990 sc->age_rdata.age_cmb_block != NULL)
991 bus_dmamem_free(sc->sc_dmat,
992 (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
993 sc->age_rdata.age_cmb_block = NULL;
994 sc->age_cdata.age_cmb_block_map = NULL;
995
996 /* SMB block */
997 if (sc->age_cdata.age_smb_block_map != NULL)
998 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
999 if (sc->age_cdata.age_smb_block_map != NULL &&
1000 sc->age_rdata.age_smb_block != NULL)
1001 bus_dmamem_free(sc->sc_dmat,
1002 (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1003 }
1004
1005 static void
1006 age_start(struct ifnet *ifp)
1007 {
1008 struct age_softc *sc = ifp->if_softc;
1009 struct mbuf *m_head;
1010 int enq;
1011
1012 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1013 return;
1014
1015 enq = 0;
1016 for (;;) {
1017 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1018 if (m_head == NULL)
1019 break;
1020
1021 /*
1022 * Pack the data into the transmit ring. If we
1023 * don't have room, set the OACTIVE flag and wait
1024 * for the NIC to drain the ring.
1025 */
1026 if (age_encap(sc, &m_head)) {
1027 if (m_head == NULL)
1028 break;
1029 ifp->if_flags |= IFF_OACTIVE;
1030 break;
1031 }
1032 enq = 1;
1033
1034 #if NBPFILTER > 0
1035 /*
1036 * If there's a BPF listener, bounce a copy of this frame
1037 * to him.
1038 */
1039 if (ifp->if_bpf != NULL)
1040 bpf_mtap(ifp->if_bpf, m_head);
1041 #endif
1042 }
1043
1044 if (enq) {
1045 /* Update mbox. */
1046 AGE_COMMIT_MBOX(sc);
1047 /* Set a timeout in case the chip goes out to lunch. */
1048 ifp->if_timer = AGE_TX_TIMEOUT;
1049 }
1050 }
1051
1052 static void
1053 age_watchdog(struct ifnet *ifp)
1054 {
1055 struct age_softc *sc = ifp->if_softc;
1056
1057 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1058 printf("%s: watchdog timeout (missed link)\n",
1059 device_xname(sc->sc_dev));
1060 ifp->if_oerrors++;
1061 age_init(ifp);
1062 return;
1063 }
1064
1065 if (sc->age_cdata.age_tx_cnt == 0) {
1066 printf("%s: watchdog timeout (missed Tx interrupts) "
1067 "-- recovering\n", device_xname(sc->sc_dev));
1068 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1069 age_start(ifp);
1070 return;
1071 }
1072
1073 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1074 ifp->if_oerrors++;
1075 age_init(ifp);
1076
1077 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1078 age_start(ifp);
1079 }
1080
1081 static int
1082 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1083 {
1084 struct age_softc *sc = ifp->if_softc;
1085 struct mii_data *mii = &sc->sc_miibus;
1086 struct ifreq *ifr = (struct ifreq *)data;
1087 int s, error = 0;
1088
1089 s = splnet();
1090
1091 switch (cmd) {
1092 case SIOCSIFADDR:
1093 ifp->if_flags |= IFF_UP;
1094 if (!(ifp->if_flags & IFF_RUNNING))
1095 age_init(ifp);
1096 #ifdef INET
1097 if (ifa->ifa_addr->sa_family == AF_INET)
1098 arp_ifinit(&sc->sc_ec, ifa);
1099 #endif
1100 break;
1101
1102 case SIOCSIFFLAGS:
1103 error = ifioctl_common(ifp, cmd, data);
1104 if (error)
1105 break;
1106 if (ifp->if_flags & IFF_UP) {
1107 if (ifp->if_flags & IFF_RUNNING)
1108 age_rxfilter(sc);
1109 else
1110 age_init(ifp);
1111 } else {
1112 if (ifp->if_flags & IFF_RUNNING)
1113 age_stop(sc);
1114 }
1115 sc->age_if_flags = ifp->if_flags;
1116 break;
1117
1118 case SIOCADDMULTI:
1119 case SIOCDELMULTI:
1120 error = ether_ioctl(ifp, cmd, data);
1121 break;
1122
1123 case SIOCSIFMEDIA:
1124 case SIOCGIFMEDIA:
1125 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1126 break;
1127 default:
1128 error = ether_ioctl(ifp, cmd, data);
1129 break;
1130 }
1131
1132 if (error == ENETRESET) {
1133 if (ifp->if_flags & IFF_RUNNING)
1134 age_rxfilter(sc);
1135 error = 0;
1136 }
1137
1138 splx(s);
1139 return (error);
1140 }
1141
1142 static void
1143 age_mac_config(struct age_softc *sc)
1144 {
1145 struct mii_data *mii;
1146 uint32_t reg;
1147
1148 mii = &sc->sc_miibus;
1149
1150 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1151 reg &= ~MAC_CFG_FULL_DUPLEX;
1152 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1153 reg &= ~MAC_CFG_SPEED_MASK;
1154
1155 /* Reprogram MAC with resolved speed/duplex. */
1156 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1157 case IFM_10_T:
1158 case IFM_100_TX:
1159 reg |= MAC_CFG_SPEED_10_100;
1160 break;
1161 case IFM_1000_T:
1162 reg |= MAC_CFG_SPEED_1000;
1163 break;
1164 }
1165 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1166 reg |= MAC_CFG_FULL_DUPLEX;
1167 #ifdef notyet
1168 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1169 reg |= MAC_CFG_TX_FC;
1170 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1171 reg |= MAC_CFG_RX_FC;
1172 #endif
1173 }
1174
1175 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1176 }
1177
1178 static int
1179 age_encap(struct age_softc *sc, struct mbuf **m_head)
1180 {
1181 struct age_txdesc *txd, *txd_last;
1182 struct tx_desc *desc;
1183 struct mbuf *m;
1184 bus_dmamap_t map;
1185 uint32_t cflags, poff, vtag;
1186 int error, i, nsegs, prod;
1187 struct m_tag *mtag;
1188
1189 m = *m_head;
1190 cflags = vtag = 0;
1191 poff = 0;
1192
1193 prod = sc->age_cdata.age_tx_prod;
1194 txd = &sc->age_cdata.age_txdesc[prod];
1195 txd_last = txd;
1196 map = txd->tx_dmamap;
1197
1198 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1199
1200 if (error != 0) {
1201 bus_dmamap_unload(sc->sc_dmat, map);
1202 error = EFBIG;
1203 }
1204 if (error == EFBIG) {
1205 error = 0;
1206
1207 MGETHDR(m, M_DONTWAIT, MT_DATA);
1208 if (m == NULL) {
1209 printf("%s: can't defrag TX mbuf\n",
1210 device_xname(sc->sc_dev));
1211 m_freem(*m_head);
1212 *m_head = NULL;
1213 return (ENOBUFS);
1214 }
1215
1216 MCLGET(m, M_DONTWAIT);
1217 if (!(m->m_flags & M_EXT)) {
1218 m_freem(m);
1219 *m_head = NULL;
1220 return (ENOBUFS);
1221 }
1222 m->m_len = m->m_pkthdr.len;
1223 *m_head = m;
1224
1225 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1226 BUS_DMA_NOWAIT);
1227
1228 if (error != 0) {
1229 printf("%s: could not load defragged TX mbuf\n",
1230 device_xname(sc->sc_dev));
1231 if (!error) {
1232 bus_dmamap_unload(sc->sc_dmat, map);
1233 error = EFBIG;
1234 }
1235 m_freem(*m_head);
1236 *m_head = NULL;
1237 return (error);
1238 }
1239 } else if (error) {
1240 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1241 return (error);
1242 }
1243
1244 nsegs = map->dm_nsegs;
1245
1246 if (nsegs == 0) {
1247 m_freem(*m_head);
1248 *m_head = NULL;
1249 return (EIO);
1250 }
1251
1252 /* Check descriptor overrun. */
1253 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1254 bus_dmamap_unload(sc->sc_dmat, map);
1255 return (ENOBUFS);
1256 }
1257
1258 m = *m_head;
1259 /* Configure Tx IP/TCP/UDP checksum offload. */
1260 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1261 cflags |= AGE_TD_CSUM;
1262 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1263 cflags |= AGE_TD_TCPCSUM;
1264 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1265 cflags |= AGE_TD_UDPCSUM;
1266 /* Set checksum start offset. */
1267 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1268 }
1269
1270 #if NVLAN > 0
1271 /* Configure VLAN hardware tag insertion. */
1272 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1273 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1274 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1275 cflags |= AGE_TD_INSERT_VLAN_TAG;
1276 }
1277 #endif
1278
1279 desc = NULL;
1280 for (i = 0; i < nsegs; i++) {
1281 desc = &sc->age_rdata.age_tx_ring[prod];
1282 desc->addr = htole64(map->dm_segs[i].ds_addr);
1283 desc->len =
1284 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1285 desc->flags = htole32(cflags);
1286 sc->age_cdata.age_tx_cnt++;
1287 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 }
1289
1290 /* Update producer index. */
1291 sc->age_cdata.age_tx_prod = prod;
1292
1293 /* Set EOP on the last descriptor. */
1294 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1295 desc = &sc->age_rdata.age_tx_ring[prod];
1296 desc->flags |= htole32(AGE_TD_EOP);
1297
1298 /* Swap dmamap of the first and the last. */
1299 txd = &sc->age_cdata.age_txdesc[prod];
1300 map = txd_last->tx_dmamap;
1301 txd_last->tx_dmamap = txd->tx_dmamap;
1302 txd->tx_dmamap = map;
1303 txd->tx_m = m;
1304
1305 /* Sync descriptors. */
1306 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1307 BUS_DMASYNC_PREWRITE);
1308 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1309 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1310
1311 return (0);
1312 }
1313
1314 static void
1315 age_txintr(struct age_softc *sc, int tpd_cons)
1316 {
1317 struct ifnet *ifp = &sc->sc_ec.ec_if;
1318 struct age_txdesc *txd;
1319 int cons, prog;
1320
1321 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1322 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323
1324 /*
1325 * Go through our Tx list and free mbufs for those
1326 * frames which have been transmitted.
1327 */
1328 cons = sc->age_cdata.age_tx_cons;
1329 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1330 if (sc->age_cdata.age_tx_cnt <= 0)
1331 break;
1332 prog++;
1333 ifp->if_flags &= ~IFF_OACTIVE;
1334 sc->age_cdata.age_tx_cnt--;
1335 txd = &sc->age_cdata.age_txdesc[cons];
1336 /*
1337 * Clear Tx descriptors, it's not required but would
1338 * help debugging in case of Tx issues.
1339 */
1340 txd->tx_desc->addr = 0;
1341 txd->tx_desc->len = 0;
1342 txd->tx_desc->flags = 0;
1343
1344 if (txd->tx_m == NULL)
1345 continue;
1346 /* Reclaim transmitted mbufs. */
1347 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1348 m_freem(txd->tx_m);
1349 txd->tx_m = NULL;
1350 }
1351
1352 if (prog > 0) {
1353 sc->age_cdata.age_tx_cons = cons;
1354
1355 /*
1356 * Unarm watchdog timer only when there are no pending
1357 * Tx descriptors in queue.
1358 */
1359 if (sc->age_cdata.age_tx_cnt == 0)
1360 ifp->if_timer = 0;
1361
1362 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1363 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1364 BUS_DMASYNC_PREWRITE);
1365 }
1366 }
1367
1368 /* Receive a frame. */
1369 static void
1370 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1371 {
1372 struct ifnet *ifp = &sc->sc_ec.ec_if;
1373 struct age_rxdesc *rxd;
1374 struct rx_desc *desc;
1375 struct mbuf *mp, *m;
1376 uint32_t status, index, vtag;
1377 int count, nsegs, pktlen;
1378 int rx_cons;
1379
1380 status = le32toh(rxrd->flags);
1381 index = le32toh(rxrd->index);
1382 rx_cons = AGE_RX_CONS(index);
1383 nsegs = AGE_RX_NSEGS(index);
1384
1385 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1386 if ((status & AGE_RRD_ERROR) != 0 &&
1387 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1388 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1389 /*
1390 * We want to pass the following frames to upper
1391 * layer regardless of error status of Rx return
1392 * ring.
1393 *
1394 * o IP/TCP/UDP checksum is bad.
1395 * o frame length and protocol specific length
1396 * does not match.
1397 */
1398 sc->age_cdata.age_rx_cons += nsegs;
1399 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1400 return;
1401 }
1402
1403 pktlen = 0;
1404 for (count = 0; count < nsegs; count++,
1405 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1406 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1407 mp = rxd->rx_m;
1408 desc = rxd->rx_desc;
1409 /* Add a new receive buffer to the ring. */
1410 if (age_newbuf(sc, rxd, 0) != 0) {
1411 ifp->if_iqdrops++;
1412 /* Reuse Rx buffers. */
1413 if (sc->age_cdata.age_rxhead != NULL) {
1414 m_freem(sc->age_cdata.age_rxhead);
1415 AGE_RXCHAIN_RESET(sc);
1416 }
1417 break;
1418 }
1419
1420 /* The length of the first mbuf is computed last. */
1421 if (count != 0) {
1422 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1423 pktlen += mp->m_len;
1424 }
1425
1426 /* Chain received mbufs. */
1427 if (sc->age_cdata.age_rxhead == NULL) {
1428 sc->age_cdata.age_rxhead = mp;
1429 sc->age_cdata.age_rxtail = mp;
1430 } else {
1431 mp->m_flags &= ~M_PKTHDR;
1432 sc->age_cdata.age_rxprev_tail =
1433 sc->age_cdata.age_rxtail;
1434 sc->age_cdata.age_rxtail->m_next = mp;
1435 sc->age_cdata.age_rxtail = mp;
1436 }
1437
1438 if (count == nsegs - 1) {
1439 /*
1440 * It seems that L1 controller has no way
1441 * to tell hardware to strip CRC bytes.
1442 */
1443 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1444 if (nsegs > 1) {
1445 /* Remove the CRC bytes in chained mbufs. */
1446 pktlen -= ETHER_CRC_LEN;
1447 if (mp->m_len <= ETHER_CRC_LEN) {
1448 sc->age_cdata.age_rxtail =
1449 sc->age_cdata.age_rxprev_tail;
1450 sc->age_cdata.age_rxtail->m_len -=
1451 (ETHER_CRC_LEN - mp->m_len);
1452 sc->age_cdata.age_rxtail->m_next = NULL;
1453 m_freem(mp);
1454 } else {
1455 mp->m_len -= ETHER_CRC_LEN;
1456 }
1457 }
1458
1459 m = sc->age_cdata.age_rxhead;
1460 m->m_flags |= M_PKTHDR;
1461 m->m_pkthdr.rcvif = ifp;
1462 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1463 /* Set the first mbuf length. */
1464 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1465
1466 /*
1467 * Set checksum information.
1468 * It seems that L1 controller can compute partial
1469 * checksum. The partial checksum value can be used
1470 * to accelerate checksum computation for fragmented
1471 * TCP/UDP packets. Upper network stack already
1472 * takes advantage of the partial checksum value in
1473 * IP reassembly stage. But I'm not sure the
1474 * correctness of the partial hardware checksum
1475 * assistance due to lack of data sheet. If it is
1476 * proven to work on L1 I'll enable it.
1477 */
1478 if (status & AGE_RRD_IPV4) {
1479 if (!(status & AGE_RRD_IPCSUM_NOK))
1480 m->m_pkthdr.csum_flags |=
1481 M_CSUM_IPv4_BAD;
1482 if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1483 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
1484 m->m_pkthdr.csum_flags |=
1485 M_CSUM_TCP_UDP_BAD;
1486 }
1487 /*
1488 * Don't mark bad checksum for TCP/UDP frames
1489 * as fragmented frames may always have set
1490 * bad checksummed bit of descriptor status.
1491 */
1492 }
1493 #if NVLAN > 0
1494 /* Check for VLAN tagged frames. */
1495 if (status & AGE_RRD_VLAN) {
1496 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1497 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1498 continue);
1499 }
1500 #endif
1501
1502 #if NBPFILTER > 0
1503 if (ifp->if_bpf)
1504 bpf_mtap(ifp->if_bpf, m);
1505 #endif
1506 /* Pass it on. */
1507 ether_input(ifp, m);
1508
1509 /* Reset mbuf chains. */
1510 AGE_RXCHAIN_RESET(sc);
1511 }
1512 }
1513
1514 if (count != nsegs) {
1515 sc->age_cdata.age_rx_cons += nsegs;
1516 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1517 } else
1518 sc->age_cdata.age_rx_cons = rx_cons;
1519 }
1520
1521 static void
1522 age_rxintr(struct age_softc *sc, int rr_prod)
1523 {
1524 struct rx_rdesc *rxrd;
1525 int rr_cons, nsegs, pktlen, prog;
1526
1527 rr_cons = sc->age_cdata.age_rr_cons;
1528 if (rr_cons == rr_prod)
1529 return;
1530
1531 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1532 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1533 BUS_DMASYNC_POSTREAD);
1534
1535 for (prog = 0; rr_cons != rr_prod; prog++) {
1536 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1537 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1538 if (nsegs == 0)
1539 break;
1540 /*
1541 * Check number of segments against received bytes
1542 * Non-matching value would indicate that hardware
1543 * is still trying to update Rx return descriptors.
1544 * I'm not sure whether this check is really needed.
1545 */
1546 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1547 if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
1548 (MCLBYTES - ETHER_HDR_LEN)))
1549 break;
1550
1551 /* Received a frame. */
1552 age_rxeof(sc, rxrd);
1553
1554 /* Clear return ring. */
1555 rxrd->index = 0;
1556 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1557 }
1558
1559 if (prog > 0) {
1560 /* Update the consumer index. */
1561 sc->age_cdata.age_rr_cons = rr_cons;
1562
1563 /* Sync descriptors. */
1564 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1565 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1566 BUS_DMASYNC_PREWRITE);
1567
1568 /* Notify hardware availability of new Rx buffers. */
1569 AGE_COMMIT_MBOX(sc);
1570 }
1571 }
1572
1573 static void
1574 age_tick(void *xsc)
1575 {
1576 struct age_softc *sc = xsc;
1577 struct mii_data *mii = &sc->sc_miibus;
1578 int s;
1579
1580 s = splnet();
1581 mii_tick(mii);
1582 splx(s);
1583
1584 callout_schedule(&sc->sc_tick_ch, hz);
1585 }
1586
1587 static void
1588 age_reset(struct age_softc *sc)
1589 {
1590 uint32_t reg;
1591 int i;
1592
1593 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1594 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1595 DELAY(1);
1596 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1597 break;
1598 }
1599 if (i == 0)
1600 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1601
1602 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1603 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1604 break;
1605 DELAY(10);
1606 }
1607
1608 if (i == 0)
1609 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1610 reg);
1611
1612 /* Initialize PCIe module. From Linux. */
1613 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1614 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1615 }
1616
1617 static int
1618 age_init(struct ifnet *ifp)
1619 {
1620 struct age_softc *sc = ifp->if_softc;
1621 struct mii_data *mii;
1622 uint8_t eaddr[ETHER_ADDR_LEN];
1623 bus_addr_t paddr;
1624 uint32_t reg, fsize;
1625 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1626 int error;
1627
1628 /*
1629 * Cancel any pending I/O.
1630 */
1631 age_stop(sc);
1632
1633 /*
1634 * Reset the chip to a known state.
1635 */
1636 age_reset(sc);
1637
1638 /* Initialize descriptors. */
1639 error = age_init_rx_ring(sc);
1640 if (error != 0) {
1641 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1642 age_stop(sc);
1643 return (error);
1644 }
1645 age_init_rr_ring(sc);
1646 age_init_tx_ring(sc);
1647 age_init_cmb_block(sc);
1648 age_init_smb_block(sc);
1649
1650 /* Reprogram the station address. */
1651 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1652 CSR_WRITE_4(sc, AGE_PAR0,
1653 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1654 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1655
1656 /* Set descriptor base addresses. */
1657 paddr = sc->age_rdata.age_tx_ring_paddr;
1658 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1659 paddr = sc->age_rdata.age_rx_ring_paddr;
1660 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 paddr = sc->age_rdata.age_rr_ring_paddr;
1662 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1663 paddr = sc->age_rdata.age_tx_ring_paddr;
1664 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1665 paddr = sc->age_rdata.age_cmb_block_paddr;
1666 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1667 paddr = sc->age_rdata.age_smb_block_paddr;
1668 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1669
1670 /* Set Rx/Rx return descriptor counter. */
1671 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1672 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1673 DESC_RRD_CNT_MASK) |
1674 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1675
1676 /* Set Tx descriptor counter. */
1677 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1678 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1679
1680 /* Tell hardware that we're ready to load descriptors. */
1681 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682
1683 /*
1684 * Initialize mailbox register.
1685 * Updated producer/consumer index information is exchanged
1686 * through this mailbox register. However Tx producer and
1687 * Rx return consumer/Rx producer are all shared such that
1688 * it's hard to separate code path between Tx and Rx without
1689 * locking. If L1 hardware have a separate mail box register
1690 * for Tx and Rx consumer/producer management we could have
1691 * indepent Tx/Rx handler which in turn Rx handler could have
1692 * been run without any locking.
1693 */
1694 AGE_COMMIT_MBOX(sc);
1695
1696 /* Configure IPG/IFG parameters. */
1697 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1698 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1699 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1700 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1701 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1702
1703 /* Set parameters for half-duplex media. */
1704 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1705 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1706 HDPX_CFG_LCOL_MASK) |
1707 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1708 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1709 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1710 HDPX_CFG_ABEBT_MASK) |
1711 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1712 HDPX_CFG_JAMIPG_MASK));
1713
1714 /* Configure interrupt moderation timer. */
1715 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1716 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1717 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1718 reg &= ~MASTER_MTIMER_ENB;
1719 if (AGE_USECS(sc->age_int_mod) == 0)
1720 reg &= ~MASTER_ITIMER_ENB;
1721 else
1722 reg |= MASTER_ITIMER_ENB;
1723 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1724 if (agedebug)
1725 printf("%s: interrupt moderation is %d us.\n",
1726 device_xname(sc->sc_dev), sc->age_int_mod);
1727 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1728
1729 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1730 if (ifp->if_mtu < ETHERMTU)
1731 sc->age_max_frame_size = ETHERMTU;
1732 else
1733 sc->age_max_frame_size = ifp->if_mtu;
1734 sc->age_max_frame_size += ETHER_HDR_LEN +
1735 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1736 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1737
1738 /* Configure jumbo frame. */
1739 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1740 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1741 (((fsize / sizeof(uint64_t)) <<
1742 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1743 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1744 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1745 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1746 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1747
1748 /* Configure flow-control parameters. From Linux. */
1749 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1750 /*
1751 * Magic workaround for old-L1.
1752 * Don't know which hw revision requires this magic.
1753 */
1754 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1755 /*
1756 * Another magic workaround for flow-control mode
1757 * change. From Linux.
1758 */
1759 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1760 }
1761 /*
1762 * TODO
1763 * Should understand pause parameter relationships between FIFO
1764 * size and number of Rx descriptors and Rx return descriptors.
1765 *
1766 * Magic parameters came from Linux.
1767 */
1768 switch (sc->age_chip_rev) {
1769 case 0x8001:
1770 case 0x9001:
1771 case 0x9002:
1772 case 0x9003:
1773 rxf_hi = AGE_RX_RING_CNT / 16;
1774 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1775 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1776 rrd_lo = AGE_RR_RING_CNT / 16;
1777 break;
1778 default:
1779 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1780 rxf_lo = reg / 16;
1781 if (rxf_lo < 192)
1782 rxf_lo = 192;
1783 rxf_hi = (reg * 7) / 8;
1784 if (rxf_hi < rxf_lo)
1785 rxf_hi = rxf_lo + 16;
1786 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1787 rrd_lo = reg / 8;
1788 rrd_hi = (reg * 7) / 8;
1789 if (rrd_lo < 2)
1790 rrd_lo = 2;
1791 if (rrd_hi < rrd_lo)
1792 rrd_hi = rrd_lo + 3;
1793 break;
1794 }
1795 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1796 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1797 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1798 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1799 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1800 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1801 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1802 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1803 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1804 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1805
1806 /* Configure RxQ. */
1807 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1808 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1809 RXQ_CFG_RD_BURST_MASK) |
1810 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1811 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1812 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1813 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1814 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1815
1816 /* Configure TxQ. */
1817 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1818 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1819 TXQ_CFG_TPD_BURST_MASK) |
1820 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1821 TXQ_CFG_TX_FIFO_BURST_MASK) |
1822 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1823 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1824 TXQ_CFG_ENB);
1825
1826 /* Configure DMA parameters. */
1827 CSR_WRITE_4(sc, AGE_DMA_CFG,
1828 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1829 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1830 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1831
1832 /* Configure CMB DMA write threshold. */
1833 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1834 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1835 CMB_WR_THRESH_RRD_MASK) |
1836 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1837 CMB_WR_THRESH_TPD_MASK));
1838
1839 /* Set CMB/SMB timer and enable them. */
1840 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1841 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1842 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1843
1844 /* Request SMB updates for every seconds. */
1845 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1846 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1847
1848 /*
1849 * Disable all WOL bits as WOL can interfere normal Rx
1850 * operation.
1851 */
1852 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1853
1854 /*
1855 * Configure Tx/Rx MACs.
1856 * - Auto-padding for short frames.
1857 * - Enable CRC generation.
1858 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1859 * of MAC is followed after link establishment.
1860 */
1861 CSR_WRITE_4(sc, AGE_MAC_CFG,
1862 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1863 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1864 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1865 MAC_CFG_PREAMBLE_MASK));
1866
1867 /* Set up the receive filter. */
1868 age_rxfilter(sc);
1869 age_rxvlan(sc);
1870
1871 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872 reg |= MAC_CFG_RXCSUM_ENB;
1873
1874 /* Ack all pending interrupts and clear it. */
1875 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1876 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1877
1878 /* Finally enable Tx/Rx MAC. */
1879 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1880
1881 sc->age_flags &= ~AGE_FLAG_LINK;
1882
1883 /* Switch to the current media. */
1884 mii = &sc->sc_miibus;
1885 mii_mediachg(mii);
1886
1887 callout_schedule(&sc->sc_tick_ch, hz);
1888
1889 ifp->if_flags |= IFF_RUNNING;
1890 ifp->if_flags &= ~IFF_OACTIVE;
1891
1892 return (0);
1893 }
1894
1895 static void
1896 age_stop(struct age_softc *sc)
1897 {
1898 struct ifnet *ifp = &sc->sc_ec.ec_if;
1899 struct age_txdesc *txd;
1900 struct age_rxdesc *rxd;
1901 uint32_t reg;
1902 int i;
1903
1904 callout_stop(&sc->sc_tick_ch);
1905
1906 /*
1907 * Mark the interface down and cancel the watchdog timer.
1908 */
1909 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1910 ifp->if_timer = 0;
1911
1912 sc->age_flags &= ~AGE_FLAG_LINK;
1913
1914 /*
1915 * Disable interrupts.
1916 */
1917 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1918 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1919
1920 /* Stop CMB/SMB updates. */
1921 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1922
1923 /* Stop Rx/Tx MAC. */
1924 age_stop_rxmac(sc);
1925 age_stop_txmac(sc);
1926
1927 /* Stop DMA. */
1928 CSR_WRITE_4(sc, AGE_DMA_CFG,
1929 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1930
1931 /* Stop TxQ/RxQ. */
1932 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1933 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1934 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1935 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1936 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1937 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1938 break;
1939 DELAY(10);
1940 }
1941 if (i == 0)
1942 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1943 device_xname(sc->sc_dev), reg);
1944
1945 /* Reclaim Rx buffers that have been processed. */
1946 if (sc->age_cdata.age_rxhead != NULL)
1947 m_freem(sc->age_cdata.age_rxhead);
1948 AGE_RXCHAIN_RESET(sc);
1949
1950 /*
1951 * Free RX and TX mbufs still in the queues.
1952 */
1953 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1954 rxd = &sc->age_cdata.age_rxdesc[i];
1955 if (rxd->rx_m != NULL) {
1956 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1957 m_freem(rxd->rx_m);
1958 rxd->rx_m = NULL;
1959 }
1960 }
1961 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1962 txd = &sc->age_cdata.age_txdesc[i];
1963 if (txd->tx_m != NULL) {
1964 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1965 m_freem(txd->tx_m);
1966 txd->tx_m = NULL;
1967 }
1968 }
1969 }
1970
1971 static void
1972 age_stats_update(struct age_softc *sc)
1973 {
1974 struct ifnet *ifp = &sc->sc_ec.ec_if;
1975 struct age_stats *stat;
1976 struct smb *smb;
1977
1978 stat = &sc->age_stat;
1979
1980 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1981 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1982
1983 smb = sc->age_rdata.age_smb_block;
1984 if (smb->updated == 0)
1985 return;
1986
1987 /* Rx stats. */
1988 stat->rx_frames += smb->rx_frames;
1989 stat->rx_bcast_frames += smb->rx_bcast_frames;
1990 stat->rx_mcast_frames += smb->rx_mcast_frames;
1991 stat->rx_pause_frames += smb->rx_pause_frames;
1992 stat->rx_control_frames += smb->rx_control_frames;
1993 stat->rx_crcerrs += smb->rx_crcerrs;
1994 stat->rx_lenerrs += smb->rx_lenerrs;
1995 stat->rx_bytes += smb->rx_bytes;
1996 stat->rx_runts += smb->rx_runts;
1997 stat->rx_fragments += smb->rx_fragments;
1998 stat->rx_pkts_64 += smb->rx_pkts_64;
1999 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2000 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2001 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2002 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2003 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2004 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2005 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2006 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2007 stat->rx_desc_oflows += smb->rx_desc_oflows;
2008 stat->rx_alignerrs += smb->rx_alignerrs;
2009 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2010 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2011 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2012
2013 /* Tx stats. */
2014 stat->tx_frames += smb->tx_frames;
2015 stat->tx_bcast_frames += smb->tx_bcast_frames;
2016 stat->tx_mcast_frames += smb->tx_mcast_frames;
2017 stat->tx_pause_frames += smb->tx_pause_frames;
2018 stat->tx_excess_defer += smb->tx_excess_defer;
2019 stat->tx_control_frames += smb->tx_control_frames;
2020 stat->tx_deferred += smb->tx_deferred;
2021 stat->tx_bytes += smb->tx_bytes;
2022 stat->tx_pkts_64 += smb->tx_pkts_64;
2023 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2024 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2025 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2026 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2027 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2028 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2029 stat->tx_single_colls += smb->tx_single_colls;
2030 stat->tx_multi_colls += smb->tx_multi_colls;
2031 stat->tx_late_colls += smb->tx_late_colls;
2032 stat->tx_excess_colls += smb->tx_excess_colls;
2033 stat->tx_underrun += smb->tx_underrun;
2034 stat->tx_desc_underrun += smb->tx_desc_underrun;
2035 stat->tx_lenerrs += smb->tx_lenerrs;
2036 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2037 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2038 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2039
2040 /* Update counters in ifnet. */
2041 ifp->if_opackets += smb->tx_frames;
2042
2043 ifp->if_collisions += smb->tx_single_colls +
2044 smb->tx_multi_colls + smb->tx_late_colls +
2045 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2046
2047 ifp->if_oerrors += smb->tx_excess_colls +
2048 smb->tx_late_colls + smb->tx_underrun +
2049 smb->tx_pkts_truncated;
2050
2051 ifp->if_ipackets += smb->rx_frames;
2052
2053 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2054 smb->rx_runts + smb->rx_pkts_truncated +
2055 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2056 smb->rx_alignerrs;
2057
2058 /* Update done, clear. */
2059 smb->updated = 0;
2060
2061 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2062 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2063 }
2064
2065 static void
2066 age_stop_txmac(struct age_softc *sc)
2067 {
2068 uint32_t reg;
2069 int i;
2070
2071 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2072 if ((reg & MAC_CFG_TX_ENB) != 0) {
2073 reg &= ~MAC_CFG_TX_ENB;
2074 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2075 }
2076 /* Stop Tx DMA engine. */
2077 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2078 if ((reg & DMA_CFG_RD_ENB) != 0) {
2079 reg &= ~DMA_CFG_RD_ENB;
2080 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2081 }
2082 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2083 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2084 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2085 break;
2086 DELAY(10);
2087 }
2088 if (i == 0)
2089 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2090 }
2091
2092 static void
2093 age_stop_rxmac(struct age_softc *sc)
2094 {
2095 uint32_t reg;
2096 int i;
2097
2098 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 if ((reg & MAC_CFG_RX_ENB) != 0) {
2100 reg &= ~MAC_CFG_RX_ENB;
2101 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 }
2103 /* Stop Rx DMA engine. */
2104 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 if ((reg & DMA_CFG_WR_ENB) != 0) {
2106 reg &= ~DMA_CFG_WR_ENB;
2107 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 }
2109 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2112 break;
2113 DELAY(10);
2114 }
2115 if (i == 0)
2116 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2117 }
2118
2119 static void
2120 age_init_tx_ring(struct age_softc *sc)
2121 {
2122 struct age_ring_data *rd;
2123 struct age_txdesc *txd;
2124 int i;
2125
2126 sc->age_cdata.age_tx_prod = 0;
2127 sc->age_cdata.age_tx_cons = 0;
2128 sc->age_cdata.age_tx_cnt = 0;
2129
2130 rd = &sc->age_rdata;
2131 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2132 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2133 txd = &sc->age_cdata.age_txdesc[i];
2134 txd->tx_desc = &rd->age_tx_ring[i];
2135 txd->tx_m = NULL;
2136 }
2137 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2138 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 }
2140
2141 static int
2142 age_init_rx_ring(struct age_softc *sc)
2143 {
2144 struct age_ring_data *rd;
2145 struct age_rxdesc *rxd;
2146 int i;
2147
2148 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2149 rd = &sc->age_rdata;
2150 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2151 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2152 rxd = &sc->age_cdata.age_rxdesc[i];
2153 rxd->rx_m = NULL;
2154 rxd->rx_desc = &rd->age_rx_ring[i];
2155 if (age_newbuf(sc, rxd, 1) != 0)
2156 return (ENOBUFS);
2157 }
2158
2159 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2160 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161
2162 return (0);
2163 }
2164
2165 static void
2166 age_init_rr_ring(struct age_softc *sc)
2167 {
2168 struct age_ring_data *rd;
2169
2170 sc->age_cdata.age_rr_cons = 0;
2171 AGE_RXCHAIN_RESET(sc);
2172
2173 rd = &sc->age_rdata;
2174 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2175 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2176 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2177 }
2178
2179 static void
2180 age_init_cmb_block(struct age_softc *sc)
2181 {
2182 struct age_ring_data *rd;
2183
2184 rd = &sc->age_rdata;
2185 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2186 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2187 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2188 }
2189
2190 static void
2191 age_init_smb_block(struct age_softc *sc)
2192 {
2193 struct age_ring_data *rd;
2194
2195 rd = &sc->age_rdata;
2196 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2197 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2198 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 }
2200
2201 static int
2202 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2203 {
2204 struct rx_desc *desc;
2205 struct mbuf *m;
2206 bus_dmamap_t map;
2207 int error;
2208
2209 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2210 if (m == NULL)
2211 return (ENOBUFS);
2212 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2213 if (!(m->m_flags & M_EXT)) {
2214 m_freem(m);
2215 return (ENOBUFS);
2216 }
2217
2218 m->m_len = m->m_pkthdr.len = MCLBYTES;
2219 m_adj(m, PAGE_SIZE);
2220
2221 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2222 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2223
2224 if (error != 0) {
2225 if (!error) {
2226 bus_dmamap_unload(sc->sc_dmat,
2227 sc->age_cdata.age_rx_sparemap);
2228 error = EFBIG;
2229 printf("%s: too many segments?!\n",
2230 device_xname(sc->sc_dev));
2231 }
2232 m_freem(m);
2233
2234 if (init)
2235 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2236 return (error);
2237 }
2238
2239 if (rxd->rx_m != NULL) {
2240 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2241 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2242 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2243 }
2244 map = rxd->rx_dmamap;
2245 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2246 sc->age_cdata.age_rx_sparemap = map;
2247 rxd->rx_m = m;
2248
2249 desc = rxd->rx_desc;
2250 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2251 desc->len =
2252 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2253 AGE_RD_LEN_SHIFT);
2254
2255 return (0);
2256 }
2257
2258 static void
2259 age_rxvlan(struct age_softc *sc)
2260 {
2261 uint32_t reg;
2262
2263 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2265 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2266 reg |= MAC_CFG_VLAN_TAG_STRIP;
2267 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2268 }
2269
2270 static void
2271 age_rxfilter(struct age_softc *sc)
2272 {
2273 struct ethercom *ec = &sc->sc_ec;
2274 struct ifnet *ifp = &sc->sc_ec.ec_if;
2275 struct ether_multi *enm;
2276 struct ether_multistep step;
2277 uint32_t crc;
2278 uint32_t mchash[2];
2279 uint32_t rxcfg;
2280
2281 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2282 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2283
2284 if (ifp->if_flags & IFF_BROADCAST)
2285 rxcfg |= MAC_CFG_BCAST;
2286 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2287 if (ifp->if_flags & IFF_PROMISC)
2288 rxcfg |= MAC_CFG_PROMISC;
2289 if (ifp->if_flags & IFF_ALLMULTI)
2290 rxcfg |= MAC_CFG_ALLMULTI;
2291 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2292 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2293 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2294 return;
2295 }
2296
2297 /* Program new filter. */
2298 memset(mchash, 0, sizeof(mchash));
2299
2300 ETHER_FIRST_MULTI(step, ec, enm);
2301 while (enm != NULL) {
2302 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2303 enm->enm_addrlo), ETHER_ADDR_LEN);
2304
2305 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 ETHER_NEXT_MULTI(step, enm);
2307 }
2308
2309 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2310 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2311 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2312 }
2313