if_age.c revision 1.21 1 /* $NetBSD: if_age.c,v 1.21 2009/02/11 16:15:59 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.21 2009/02/11 16:15:59 cegger Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct ifnet *, int);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 struct pci_attach_args *pa = aux;
139
140 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 struct age_softc *sc = device_private(self);
148 struct pci_attach_args *pa = aux;
149 pci_intr_handle_t ih;
150 const char *intrstr;
151 struct ifnet *ifp = &sc->sc_ec.ec_if;
152 pcireg_t memtype;
153 int error = 0;
154
155 aprint_naive("\n");
156 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157
158 sc->sc_dev = self;
159 sc->sc_dmat = pa->pa_dmat;
160 sc->sc_pct = pa->pa_pc;
161 sc->sc_pcitag = pa->pa_tag;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 return;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih);
192 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc);
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 return;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, 0);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (!pmf_device_register(self, NULL, age_resume))
292 aprint_error_dev(self, "couldn't establish power handler\n");
293 else
294 pmf_class_network_register(self, ifp);
295
296 return;
297
298 fail:
299 if (sc->sc_irq_handle != NULL) {
300 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
301 sc->sc_irq_handle = NULL;
302 }
303 }
304
305 static int
306 age_detach(device_t self, int flags)
307 {
308 struct age_softc *sc = device_private(self);
309 struct ifnet *ifp = &sc->sc_ec.ec_if;
310 int s;
311
312 s = splnet();
313 age_stop(ifp, 0);
314 splx(s);
315
316 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
317
318 /* Delete all remaining media. */
319 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
320
321 ether_ifdetach(ifp);
322 if_detach(ifp);
323 age_dma_free(sc);
324
325 if (sc->sc_irq_handle != NULL) {
326 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
327 sc->sc_irq_handle = NULL;
328 }
329
330 return 0;
331 }
332
333 /*
334 * Read a PHY register on the MII of the L1.
335 */
336 static int
337 age_miibus_readreg(device_t dev, int phy, int reg)
338 {
339 struct age_softc *sc = device_private(dev);
340 uint32_t v;
341 int i;
342
343 if (phy != sc->age_phyaddr)
344 return 0;
345
346 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
347 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
348 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
349 DELAY(1);
350 v = CSR_READ_4(sc, AGE_MDIO);
351 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
352 break;
353 }
354
355 if (i == 0) {
356 printf("%s: phy read timeout: phy %d, reg %d\n",
357 device_xname(sc->sc_dev), phy, reg);
358 return 0;
359 }
360
361 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
362 }
363
364 /*
365 * Write a PHY register on the MII of the L1.
366 */
367 static void
368 age_miibus_writereg(device_t dev, int phy, int reg, int val)
369 {
370 struct age_softc *sc = device_private(dev);
371 uint32_t v;
372 int i;
373
374 if (phy != sc->age_phyaddr)
375 return;
376
377 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
378 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
379 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
380
381 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
382 DELAY(1);
383 v = CSR_READ_4(sc, AGE_MDIO);
384 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
385 break;
386 }
387
388 if (i == 0) {
389 printf("%s: phy write timeout: phy %d, reg %d\n",
390 device_xname(sc->sc_dev), phy, reg);
391 }
392 }
393
394 /*
395 * Callback from MII layer when media changes.
396 */
397 static void
398 age_miibus_statchg(device_t dev)
399 {
400 struct age_softc *sc = device_private(dev);
401 struct ifnet *ifp = &sc->sc_ec.ec_if;
402 struct mii_data *mii;
403
404 if ((ifp->if_flags & IFF_RUNNING) == 0)
405 return;
406
407 mii = &sc->sc_miibus;
408
409 sc->age_flags &= ~AGE_FLAG_LINK;
410 if ((mii->mii_media_status & IFM_AVALID) != 0) {
411 switch (IFM_SUBTYPE(mii->mii_media_active)) {
412 case IFM_10_T:
413 case IFM_100_TX:
414 case IFM_1000_T:
415 sc->age_flags |= AGE_FLAG_LINK;
416 break;
417 default:
418 break;
419 }
420 }
421
422 /* Stop Rx/Tx MACs. */
423 age_stop_rxmac(sc);
424 age_stop_txmac(sc);
425
426 /* Program MACs with resolved speed/duplex/flow-control. */
427 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
428 uint32_t reg;
429
430 age_mac_config(sc);
431 reg = CSR_READ_4(sc, AGE_MAC_CFG);
432 /* Restart DMA engine and Tx/Rx MAC. */
433 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
434 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
435 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
436 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
437 }
438 }
439
440 /*
441 * Get the current interface media status.
442 */
443 static void
444 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
445 {
446 struct age_softc *sc = ifp->if_softc;
447 struct mii_data *mii = &sc->sc_miibus;
448
449 mii_pollstat(mii);
450 ifmr->ifm_status = mii->mii_media_status;
451 ifmr->ifm_active = mii->mii_media_active;
452 }
453
454 /*
455 * Set hardware to newly-selected media.
456 */
457 static int
458 age_mediachange(struct ifnet *ifp)
459 {
460 struct age_softc *sc = ifp->if_softc;
461 struct mii_data *mii = &sc->sc_miibus;
462 int error;
463
464 if (mii->mii_instance != 0) {
465 struct mii_softc *miisc;
466
467 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
468 mii_phy_reset(miisc);
469 }
470 error = mii_mediachg(mii);
471
472 return error;
473 }
474
475 static int
476 age_intr(void *arg)
477 {
478 struct age_softc *sc = arg;
479 struct ifnet *ifp = &sc->sc_ec.ec_if;
480 struct cmb *cmb;
481 uint32_t status;
482
483 status = CSR_READ_4(sc, AGE_INTR_STATUS);
484 if (status == 0 || (status & AGE_INTRS) == 0)
485 return 0;
486
487 cmb = sc->age_rdata.age_cmb_block;
488 if (cmb == NULL)
489 return 0;
490
491 /* Disable interrupts. */
492 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
493
494 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
495 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
496 status = le32toh(cmb->intr_status);
497 if ((status & AGE_INTRS) == 0)
498 goto back;
499
500 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
501 TPD_CONS_SHIFT;
502 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
503 RRD_PROD_SHIFT;
504
505 /* Let hardware know CMB was served. */
506 cmb->intr_status = 0;
507 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
508 sc->age_cdata.age_cmb_block_map->dm_mapsize,
509 BUS_DMASYNC_PREWRITE);
510
511 if (ifp->if_flags & IFF_RUNNING) {
512 if (status & INTR_CMB_RX)
513 age_rxintr(sc, sc->age_rr_prod);
514
515 if (status & INTR_CMB_TX)
516 age_txintr(sc, sc->age_tpd_cons);
517
518 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
519 if (status & INTR_DMA_RD_TO_RST)
520 printf("%s: DMA read error! -- resetting\n",
521 device_xname(sc->sc_dev));
522 if (status & INTR_DMA_WR_TO_RST)
523 printf("%s: DMA write error! -- resetting\n",
524 device_xname(sc->sc_dev));
525 age_init(ifp);
526 }
527
528 if (!IFQ_IS_EMPTY(&ifp->if_snd))
529 age_start(ifp);
530
531 if (status & INTR_SMB)
532 age_stats_update(sc);
533 }
534
535 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
536 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
537 sc->age_cdata.age_cmb_block_map->dm_mapsize,
538 BUS_DMASYNC_POSTREAD);
539
540 back:
541 /* Re-enable interrupts. */
542 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
543
544 return 1;
545 }
546
547 static int
548 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
549 uint32_t *word)
550 {
551 int i;
552 pcireg_t rv;
553
554 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
555 offset << PCI_VPD_ADDRESS_SHIFT);
556 for (i = AGE_TIMEOUT; i > 0; i--) {
557 DELAY(10);
558 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
559 PCI_VPD_ADDRESS(vpdc));
560 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
561 break;
562 }
563 if (i == 0) {
564 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
565 *word = 0;
566 return ETIMEDOUT;
567 }
568
569 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
570 return 0;
571 }
572
573 static void
574 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
575 {
576 uint32_t ea[2], off, reg, word;
577 int vpd_error, match, vpdc;
578
579 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
580 if ((reg & SPI_VPD_ENB) != 0) {
581 /* Get VPD stored in TWSI EEPROM. */
582 reg &= ~SPI_VPD_ENB;
583 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
584 }
585
586 vpd_error = 0;
587 ea[0] = ea[1] = 0;
588 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
589 PCI_CAP_VPD, &vpdc, NULL))) {
590 /*
591 * PCI VPD capability exists, but it seems that it's
592 * not in the standard form as stated in PCI VPD
593 * specification such that driver could not use
594 * pci_get_vpd_readonly(9) with keyword 'NA'.
595 * Search VPD data starting at address 0x0100. The data
596 * should be used as initializers to set AGE_PAR0,
597 * AGE_PAR1 register including other PCI configuration
598 * registers.
599 */
600 word = 0;
601 match = 0;
602 reg = 0;
603 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
604 off += sizeof(uint32_t)) {
605 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
606 if (vpd_error != 0)
607 break;
608 if (match != 0) {
609 switch (reg) {
610 case AGE_PAR0:
611 ea[0] = word;
612 break;
613 case AGE_PAR1:
614 ea[1] = word;
615 break;
616 default:
617 break;
618 }
619 match = 0;
620 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
621 match = 1;
622 reg = word >> 16;
623 } else
624 break;
625 }
626 if (off >= AGE_VPD_REG_CONF_END)
627 vpd_error = ENOENT;
628 if (vpd_error == 0) {
629 /*
630 * Don't blindly trust ethernet address obtained
631 * from VPD. Check whether ethernet address is
632 * valid one. Otherwise fall-back to reading
633 * PAR register.
634 */
635 ea[1] &= 0xFFFF;
636 if ((ea[0] == 0 && ea[1] == 0) ||
637 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
638 if (agedebug)
639 printf("%s: invalid ethernet address "
640 "returned from VPD.\n",
641 device_xname(sc->sc_dev));
642 vpd_error = EINVAL;
643 }
644 }
645 if (vpd_error != 0 && (agedebug))
646 printf("%s: VPD access failure!\n",
647 device_xname(sc->sc_dev));
648 } else {
649 if (agedebug)
650 printf("%s: PCI VPD capability not found!\n",
651 device_xname(sc->sc_dev));
652 }
653
654 /*
655 * It seems that L1 also provides a way to extract ethernet
656 * address via SPI flash interface. Because SPI flash memory
657 * device of different vendors vary in their instruction
658 * codes for read ID instruction, it's very hard to get
659 * instructions codes without detailed information for the
660 * flash memory device used on ethernet controller. To simplify
661 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
662 * address which is supposed to be set by hardware during
663 * power on reset.
664 */
665 if (vpd_error != 0) {
666 /*
667 * VPD is mapped to SPI flash memory or BIOS set it.
668 */
669 ea[0] = CSR_READ_4(sc, AGE_PAR0);
670 ea[1] = CSR_READ_4(sc, AGE_PAR1);
671 }
672
673 ea[1] &= 0xFFFF;
674 eaddr[0] = (ea[1] >> 8) & 0xFF;
675 eaddr[1] = (ea[1] >> 0) & 0xFF;
676 eaddr[2] = (ea[0] >> 24) & 0xFF;
677 eaddr[3] = (ea[0] >> 16) & 0xFF;
678 eaddr[4] = (ea[0] >> 8) & 0xFF;
679 eaddr[5] = (ea[0] >> 0) & 0xFF;
680 }
681
682 static void
683 age_phy_reset(struct age_softc *sc)
684 {
685 /* Reset PHY. */
686 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
687 DELAY(1000);
688 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
689 DELAY(1000);
690 }
691
692 static int
693 age_dma_alloc(struct age_softc *sc)
694 {
695 struct age_txdesc *txd;
696 struct age_rxdesc *rxd;
697 int nsegs, error, i;
698
699 /*
700 * Create DMA stuffs for TX ring
701 */
702 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
703 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
704 if (error)
705 return ENOBUFS;
706
707 /* Allocate DMA'able memory for TX ring */
708 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
709 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
710 &nsegs, BUS_DMA_WAITOK);
711 if (error) {
712 printf("%s: could not allocate DMA'able memory for Tx ring, "
713 "error = %i\n", device_xname(sc->sc_dev), error);
714 return error;
715 }
716
717 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
718 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
719 BUS_DMA_NOWAIT);
720 if (error)
721 return ENOBUFS;
722
723 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
724
725 /* Load the DMA map for Tx ring. */
726 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
727 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
728 if (error) {
729 printf("%s: could not load DMA'able memory for Tx ring, "
730 "error = %i\n", device_xname(sc->sc_dev), error);
731 bus_dmamem_free(sc->sc_dmat,
732 (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
733 return error;
734 }
735
736 sc->age_rdata.age_tx_ring_paddr =
737 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
738
739 /*
740 * Create DMA stuffs for RX ring
741 */
742 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
743 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
744 if (error)
745 return ENOBUFS;
746
747 /* Allocate DMA'able memory for RX ring */
748 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 &nsegs, BUS_DMA_WAITOK);
751 if (error) {
752 printf("%s: could not allocate DMA'able memory for Rx ring, "
753 "error = %i.\n", device_xname(sc->sc_dev), error);
754 return error;
755 }
756
757 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 BUS_DMA_NOWAIT);
760 if (error)
761 return ENOBUFS;
762
763 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
764
765 /* Load the DMA map for Rx ring. */
766 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 if (error) {
769 printf("%s: could not load DMA'able memory for Rx ring, "
770 "error = %i.\n", device_xname(sc->sc_dev), error);
771 bus_dmamem_free(sc->sc_dmat,
772 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
773 return error;
774 }
775
776 sc->age_rdata.age_rx_ring_paddr =
777 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
778
779 /*
780 * Create DMA stuffs for RX return ring
781 */
782 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 if (error)
785 return ENOBUFS;
786
787 /* Allocate DMA'able memory for RX return ring */
788 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
789 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
790 &nsegs, BUS_DMA_WAITOK);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for Rx "
793 "return ring, error = %i.\n",
794 device_xname(sc->sc_dev), error);
795 return error;
796 }
797
798 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
799 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
800 BUS_DMA_NOWAIT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
805
806 /* Load the DMA map for Rx return ring. */
807 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
808 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
809 if (error) {
810 printf("%s: could not load DMA'able memory for Rx return ring, "
811 "error = %i\n", device_xname(sc->sc_dev), error);
812 bus_dmamem_free(sc->sc_dmat,
813 (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
814 return error;
815 }
816
817 sc->age_rdata.age_rr_ring_paddr =
818 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
819
820 /*
821 * Create DMA stuffs for CMB block
822 */
823 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
824 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
825 &sc->age_cdata.age_cmb_block_map);
826 if (error)
827 return ENOBUFS;
828
829 /* Allocate DMA'able memory for CMB block */
830 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
831 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
832 &nsegs, BUS_DMA_WAITOK);
833 if (error) {
834 printf("%s: could not allocate DMA'able memory for "
835 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
836 return error;
837 }
838
839 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
840 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
841 BUS_DMA_NOWAIT);
842 if (error)
843 return ENOBUFS;
844
845 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
846
847 /* Load the DMA map for CMB block. */
848 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
849 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
850 BUS_DMA_WAITOK);
851 if (error) {
852 printf("%s: could not load DMA'able memory for CMB block, "
853 "error = %i\n", device_xname(sc->sc_dev), error);
854 bus_dmamem_free(sc->sc_dmat,
855 (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
856 return error;
857 }
858
859 sc->age_rdata.age_cmb_block_paddr =
860 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
861
862 /*
863 * Create DMA stuffs for SMB block
864 */
865 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
866 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
867 &sc->age_cdata.age_smb_block_map);
868 if (error)
869 return ENOBUFS;
870
871 /* Allocate DMA'able memory for SMB block */
872 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
873 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
874 &nsegs, BUS_DMA_WAITOK);
875 if (error) {
876 printf("%s: could not allocate DMA'able memory for "
877 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
878 return error;
879 }
880
881 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
882 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
883 BUS_DMA_NOWAIT);
884 if (error)
885 return ENOBUFS;
886
887 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
888
889 /* Load the DMA map for SMB block */
890 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
891 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
892 BUS_DMA_WAITOK);
893 if (error) {
894 printf("%s: could not load DMA'able memory for SMB block, "
895 "error = %i\n", device_xname(sc->sc_dev), error);
896 bus_dmamem_free(sc->sc_dmat,
897 (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
898 return error;
899 }
900
901 sc->age_rdata.age_smb_block_paddr =
902 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
903
904 /* Create DMA maps for Tx buffers. */
905 for (i = 0; i < AGE_TX_RING_CNT; i++) {
906 txd = &sc->age_cdata.age_txdesc[i];
907 txd->tx_m = NULL;
908 txd->tx_dmamap = NULL;
909 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
910 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
911 &txd->tx_dmamap);
912 if (error) {
913 printf("%s: could not create Tx dmamap, error = %i.\n",
914 device_xname(sc->sc_dev), error);
915 return error;
916 }
917 }
918
919 /* Create DMA maps for Rx buffers. */
920 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
921 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
922 if (error) {
923 printf("%s: could not create spare Rx dmamap, error = %i.\n",
924 device_xname(sc->sc_dev), error);
925 return error;
926 }
927 for (i = 0; i < AGE_RX_RING_CNT; i++) {
928 rxd = &sc->age_cdata.age_rxdesc[i];
929 rxd->rx_m = NULL;
930 rxd->rx_dmamap = NULL;
931 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
932 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
933 if (error) {
934 printf("%s: could not create Rx dmamap, error = %i.\n",
935 device_xname(sc->sc_dev), error);
936 return error;
937 }
938 }
939
940 return 0;
941 }
942
943 static void
944 age_dma_free(struct age_softc *sc)
945 {
946 struct age_txdesc *txd;
947 struct age_rxdesc *rxd;
948 int i;
949
950 /* Tx buffers */
951 for (i = 0; i < AGE_TX_RING_CNT; i++) {
952 txd = &sc->age_cdata.age_txdesc[i];
953 if (txd->tx_dmamap != NULL) {
954 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
955 txd->tx_dmamap = NULL;
956 }
957 }
958 /* Rx buffers */
959 for (i = 0; i < AGE_RX_RING_CNT; i++) {
960 rxd = &sc->age_cdata.age_rxdesc[i];
961 if (rxd->rx_dmamap != NULL) {
962 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
963 rxd->rx_dmamap = NULL;
964 }
965 }
966 if (sc->age_cdata.age_rx_sparemap != NULL) {
967 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
968 sc->age_cdata.age_rx_sparemap = NULL;
969 }
970
971 /* Tx ring. */
972 if (sc->age_cdata.age_tx_ring_map != NULL)
973 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
974 if (sc->age_cdata.age_tx_ring_map != NULL &&
975 sc->age_rdata.age_tx_ring != NULL)
976 bus_dmamem_free(sc->sc_dmat,
977 (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
978 sc->age_rdata.age_tx_ring = NULL;
979 sc->age_cdata.age_tx_ring_map = NULL;
980
981 /* Rx ring. */
982 if (sc->age_cdata.age_rx_ring_map != NULL)
983 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
984 if (sc->age_cdata.age_rx_ring_map != NULL &&
985 sc->age_rdata.age_rx_ring != NULL)
986 bus_dmamem_free(sc->sc_dmat,
987 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
988 sc->age_rdata.age_rx_ring = NULL;
989 sc->age_cdata.age_rx_ring_map = NULL;
990
991 /* Rx return ring. */
992 if (sc->age_cdata.age_rr_ring_map != NULL)
993 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
994 if (sc->age_cdata.age_rr_ring_map != NULL &&
995 sc->age_rdata.age_rr_ring != NULL)
996 bus_dmamem_free(sc->sc_dmat,
997 (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
998 sc->age_rdata.age_rr_ring = NULL;
999 sc->age_cdata.age_rr_ring_map = NULL;
1000
1001 /* CMB block */
1002 if (sc->age_cdata.age_cmb_block_map != NULL)
1003 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1004 if (sc->age_cdata.age_cmb_block_map != NULL &&
1005 sc->age_rdata.age_cmb_block != NULL)
1006 bus_dmamem_free(sc->sc_dmat,
1007 (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1008 sc->age_rdata.age_cmb_block = NULL;
1009 sc->age_cdata.age_cmb_block_map = NULL;
1010
1011 /* SMB block */
1012 if (sc->age_cdata.age_smb_block_map != NULL)
1013 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1014 if (sc->age_cdata.age_smb_block_map != NULL &&
1015 sc->age_rdata.age_smb_block != NULL)
1016 bus_dmamem_free(sc->sc_dmat,
1017 (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1018 sc->age_rdata.age_smb_block = NULL;
1019 sc->age_cdata.age_smb_block_map = NULL;
1020 }
1021
1022 static void
1023 age_start(struct ifnet *ifp)
1024 {
1025 struct age_softc *sc = ifp->if_softc;
1026 struct mbuf *m_head;
1027 int enq;
1028
1029 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1030 return;
1031
1032 enq = 0;
1033 for (;;) {
1034 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1035 if (m_head == NULL)
1036 break;
1037
1038 /*
1039 * Pack the data into the transmit ring. If we
1040 * don't have room, set the OACTIVE flag and wait
1041 * for the NIC to drain the ring.
1042 */
1043 if (age_encap(sc, &m_head)) {
1044 if (m_head == NULL)
1045 break;
1046 ifp->if_flags |= IFF_OACTIVE;
1047 break;
1048 }
1049 enq = 1;
1050
1051 #if NBPFILTER > 0
1052 /*
1053 * If there's a BPF listener, bounce a copy of this frame
1054 * to him.
1055 */
1056 if (ifp->if_bpf != NULL)
1057 bpf_mtap(ifp->if_bpf, m_head);
1058 #endif
1059 }
1060
1061 if (enq) {
1062 /* Update mbox. */
1063 AGE_COMMIT_MBOX(sc);
1064 /* Set a timeout in case the chip goes out to lunch. */
1065 ifp->if_timer = AGE_TX_TIMEOUT;
1066 }
1067 }
1068
1069 static void
1070 age_watchdog(struct ifnet *ifp)
1071 {
1072 struct age_softc *sc = ifp->if_softc;
1073
1074 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1075 printf("%s: watchdog timeout (missed link)\n",
1076 device_xname(sc->sc_dev));
1077 ifp->if_oerrors++;
1078 age_init(ifp);
1079 return;
1080 }
1081
1082 if (sc->age_cdata.age_tx_cnt == 0) {
1083 printf("%s: watchdog timeout (missed Tx interrupts) "
1084 "-- recovering\n", device_xname(sc->sc_dev));
1085 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1086 age_start(ifp);
1087 return;
1088 }
1089
1090 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1091 ifp->if_oerrors++;
1092 age_init(ifp);
1093
1094 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1095 age_start(ifp);
1096 }
1097
1098 static int
1099 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1100 {
1101 struct age_softc *sc = ifp->if_softc;
1102 int s, error;
1103
1104 s = splnet();
1105
1106 error = ether_ioctl(ifp, cmd, data);
1107 if (error == ENETRESET) {
1108 if (ifp->if_flags & IFF_RUNNING)
1109 age_rxfilter(sc);
1110 error = 0;
1111 }
1112
1113 splx(s);
1114 return error;
1115 }
1116
1117 static void
1118 age_mac_config(struct age_softc *sc)
1119 {
1120 struct mii_data *mii;
1121 uint32_t reg;
1122
1123 mii = &sc->sc_miibus;
1124
1125 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1126 reg &= ~MAC_CFG_FULL_DUPLEX;
1127 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1128 reg &= ~MAC_CFG_SPEED_MASK;
1129
1130 /* Reprogram MAC with resolved speed/duplex. */
1131 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1132 case IFM_10_T:
1133 case IFM_100_TX:
1134 reg |= MAC_CFG_SPEED_10_100;
1135 break;
1136 case IFM_1000_T:
1137 reg |= MAC_CFG_SPEED_1000;
1138 break;
1139 }
1140 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1141 reg |= MAC_CFG_FULL_DUPLEX;
1142 #ifdef notyet
1143 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1144 reg |= MAC_CFG_TX_FC;
1145 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1146 reg |= MAC_CFG_RX_FC;
1147 #endif
1148 }
1149
1150 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1151 }
1152
1153 static bool
1154 age_resume(device_t dv PMF_FN_ARGS)
1155 {
1156 struct age_softc *sc = device_private(dv);
1157 uint16_t cmd;
1158
1159 /*
1160 * Clear INTx emulation disable for hardware that
1161 * is set in resume event. From Linux.
1162 */
1163 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1164 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1165 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1166 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1167 PCI_COMMAND_STATUS_REG, cmd);
1168 }
1169
1170 return true;
1171 }
1172
1173 static int
1174 age_encap(struct age_softc *sc, struct mbuf **m_head)
1175 {
1176 struct age_txdesc *txd, *txd_last;
1177 struct tx_desc *desc;
1178 struct mbuf *m;
1179 bus_dmamap_t map;
1180 uint32_t cflags, poff, vtag;
1181 int error, i, nsegs, prod;
1182 struct m_tag *mtag;
1183
1184 m = *m_head;
1185 cflags = vtag = 0;
1186 poff = 0;
1187
1188 prod = sc->age_cdata.age_tx_prod;
1189 txd = &sc->age_cdata.age_txdesc[prod];
1190 txd_last = txd;
1191 map = txd->tx_dmamap;
1192
1193 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1194
1195 if (error == EFBIG) {
1196 error = 0;
1197
1198 MGETHDR(m, M_DONTWAIT, MT_DATA);
1199 if (m == NULL) {
1200 printf("%s: can't defrag TX mbuf\n",
1201 device_xname(sc->sc_dev));
1202 m_freem(*m_head);
1203 *m_head = NULL;
1204 return ENOBUFS;
1205 }
1206
1207 M_COPY_PKTHDR(m, *m_head);
1208 if ((*m_head)->m_pkthdr.len > MHLEN) {
1209 MCLGET(m, M_DONTWAIT);
1210 if (!(m->m_flags & M_EXT)) {
1211 m_freem(*m_head);
1212 m_freem(m);
1213 *m_head = NULL;
1214 return ENOBUFS;
1215 }
1216 }
1217 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1218 mtod(m, void *));
1219 m_freem(*m_head);
1220 m->m_len = m->m_pkthdr.len;
1221 *m_head = m;
1222
1223 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1224 BUS_DMA_NOWAIT);
1225
1226 if (error != 0) {
1227 printf("%s: could not load defragged TX mbuf\n",
1228 device_xname(sc->sc_dev));
1229 if (!error) {
1230 bus_dmamap_unload(sc->sc_dmat, map);
1231 error = EFBIG;
1232 }
1233 m_freem(*m_head);
1234 *m_head = NULL;
1235 return error;
1236 }
1237 } else if (error) {
1238 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1239 return error;
1240 }
1241
1242 nsegs = map->dm_nsegs;
1243
1244 if (nsegs == 0) {
1245 m_freem(*m_head);
1246 *m_head = NULL;
1247 return EIO;
1248 }
1249
1250 /* Check descriptor overrun. */
1251 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1252 bus_dmamap_unload(sc->sc_dmat, map);
1253 return ENOBUFS;
1254 }
1255
1256 m = *m_head;
1257 /* Configure Tx IP/TCP/UDP checksum offload. */
1258 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1259 cflags |= AGE_TD_CSUM;
1260 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1261 cflags |= AGE_TD_TCPCSUM;
1262 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1263 cflags |= AGE_TD_UDPCSUM;
1264 /* Set checksum start offset. */
1265 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1266 }
1267
1268 #if NVLAN > 0
1269 /* Configure VLAN hardware tag insertion. */
1270 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1271 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1272 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1273 cflags |= AGE_TD_INSERT_VLAN_TAG;
1274 }
1275 #endif
1276
1277 desc = NULL;
1278 for (i = 0; i < nsegs; i++) {
1279 desc = &sc->age_rdata.age_tx_ring[prod];
1280 desc->addr = htole64(map->dm_segs[i].ds_addr);
1281 desc->len =
1282 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1283 desc->flags = htole32(cflags);
1284 sc->age_cdata.age_tx_cnt++;
1285 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1286 }
1287
1288 /* Update producer index. */
1289 sc->age_cdata.age_tx_prod = prod;
1290
1291 /* Set EOP on the last descriptor. */
1292 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1293 desc = &sc->age_rdata.age_tx_ring[prod];
1294 desc->flags |= htole32(AGE_TD_EOP);
1295
1296 /* Swap dmamap of the first and the last. */
1297 txd = &sc->age_cdata.age_txdesc[prod];
1298 map = txd_last->tx_dmamap;
1299 txd_last->tx_dmamap = txd->tx_dmamap;
1300 txd->tx_dmamap = map;
1301 txd->tx_m = m;
1302
1303 /* Sync descriptors. */
1304 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1305 BUS_DMASYNC_PREWRITE);
1306 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1307 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1308
1309 return 0;
1310 }
1311
1312 static void
1313 age_txintr(struct age_softc *sc, int tpd_cons)
1314 {
1315 struct ifnet *ifp = &sc->sc_ec.ec_if;
1316 struct age_txdesc *txd;
1317 int cons, prog;
1318
1319 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1320 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1321
1322 /*
1323 * Go through our Tx list and free mbufs for those
1324 * frames which have been transmitted.
1325 */
1326 cons = sc->age_cdata.age_tx_cons;
1327 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1328 if (sc->age_cdata.age_tx_cnt <= 0)
1329 break;
1330 prog++;
1331 ifp->if_flags &= ~IFF_OACTIVE;
1332 sc->age_cdata.age_tx_cnt--;
1333 txd = &sc->age_cdata.age_txdesc[cons];
1334 /*
1335 * Clear Tx descriptors, it's not required but would
1336 * help debugging in case of Tx issues.
1337 */
1338 txd->tx_desc->addr = 0;
1339 txd->tx_desc->len = 0;
1340 txd->tx_desc->flags = 0;
1341
1342 if (txd->tx_m == NULL)
1343 continue;
1344 /* Reclaim transmitted mbufs. */
1345 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1346 m_freem(txd->tx_m);
1347 txd->tx_m = NULL;
1348 }
1349
1350 if (prog > 0) {
1351 sc->age_cdata.age_tx_cons = cons;
1352
1353 /*
1354 * Unarm watchdog timer only when there are no pending
1355 * Tx descriptors in queue.
1356 */
1357 if (sc->age_cdata.age_tx_cnt == 0)
1358 ifp->if_timer = 0;
1359
1360 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1361 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1362 BUS_DMASYNC_PREWRITE);
1363 }
1364 }
1365
1366 /* Receive a frame. */
1367 static void
1368 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1369 {
1370 struct ifnet *ifp = &sc->sc_ec.ec_if;
1371 struct age_rxdesc *rxd;
1372 struct rx_desc *desc;
1373 struct mbuf *mp, *m;
1374 uint32_t status, index, vtag;
1375 int count, nsegs, pktlen;
1376 int rx_cons;
1377
1378 status = le32toh(rxrd->flags);
1379 index = le32toh(rxrd->index);
1380 rx_cons = AGE_RX_CONS(index);
1381 nsegs = AGE_RX_NSEGS(index);
1382
1383 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1384 if ((status & AGE_RRD_ERROR) != 0 &&
1385 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1386 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1387 /*
1388 * We want to pass the following frames to upper
1389 * layer regardless of error status of Rx return
1390 * ring.
1391 *
1392 * o IP/TCP/UDP checksum is bad.
1393 * o frame length and protocol specific length
1394 * does not match.
1395 */
1396 sc->age_cdata.age_rx_cons += nsegs;
1397 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1398 return;
1399 }
1400
1401 pktlen = 0;
1402 for (count = 0; count < nsegs; count++,
1403 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1404 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1405 mp = rxd->rx_m;
1406 desc = rxd->rx_desc;
1407 /* Add a new receive buffer to the ring. */
1408 if (age_newbuf(sc, rxd, 0) != 0) {
1409 ifp->if_iqdrops++;
1410 /* Reuse Rx buffers. */
1411 if (sc->age_cdata.age_rxhead != NULL) {
1412 m_freem(sc->age_cdata.age_rxhead);
1413 AGE_RXCHAIN_RESET(sc);
1414 }
1415 break;
1416 }
1417
1418 /* The length of the first mbuf is computed last. */
1419 if (count != 0) {
1420 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1421 pktlen += mp->m_len;
1422 }
1423
1424 /* Chain received mbufs. */
1425 if (sc->age_cdata.age_rxhead == NULL) {
1426 sc->age_cdata.age_rxhead = mp;
1427 sc->age_cdata.age_rxtail = mp;
1428 } else {
1429 mp->m_flags &= ~M_PKTHDR;
1430 sc->age_cdata.age_rxprev_tail =
1431 sc->age_cdata.age_rxtail;
1432 sc->age_cdata.age_rxtail->m_next = mp;
1433 sc->age_cdata.age_rxtail = mp;
1434 }
1435
1436 if (count == nsegs - 1) {
1437 /*
1438 * It seems that L1 controller has no way
1439 * to tell hardware to strip CRC bytes.
1440 */
1441 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1442 if (nsegs > 1) {
1443 /* Remove the CRC bytes in chained mbufs. */
1444 pktlen -= ETHER_CRC_LEN;
1445 if (mp->m_len <= ETHER_CRC_LEN) {
1446 sc->age_cdata.age_rxtail =
1447 sc->age_cdata.age_rxprev_tail;
1448 sc->age_cdata.age_rxtail->m_len -=
1449 (ETHER_CRC_LEN - mp->m_len);
1450 sc->age_cdata.age_rxtail->m_next = NULL;
1451 m_freem(mp);
1452 } else {
1453 mp->m_len -= ETHER_CRC_LEN;
1454 }
1455 }
1456
1457 m = sc->age_cdata.age_rxhead;
1458 m->m_flags |= M_PKTHDR;
1459 m->m_pkthdr.rcvif = ifp;
1460 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1461 /* Set the first mbuf length. */
1462 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1463
1464 /*
1465 * Set checksum information.
1466 * It seems that L1 controller can compute partial
1467 * checksum. The partial checksum value can be used
1468 * to accelerate checksum computation for fragmented
1469 * TCP/UDP packets. Upper network stack already
1470 * takes advantage of the partial checksum value in
1471 * IP reassembly stage. But I'm not sure the
1472 * correctness of the partial hardware checksum
1473 * assistance due to lack of data sheet. If it is
1474 * proven to work on L1 I'll enable it.
1475 */
1476 if (status & AGE_RRD_IPV4) {
1477 if (status & AGE_RRD_IPCSUM_NOK)
1478 m->m_pkthdr.csum_flags |=
1479 M_CSUM_IPv4_BAD;
1480 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1481 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1482 m->m_pkthdr.csum_flags |=
1483 M_CSUM_TCP_UDP_BAD;
1484 }
1485 /*
1486 * Don't mark bad checksum for TCP/UDP frames
1487 * as fragmented frames may always have set
1488 * bad checksummed bit of descriptor status.
1489 */
1490 }
1491 #if NVLAN > 0
1492 /* Check for VLAN tagged frames. */
1493 if (status & AGE_RRD_VLAN) {
1494 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1495 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1496 continue);
1497 }
1498 #endif
1499
1500 #if NBPFILTER > 0
1501 if (ifp->if_bpf)
1502 bpf_mtap(ifp->if_bpf, m);
1503 #endif
1504 /* Pass it on. */
1505 ether_input(ifp, m);
1506
1507 /* Reset mbuf chains. */
1508 AGE_RXCHAIN_RESET(sc);
1509 }
1510 }
1511
1512 if (count != nsegs) {
1513 sc->age_cdata.age_rx_cons += nsegs;
1514 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1515 } else
1516 sc->age_cdata.age_rx_cons = rx_cons;
1517 }
1518
1519 static void
1520 age_rxintr(struct age_softc *sc, int rr_prod)
1521 {
1522 struct rx_rdesc *rxrd;
1523 int rr_cons, nsegs, pktlen, prog;
1524
1525 rr_cons = sc->age_cdata.age_rr_cons;
1526 if (rr_cons == rr_prod)
1527 return;
1528
1529 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1530 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1531 BUS_DMASYNC_POSTREAD);
1532
1533 for (prog = 0; rr_cons != rr_prod; prog++) {
1534 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1535 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1536 if (nsegs == 0)
1537 break;
1538 /*
1539 * Check number of segments against received bytes
1540 * Non-matching value would indicate that hardware
1541 * is still trying to update Rx return descriptors.
1542 * I'm not sure whether this check is really needed.
1543 */
1544 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1545 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1546 (MCLBYTES - ETHER_ALIGN)))
1547 break;
1548
1549 /* Received a frame. */
1550 age_rxeof(sc, rxrd);
1551
1552 /* Clear return ring. */
1553 rxrd->index = 0;
1554 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1555 }
1556
1557 if (prog > 0) {
1558 /* Update the consumer index. */
1559 sc->age_cdata.age_rr_cons = rr_cons;
1560
1561 /* Sync descriptors. */
1562 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1563 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1564 BUS_DMASYNC_PREWRITE);
1565
1566 /* Notify hardware availability of new Rx buffers. */
1567 AGE_COMMIT_MBOX(sc);
1568 }
1569 }
1570
1571 static void
1572 age_tick(void *xsc)
1573 {
1574 struct age_softc *sc = xsc;
1575 struct mii_data *mii = &sc->sc_miibus;
1576 int s;
1577
1578 s = splnet();
1579 mii_tick(mii);
1580 splx(s);
1581
1582 callout_schedule(&sc->sc_tick_ch, hz);
1583 }
1584
1585 static void
1586 age_reset(struct age_softc *sc)
1587 {
1588 uint32_t reg;
1589 int i;
1590
1591 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1592 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1593 DELAY(1);
1594 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1595 break;
1596 }
1597 if (i == 0)
1598 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1599
1600 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1601 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1602 break;
1603 DELAY(10);
1604 }
1605
1606 if (i == 0)
1607 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1608 reg);
1609
1610 /* Initialize PCIe module. From Linux. */
1611 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1612 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1613 }
1614
1615 static int
1616 age_init(struct ifnet *ifp)
1617 {
1618 struct age_softc *sc = ifp->if_softc;
1619 struct mii_data *mii;
1620 uint8_t eaddr[ETHER_ADDR_LEN];
1621 bus_addr_t paddr;
1622 uint32_t reg, fsize;
1623 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1624 int error;
1625
1626 /*
1627 * Cancel any pending I/O.
1628 */
1629 age_stop(ifp, 0);
1630
1631 /*
1632 * Reset the chip to a known state.
1633 */
1634 age_reset(sc);
1635
1636 /* Initialize descriptors. */
1637 error = age_init_rx_ring(sc);
1638 if (error != 0) {
1639 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1640 age_stop(ifp, 0);
1641 return error;
1642 }
1643 age_init_rr_ring(sc);
1644 age_init_tx_ring(sc);
1645 age_init_cmb_block(sc);
1646 age_init_smb_block(sc);
1647
1648 /* Reprogram the station address. */
1649 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1650 CSR_WRITE_4(sc, AGE_PAR0,
1651 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1652 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1653
1654 /* Set descriptor base addresses. */
1655 paddr = sc->age_rdata.age_tx_ring_paddr;
1656 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1657 paddr = sc->age_rdata.age_rx_ring_paddr;
1658 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1659 paddr = sc->age_rdata.age_rr_ring_paddr;
1660 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 paddr = sc->age_rdata.age_tx_ring_paddr;
1662 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1663 paddr = sc->age_rdata.age_cmb_block_paddr;
1664 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1665 paddr = sc->age_rdata.age_smb_block_paddr;
1666 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1667
1668 /* Set Rx/Rx return descriptor counter. */
1669 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1670 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1671 DESC_RRD_CNT_MASK) |
1672 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1673
1674 /* Set Tx descriptor counter. */
1675 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1676 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1677
1678 /* Tell hardware that we're ready to load descriptors. */
1679 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1680
1681 /*
1682 * Initialize mailbox register.
1683 * Updated producer/consumer index information is exchanged
1684 * through this mailbox register. However Tx producer and
1685 * Rx return consumer/Rx producer are all shared such that
1686 * it's hard to separate code path between Tx and Rx without
1687 * locking. If L1 hardware have a separate mail box register
1688 * for Tx and Rx consumer/producer management we could have
1689 * indepent Tx/Rx handler which in turn Rx handler could have
1690 * been run without any locking.
1691 */
1692 AGE_COMMIT_MBOX(sc);
1693
1694 /* Configure IPG/IFG parameters. */
1695 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1696 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1697 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1698 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1699 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1700
1701 /* Set parameters for half-duplex media. */
1702 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1703 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1704 HDPX_CFG_LCOL_MASK) |
1705 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1706 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1707 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1708 HDPX_CFG_ABEBT_MASK) |
1709 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1710 HDPX_CFG_JAMIPG_MASK));
1711
1712 /* Configure interrupt moderation timer. */
1713 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1714 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1715 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1716 reg &= ~MASTER_MTIMER_ENB;
1717 if (AGE_USECS(sc->age_int_mod) == 0)
1718 reg &= ~MASTER_ITIMER_ENB;
1719 else
1720 reg |= MASTER_ITIMER_ENB;
1721 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1722 if (agedebug)
1723 printf("%s: interrupt moderation is %d us.\n",
1724 device_xname(sc->sc_dev), sc->age_int_mod);
1725 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1726
1727 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1728 if (ifp->if_mtu < ETHERMTU)
1729 sc->age_max_frame_size = ETHERMTU;
1730 else
1731 sc->age_max_frame_size = ifp->if_mtu;
1732 sc->age_max_frame_size += ETHER_HDR_LEN +
1733 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1734 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1735
1736 /* Configure jumbo frame. */
1737 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1738 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1739 (((fsize / sizeof(uint64_t)) <<
1740 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1741 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1742 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1743 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1744 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1745
1746 /* Configure flow-control parameters. From Linux. */
1747 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1748 /*
1749 * Magic workaround for old-L1.
1750 * Don't know which hw revision requires this magic.
1751 */
1752 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1753 /*
1754 * Another magic workaround for flow-control mode
1755 * change. From Linux.
1756 */
1757 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1758 }
1759 /*
1760 * TODO
1761 * Should understand pause parameter relationships between FIFO
1762 * size and number of Rx descriptors and Rx return descriptors.
1763 *
1764 * Magic parameters came from Linux.
1765 */
1766 switch (sc->age_chip_rev) {
1767 case 0x8001:
1768 case 0x9001:
1769 case 0x9002:
1770 case 0x9003:
1771 rxf_hi = AGE_RX_RING_CNT / 16;
1772 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1773 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1774 rrd_lo = AGE_RR_RING_CNT / 16;
1775 break;
1776 default:
1777 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1778 rxf_lo = reg / 16;
1779 if (rxf_lo < 192)
1780 rxf_lo = 192;
1781 rxf_hi = (reg * 7) / 8;
1782 if (rxf_hi < rxf_lo)
1783 rxf_hi = rxf_lo + 16;
1784 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1785 rrd_lo = reg / 8;
1786 rrd_hi = (reg * 7) / 8;
1787 if (rrd_lo < 2)
1788 rrd_lo = 2;
1789 if (rrd_hi < rrd_lo)
1790 rrd_hi = rrd_lo + 3;
1791 break;
1792 }
1793 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1794 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1795 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1796 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1797 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1798 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1799 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1800 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1801 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1802 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1803
1804 /* Configure RxQ. */
1805 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1806 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1807 RXQ_CFG_RD_BURST_MASK) |
1808 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1809 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1810 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1811 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1812 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1813
1814 /* Configure TxQ. */
1815 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1816 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1817 TXQ_CFG_TPD_BURST_MASK) |
1818 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1819 TXQ_CFG_TX_FIFO_BURST_MASK) |
1820 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1821 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1822 TXQ_CFG_ENB);
1823
1824 /* Configure DMA parameters. */
1825 CSR_WRITE_4(sc, AGE_DMA_CFG,
1826 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1827 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1828 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1829
1830 /* Configure CMB DMA write threshold. */
1831 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1832 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1833 CMB_WR_THRESH_RRD_MASK) |
1834 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1835 CMB_WR_THRESH_TPD_MASK));
1836
1837 /* Set CMB/SMB timer and enable them. */
1838 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1839 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1840 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1841
1842 /* Request SMB updates for every seconds. */
1843 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1844 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1845
1846 /*
1847 * Disable all WOL bits as WOL can interfere normal Rx
1848 * operation.
1849 */
1850 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1851
1852 /*
1853 * Configure Tx/Rx MACs.
1854 * - Auto-padding for short frames.
1855 * - Enable CRC generation.
1856 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1857 * of MAC is followed after link establishment.
1858 */
1859 CSR_WRITE_4(sc, AGE_MAC_CFG,
1860 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1861 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1862 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1863 MAC_CFG_PREAMBLE_MASK));
1864
1865 /* Set up the receive filter. */
1866 age_rxfilter(sc);
1867 age_rxvlan(sc);
1868
1869 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1870 reg |= MAC_CFG_RXCSUM_ENB;
1871
1872 /* Ack all pending interrupts and clear it. */
1873 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1874 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1875
1876 /* Finally enable Tx/Rx MAC. */
1877 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1878
1879 sc->age_flags &= ~AGE_FLAG_LINK;
1880
1881 /* Switch to the current media. */
1882 mii = &sc->sc_miibus;
1883 mii_mediachg(mii);
1884
1885 callout_schedule(&sc->sc_tick_ch, hz);
1886
1887 ifp->if_flags |= IFF_RUNNING;
1888 ifp->if_flags &= ~IFF_OACTIVE;
1889
1890 return 0;
1891 }
1892
1893 static void
1894 age_stop(struct ifnet *ifp, int disable)
1895 {
1896 struct age_softc *sc = ifp->if_softc;
1897 struct age_txdesc *txd;
1898 struct age_rxdesc *rxd;
1899 uint32_t reg;
1900 int i;
1901
1902 callout_stop(&sc->sc_tick_ch);
1903
1904 /*
1905 * Mark the interface down and cancel the watchdog timer.
1906 */
1907 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1908 ifp->if_timer = 0;
1909
1910 sc->age_flags &= ~AGE_FLAG_LINK;
1911
1912 mii_down(&sc->sc_miibus);
1913
1914 /*
1915 * Disable interrupts.
1916 */
1917 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1918 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1919
1920 /* Stop CMB/SMB updates. */
1921 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1922
1923 /* Stop Rx/Tx MAC. */
1924 age_stop_rxmac(sc);
1925 age_stop_txmac(sc);
1926
1927 /* Stop DMA. */
1928 CSR_WRITE_4(sc, AGE_DMA_CFG,
1929 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1930
1931 /* Stop TxQ/RxQ. */
1932 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1933 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1934 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1935 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1936 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1937 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1938 break;
1939 DELAY(10);
1940 }
1941 if (i == 0)
1942 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1943 device_xname(sc->sc_dev), reg);
1944
1945 /* Reclaim Rx buffers that have been processed. */
1946 if (sc->age_cdata.age_rxhead != NULL)
1947 m_freem(sc->age_cdata.age_rxhead);
1948 AGE_RXCHAIN_RESET(sc);
1949
1950 /*
1951 * Free RX and TX mbufs still in the queues.
1952 */
1953 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1954 rxd = &sc->age_cdata.age_rxdesc[i];
1955 if (rxd->rx_m != NULL) {
1956 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1957 m_freem(rxd->rx_m);
1958 rxd->rx_m = NULL;
1959 }
1960 }
1961 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1962 txd = &sc->age_cdata.age_txdesc[i];
1963 if (txd->tx_m != NULL) {
1964 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1965 m_freem(txd->tx_m);
1966 txd->tx_m = NULL;
1967 }
1968 }
1969 }
1970
1971 static void
1972 age_stats_update(struct age_softc *sc)
1973 {
1974 struct ifnet *ifp = &sc->sc_ec.ec_if;
1975 struct age_stats *stat;
1976 struct smb *smb;
1977
1978 stat = &sc->age_stat;
1979
1980 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1981 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1982
1983 smb = sc->age_rdata.age_smb_block;
1984 if (smb->updated == 0)
1985 return;
1986
1987 /* Rx stats. */
1988 stat->rx_frames += smb->rx_frames;
1989 stat->rx_bcast_frames += smb->rx_bcast_frames;
1990 stat->rx_mcast_frames += smb->rx_mcast_frames;
1991 stat->rx_pause_frames += smb->rx_pause_frames;
1992 stat->rx_control_frames += smb->rx_control_frames;
1993 stat->rx_crcerrs += smb->rx_crcerrs;
1994 stat->rx_lenerrs += smb->rx_lenerrs;
1995 stat->rx_bytes += smb->rx_bytes;
1996 stat->rx_runts += smb->rx_runts;
1997 stat->rx_fragments += smb->rx_fragments;
1998 stat->rx_pkts_64 += smb->rx_pkts_64;
1999 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2000 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2001 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2002 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2003 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2004 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2005 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2006 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2007 stat->rx_desc_oflows += smb->rx_desc_oflows;
2008 stat->rx_alignerrs += smb->rx_alignerrs;
2009 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2010 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2011 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2012
2013 /* Tx stats. */
2014 stat->tx_frames += smb->tx_frames;
2015 stat->tx_bcast_frames += smb->tx_bcast_frames;
2016 stat->tx_mcast_frames += smb->tx_mcast_frames;
2017 stat->tx_pause_frames += smb->tx_pause_frames;
2018 stat->tx_excess_defer += smb->tx_excess_defer;
2019 stat->tx_control_frames += smb->tx_control_frames;
2020 stat->tx_deferred += smb->tx_deferred;
2021 stat->tx_bytes += smb->tx_bytes;
2022 stat->tx_pkts_64 += smb->tx_pkts_64;
2023 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2024 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2025 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2026 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2027 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2028 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2029 stat->tx_single_colls += smb->tx_single_colls;
2030 stat->tx_multi_colls += smb->tx_multi_colls;
2031 stat->tx_late_colls += smb->tx_late_colls;
2032 stat->tx_excess_colls += smb->tx_excess_colls;
2033 stat->tx_underrun += smb->tx_underrun;
2034 stat->tx_desc_underrun += smb->tx_desc_underrun;
2035 stat->tx_lenerrs += smb->tx_lenerrs;
2036 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2037 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2038 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2039
2040 /* Update counters in ifnet. */
2041 ifp->if_opackets += smb->tx_frames;
2042
2043 ifp->if_collisions += smb->tx_single_colls +
2044 smb->tx_multi_colls + smb->tx_late_colls +
2045 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2046
2047 ifp->if_oerrors += smb->tx_excess_colls +
2048 smb->tx_late_colls + smb->tx_underrun +
2049 smb->tx_pkts_truncated;
2050
2051 ifp->if_ipackets += smb->rx_frames;
2052
2053 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2054 smb->rx_runts + smb->rx_pkts_truncated +
2055 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2056 smb->rx_alignerrs;
2057
2058 /* Update done, clear. */
2059 smb->updated = 0;
2060
2061 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2062 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2063 }
2064
2065 static void
2066 age_stop_txmac(struct age_softc *sc)
2067 {
2068 uint32_t reg;
2069 int i;
2070
2071 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2072 if ((reg & MAC_CFG_TX_ENB) != 0) {
2073 reg &= ~MAC_CFG_TX_ENB;
2074 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2075 }
2076 /* Stop Tx DMA engine. */
2077 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2078 if ((reg & DMA_CFG_RD_ENB) != 0) {
2079 reg &= ~DMA_CFG_RD_ENB;
2080 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2081 }
2082 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2083 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2084 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2085 break;
2086 DELAY(10);
2087 }
2088 if (i == 0)
2089 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2090 }
2091
2092 static void
2093 age_stop_rxmac(struct age_softc *sc)
2094 {
2095 uint32_t reg;
2096 int i;
2097
2098 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 if ((reg & MAC_CFG_RX_ENB) != 0) {
2100 reg &= ~MAC_CFG_RX_ENB;
2101 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 }
2103 /* Stop Rx DMA engine. */
2104 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 if ((reg & DMA_CFG_WR_ENB) != 0) {
2106 reg &= ~DMA_CFG_WR_ENB;
2107 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 }
2109 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2112 break;
2113 DELAY(10);
2114 }
2115 if (i == 0)
2116 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2117 }
2118
2119 static void
2120 age_init_tx_ring(struct age_softc *sc)
2121 {
2122 struct age_ring_data *rd;
2123 struct age_txdesc *txd;
2124 int i;
2125
2126 sc->age_cdata.age_tx_prod = 0;
2127 sc->age_cdata.age_tx_cons = 0;
2128 sc->age_cdata.age_tx_cnt = 0;
2129
2130 rd = &sc->age_rdata;
2131 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2132 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2133 txd = &sc->age_cdata.age_txdesc[i];
2134 txd->tx_desc = &rd->age_tx_ring[i];
2135 txd->tx_m = NULL;
2136 }
2137 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2138 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 }
2140
2141 static int
2142 age_init_rx_ring(struct age_softc *sc)
2143 {
2144 struct age_ring_data *rd;
2145 struct age_rxdesc *rxd;
2146 int i;
2147
2148 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2149 rd = &sc->age_rdata;
2150 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2151 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2152 rxd = &sc->age_cdata.age_rxdesc[i];
2153 rxd->rx_m = NULL;
2154 rxd->rx_desc = &rd->age_rx_ring[i];
2155 if (age_newbuf(sc, rxd, 1) != 0)
2156 return ENOBUFS;
2157 }
2158
2159 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2160 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161
2162 return 0;
2163 }
2164
2165 static void
2166 age_init_rr_ring(struct age_softc *sc)
2167 {
2168 struct age_ring_data *rd;
2169
2170 sc->age_cdata.age_rr_cons = 0;
2171 AGE_RXCHAIN_RESET(sc);
2172
2173 rd = &sc->age_rdata;
2174 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2175 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2176 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2177 }
2178
2179 static void
2180 age_init_cmb_block(struct age_softc *sc)
2181 {
2182 struct age_ring_data *rd;
2183
2184 rd = &sc->age_rdata;
2185 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2186 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2187 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2188 }
2189
2190 static void
2191 age_init_smb_block(struct age_softc *sc)
2192 {
2193 struct age_ring_data *rd;
2194
2195 rd = &sc->age_rdata;
2196 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2197 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2198 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 }
2200
2201 static int
2202 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2203 {
2204 struct rx_desc *desc;
2205 struct mbuf *m;
2206 bus_dmamap_t map;
2207 int error;
2208
2209 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2210 if (m == NULL)
2211 return ENOBUFS;
2212 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2213 if (!(m->m_flags & M_EXT)) {
2214 m_freem(m);
2215 return ENOBUFS;
2216 }
2217
2218 m->m_len = m->m_pkthdr.len = MCLBYTES;
2219 m_adj(m, ETHER_ALIGN);
2220
2221 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2222 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2223
2224 if (error != 0) {
2225 if (!error) {
2226 bus_dmamap_unload(sc->sc_dmat,
2227 sc->age_cdata.age_rx_sparemap);
2228 error = EFBIG;
2229 printf("%s: too many segments?!\n",
2230 device_xname(sc->sc_dev));
2231 }
2232 m_freem(m);
2233
2234 if (init)
2235 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2236 return error;
2237 }
2238
2239 if (rxd->rx_m != NULL) {
2240 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2241 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2242 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2243 }
2244 map = rxd->rx_dmamap;
2245 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2246 sc->age_cdata.age_rx_sparemap = map;
2247 rxd->rx_m = m;
2248
2249 desc = rxd->rx_desc;
2250 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2251 desc->len =
2252 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2253 AGE_RD_LEN_SHIFT);
2254
2255 return 0;
2256 }
2257
2258 static void
2259 age_rxvlan(struct age_softc *sc)
2260 {
2261 uint32_t reg;
2262
2263 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2265 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2266 reg |= MAC_CFG_VLAN_TAG_STRIP;
2267 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2268 }
2269
2270 static void
2271 age_rxfilter(struct age_softc *sc)
2272 {
2273 struct ethercom *ec = &sc->sc_ec;
2274 struct ifnet *ifp = &sc->sc_ec.ec_if;
2275 struct ether_multi *enm;
2276 struct ether_multistep step;
2277 uint32_t crc;
2278 uint32_t mchash[2];
2279 uint32_t rxcfg;
2280
2281 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2282 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2283
2284 if (ifp->if_flags & IFF_BROADCAST)
2285 rxcfg |= MAC_CFG_BCAST;
2286 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2287 if (ifp->if_flags & IFF_PROMISC)
2288 rxcfg |= MAC_CFG_PROMISC;
2289 if (ifp->if_flags & IFF_ALLMULTI)
2290 rxcfg |= MAC_CFG_ALLMULTI;
2291 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2292 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2293 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2294 return;
2295 }
2296
2297 /* Program new filter. */
2298 memset(mchash, 0, sizeof(mchash));
2299
2300 ETHER_FIRST_MULTI(step, ec, enm);
2301 while (enm != NULL) {
2302 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2303 enm->enm_addrlo), ETHER_ADDR_LEN);
2304
2305 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 ETHER_NEXT_MULTI(step, enm);
2307 }
2308
2309 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2310 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2311 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2312 }
2313