if_age.c revision 1.22 1 /* $NetBSD: if_age.c,v 1.22 2009/02/16 09:38:41 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.22 2009/02/16 09:38:41 cegger Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct ifnet *, int);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 struct pci_attach_args *pa = aux;
139
140 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 struct age_softc *sc = device_private(self);
148 struct pci_attach_args *pa = aux;
149 pci_intr_handle_t ih;
150 const char *intrstr;
151 struct ifnet *ifp = &sc->sc_ec.ec_if;
152 pcireg_t memtype;
153 int error = 0;
154
155 aprint_naive("\n");
156 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157
158 sc->sc_dev = self;
159 sc->sc_dmat = pa->pa_dmat;
160 sc->sc_pct = pa->pa_pc;
161 sc->sc_pcitag = pa->pa_tag;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 return;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih);
192 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc);
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 return;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, 0);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (!pmf_device_register(self, NULL, age_resume))
292 aprint_error_dev(self, "couldn't establish power handler\n");
293 else
294 pmf_class_network_register(self, ifp);
295
296 return;
297
298 fail:
299 if (sc->sc_irq_handle != NULL) {
300 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
301 sc->sc_irq_handle = NULL;
302 }
303 }
304
305 static int
306 age_detach(device_t self, int flags)
307 {
308 struct age_softc *sc = device_private(self);
309 struct ifnet *ifp = &sc->sc_ec.ec_if;
310 int s;
311
312 s = splnet();
313 age_stop(ifp, 0);
314 splx(s);
315
316 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
317
318 /* Delete all remaining media. */
319 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
320
321 ether_ifdetach(ifp);
322 if_detach(ifp);
323 age_dma_free(sc);
324
325 if (sc->sc_irq_handle != NULL) {
326 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
327 sc->sc_irq_handle = NULL;
328 }
329
330 return 0;
331 }
332
333 /*
334 * Read a PHY register on the MII of the L1.
335 */
336 static int
337 age_miibus_readreg(device_t dev, int phy, int reg)
338 {
339 struct age_softc *sc = device_private(dev);
340 uint32_t v;
341 int i;
342
343 if (phy != sc->age_phyaddr)
344 return 0;
345
346 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
347 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
348 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
349 DELAY(1);
350 v = CSR_READ_4(sc, AGE_MDIO);
351 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
352 break;
353 }
354
355 if (i == 0) {
356 printf("%s: phy read timeout: phy %d, reg %d\n",
357 device_xname(sc->sc_dev), phy, reg);
358 return 0;
359 }
360
361 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
362 }
363
364 /*
365 * Write a PHY register on the MII of the L1.
366 */
367 static void
368 age_miibus_writereg(device_t dev, int phy, int reg, int val)
369 {
370 struct age_softc *sc = device_private(dev);
371 uint32_t v;
372 int i;
373
374 if (phy != sc->age_phyaddr)
375 return;
376
377 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
378 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
379 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
380
381 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
382 DELAY(1);
383 v = CSR_READ_4(sc, AGE_MDIO);
384 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
385 break;
386 }
387
388 if (i == 0) {
389 printf("%s: phy write timeout: phy %d, reg %d\n",
390 device_xname(sc->sc_dev), phy, reg);
391 }
392 }
393
394 /*
395 * Callback from MII layer when media changes.
396 */
397 static void
398 age_miibus_statchg(device_t dev)
399 {
400 struct age_softc *sc = device_private(dev);
401 struct ifnet *ifp = &sc->sc_ec.ec_if;
402 struct mii_data *mii;
403
404 if ((ifp->if_flags & IFF_RUNNING) == 0)
405 return;
406
407 mii = &sc->sc_miibus;
408
409 sc->age_flags &= ~AGE_FLAG_LINK;
410 if ((mii->mii_media_status & IFM_AVALID) != 0) {
411 switch (IFM_SUBTYPE(mii->mii_media_active)) {
412 case IFM_10_T:
413 case IFM_100_TX:
414 case IFM_1000_T:
415 sc->age_flags |= AGE_FLAG_LINK;
416 break;
417 default:
418 break;
419 }
420 }
421
422 /* Stop Rx/Tx MACs. */
423 age_stop_rxmac(sc);
424 age_stop_txmac(sc);
425
426 /* Program MACs with resolved speed/duplex/flow-control. */
427 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
428 uint32_t reg;
429
430 age_mac_config(sc);
431 reg = CSR_READ_4(sc, AGE_MAC_CFG);
432 /* Restart DMA engine and Tx/Rx MAC. */
433 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
434 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
435 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
436 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
437 }
438 }
439
440 /*
441 * Get the current interface media status.
442 */
443 static void
444 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
445 {
446 struct age_softc *sc = ifp->if_softc;
447 struct mii_data *mii = &sc->sc_miibus;
448
449 mii_pollstat(mii);
450 ifmr->ifm_status = mii->mii_media_status;
451 ifmr->ifm_active = mii->mii_media_active;
452 }
453
454 /*
455 * Set hardware to newly-selected media.
456 */
457 static int
458 age_mediachange(struct ifnet *ifp)
459 {
460 struct age_softc *sc = ifp->if_softc;
461 struct mii_data *mii = &sc->sc_miibus;
462 int error;
463
464 if (mii->mii_instance != 0) {
465 struct mii_softc *miisc;
466
467 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
468 mii_phy_reset(miisc);
469 }
470 error = mii_mediachg(mii);
471
472 return error;
473 }
474
475 static int
476 age_intr(void *arg)
477 {
478 struct age_softc *sc = arg;
479 struct ifnet *ifp = &sc->sc_ec.ec_if;
480 struct cmb *cmb;
481 uint32_t status;
482
483 status = CSR_READ_4(sc, AGE_INTR_STATUS);
484 if (status == 0 || (status & AGE_INTRS) == 0)
485 return 0;
486
487 cmb = sc->age_rdata.age_cmb_block;
488 if (cmb == NULL)
489 return 0;
490
491 /* Disable interrupts. */
492 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
493
494 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
495 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
496 status = le32toh(cmb->intr_status);
497 if ((status & AGE_INTRS) == 0)
498 goto back;
499
500 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
501 TPD_CONS_SHIFT;
502 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
503 RRD_PROD_SHIFT;
504
505 /* Let hardware know CMB was served. */
506 cmb->intr_status = 0;
507 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
508 sc->age_cdata.age_cmb_block_map->dm_mapsize,
509 BUS_DMASYNC_PREWRITE);
510
511 if (ifp->if_flags & IFF_RUNNING) {
512 if (status & INTR_CMB_RX)
513 age_rxintr(sc, sc->age_rr_prod);
514
515 if (status & INTR_CMB_TX)
516 age_txintr(sc, sc->age_tpd_cons);
517
518 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
519 if (status & INTR_DMA_RD_TO_RST)
520 printf("%s: DMA read error! -- resetting\n",
521 device_xname(sc->sc_dev));
522 if (status & INTR_DMA_WR_TO_RST)
523 printf("%s: DMA write error! -- resetting\n",
524 device_xname(sc->sc_dev));
525 age_init(ifp);
526 }
527
528 if (!IFQ_IS_EMPTY(&ifp->if_snd))
529 age_start(ifp);
530
531 if (status & INTR_SMB)
532 age_stats_update(sc);
533 }
534
535 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
536 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
537 sc->age_cdata.age_cmb_block_map->dm_mapsize,
538 BUS_DMASYNC_POSTREAD);
539
540 back:
541 /* Re-enable interrupts. */
542 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
543
544 return 1;
545 }
546
547 static int
548 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
549 uint32_t *word)
550 {
551 int i;
552 pcireg_t rv;
553
554 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
555 offset << PCI_VPD_ADDRESS_SHIFT);
556 for (i = AGE_TIMEOUT; i > 0; i--) {
557 DELAY(10);
558 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
559 PCI_VPD_ADDRESS(vpdc));
560 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
561 break;
562 }
563 if (i == 0) {
564 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
565 *word = 0;
566 return ETIMEDOUT;
567 }
568
569 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
570 return 0;
571 }
572
573 static void
574 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
575 {
576 uint32_t ea[2], off, reg, word;
577 int vpd_error, match, vpdc;
578
579 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
580 if ((reg & SPI_VPD_ENB) != 0) {
581 /* Get VPD stored in TWSI EEPROM. */
582 reg &= ~SPI_VPD_ENB;
583 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
584 }
585
586 vpd_error = 0;
587 ea[0] = ea[1] = 0;
588 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
589 PCI_CAP_VPD, &vpdc, NULL))) {
590 /*
591 * PCI VPD capability exists, but it seems that it's
592 * not in the standard form as stated in PCI VPD
593 * specification such that driver could not use
594 * pci_get_vpd_readonly(9) with keyword 'NA'.
595 * Search VPD data starting at address 0x0100. The data
596 * should be used as initializers to set AGE_PAR0,
597 * AGE_PAR1 register including other PCI configuration
598 * registers.
599 */
600 word = 0;
601 match = 0;
602 reg = 0;
603 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
604 off += sizeof(uint32_t)) {
605 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
606 if (vpd_error != 0)
607 break;
608 if (match != 0) {
609 switch (reg) {
610 case AGE_PAR0:
611 ea[0] = word;
612 break;
613 case AGE_PAR1:
614 ea[1] = word;
615 break;
616 default:
617 break;
618 }
619 match = 0;
620 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
621 match = 1;
622 reg = word >> 16;
623 } else
624 break;
625 }
626 if (off >= AGE_VPD_REG_CONF_END)
627 vpd_error = ENOENT;
628 if (vpd_error == 0) {
629 /*
630 * Don't blindly trust ethernet address obtained
631 * from VPD. Check whether ethernet address is
632 * valid one. Otherwise fall-back to reading
633 * PAR register.
634 */
635 ea[1] &= 0xFFFF;
636 if ((ea[0] == 0 && ea[1] == 0) ||
637 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
638 if (agedebug)
639 printf("%s: invalid ethernet address "
640 "returned from VPD.\n",
641 device_xname(sc->sc_dev));
642 vpd_error = EINVAL;
643 }
644 }
645 if (vpd_error != 0 && (agedebug))
646 printf("%s: VPD access failure!\n",
647 device_xname(sc->sc_dev));
648 } else {
649 if (agedebug)
650 printf("%s: PCI VPD capability not found!\n",
651 device_xname(sc->sc_dev));
652 }
653
654 /*
655 * It seems that L1 also provides a way to extract ethernet
656 * address via SPI flash interface. Because SPI flash memory
657 * device of different vendors vary in their instruction
658 * codes for read ID instruction, it's very hard to get
659 * instructions codes without detailed information for the
660 * flash memory device used on ethernet controller. To simplify
661 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
662 * address which is supposed to be set by hardware during
663 * power on reset.
664 */
665 if (vpd_error != 0) {
666 /*
667 * VPD is mapped to SPI flash memory or BIOS set it.
668 */
669 ea[0] = CSR_READ_4(sc, AGE_PAR0);
670 ea[1] = CSR_READ_4(sc, AGE_PAR1);
671 }
672
673 ea[1] &= 0xFFFF;
674 eaddr[0] = (ea[1] >> 8) & 0xFF;
675 eaddr[1] = (ea[1] >> 0) & 0xFF;
676 eaddr[2] = (ea[0] >> 24) & 0xFF;
677 eaddr[3] = (ea[0] >> 16) & 0xFF;
678 eaddr[4] = (ea[0] >> 8) & 0xFF;
679 eaddr[5] = (ea[0] >> 0) & 0xFF;
680 }
681
682 static void
683 age_phy_reset(struct age_softc *sc)
684 {
685 /* Reset PHY. */
686 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
687 DELAY(1000);
688 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
689 DELAY(1000);
690 }
691
692 static int
693 age_dma_alloc(struct age_softc *sc)
694 {
695 struct age_txdesc *txd;
696 struct age_rxdesc *rxd;
697 int nsegs, error, i;
698
699 /*
700 * Create DMA stuffs for TX ring
701 */
702 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
703 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
704 if (error)
705 return ENOBUFS;
706
707 /* Allocate DMA'able memory for TX ring */
708 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
709 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
710 &nsegs, BUS_DMA_WAITOK);
711 if (error) {
712 printf("%s: could not allocate DMA'able memory for Tx ring, "
713 "error = %i\n", device_xname(sc->sc_dev), error);
714 return error;
715 }
716
717 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
718 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
719 BUS_DMA_NOWAIT);
720 if (error)
721 return ENOBUFS;
722
723 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
724
725 /* Load the DMA map for Tx ring. */
726 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
727 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
728 if (error) {
729 printf("%s: could not load DMA'able memory for Tx ring, "
730 "error = %i\n", device_xname(sc->sc_dev), error);
731 bus_dmamem_free(sc->sc_dmat,
732 (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
733 return error;
734 }
735
736 sc->age_rdata.age_tx_ring_paddr =
737 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
738
739 /*
740 * Create DMA stuffs for RX ring
741 */
742 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
743 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
744 if (error)
745 return ENOBUFS;
746
747 /* Allocate DMA'able memory for RX ring */
748 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 &nsegs, BUS_DMA_WAITOK);
751 if (error) {
752 printf("%s: could not allocate DMA'able memory for Rx ring, "
753 "error = %i.\n", device_xname(sc->sc_dev), error);
754 return error;
755 }
756
757 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 BUS_DMA_NOWAIT);
760 if (error)
761 return ENOBUFS;
762
763 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
764
765 /* Load the DMA map for Rx ring. */
766 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 if (error) {
769 printf("%s: could not load DMA'able memory for Rx ring, "
770 "error = %i.\n", device_xname(sc->sc_dev), error);
771 bus_dmamem_free(sc->sc_dmat,
772 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
773 return error;
774 }
775
776 sc->age_rdata.age_rx_ring_paddr =
777 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
778
779 /*
780 * Create DMA stuffs for RX return ring
781 */
782 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 if (error)
785 return ENOBUFS;
786
787 /* Allocate DMA'able memory for RX return ring */
788 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
789 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
790 &nsegs, BUS_DMA_WAITOK);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for Rx "
793 "return ring, error = %i.\n",
794 device_xname(sc->sc_dev), error);
795 return error;
796 }
797
798 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
799 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
800 BUS_DMA_NOWAIT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
805
806 /* Load the DMA map for Rx return ring. */
807 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
808 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
809 if (error) {
810 printf("%s: could not load DMA'able memory for Rx return ring, "
811 "error = %i\n", device_xname(sc->sc_dev), error);
812 bus_dmamem_free(sc->sc_dmat,
813 (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
814 return error;
815 }
816
817 sc->age_rdata.age_rr_ring_paddr =
818 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
819
820 /*
821 * Create DMA stuffs for CMB block
822 */
823 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
824 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
825 &sc->age_cdata.age_cmb_block_map);
826 if (error)
827 return ENOBUFS;
828
829 /* Allocate DMA'able memory for CMB block */
830 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
831 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
832 &nsegs, BUS_DMA_WAITOK);
833 if (error) {
834 printf("%s: could not allocate DMA'able memory for "
835 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
836 return error;
837 }
838
839 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
840 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
841 BUS_DMA_NOWAIT);
842 if (error)
843 return ENOBUFS;
844
845 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
846
847 /* Load the DMA map for CMB block. */
848 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
849 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
850 BUS_DMA_WAITOK);
851 if (error) {
852 printf("%s: could not load DMA'able memory for CMB block, "
853 "error = %i\n", device_xname(sc->sc_dev), error);
854 bus_dmamem_free(sc->sc_dmat,
855 (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
856 return error;
857 }
858
859 sc->age_rdata.age_cmb_block_paddr =
860 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
861
862 /*
863 * Create DMA stuffs for SMB block
864 */
865 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
866 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
867 &sc->age_cdata.age_smb_block_map);
868 if (error)
869 return ENOBUFS;
870
871 /* Allocate DMA'able memory for SMB block */
872 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
873 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
874 &nsegs, BUS_DMA_WAITOK);
875 if (error) {
876 printf("%s: could not allocate DMA'able memory for "
877 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
878 return error;
879 }
880
881 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
882 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
883 BUS_DMA_NOWAIT);
884 if (error)
885 return ENOBUFS;
886
887 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
888
889 /* Load the DMA map for SMB block */
890 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
891 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
892 BUS_DMA_WAITOK);
893 if (error) {
894 printf("%s: could not load DMA'able memory for SMB block, "
895 "error = %i\n", device_xname(sc->sc_dev), error);
896 bus_dmamem_free(sc->sc_dmat,
897 (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
898 return error;
899 }
900
901 sc->age_rdata.age_smb_block_paddr =
902 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
903
904 /* Create DMA maps for Tx buffers. */
905 for (i = 0; i < AGE_TX_RING_CNT; i++) {
906 txd = &sc->age_cdata.age_txdesc[i];
907 txd->tx_m = NULL;
908 txd->tx_dmamap = NULL;
909 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
910 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
911 &txd->tx_dmamap);
912 if (error) {
913 printf("%s: could not create Tx dmamap, error = %i.\n",
914 device_xname(sc->sc_dev), error);
915 return error;
916 }
917 }
918
919 /* Create DMA maps for Rx buffers. */
920 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
921 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
922 if (error) {
923 printf("%s: could not create spare Rx dmamap, error = %i.\n",
924 device_xname(sc->sc_dev), error);
925 return error;
926 }
927 for (i = 0; i < AGE_RX_RING_CNT; i++) {
928 rxd = &sc->age_cdata.age_rxdesc[i];
929 rxd->rx_m = NULL;
930 rxd->rx_dmamap = NULL;
931 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
932 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
933 if (error) {
934 printf("%s: could not create Rx dmamap, error = %i.\n",
935 device_xname(sc->sc_dev), error);
936 return error;
937 }
938 }
939
940 return 0;
941 }
942
943 static void
944 age_dma_free(struct age_softc *sc)
945 {
946 struct age_txdesc *txd;
947 struct age_rxdesc *rxd;
948 int i;
949
950 /* Tx buffers */
951 for (i = 0; i < AGE_TX_RING_CNT; i++) {
952 txd = &sc->age_cdata.age_txdesc[i];
953 if (txd->tx_dmamap != NULL) {
954 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
955 txd->tx_dmamap = NULL;
956 }
957 }
958 /* Rx buffers */
959 for (i = 0; i < AGE_RX_RING_CNT; i++) {
960 rxd = &sc->age_cdata.age_rxdesc[i];
961 if (rxd->rx_dmamap != NULL) {
962 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
963 rxd->rx_dmamap = NULL;
964 }
965 }
966 if (sc->age_cdata.age_rx_sparemap != NULL) {
967 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
968 sc->age_cdata.age_rx_sparemap = NULL;
969 }
970
971 /* Tx ring. */
972 if (sc->age_cdata.age_tx_ring_map != NULL)
973 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
974 if (sc->age_cdata.age_tx_ring_map != NULL &&
975 sc->age_rdata.age_tx_ring != NULL)
976 bus_dmamem_free(sc->sc_dmat,
977 (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
978 sc->age_rdata.age_tx_ring = NULL;
979 sc->age_cdata.age_tx_ring_map = NULL;
980
981 /* Rx ring. */
982 if (sc->age_cdata.age_rx_ring_map != NULL)
983 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
984 if (sc->age_cdata.age_rx_ring_map != NULL &&
985 sc->age_rdata.age_rx_ring != NULL)
986 bus_dmamem_free(sc->sc_dmat,
987 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
988 sc->age_rdata.age_rx_ring = NULL;
989 sc->age_cdata.age_rx_ring_map = NULL;
990
991 /* Rx return ring. */
992 if (sc->age_cdata.age_rr_ring_map != NULL)
993 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
994 if (sc->age_cdata.age_rr_ring_map != NULL &&
995 sc->age_rdata.age_rr_ring != NULL)
996 bus_dmamem_free(sc->sc_dmat,
997 (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
998 sc->age_rdata.age_rr_ring = NULL;
999 sc->age_cdata.age_rr_ring_map = NULL;
1000
1001 /* CMB block */
1002 if (sc->age_cdata.age_cmb_block_map != NULL)
1003 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1004 if (sc->age_cdata.age_cmb_block_map != NULL &&
1005 sc->age_rdata.age_cmb_block != NULL)
1006 bus_dmamem_free(sc->sc_dmat,
1007 (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1008 sc->age_rdata.age_cmb_block = NULL;
1009 sc->age_cdata.age_cmb_block_map = NULL;
1010
1011 /* SMB block */
1012 if (sc->age_cdata.age_smb_block_map != NULL)
1013 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1014 if (sc->age_cdata.age_smb_block_map != NULL &&
1015 sc->age_rdata.age_smb_block != NULL)
1016 bus_dmamem_free(sc->sc_dmat,
1017 (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1018 sc->age_rdata.age_smb_block = NULL;
1019 sc->age_cdata.age_smb_block_map = NULL;
1020 }
1021
1022 static void
1023 age_start(struct ifnet *ifp)
1024 {
1025 struct age_softc *sc = ifp->if_softc;
1026 struct mbuf *m_head;
1027 int enq;
1028
1029 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1030 return;
1031
1032 enq = 0;
1033 for (;;) {
1034 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1035 if (m_head == NULL)
1036 break;
1037
1038 /*
1039 * Pack the data into the transmit ring. If we
1040 * don't have room, set the OACTIVE flag and wait
1041 * for the NIC to drain the ring.
1042 */
1043 if (age_encap(sc, &m_head)) {
1044 if (m_head == NULL)
1045 break;
1046 ifp->if_flags |= IFF_OACTIVE;
1047 break;
1048 }
1049 enq = 1;
1050
1051 #if NBPFILTER > 0
1052 /*
1053 * If there's a BPF listener, bounce a copy of this frame
1054 * to him.
1055 */
1056 if (ifp->if_bpf != NULL)
1057 bpf_mtap(ifp->if_bpf, m_head);
1058 #endif
1059 }
1060
1061 if (enq) {
1062 /* Update mbox. */
1063 AGE_COMMIT_MBOX(sc);
1064 /* Set a timeout in case the chip goes out to lunch. */
1065 ifp->if_timer = AGE_TX_TIMEOUT;
1066 }
1067 }
1068
1069 static void
1070 age_watchdog(struct ifnet *ifp)
1071 {
1072 struct age_softc *sc = ifp->if_softc;
1073
1074 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1075 printf("%s: watchdog timeout (missed link)\n",
1076 device_xname(sc->sc_dev));
1077 ifp->if_oerrors++;
1078 age_init(ifp);
1079 return;
1080 }
1081
1082 if (sc->age_cdata.age_tx_cnt == 0) {
1083 printf("%s: watchdog timeout (missed Tx interrupts) "
1084 "-- recovering\n", device_xname(sc->sc_dev));
1085 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1086 age_start(ifp);
1087 return;
1088 }
1089
1090 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1091 ifp->if_oerrors++;
1092 age_init(ifp);
1093
1094 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1095 age_start(ifp);
1096 }
1097
1098 static int
1099 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1100 {
1101 struct age_softc *sc = ifp->if_softc;
1102 int s, error;
1103
1104 s = splnet();
1105
1106 error = ether_ioctl(ifp, cmd, data);
1107 if (error == ENETRESET) {
1108 if (ifp->if_flags & IFF_RUNNING)
1109 age_rxfilter(sc);
1110 error = 0;
1111 }
1112
1113 splx(s);
1114 return error;
1115 }
1116
1117 static void
1118 age_mac_config(struct age_softc *sc)
1119 {
1120 struct mii_data *mii;
1121 uint32_t reg;
1122
1123 mii = &sc->sc_miibus;
1124
1125 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1126 reg &= ~MAC_CFG_FULL_DUPLEX;
1127 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1128 reg &= ~MAC_CFG_SPEED_MASK;
1129
1130 /* Reprogram MAC with resolved speed/duplex. */
1131 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1132 case IFM_10_T:
1133 case IFM_100_TX:
1134 reg |= MAC_CFG_SPEED_10_100;
1135 break;
1136 case IFM_1000_T:
1137 reg |= MAC_CFG_SPEED_1000;
1138 break;
1139 }
1140 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1141 reg |= MAC_CFG_FULL_DUPLEX;
1142 #ifdef notyet
1143 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1144 reg |= MAC_CFG_TX_FC;
1145 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1146 reg |= MAC_CFG_RX_FC;
1147 #endif
1148 }
1149
1150 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1151 }
1152
1153 static bool
1154 age_resume(device_t dv PMF_FN_ARGS)
1155 {
1156 struct age_softc *sc = device_private(dv);
1157 uint16_t cmd;
1158
1159 /*
1160 * Clear INTx emulation disable for hardware that
1161 * is set in resume event. From Linux.
1162 */
1163 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1164 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1165 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1166 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1167 PCI_COMMAND_STATUS_REG, cmd);
1168 }
1169
1170 return true;
1171 }
1172
1173 static int
1174 age_encap(struct age_softc *sc, struct mbuf **m_head)
1175 {
1176 struct age_txdesc *txd, *txd_last;
1177 struct tx_desc *desc;
1178 struct mbuf *m;
1179 bus_dmamap_t map;
1180 uint32_t cflags, poff, vtag;
1181 int error, i, nsegs, prod;
1182 #if NVLAN > 0
1183 struct m_tag *mtag;
1184 #endif
1185
1186 m = *m_head;
1187 cflags = vtag = 0;
1188 poff = 0;
1189
1190 prod = sc->age_cdata.age_tx_prod;
1191 txd = &sc->age_cdata.age_txdesc[prod];
1192 txd_last = txd;
1193 map = txd->tx_dmamap;
1194
1195 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1196
1197 if (error == EFBIG) {
1198 error = 0;
1199
1200 MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 if (m == NULL) {
1202 printf("%s: can't defrag TX mbuf\n",
1203 device_xname(sc->sc_dev));
1204 m_freem(*m_head);
1205 *m_head = NULL;
1206 return ENOBUFS;
1207 }
1208
1209 M_COPY_PKTHDR(m, *m_head);
1210 if ((*m_head)->m_pkthdr.len > MHLEN) {
1211 MCLGET(m, M_DONTWAIT);
1212 if (!(m->m_flags & M_EXT)) {
1213 m_freem(*m_head);
1214 m_freem(m);
1215 *m_head = NULL;
1216 return ENOBUFS;
1217 }
1218 }
1219 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1220 mtod(m, void *));
1221 m_freem(*m_head);
1222 m->m_len = m->m_pkthdr.len;
1223 *m_head = m;
1224
1225 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1226 BUS_DMA_NOWAIT);
1227
1228 if (error != 0) {
1229 printf("%s: could not load defragged TX mbuf\n",
1230 device_xname(sc->sc_dev));
1231 if (!error) {
1232 bus_dmamap_unload(sc->sc_dmat, map);
1233 error = EFBIG;
1234 }
1235 m_freem(*m_head);
1236 *m_head = NULL;
1237 return error;
1238 }
1239 } else if (error) {
1240 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1241 return error;
1242 }
1243
1244 nsegs = map->dm_nsegs;
1245
1246 if (nsegs == 0) {
1247 m_freem(*m_head);
1248 *m_head = NULL;
1249 return EIO;
1250 }
1251
1252 /* Check descriptor overrun. */
1253 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1254 bus_dmamap_unload(sc->sc_dmat, map);
1255 return ENOBUFS;
1256 }
1257
1258 m = *m_head;
1259 /* Configure Tx IP/TCP/UDP checksum offload. */
1260 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1261 cflags |= AGE_TD_CSUM;
1262 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1263 cflags |= AGE_TD_TCPCSUM;
1264 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1265 cflags |= AGE_TD_UDPCSUM;
1266 /* Set checksum start offset. */
1267 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1268 }
1269
1270 #if NVLAN > 0
1271 /* Configure VLAN hardware tag insertion. */
1272 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1273 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1274 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1275 cflags |= AGE_TD_INSERT_VLAN_TAG;
1276 }
1277 #endif
1278
1279 desc = NULL;
1280 for (i = 0; i < nsegs; i++) {
1281 desc = &sc->age_rdata.age_tx_ring[prod];
1282 desc->addr = htole64(map->dm_segs[i].ds_addr);
1283 desc->len =
1284 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1285 desc->flags = htole32(cflags);
1286 sc->age_cdata.age_tx_cnt++;
1287 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 }
1289
1290 /* Update producer index. */
1291 sc->age_cdata.age_tx_prod = prod;
1292
1293 /* Set EOP on the last descriptor. */
1294 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1295 desc = &sc->age_rdata.age_tx_ring[prod];
1296 desc->flags |= htole32(AGE_TD_EOP);
1297
1298 /* Swap dmamap of the first and the last. */
1299 txd = &sc->age_cdata.age_txdesc[prod];
1300 map = txd_last->tx_dmamap;
1301 txd_last->tx_dmamap = txd->tx_dmamap;
1302 txd->tx_dmamap = map;
1303 txd->tx_m = m;
1304
1305 /* Sync descriptors. */
1306 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1307 BUS_DMASYNC_PREWRITE);
1308 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1309 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1310
1311 return 0;
1312 }
1313
1314 static void
1315 age_txintr(struct age_softc *sc, int tpd_cons)
1316 {
1317 struct ifnet *ifp = &sc->sc_ec.ec_if;
1318 struct age_txdesc *txd;
1319 int cons, prog;
1320
1321 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1322 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323
1324 /*
1325 * Go through our Tx list and free mbufs for those
1326 * frames which have been transmitted.
1327 */
1328 cons = sc->age_cdata.age_tx_cons;
1329 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1330 if (sc->age_cdata.age_tx_cnt <= 0)
1331 break;
1332 prog++;
1333 ifp->if_flags &= ~IFF_OACTIVE;
1334 sc->age_cdata.age_tx_cnt--;
1335 txd = &sc->age_cdata.age_txdesc[cons];
1336 /*
1337 * Clear Tx descriptors, it's not required but would
1338 * help debugging in case of Tx issues.
1339 */
1340 txd->tx_desc->addr = 0;
1341 txd->tx_desc->len = 0;
1342 txd->tx_desc->flags = 0;
1343
1344 if (txd->tx_m == NULL)
1345 continue;
1346 /* Reclaim transmitted mbufs. */
1347 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1348 m_freem(txd->tx_m);
1349 txd->tx_m = NULL;
1350 }
1351
1352 if (prog > 0) {
1353 sc->age_cdata.age_tx_cons = cons;
1354
1355 /*
1356 * Unarm watchdog timer only when there are no pending
1357 * Tx descriptors in queue.
1358 */
1359 if (sc->age_cdata.age_tx_cnt == 0)
1360 ifp->if_timer = 0;
1361
1362 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1363 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1364 BUS_DMASYNC_PREWRITE);
1365 }
1366 }
1367
1368 /* Receive a frame. */
1369 static void
1370 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1371 {
1372 struct ifnet *ifp = &sc->sc_ec.ec_if;
1373 struct age_rxdesc *rxd;
1374 struct rx_desc *desc;
1375 struct mbuf *mp, *m;
1376 uint32_t status, index;
1377 int count, nsegs, pktlen;
1378 int rx_cons;
1379
1380 status = le32toh(rxrd->flags);
1381 index = le32toh(rxrd->index);
1382 rx_cons = AGE_RX_CONS(index);
1383 nsegs = AGE_RX_NSEGS(index);
1384
1385 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1386 if ((status & AGE_RRD_ERROR) != 0 &&
1387 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1388 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1389 /*
1390 * We want to pass the following frames to upper
1391 * layer regardless of error status of Rx return
1392 * ring.
1393 *
1394 * o IP/TCP/UDP checksum is bad.
1395 * o frame length and protocol specific length
1396 * does not match.
1397 */
1398 sc->age_cdata.age_rx_cons += nsegs;
1399 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1400 return;
1401 }
1402
1403 pktlen = 0;
1404 for (count = 0; count < nsegs; count++,
1405 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1406 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1407 mp = rxd->rx_m;
1408 desc = rxd->rx_desc;
1409 /* Add a new receive buffer to the ring. */
1410 if (age_newbuf(sc, rxd, 0) != 0) {
1411 ifp->if_iqdrops++;
1412 /* Reuse Rx buffers. */
1413 if (sc->age_cdata.age_rxhead != NULL) {
1414 m_freem(sc->age_cdata.age_rxhead);
1415 AGE_RXCHAIN_RESET(sc);
1416 }
1417 break;
1418 }
1419
1420 /* The length of the first mbuf is computed last. */
1421 if (count != 0) {
1422 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1423 pktlen += mp->m_len;
1424 }
1425
1426 /* Chain received mbufs. */
1427 if (sc->age_cdata.age_rxhead == NULL) {
1428 sc->age_cdata.age_rxhead = mp;
1429 sc->age_cdata.age_rxtail = mp;
1430 } else {
1431 mp->m_flags &= ~M_PKTHDR;
1432 sc->age_cdata.age_rxprev_tail =
1433 sc->age_cdata.age_rxtail;
1434 sc->age_cdata.age_rxtail->m_next = mp;
1435 sc->age_cdata.age_rxtail = mp;
1436 }
1437
1438 if (count == nsegs - 1) {
1439 /*
1440 * It seems that L1 controller has no way
1441 * to tell hardware to strip CRC bytes.
1442 */
1443 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1444 if (nsegs > 1) {
1445 /* Remove the CRC bytes in chained mbufs. */
1446 pktlen -= ETHER_CRC_LEN;
1447 if (mp->m_len <= ETHER_CRC_LEN) {
1448 sc->age_cdata.age_rxtail =
1449 sc->age_cdata.age_rxprev_tail;
1450 sc->age_cdata.age_rxtail->m_len -=
1451 (ETHER_CRC_LEN - mp->m_len);
1452 sc->age_cdata.age_rxtail->m_next = NULL;
1453 m_freem(mp);
1454 } else {
1455 mp->m_len -= ETHER_CRC_LEN;
1456 }
1457 }
1458
1459 m = sc->age_cdata.age_rxhead;
1460 m->m_flags |= M_PKTHDR;
1461 m->m_pkthdr.rcvif = ifp;
1462 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1463 /* Set the first mbuf length. */
1464 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1465
1466 /*
1467 * Set checksum information.
1468 * It seems that L1 controller can compute partial
1469 * checksum. The partial checksum value can be used
1470 * to accelerate checksum computation for fragmented
1471 * TCP/UDP packets. Upper network stack already
1472 * takes advantage of the partial checksum value in
1473 * IP reassembly stage. But I'm not sure the
1474 * correctness of the partial hardware checksum
1475 * assistance due to lack of data sheet. If it is
1476 * proven to work on L1 I'll enable it.
1477 */
1478 if (status & AGE_RRD_IPV4) {
1479 if (status & AGE_RRD_IPCSUM_NOK)
1480 m->m_pkthdr.csum_flags |=
1481 M_CSUM_IPv4_BAD;
1482 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1483 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1484 m->m_pkthdr.csum_flags |=
1485 M_CSUM_TCP_UDP_BAD;
1486 }
1487 /*
1488 * Don't mark bad checksum for TCP/UDP frames
1489 * as fragmented frames may always have set
1490 * bad checksummed bit of descriptor status.
1491 */
1492 }
1493 #if NVLAN > 0
1494 /* Check for VLAN tagged frames. */
1495 if (status & AGE_RRD_VLAN) {
1496 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1497 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1498 continue);
1499 }
1500 #endif
1501
1502 #if NBPFILTER > 0
1503 if (ifp->if_bpf)
1504 bpf_mtap(ifp->if_bpf, m);
1505 #endif
1506 /* Pass it on. */
1507 ether_input(ifp, m);
1508
1509 /* Reset mbuf chains. */
1510 AGE_RXCHAIN_RESET(sc);
1511 }
1512 }
1513
1514 if (count != nsegs) {
1515 sc->age_cdata.age_rx_cons += nsegs;
1516 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1517 } else
1518 sc->age_cdata.age_rx_cons = rx_cons;
1519 }
1520
1521 static void
1522 age_rxintr(struct age_softc *sc, int rr_prod)
1523 {
1524 struct rx_rdesc *rxrd;
1525 int rr_cons, nsegs, pktlen, prog;
1526
1527 rr_cons = sc->age_cdata.age_rr_cons;
1528 if (rr_cons == rr_prod)
1529 return;
1530
1531 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1532 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1533 BUS_DMASYNC_POSTREAD);
1534
1535 for (prog = 0; rr_cons != rr_prod; prog++) {
1536 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1537 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1538 if (nsegs == 0)
1539 break;
1540 /*
1541 * Check number of segments against received bytes
1542 * Non-matching value would indicate that hardware
1543 * is still trying to update Rx return descriptors.
1544 * I'm not sure whether this check is really needed.
1545 */
1546 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1547 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1548 (MCLBYTES - ETHER_ALIGN)))
1549 break;
1550
1551 /* Received a frame. */
1552 age_rxeof(sc, rxrd);
1553
1554 /* Clear return ring. */
1555 rxrd->index = 0;
1556 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1557 }
1558
1559 if (prog > 0) {
1560 /* Update the consumer index. */
1561 sc->age_cdata.age_rr_cons = rr_cons;
1562
1563 /* Sync descriptors. */
1564 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1565 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1566 BUS_DMASYNC_PREWRITE);
1567
1568 /* Notify hardware availability of new Rx buffers. */
1569 AGE_COMMIT_MBOX(sc);
1570 }
1571 }
1572
1573 static void
1574 age_tick(void *xsc)
1575 {
1576 struct age_softc *sc = xsc;
1577 struct mii_data *mii = &sc->sc_miibus;
1578 int s;
1579
1580 s = splnet();
1581 mii_tick(mii);
1582 splx(s);
1583
1584 callout_schedule(&sc->sc_tick_ch, hz);
1585 }
1586
1587 static void
1588 age_reset(struct age_softc *sc)
1589 {
1590 uint32_t reg;
1591 int i;
1592
1593 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1594 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1595 DELAY(1);
1596 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1597 break;
1598 }
1599 if (i == 0)
1600 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1601
1602 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1603 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1604 break;
1605 DELAY(10);
1606 }
1607
1608 if (i == 0)
1609 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1610 reg);
1611
1612 /* Initialize PCIe module. From Linux. */
1613 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1614 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1615 }
1616
1617 static int
1618 age_init(struct ifnet *ifp)
1619 {
1620 struct age_softc *sc = ifp->if_softc;
1621 struct mii_data *mii;
1622 uint8_t eaddr[ETHER_ADDR_LEN];
1623 bus_addr_t paddr;
1624 uint32_t reg, fsize;
1625 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1626 int error;
1627
1628 /*
1629 * Cancel any pending I/O.
1630 */
1631 age_stop(ifp, 0);
1632
1633 /*
1634 * Reset the chip to a known state.
1635 */
1636 age_reset(sc);
1637
1638 /* Initialize descriptors. */
1639 error = age_init_rx_ring(sc);
1640 if (error != 0) {
1641 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1642 age_stop(ifp, 0);
1643 return error;
1644 }
1645 age_init_rr_ring(sc);
1646 age_init_tx_ring(sc);
1647 age_init_cmb_block(sc);
1648 age_init_smb_block(sc);
1649
1650 /* Reprogram the station address. */
1651 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1652 CSR_WRITE_4(sc, AGE_PAR0,
1653 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1654 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1655
1656 /* Set descriptor base addresses. */
1657 paddr = sc->age_rdata.age_tx_ring_paddr;
1658 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1659 paddr = sc->age_rdata.age_rx_ring_paddr;
1660 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 paddr = sc->age_rdata.age_rr_ring_paddr;
1662 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1663 paddr = sc->age_rdata.age_tx_ring_paddr;
1664 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1665 paddr = sc->age_rdata.age_cmb_block_paddr;
1666 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1667 paddr = sc->age_rdata.age_smb_block_paddr;
1668 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1669
1670 /* Set Rx/Rx return descriptor counter. */
1671 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1672 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1673 DESC_RRD_CNT_MASK) |
1674 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1675
1676 /* Set Tx descriptor counter. */
1677 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1678 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1679
1680 /* Tell hardware that we're ready to load descriptors. */
1681 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682
1683 /*
1684 * Initialize mailbox register.
1685 * Updated producer/consumer index information is exchanged
1686 * through this mailbox register. However Tx producer and
1687 * Rx return consumer/Rx producer are all shared such that
1688 * it's hard to separate code path between Tx and Rx without
1689 * locking. If L1 hardware have a separate mail box register
1690 * for Tx and Rx consumer/producer management we could have
1691 * indepent Tx/Rx handler which in turn Rx handler could have
1692 * been run without any locking.
1693 */
1694 AGE_COMMIT_MBOX(sc);
1695
1696 /* Configure IPG/IFG parameters. */
1697 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1698 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1699 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1700 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1701 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1702
1703 /* Set parameters for half-duplex media. */
1704 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1705 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1706 HDPX_CFG_LCOL_MASK) |
1707 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1708 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1709 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1710 HDPX_CFG_ABEBT_MASK) |
1711 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1712 HDPX_CFG_JAMIPG_MASK));
1713
1714 /* Configure interrupt moderation timer. */
1715 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1716 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1717 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1718 reg &= ~MASTER_MTIMER_ENB;
1719 if (AGE_USECS(sc->age_int_mod) == 0)
1720 reg &= ~MASTER_ITIMER_ENB;
1721 else
1722 reg |= MASTER_ITIMER_ENB;
1723 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1724 if (agedebug)
1725 printf("%s: interrupt moderation is %d us.\n",
1726 device_xname(sc->sc_dev), sc->age_int_mod);
1727 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1728
1729 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1730 if (ifp->if_mtu < ETHERMTU)
1731 sc->age_max_frame_size = ETHERMTU;
1732 else
1733 sc->age_max_frame_size = ifp->if_mtu;
1734 sc->age_max_frame_size += ETHER_HDR_LEN +
1735 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1736 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1737
1738 /* Configure jumbo frame. */
1739 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1740 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1741 (((fsize / sizeof(uint64_t)) <<
1742 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1743 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1744 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1745 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1746 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1747
1748 /* Configure flow-control parameters. From Linux. */
1749 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1750 /*
1751 * Magic workaround for old-L1.
1752 * Don't know which hw revision requires this magic.
1753 */
1754 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1755 /*
1756 * Another magic workaround for flow-control mode
1757 * change. From Linux.
1758 */
1759 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1760 }
1761 /*
1762 * TODO
1763 * Should understand pause parameter relationships between FIFO
1764 * size and number of Rx descriptors and Rx return descriptors.
1765 *
1766 * Magic parameters came from Linux.
1767 */
1768 switch (sc->age_chip_rev) {
1769 case 0x8001:
1770 case 0x9001:
1771 case 0x9002:
1772 case 0x9003:
1773 rxf_hi = AGE_RX_RING_CNT / 16;
1774 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1775 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1776 rrd_lo = AGE_RR_RING_CNT / 16;
1777 break;
1778 default:
1779 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1780 rxf_lo = reg / 16;
1781 if (rxf_lo < 192)
1782 rxf_lo = 192;
1783 rxf_hi = (reg * 7) / 8;
1784 if (rxf_hi < rxf_lo)
1785 rxf_hi = rxf_lo + 16;
1786 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1787 rrd_lo = reg / 8;
1788 rrd_hi = (reg * 7) / 8;
1789 if (rrd_lo < 2)
1790 rrd_lo = 2;
1791 if (rrd_hi < rrd_lo)
1792 rrd_hi = rrd_lo + 3;
1793 break;
1794 }
1795 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1796 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1797 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1798 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1799 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1800 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1801 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1802 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1803 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1804 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1805
1806 /* Configure RxQ. */
1807 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1808 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1809 RXQ_CFG_RD_BURST_MASK) |
1810 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1811 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1812 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1813 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1814 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1815
1816 /* Configure TxQ. */
1817 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1818 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1819 TXQ_CFG_TPD_BURST_MASK) |
1820 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1821 TXQ_CFG_TX_FIFO_BURST_MASK) |
1822 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1823 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1824 TXQ_CFG_ENB);
1825
1826 /* Configure DMA parameters. */
1827 CSR_WRITE_4(sc, AGE_DMA_CFG,
1828 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1829 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1830 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1831
1832 /* Configure CMB DMA write threshold. */
1833 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1834 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1835 CMB_WR_THRESH_RRD_MASK) |
1836 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1837 CMB_WR_THRESH_TPD_MASK));
1838
1839 /* Set CMB/SMB timer and enable them. */
1840 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1841 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1842 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1843
1844 /* Request SMB updates for every seconds. */
1845 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1846 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1847
1848 /*
1849 * Disable all WOL bits as WOL can interfere normal Rx
1850 * operation.
1851 */
1852 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1853
1854 /*
1855 * Configure Tx/Rx MACs.
1856 * - Auto-padding for short frames.
1857 * - Enable CRC generation.
1858 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1859 * of MAC is followed after link establishment.
1860 */
1861 CSR_WRITE_4(sc, AGE_MAC_CFG,
1862 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1863 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1864 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1865 MAC_CFG_PREAMBLE_MASK));
1866
1867 /* Set up the receive filter. */
1868 age_rxfilter(sc);
1869 age_rxvlan(sc);
1870
1871 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872 reg |= MAC_CFG_RXCSUM_ENB;
1873
1874 /* Ack all pending interrupts and clear it. */
1875 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1876 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1877
1878 /* Finally enable Tx/Rx MAC. */
1879 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1880
1881 sc->age_flags &= ~AGE_FLAG_LINK;
1882
1883 /* Switch to the current media. */
1884 mii = &sc->sc_miibus;
1885 mii_mediachg(mii);
1886
1887 callout_schedule(&sc->sc_tick_ch, hz);
1888
1889 ifp->if_flags |= IFF_RUNNING;
1890 ifp->if_flags &= ~IFF_OACTIVE;
1891
1892 return 0;
1893 }
1894
1895 static void
1896 age_stop(struct ifnet *ifp, int disable)
1897 {
1898 struct age_softc *sc = ifp->if_softc;
1899 struct age_txdesc *txd;
1900 struct age_rxdesc *rxd;
1901 uint32_t reg;
1902 int i;
1903
1904 callout_stop(&sc->sc_tick_ch);
1905
1906 /*
1907 * Mark the interface down and cancel the watchdog timer.
1908 */
1909 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1910 ifp->if_timer = 0;
1911
1912 sc->age_flags &= ~AGE_FLAG_LINK;
1913
1914 mii_down(&sc->sc_miibus);
1915
1916 /*
1917 * Disable interrupts.
1918 */
1919 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1920 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1921
1922 /* Stop CMB/SMB updates. */
1923 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1924
1925 /* Stop Rx/Tx MAC. */
1926 age_stop_rxmac(sc);
1927 age_stop_txmac(sc);
1928
1929 /* Stop DMA. */
1930 CSR_WRITE_4(sc, AGE_DMA_CFG,
1931 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1932
1933 /* Stop TxQ/RxQ. */
1934 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1935 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1936 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1937 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1938 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1939 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1940 break;
1941 DELAY(10);
1942 }
1943 if (i == 0)
1944 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1945 device_xname(sc->sc_dev), reg);
1946
1947 /* Reclaim Rx buffers that have been processed. */
1948 if (sc->age_cdata.age_rxhead != NULL)
1949 m_freem(sc->age_cdata.age_rxhead);
1950 AGE_RXCHAIN_RESET(sc);
1951
1952 /*
1953 * Free RX and TX mbufs still in the queues.
1954 */
1955 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1956 rxd = &sc->age_cdata.age_rxdesc[i];
1957 if (rxd->rx_m != NULL) {
1958 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1959 m_freem(rxd->rx_m);
1960 rxd->rx_m = NULL;
1961 }
1962 }
1963 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1964 txd = &sc->age_cdata.age_txdesc[i];
1965 if (txd->tx_m != NULL) {
1966 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1967 m_freem(txd->tx_m);
1968 txd->tx_m = NULL;
1969 }
1970 }
1971 }
1972
1973 static void
1974 age_stats_update(struct age_softc *sc)
1975 {
1976 struct ifnet *ifp = &sc->sc_ec.ec_if;
1977 struct age_stats *stat;
1978 struct smb *smb;
1979
1980 stat = &sc->age_stat;
1981
1982 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1983 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1984
1985 smb = sc->age_rdata.age_smb_block;
1986 if (smb->updated == 0)
1987 return;
1988
1989 /* Rx stats. */
1990 stat->rx_frames += smb->rx_frames;
1991 stat->rx_bcast_frames += smb->rx_bcast_frames;
1992 stat->rx_mcast_frames += smb->rx_mcast_frames;
1993 stat->rx_pause_frames += smb->rx_pause_frames;
1994 stat->rx_control_frames += smb->rx_control_frames;
1995 stat->rx_crcerrs += smb->rx_crcerrs;
1996 stat->rx_lenerrs += smb->rx_lenerrs;
1997 stat->rx_bytes += smb->rx_bytes;
1998 stat->rx_runts += smb->rx_runts;
1999 stat->rx_fragments += smb->rx_fragments;
2000 stat->rx_pkts_64 += smb->rx_pkts_64;
2001 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2002 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2003 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2004 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2005 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2006 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2007 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2008 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2009 stat->rx_desc_oflows += smb->rx_desc_oflows;
2010 stat->rx_alignerrs += smb->rx_alignerrs;
2011 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2012 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2013 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2014
2015 /* Tx stats. */
2016 stat->tx_frames += smb->tx_frames;
2017 stat->tx_bcast_frames += smb->tx_bcast_frames;
2018 stat->tx_mcast_frames += smb->tx_mcast_frames;
2019 stat->tx_pause_frames += smb->tx_pause_frames;
2020 stat->tx_excess_defer += smb->tx_excess_defer;
2021 stat->tx_control_frames += smb->tx_control_frames;
2022 stat->tx_deferred += smb->tx_deferred;
2023 stat->tx_bytes += smb->tx_bytes;
2024 stat->tx_pkts_64 += smb->tx_pkts_64;
2025 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2026 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2027 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2028 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2029 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2030 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2031 stat->tx_single_colls += smb->tx_single_colls;
2032 stat->tx_multi_colls += smb->tx_multi_colls;
2033 stat->tx_late_colls += smb->tx_late_colls;
2034 stat->tx_excess_colls += smb->tx_excess_colls;
2035 stat->tx_underrun += smb->tx_underrun;
2036 stat->tx_desc_underrun += smb->tx_desc_underrun;
2037 stat->tx_lenerrs += smb->tx_lenerrs;
2038 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2039 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2040 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2041
2042 /* Update counters in ifnet. */
2043 ifp->if_opackets += smb->tx_frames;
2044
2045 ifp->if_collisions += smb->tx_single_colls +
2046 smb->tx_multi_colls + smb->tx_late_colls +
2047 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2048
2049 ifp->if_oerrors += smb->tx_excess_colls +
2050 smb->tx_late_colls + smb->tx_underrun +
2051 smb->tx_pkts_truncated;
2052
2053 ifp->if_ipackets += smb->rx_frames;
2054
2055 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2056 smb->rx_runts + smb->rx_pkts_truncated +
2057 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2058 smb->rx_alignerrs;
2059
2060 /* Update done, clear. */
2061 smb->updated = 0;
2062
2063 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2064 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2065 }
2066
2067 static void
2068 age_stop_txmac(struct age_softc *sc)
2069 {
2070 uint32_t reg;
2071 int i;
2072
2073 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2074 if ((reg & MAC_CFG_TX_ENB) != 0) {
2075 reg &= ~MAC_CFG_TX_ENB;
2076 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2077 }
2078 /* Stop Tx DMA engine. */
2079 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2080 if ((reg & DMA_CFG_RD_ENB) != 0) {
2081 reg &= ~DMA_CFG_RD_ENB;
2082 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2083 }
2084 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2085 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2086 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2087 break;
2088 DELAY(10);
2089 }
2090 if (i == 0)
2091 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2092 }
2093
2094 static void
2095 age_stop_rxmac(struct age_softc *sc)
2096 {
2097 uint32_t reg;
2098 int i;
2099
2100 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2101 if ((reg & MAC_CFG_RX_ENB) != 0) {
2102 reg &= ~MAC_CFG_RX_ENB;
2103 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2104 }
2105 /* Stop Rx DMA engine. */
2106 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2107 if ((reg & DMA_CFG_WR_ENB) != 0) {
2108 reg &= ~DMA_CFG_WR_ENB;
2109 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2110 }
2111 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2112 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2113 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2114 break;
2115 DELAY(10);
2116 }
2117 if (i == 0)
2118 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2119 }
2120
2121 static void
2122 age_init_tx_ring(struct age_softc *sc)
2123 {
2124 struct age_ring_data *rd;
2125 struct age_txdesc *txd;
2126 int i;
2127
2128 sc->age_cdata.age_tx_prod = 0;
2129 sc->age_cdata.age_tx_cons = 0;
2130 sc->age_cdata.age_tx_cnt = 0;
2131
2132 rd = &sc->age_rdata;
2133 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2134 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2135 txd = &sc->age_cdata.age_txdesc[i];
2136 txd->tx_desc = &rd->age_tx_ring[i];
2137 txd->tx_m = NULL;
2138 }
2139 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2140 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2141 }
2142
2143 static int
2144 age_init_rx_ring(struct age_softc *sc)
2145 {
2146 struct age_ring_data *rd;
2147 struct age_rxdesc *rxd;
2148 int i;
2149
2150 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2151 rd = &sc->age_rdata;
2152 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2153 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2154 rxd = &sc->age_cdata.age_rxdesc[i];
2155 rxd->rx_m = NULL;
2156 rxd->rx_desc = &rd->age_rx_ring[i];
2157 if (age_newbuf(sc, rxd, 1) != 0)
2158 return ENOBUFS;
2159 }
2160
2161 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2162 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2163
2164 return 0;
2165 }
2166
2167 static void
2168 age_init_rr_ring(struct age_softc *sc)
2169 {
2170 struct age_ring_data *rd;
2171
2172 sc->age_cdata.age_rr_cons = 0;
2173 AGE_RXCHAIN_RESET(sc);
2174
2175 rd = &sc->age_rdata;
2176 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2177 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2178 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2179 }
2180
2181 static void
2182 age_init_cmb_block(struct age_softc *sc)
2183 {
2184 struct age_ring_data *rd;
2185
2186 rd = &sc->age_rdata;
2187 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2188 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2189 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2190 }
2191
2192 static void
2193 age_init_smb_block(struct age_softc *sc)
2194 {
2195 struct age_ring_data *rd;
2196
2197 rd = &sc->age_rdata;
2198 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2199 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2200 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2201 }
2202
2203 static int
2204 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2205 {
2206 struct rx_desc *desc;
2207 struct mbuf *m;
2208 bus_dmamap_t map;
2209 int error;
2210
2211 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2212 if (m == NULL)
2213 return ENOBUFS;
2214 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2215 if (!(m->m_flags & M_EXT)) {
2216 m_freem(m);
2217 return ENOBUFS;
2218 }
2219
2220 m->m_len = m->m_pkthdr.len = MCLBYTES;
2221 m_adj(m, ETHER_ALIGN);
2222
2223 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2224 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2225
2226 if (error != 0) {
2227 if (!error) {
2228 bus_dmamap_unload(sc->sc_dmat,
2229 sc->age_cdata.age_rx_sparemap);
2230 error = EFBIG;
2231 printf("%s: too many segments?!\n",
2232 device_xname(sc->sc_dev));
2233 }
2234 m_freem(m);
2235
2236 if (init)
2237 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2238 return error;
2239 }
2240
2241 if (rxd->rx_m != NULL) {
2242 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2243 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2244 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2245 }
2246 map = rxd->rx_dmamap;
2247 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2248 sc->age_cdata.age_rx_sparemap = map;
2249 rxd->rx_m = m;
2250
2251 desc = rxd->rx_desc;
2252 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2253 desc->len =
2254 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2255 AGE_RD_LEN_SHIFT);
2256
2257 return 0;
2258 }
2259
2260 static void
2261 age_rxvlan(struct age_softc *sc)
2262 {
2263 uint32_t reg;
2264
2265 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2266 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2267 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2268 reg |= MAC_CFG_VLAN_TAG_STRIP;
2269 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2270 }
2271
2272 static void
2273 age_rxfilter(struct age_softc *sc)
2274 {
2275 struct ethercom *ec = &sc->sc_ec;
2276 struct ifnet *ifp = &sc->sc_ec.ec_if;
2277 struct ether_multi *enm;
2278 struct ether_multistep step;
2279 uint32_t crc;
2280 uint32_t mchash[2];
2281 uint32_t rxcfg;
2282
2283 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2284 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2285
2286 if (ifp->if_flags & IFF_BROADCAST)
2287 rxcfg |= MAC_CFG_BCAST;
2288 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2289 if (ifp->if_flags & IFF_PROMISC)
2290 rxcfg |= MAC_CFG_PROMISC;
2291 if (ifp->if_flags & IFF_ALLMULTI)
2292 rxcfg |= MAC_CFG_ALLMULTI;
2293 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2294 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2295 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2296 return;
2297 }
2298
2299 /* Program new filter. */
2300 memset(mchash, 0, sizeof(mchash));
2301
2302 ETHER_FIRST_MULTI(step, ec, enm);
2303 while (enm != NULL) {
2304 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2305 enm->enm_addrlo), ETHER_ADDR_LEN);
2306
2307 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2308 ETHER_NEXT_MULTI(step, enm);
2309 }
2310
2311 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2312 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2313 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2314 }
2315