if_age.c revision 1.25 1 /* $NetBSD: if_age.c,v 1.25 2009/03/03 23:28:44 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.25 2009/03/03 23:28:44 cegger Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct ifnet *, int);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 struct pci_attach_args *pa = aux;
139
140 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 struct age_softc *sc = device_private(self);
148 struct pci_attach_args *pa = aux;
149 pci_intr_handle_t ih;
150 const char *intrstr;
151 struct ifnet *ifp = &sc->sc_ec.ec_if;
152 pcireg_t memtype;
153 int error = 0;
154
155 aprint_naive("\n");
156 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157
158 sc->sc_dev = self;
159 sc->sc_dmat = pa->pa_dmat;
160 sc->sc_pct = pa->pa_pc;
161 sc->sc_pcitag = pa->pa_tag;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 goto fail;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih);
192 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc);
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 goto fail;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, 0);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (!pmf_device_register(self, NULL, age_resume))
292 aprint_error_dev(self, "couldn't establish power handler\n");
293 else
294 pmf_class_network_register(self, ifp);
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 s = splnet();
318 age_stop(ifp, 0);
319 splx(s);
320
321 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
322
323 /* Delete all remaining media. */
324 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
325
326 ether_ifdetach(ifp);
327 if_detach(ifp);
328 age_dma_free(sc);
329
330 if (sc->sc_irq_handle != NULL) {
331 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
332 sc->sc_irq_handle = NULL;
333 }
334
335 return 0;
336 }
337
338 /*
339 * Read a PHY register on the MII of the L1.
340 */
341 static int
342 age_miibus_readreg(device_t dev, int phy, int reg)
343 {
344 struct age_softc *sc = device_private(dev);
345 uint32_t v;
346 int i;
347
348 if (phy != sc->age_phyaddr)
349 return 0;
350
351 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
352 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
353 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
354 DELAY(1);
355 v = CSR_READ_4(sc, AGE_MDIO);
356 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
357 break;
358 }
359
360 if (i == 0) {
361 printf("%s: phy read timeout: phy %d, reg %d\n",
362 device_xname(sc->sc_dev), phy, reg);
363 return 0;
364 }
365
366 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
367 }
368
369 /*
370 * Write a PHY register on the MII of the L1.
371 */
372 static void
373 age_miibus_writereg(device_t dev, int phy, int reg, int val)
374 {
375 struct age_softc *sc = device_private(dev);
376 uint32_t v;
377 int i;
378
379 if (phy != sc->age_phyaddr)
380 return;
381
382 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
383 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
384 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
385
386 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
387 DELAY(1);
388 v = CSR_READ_4(sc, AGE_MDIO);
389 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
390 break;
391 }
392
393 if (i == 0) {
394 printf("%s: phy write timeout: phy %d, reg %d\n",
395 device_xname(sc->sc_dev), phy, reg);
396 }
397 }
398
399 /*
400 * Callback from MII layer when media changes.
401 */
402 static void
403 age_miibus_statchg(device_t dev)
404 {
405 struct age_softc *sc = device_private(dev);
406 struct ifnet *ifp = &sc->sc_ec.ec_if;
407 struct mii_data *mii;
408
409 if ((ifp->if_flags & IFF_RUNNING) == 0)
410 return;
411
412 mii = &sc->sc_miibus;
413
414 sc->age_flags &= ~AGE_FLAG_LINK;
415 if ((mii->mii_media_status & IFM_AVALID) != 0) {
416 switch (IFM_SUBTYPE(mii->mii_media_active)) {
417 case IFM_10_T:
418 case IFM_100_TX:
419 case IFM_1000_T:
420 sc->age_flags |= AGE_FLAG_LINK;
421 break;
422 default:
423 break;
424 }
425 }
426
427 /* Stop Rx/Tx MACs. */
428 age_stop_rxmac(sc);
429 age_stop_txmac(sc);
430
431 /* Program MACs with resolved speed/duplex/flow-control. */
432 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
433 uint32_t reg;
434
435 age_mac_config(sc);
436 reg = CSR_READ_4(sc, AGE_MAC_CFG);
437 /* Restart DMA engine and Tx/Rx MAC. */
438 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
439 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
440 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
441 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
442 }
443 }
444
445 /*
446 * Get the current interface media status.
447 */
448 static void
449 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
450 {
451 struct age_softc *sc = ifp->if_softc;
452 struct mii_data *mii = &sc->sc_miibus;
453
454 mii_pollstat(mii);
455 ifmr->ifm_status = mii->mii_media_status;
456 ifmr->ifm_active = mii->mii_media_active;
457 }
458
459 /*
460 * Set hardware to newly-selected media.
461 */
462 static int
463 age_mediachange(struct ifnet *ifp)
464 {
465 struct age_softc *sc = ifp->if_softc;
466 struct mii_data *mii = &sc->sc_miibus;
467 int error;
468
469 if (mii->mii_instance != 0) {
470 struct mii_softc *miisc;
471
472 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
473 mii_phy_reset(miisc);
474 }
475 error = mii_mediachg(mii);
476
477 return error;
478 }
479
480 static int
481 age_intr(void *arg)
482 {
483 struct age_softc *sc = arg;
484 struct ifnet *ifp = &sc->sc_ec.ec_if;
485 struct cmb *cmb;
486 uint32_t status;
487
488 status = CSR_READ_4(sc, AGE_INTR_STATUS);
489 if (status == 0 || (status & AGE_INTRS) == 0)
490 return 0;
491
492 cmb = sc->age_rdata.age_cmb_block;
493 if (cmb == NULL)
494 return 0;
495
496 /* Disable interrupts. */
497 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
498
499 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
500 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
501 status = le32toh(cmb->intr_status);
502 if ((status & AGE_INTRS) == 0)
503 goto back;
504
505 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
506 TPD_CONS_SHIFT;
507 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
508 RRD_PROD_SHIFT;
509
510 /* Let hardware know CMB was served. */
511 cmb->intr_status = 0;
512 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
513 sc->age_cdata.age_cmb_block_map->dm_mapsize,
514 BUS_DMASYNC_PREWRITE);
515
516 if (ifp->if_flags & IFF_RUNNING) {
517 if (status & INTR_CMB_RX)
518 age_rxintr(sc, sc->age_rr_prod);
519
520 if (status & INTR_CMB_TX)
521 age_txintr(sc, sc->age_tpd_cons);
522
523 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
524 if (status & INTR_DMA_RD_TO_RST)
525 printf("%s: DMA read error! -- resetting\n",
526 device_xname(sc->sc_dev));
527 if (status & INTR_DMA_WR_TO_RST)
528 printf("%s: DMA write error! -- resetting\n",
529 device_xname(sc->sc_dev));
530 age_init(ifp);
531 }
532
533 if (!IFQ_IS_EMPTY(&ifp->if_snd))
534 age_start(ifp);
535
536 if (status & INTR_SMB)
537 age_stats_update(sc);
538 }
539
540 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
541 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
542 sc->age_cdata.age_cmb_block_map->dm_mapsize,
543 BUS_DMASYNC_POSTREAD);
544
545 back:
546 /* Re-enable interrupts. */
547 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
548
549 return 1;
550 }
551
552 static int
553 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
554 uint32_t *word)
555 {
556 int i;
557 pcireg_t rv;
558
559 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
560 offset << PCI_VPD_ADDRESS_SHIFT);
561 for (i = AGE_TIMEOUT; i > 0; i--) {
562 DELAY(10);
563 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
564 PCI_VPD_ADDRESS(vpdc));
565 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
566 break;
567 }
568 if (i == 0) {
569 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
570 *word = 0;
571 return ETIMEDOUT;
572 }
573
574 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
575 return 0;
576 }
577
578 static void
579 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
580 {
581 uint32_t ea[2], off, reg, word;
582 int vpd_error, match, vpdc;
583
584 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
585 if ((reg & SPI_VPD_ENB) != 0) {
586 /* Get VPD stored in TWSI EEPROM. */
587 reg &= ~SPI_VPD_ENB;
588 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
589 }
590
591 vpd_error = 0;
592 ea[0] = ea[1] = 0;
593 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
594 PCI_CAP_VPD, &vpdc, NULL))) {
595 /*
596 * PCI VPD capability exists, but it seems that it's
597 * not in the standard form as stated in PCI VPD
598 * specification such that driver could not use
599 * pci_get_vpd_readonly(9) with keyword 'NA'.
600 * Search VPD data starting at address 0x0100. The data
601 * should be used as initializers to set AGE_PAR0,
602 * AGE_PAR1 register including other PCI configuration
603 * registers.
604 */
605 word = 0;
606 match = 0;
607 reg = 0;
608 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
609 off += sizeof(uint32_t)) {
610 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
611 if (vpd_error != 0)
612 break;
613 if (match != 0) {
614 switch (reg) {
615 case AGE_PAR0:
616 ea[0] = word;
617 break;
618 case AGE_PAR1:
619 ea[1] = word;
620 break;
621 default:
622 break;
623 }
624 match = 0;
625 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
626 match = 1;
627 reg = word >> 16;
628 } else
629 break;
630 }
631 if (off >= AGE_VPD_REG_CONF_END)
632 vpd_error = ENOENT;
633 if (vpd_error == 0) {
634 /*
635 * Don't blindly trust ethernet address obtained
636 * from VPD. Check whether ethernet address is
637 * valid one. Otherwise fall-back to reading
638 * PAR register.
639 */
640 ea[1] &= 0xFFFF;
641 if ((ea[0] == 0 && ea[1] == 0) ||
642 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
643 if (agedebug)
644 printf("%s: invalid ethernet address "
645 "returned from VPD.\n",
646 device_xname(sc->sc_dev));
647 vpd_error = EINVAL;
648 }
649 }
650 if (vpd_error != 0 && (agedebug))
651 printf("%s: VPD access failure!\n",
652 device_xname(sc->sc_dev));
653 } else {
654 if (agedebug)
655 printf("%s: PCI VPD capability not found!\n",
656 device_xname(sc->sc_dev));
657 }
658
659 /*
660 * It seems that L1 also provides a way to extract ethernet
661 * address via SPI flash interface. Because SPI flash memory
662 * device of different vendors vary in their instruction
663 * codes for read ID instruction, it's very hard to get
664 * instructions codes without detailed information for the
665 * flash memory device used on ethernet controller. To simplify
666 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
667 * address which is supposed to be set by hardware during
668 * power on reset.
669 */
670 if (vpd_error != 0) {
671 /*
672 * VPD is mapped to SPI flash memory or BIOS set it.
673 */
674 ea[0] = CSR_READ_4(sc, AGE_PAR0);
675 ea[1] = CSR_READ_4(sc, AGE_PAR1);
676 }
677
678 ea[1] &= 0xFFFF;
679 eaddr[0] = (ea[1] >> 8) & 0xFF;
680 eaddr[1] = (ea[1] >> 0) & 0xFF;
681 eaddr[2] = (ea[0] >> 24) & 0xFF;
682 eaddr[3] = (ea[0] >> 16) & 0xFF;
683 eaddr[4] = (ea[0] >> 8) & 0xFF;
684 eaddr[5] = (ea[0] >> 0) & 0xFF;
685 }
686
687 static void
688 age_phy_reset(struct age_softc *sc)
689 {
690 /* Reset PHY. */
691 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
692 DELAY(1000);
693 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
694 DELAY(1000);
695 }
696
697 static int
698 age_dma_alloc(struct age_softc *sc)
699 {
700 struct age_txdesc *txd;
701 struct age_rxdesc *rxd;
702 int nsegs, error, i;
703
704 /*
705 * Create DMA stuffs for TX ring
706 */
707 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
708 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
709 if (error) {
710 sc->age_cdata.age_tx_ring_map = NULL;
711 return ENOBUFS;
712 }
713
714 /* Allocate DMA'able memory for TX ring */
715 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
716 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
717 &nsegs, BUS_DMA_WAITOK);
718 if (error) {
719 printf("%s: could not allocate DMA'able memory for Tx ring, "
720 "error = %i\n", device_xname(sc->sc_dev), error);
721 return error;
722 }
723
724 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
725 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
726 BUS_DMA_NOWAIT);
727 if (error)
728 return ENOBUFS;
729
730 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
731
732 /* Load the DMA map for Tx ring. */
733 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
734 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
735 if (error) {
736 printf("%s: could not load DMA'able memory for Tx ring, "
737 "error = %i\n", device_xname(sc->sc_dev), error);
738 bus_dmamem_free(sc->sc_dmat,
739 (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
740 return error;
741 }
742
743 sc->age_rdata.age_tx_ring_paddr =
744 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
745
746 /*
747 * Create DMA stuffs for RX ring
748 */
749 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
750 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
751 if (error) {
752 sc->age_cdata.age_rx_ring_map = NULL;
753 return ENOBUFS;
754 }
755
756 /* Allocate DMA'able memory for RX ring */
757 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
758 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
759 &nsegs, BUS_DMA_WAITOK);
760 if (error) {
761 printf("%s: could not allocate DMA'able memory for Rx ring, "
762 "error = %i.\n", device_xname(sc->sc_dev), error);
763 return error;
764 }
765
766 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
767 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
768 BUS_DMA_NOWAIT);
769 if (error)
770 return ENOBUFS;
771
772 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
773
774 /* Load the DMA map for Rx ring. */
775 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
776 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
777 if (error) {
778 printf("%s: could not load DMA'able memory for Rx ring, "
779 "error = %i.\n", device_xname(sc->sc_dev), error);
780 bus_dmamem_free(sc->sc_dmat,
781 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
782 return error;
783 }
784
785 sc->age_rdata.age_rx_ring_paddr =
786 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
787
788 /*
789 * Create DMA stuffs for RX return ring
790 */
791 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
792 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
793 if (error) {
794 sc->age_cdata.age_rr_ring_map = NULL;
795 return ENOBUFS;
796 }
797
798 /* Allocate DMA'able memory for RX return ring */
799 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
800 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
801 &nsegs, BUS_DMA_WAITOK);
802 if (error) {
803 printf("%s: could not allocate DMA'able memory for Rx "
804 "return ring, error = %i.\n",
805 device_xname(sc->sc_dev), error);
806 return error;
807 }
808
809 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
810 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
811 BUS_DMA_NOWAIT);
812 if (error)
813 return ENOBUFS;
814
815 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
816
817 /* Load the DMA map for Rx return ring. */
818 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
819 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
820 if (error) {
821 printf("%s: could not load DMA'able memory for Rx return ring, "
822 "error = %i\n", device_xname(sc->sc_dev), error);
823 bus_dmamem_free(sc->sc_dmat,
824 (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
825 return error;
826 }
827
828 sc->age_rdata.age_rr_ring_paddr =
829 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
830
831 /*
832 * Create DMA stuffs for CMB block
833 */
834 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
835 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
836 &sc->age_cdata.age_cmb_block_map);
837 if (error) {
838 sc->age_cdata.age_cmb_block_map = NULL;
839 return ENOBUFS;
840 }
841
842 /* Allocate DMA'able memory for CMB block */
843 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
844 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
845 &nsegs, BUS_DMA_WAITOK);
846 if (error) {
847 printf("%s: could not allocate DMA'able memory for "
848 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
849 return error;
850 }
851
852 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
853 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
854 BUS_DMA_NOWAIT);
855 if (error)
856 return ENOBUFS;
857
858 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
859
860 /* Load the DMA map for CMB block. */
861 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
862 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
863 BUS_DMA_WAITOK);
864 if (error) {
865 printf("%s: could not load DMA'able memory for CMB block, "
866 "error = %i\n", device_xname(sc->sc_dev), error);
867 bus_dmamem_free(sc->sc_dmat,
868 (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
869 return error;
870 }
871
872 sc->age_rdata.age_cmb_block_paddr =
873 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
874
875 /*
876 * Create DMA stuffs for SMB block
877 */
878 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
879 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
880 &sc->age_cdata.age_smb_block_map);
881 if (error) {
882 sc->age_cdata.age_smb_block_map = NULL;
883 return ENOBUFS;
884 }
885
886 /* Allocate DMA'able memory for SMB block */
887 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
888 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
889 &nsegs, BUS_DMA_WAITOK);
890 if (error) {
891 printf("%s: could not allocate DMA'able memory for "
892 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
893 return error;
894 }
895
896 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
897 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
898 BUS_DMA_NOWAIT);
899 if (error)
900 return ENOBUFS;
901
902 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
903
904 /* Load the DMA map for SMB block */
905 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
906 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
907 BUS_DMA_WAITOK);
908 if (error) {
909 printf("%s: could not load DMA'able memory for SMB block, "
910 "error = %i\n", device_xname(sc->sc_dev), error);
911 bus_dmamem_free(sc->sc_dmat,
912 (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
913 return error;
914 }
915
916 sc->age_rdata.age_smb_block_paddr =
917 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
918
919 /* Create DMA maps for Tx buffers. */
920 for (i = 0; i < AGE_TX_RING_CNT; i++) {
921 txd = &sc->age_cdata.age_txdesc[i];
922 txd->tx_m = NULL;
923 txd->tx_dmamap = NULL;
924 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
925 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
926 &txd->tx_dmamap);
927 if (error) {
928 txd->tx_dmamap = NULL;
929 printf("%s: could not create Tx dmamap, error = %i.\n",
930 device_xname(sc->sc_dev), error);
931 return error;
932 }
933 }
934
935 /* Create DMA maps for Rx buffers. */
936 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
937 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
938 if (error) {
939 sc->age_cdata.age_rx_sparemap = NULL;
940 printf("%s: could not create spare Rx dmamap, error = %i.\n",
941 device_xname(sc->sc_dev), error);
942 return error;
943 }
944 for (i = 0; i < AGE_RX_RING_CNT; i++) {
945 rxd = &sc->age_cdata.age_rxdesc[i];
946 rxd->rx_m = NULL;
947 rxd->rx_dmamap = NULL;
948 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
949 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
950 if (error) {
951 rxd->rx_dmamap = NULL;
952 printf("%s: could not create Rx dmamap, error = %i.\n",
953 device_xname(sc->sc_dev), error);
954 return error;
955 }
956 }
957
958 return 0;
959 }
960
961 static void
962 age_dma_free(struct age_softc *sc)
963 {
964 struct age_txdesc *txd;
965 struct age_rxdesc *rxd;
966 int i;
967
968 /* Tx buffers */
969 for (i = 0; i < AGE_TX_RING_CNT; i++) {
970 txd = &sc->age_cdata.age_txdesc[i];
971 if (txd->tx_dmamap != NULL) {
972 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
973 txd->tx_dmamap = NULL;
974 }
975 }
976 /* Rx buffers */
977 for (i = 0; i < AGE_RX_RING_CNT; i++) {
978 rxd = &sc->age_cdata.age_rxdesc[i];
979 if (rxd->rx_dmamap != NULL) {
980 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
981 rxd->rx_dmamap = NULL;
982 }
983 }
984 if (sc->age_cdata.age_rx_sparemap != NULL) {
985 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
986 sc->age_cdata.age_rx_sparemap = NULL;
987 }
988
989 /* Tx ring. */
990 if (sc->age_cdata.age_tx_ring_map != NULL)
991 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
992 if (sc->age_cdata.age_tx_ring_map != NULL &&
993 sc->age_rdata.age_tx_ring != NULL)
994 bus_dmamem_free(sc->sc_dmat,
995 (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
996 sc->age_rdata.age_tx_ring = NULL;
997 sc->age_cdata.age_tx_ring_map = NULL;
998
999 /* Rx ring. */
1000 if (sc->age_cdata.age_rx_ring_map != NULL)
1001 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1002 if (sc->age_cdata.age_rx_ring_map != NULL &&
1003 sc->age_rdata.age_rx_ring != NULL)
1004 bus_dmamem_free(sc->sc_dmat,
1005 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
1006 sc->age_rdata.age_rx_ring = NULL;
1007 sc->age_cdata.age_rx_ring_map = NULL;
1008
1009 /* Rx return ring. */
1010 if (sc->age_cdata.age_rr_ring_map != NULL)
1011 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1012 if (sc->age_cdata.age_rr_ring_map != NULL &&
1013 sc->age_rdata.age_rr_ring != NULL)
1014 bus_dmamem_free(sc->sc_dmat,
1015 (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
1016 sc->age_rdata.age_rr_ring = NULL;
1017 sc->age_cdata.age_rr_ring_map = NULL;
1018
1019 /* CMB block */
1020 if (sc->age_cdata.age_cmb_block_map != NULL)
1021 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1022 if (sc->age_cdata.age_cmb_block_map != NULL &&
1023 sc->age_rdata.age_cmb_block != NULL)
1024 bus_dmamem_free(sc->sc_dmat,
1025 (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1026 sc->age_rdata.age_cmb_block = NULL;
1027 sc->age_cdata.age_cmb_block_map = NULL;
1028
1029 /* SMB block */
1030 if (sc->age_cdata.age_smb_block_map != NULL)
1031 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1032 if (sc->age_cdata.age_smb_block_map != NULL &&
1033 sc->age_rdata.age_smb_block != NULL)
1034 bus_dmamem_free(sc->sc_dmat,
1035 (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1036 sc->age_rdata.age_smb_block = NULL;
1037 sc->age_cdata.age_smb_block_map = NULL;
1038 }
1039
1040 static void
1041 age_start(struct ifnet *ifp)
1042 {
1043 struct age_softc *sc = ifp->if_softc;
1044 struct mbuf *m_head;
1045 int enq;
1046
1047 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1048 return;
1049
1050 enq = 0;
1051 for (;;) {
1052 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1053 if (m_head == NULL)
1054 break;
1055
1056 /*
1057 * Pack the data into the transmit ring. If we
1058 * don't have room, set the OACTIVE flag and wait
1059 * for the NIC to drain the ring.
1060 */
1061 if (age_encap(sc, &m_head)) {
1062 if (m_head == NULL)
1063 break;
1064 ifp->if_flags |= IFF_OACTIVE;
1065 break;
1066 }
1067 enq = 1;
1068
1069 #if NBPFILTER > 0
1070 /*
1071 * If there's a BPF listener, bounce a copy of this frame
1072 * to him.
1073 */
1074 if (ifp->if_bpf != NULL)
1075 bpf_mtap(ifp->if_bpf, m_head);
1076 #endif
1077 }
1078
1079 if (enq) {
1080 /* Update mbox. */
1081 AGE_COMMIT_MBOX(sc);
1082 /* Set a timeout in case the chip goes out to lunch. */
1083 ifp->if_timer = AGE_TX_TIMEOUT;
1084 }
1085 }
1086
1087 static void
1088 age_watchdog(struct ifnet *ifp)
1089 {
1090 struct age_softc *sc = ifp->if_softc;
1091
1092 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1093 printf("%s: watchdog timeout (missed link)\n",
1094 device_xname(sc->sc_dev));
1095 ifp->if_oerrors++;
1096 age_init(ifp);
1097 return;
1098 }
1099
1100 if (sc->age_cdata.age_tx_cnt == 0) {
1101 printf("%s: watchdog timeout (missed Tx interrupts) "
1102 "-- recovering\n", device_xname(sc->sc_dev));
1103 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1104 age_start(ifp);
1105 return;
1106 }
1107
1108 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1109 ifp->if_oerrors++;
1110 age_init(ifp);
1111
1112 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1113 age_start(ifp);
1114 }
1115
1116 static int
1117 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1118 {
1119 struct age_softc *sc = ifp->if_softc;
1120 int s, error;
1121
1122 s = splnet();
1123
1124 error = ether_ioctl(ifp, cmd, data);
1125 if (error == ENETRESET) {
1126 if (ifp->if_flags & IFF_RUNNING)
1127 age_rxfilter(sc);
1128 error = 0;
1129 }
1130
1131 splx(s);
1132 return error;
1133 }
1134
1135 static void
1136 age_mac_config(struct age_softc *sc)
1137 {
1138 struct mii_data *mii;
1139 uint32_t reg;
1140
1141 mii = &sc->sc_miibus;
1142
1143 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1144 reg &= ~MAC_CFG_FULL_DUPLEX;
1145 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1146 reg &= ~MAC_CFG_SPEED_MASK;
1147
1148 /* Reprogram MAC with resolved speed/duplex. */
1149 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1150 case IFM_10_T:
1151 case IFM_100_TX:
1152 reg |= MAC_CFG_SPEED_10_100;
1153 break;
1154 case IFM_1000_T:
1155 reg |= MAC_CFG_SPEED_1000;
1156 break;
1157 }
1158 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1159 reg |= MAC_CFG_FULL_DUPLEX;
1160 #ifdef notyet
1161 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1162 reg |= MAC_CFG_TX_FC;
1163 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1164 reg |= MAC_CFG_RX_FC;
1165 #endif
1166 }
1167
1168 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1169 }
1170
1171 static bool
1172 age_resume(device_t dv PMF_FN_ARGS)
1173 {
1174 struct age_softc *sc = device_private(dv);
1175 uint16_t cmd;
1176
1177 /*
1178 * Clear INTx emulation disable for hardware that
1179 * is set in resume event. From Linux.
1180 */
1181 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1182 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1183 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1184 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1185 PCI_COMMAND_STATUS_REG, cmd);
1186 }
1187
1188 return true;
1189 }
1190
1191 static int
1192 age_encap(struct age_softc *sc, struct mbuf **m_head)
1193 {
1194 struct age_txdesc *txd, *txd_last;
1195 struct tx_desc *desc;
1196 struct mbuf *m;
1197 bus_dmamap_t map;
1198 uint32_t cflags, poff, vtag;
1199 int error, i, nsegs, prod;
1200 #if NVLAN > 0
1201 struct m_tag *mtag;
1202 #endif
1203
1204 m = *m_head;
1205 cflags = vtag = 0;
1206 poff = 0;
1207
1208 prod = sc->age_cdata.age_tx_prod;
1209 txd = &sc->age_cdata.age_txdesc[prod];
1210 txd_last = txd;
1211 map = txd->tx_dmamap;
1212
1213 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1214
1215 if (error == EFBIG) {
1216 error = 0;
1217
1218 MGETHDR(m, M_DONTWAIT, MT_DATA);
1219 if (m == NULL) {
1220 printf("%s: can't defrag TX mbuf\n",
1221 device_xname(sc->sc_dev));
1222 m_freem(*m_head);
1223 *m_head = NULL;
1224 return ENOBUFS;
1225 }
1226
1227 M_COPY_PKTHDR(m, *m_head);
1228 if ((*m_head)->m_pkthdr.len > MHLEN) {
1229 MCLGET(m, M_DONTWAIT);
1230 if (!(m->m_flags & M_EXT)) {
1231 m_freem(*m_head);
1232 m_freem(m);
1233 *m_head = NULL;
1234 return ENOBUFS;
1235 }
1236 }
1237 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1238 mtod(m, void *));
1239 m_freem(*m_head);
1240 m->m_len = m->m_pkthdr.len;
1241 *m_head = m;
1242
1243 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1244 BUS_DMA_NOWAIT);
1245
1246 if (error != 0) {
1247 printf("%s: could not load defragged TX mbuf\n",
1248 device_xname(sc->sc_dev));
1249 if (!error) {
1250 bus_dmamap_unload(sc->sc_dmat, map);
1251 error = EFBIG;
1252 }
1253 m_freem(*m_head);
1254 *m_head = NULL;
1255 return error;
1256 }
1257 } else if (error) {
1258 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1259 return error;
1260 }
1261
1262 nsegs = map->dm_nsegs;
1263
1264 if (nsegs == 0) {
1265 m_freem(*m_head);
1266 *m_head = NULL;
1267 return EIO;
1268 }
1269
1270 /* Check descriptor overrun. */
1271 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1272 bus_dmamap_unload(sc->sc_dmat, map);
1273 return ENOBUFS;
1274 }
1275
1276 m = *m_head;
1277 /* Configure Tx IP/TCP/UDP checksum offload. */
1278 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1279 cflags |= AGE_TD_CSUM;
1280 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1281 cflags |= AGE_TD_TCPCSUM;
1282 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1283 cflags |= AGE_TD_UDPCSUM;
1284 /* Set checksum start offset. */
1285 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1286 }
1287
1288 #if NVLAN > 0
1289 /* Configure VLAN hardware tag insertion. */
1290 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1291 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1292 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1293 cflags |= AGE_TD_INSERT_VLAN_TAG;
1294 }
1295 #endif
1296
1297 desc = NULL;
1298 for (i = 0; i < nsegs; i++) {
1299 desc = &sc->age_rdata.age_tx_ring[prod];
1300 desc->addr = htole64(map->dm_segs[i].ds_addr);
1301 desc->len =
1302 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1303 desc->flags = htole32(cflags);
1304 sc->age_cdata.age_tx_cnt++;
1305 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1306 }
1307
1308 /* Update producer index. */
1309 sc->age_cdata.age_tx_prod = prod;
1310
1311 /* Set EOP on the last descriptor. */
1312 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1313 desc = &sc->age_rdata.age_tx_ring[prod];
1314 desc->flags |= htole32(AGE_TD_EOP);
1315
1316 /* Swap dmamap of the first and the last. */
1317 txd = &sc->age_cdata.age_txdesc[prod];
1318 map = txd_last->tx_dmamap;
1319 txd_last->tx_dmamap = txd->tx_dmamap;
1320 txd->tx_dmamap = map;
1321 txd->tx_m = m;
1322
1323 /* Sync descriptors. */
1324 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1325 BUS_DMASYNC_PREWRITE);
1326 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1327 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1328
1329 return 0;
1330 }
1331
1332 static void
1333 age_txintr(struct age_softc *sc, int tpd_cons)
1334 {
1335 struct ifnet *ifp = &sc->sc_ec.ec_if;
1336 struct age_txdesc *txd;
1337 int cons, prog;
1338
1339 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1340 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1341
1342 /*
1343 * Go through our Tx list and free mbufs for those
1344 * frames which have been transmitted.
1345 */
1346 cons = sc->age_cdata.age_tx_cons;
1347 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1348 if (sc->age_cdata.age_tx_cnt <= 0)
1349 break;
1350 prog++;
1351 ifp->if_flags &= ~IFF_OACTIVE;
1352 sc->age_cdata.age_tx_cnt--;
1353 txd = &sc->age_cdata.age_txdesc[cons];
1354 /*
1355 * Clear Tx descriptors, it's not required but would
1356 * help debugging in case of Tx issues.
1357 */
1358 txd->tx_desc->addr = 0;
1359 txd->tx_desc->len = 0;
1360 txd->tx_desc->flags = 0;
1361
1362 if (txd->tx_m == NULL)
1363 continue;
1364 /* Reclaim transmitted mbufs. */
1365 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1366 m_freem(txd->tx_m);
1367 txd->tx_m = NULL;
1368 }
1369
1370 if (prog > 0) {
1371 sc->age_cdata.age_tx_cons = cons;
1372
1373 /*
1374 * Unarm watchdog timer only when there are no pending
1375 * Tx descriptors in queue.
1376 */
1377 if (sc->age_cdata.age_tx_cnt == 0)
1378 ifp->if_timer = 0;
1379
1380 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1381 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1382 BUS_DMASYNC_PREWRITE);
1383 }
1384 }
1385
1386 /* Receive a frame. */
1387 static void
1388 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1389 {
1390 struct ifnet *ifp = &sc->sc_ec.ec_if;
1391 struct age_rxdesc *rxd;
1392 struct rx_desc *desc;
1393 struct mbuf *mp, *m;
1394 uint32_t status, index;
1395 int count, nsegs, pktlen;
1396 int rx_cons;
1397
1398 status = le32toh(rxrd->flags);
1399 index = le32toh(rxrd->index);
1400 rx_cons = AGE_RX_CONS(index);
1401 nsegs = AGE_RX_NSEGS(index);
1402
1403 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1404 if ((status & AGE_RRD_ERROR) != 0 &&
1405 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1406 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1407 /*
1408 * We want to pass the following frames to upper
1409 * layer regardless of error status of Rx return
1410 * ring.
1411 *
1412 * o IP/TCP/UDP checksum is bad.
1413 * o frame length and protocol specific length
1414 * does not match.
1415 */
1416 sc->age_cdata.age_rx_cons += nsegs;
1417 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1418 return;
1419 }
1420
1421 pktlen = 0;
1422 for (count = 0; count < nsegs; count++,
1423 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1424 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1425 mp = rxd->rx_m;
1426 desc = rxd->rx_desc;
1427 /* Add a new receive buffer to the ring. */
1428 if (age_newbuf(sc, rxd, 0) != 0) {
1429 ifp->if_iqdrops++;
1430 /* Reuse Rx buffers. */
1431 if (sc->age_cdata.age_rxhead != NULL) {
1432 m_freem(sc->age_cdata.age_rxhead);
1433 AGE_RXCHAIN_RESET(sc);
1434 }
1435 break;
1436 }
1437
1438 /* The length of the first mbuf is computed last. */
1439 if (count != 0) {
1440 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1441 pktlen += mp->m_len;
1442 }
1443
1444 /* Chain received mbufs. */
1445 if (sc->age_cdata.age_rxhead == NULL) {
1446 sc->age_cdata.age_rxhead = mp;
1447 sc->age_cdata.age_rxtail = mp;
1448 } else {
1449 mp->m_flags &= ~M_PKTHDR;
1450 sc->age_cdata.age_rxprev_tail =
1451 sc->age_cdata.age_rxtail;
1452 sc->age_cdata.age_rxtail->m_next = mp;
1453 sc->age_cdata.age_rxtail = mp;
1454 }
1455
1456 if (count == nsegs - 1) {
1457 /*
1458 * It seems that L1 controller has no way
1459 * to tell hardware to strip CRC bytes.
1460 */
1461 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1462 if (nsegs > 1) {
1463 /* Remove the CRC bytes in chained mbufs. */
1464 pktlen -= ETHER_CRC_LEN;
1465 if (mp->m_len <= ETHER_CRC_LEN) {
1466 sc->age_cdata.age_rxtail =
1467 sc->age_cdata.age_rxprev_tail;
1468 sc->age_cdata.age_rxtail->m_len -=
1469 (ETHER_CRC_LEN - mp->m_len);
1470 sc->age_cdata.age_rxtail->m_next = NULL;
1471 m_freem(mp);
1472 } else {
1473 mp->m_len -= ETHER_CRC_LEN;
1474 }
1475 }
1476
1477 m = sc->age_cdata.age_rxhead;
1478 m->m_flags |= M_PKTHDR;
1479 m->m_pkthdr.rcvif = ifp;
1480 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1481 /* Set the first mbuf length. */
1482 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1483
1484 /*
1485 * Set checksum information.
1486 * It seems that L1 controller can compute partial
1487 * checksum. The partial checksum value can be used
1488 * to accelerate checksum computation for fragmented
1489 * TCP/UDP packets. Upper network stack already
1490 * takes advantage of the partial checksum value in
1491 * IP reassembly stage. But I'm not sure the
1492 * correctness of the partial hardware checksum
1493 * assistance due to lack of data sheet. If it is
1494 * proven to work on L1 I'll enable it.
1495 */
1496 if (status & AGE_RRD_IPV4) {
1497 if (status & AGE_RRD_IPCSUM_NOK)
1498 m->m_pkthdr.csum_flags |=
1499 M_CSUM_IPv4_BAD;
1500 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1501 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1502 m->m_pkthdr.csum_flags |=
1503 M_CSUM_TCP_UDP_BAD;
1504 }
1505 /*
1506 * Don't mark bad checksum for TCP/UDP frames
1507 * as fragmented frames may always have set
1508 * bad checksummed bit of descriptor status.
1509 */
1510 }
1511 #if NVLAN > 0
1512 /* Check for VLAN tagged frames. */
1513 if (status & AGE_RRD_VLAN) {
1514 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1515 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1516 continue);
1517 }
1518 #endif
1519
1520 #if NBPFILTER > 0
1521 if (ifp->if_bpf)
1522 bpf_mtap(ifp->if_bpf, m);
1523 #endif
1524 /* Pass it on. */
1525 ether_input(ifp, m);
1526
1527 /* Reset mbuf chains. */
1528 AGE_RXCHAIN_RESET(sc);
1529 }
1530 }
1531
1532 if (count != nsegs) {
1533 sc->age_cdata.age_rx_cons += nsegs;
1534 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1535 } else
1536 sc->age_cdata.age_rx_cons = rx_cons;
1537 }
1538
1539 static void
1540 age_rxintr(struct age_softc *sc, int rr_prod)
1541 {
1542 struct rx_rdesc *rxrd;
1543 int rr_cons, nsegs, pktlen, prog;
1544
1545 rr_cons = sc->age_cdata.age_rr_cons;
1546 if (rr_cons == rr_prod)
1547 return;
1548
1549 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1550 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1551 BUS_DMASYNC_POSTREAD);
1552
1553 for (prog = 0; rr_cons != rr_prod; prog++) {
1554 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1555 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1556 if (nsegs == 0)
1557 break;
1558 /*
1559 * Check number of segments against received bytes
1560 * Non-matching value would indicate that hardware
1561 * is still trying to update Rx return descriptors.
1562 * I'm not sure whether this check is really needed.
1563 */
1564 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1565 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1566 (MCLBYTES - ETHER_ALIGN)))
1567 break;
1568
1569 /* Received a frame. */
1570 age_rxeof(sc, rxrd);
1571
1572 /* Clear return ring. */
1573 rxrd->index = 0;
1574 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1575 }
1576
1577 if (prog > 0) {
1578 /* Update the consumer index. */
1579 sc->age_cdata.age_rr_cons = rr_cons;
1580
1581 /* Sync descriptors. */
1582 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1583 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1584 BUS_DMASYNC_PREWRITE);
1585
1586 /* Notify hardware availability of new Rx buffers. */
1587 AGE_COMMIT_MBOX(sc);
1588 }
1589 }
1590
1591 static void
1592 age_tick(void *xsc)
1593 {
1594 struct age_softc *sc = xsc;
1595 struct mii_data *mii = &sc->sc_miibus;
1596 int s;
1597
1598 s = splnet();
1599 mii_tick(mii);
1600 splx(s);
1601
1602 callout_schedule(&sc->sc_tick_ch, hz);
1603 }
1604
1605 static void
1606 age_reset(struct age_softc *sc)
1607 {
1608 uint32_t reg;
1609 int i;
1610
1611 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1612 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1613 DELAY(1);
1614 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1615 break;
1616 }
1617 if (i == 0)
1618 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1619
1620 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1621 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1622 break;
1623 DELAY(10);
1624 }
1625
1626 if (i == 0)
1627 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1628 reg);
1629
1630 /* Initialize PCIe module. From Linux. */
1631 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1632 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1633 }
1634
1635 static int
1636 age_init(struct ifnet *ifp)
1637 {
1638 struct age_softc *sc = ifp->if_softc;
1639 struct mii_data *mii;
1640 uint8_t eaddr[ETHER_ADDR_LEN];
1641 bus_addr_t paddr;
1642 uint32_t reg, fsize;
1643 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1644 int error;
1645
1646 /*
1647 * Cancel any pending I/O.
1648 */
1649 age_stop(ifp, 0);
1650
1651 /*
1652 * Reset the chip to a known state.
1653 */
1654 age_reset(sc);
1655
1656 /* Initialize descriptors. */
1657 error = age_init_rx_ring(sc);
1658 if (error != 0) {
1659 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1660 age_stop(ifp, 0);
1661 return error;
1662 }
1663 age_init_rr_ring(sc);
1664 age_init_tx_ring(sc);
1665 age_init_cmb_block(sc);
1666 age_init_smb_block(sc);
1667
1668 /* Reprogram the station address. */
1669 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1670 CSR_WRITE_4(sc, AGE_PAR0,
1671 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1672 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1673
1674 /* Set descriptor base addresses. */
1675 paddr = sc->age_rdata.age_tx_ring_paddr;
1676 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1677 paddr = sc->age_rdata.age_rx_ring_paddr;
1678 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1679 paddr = sc->age_rdata.age_rr_ring_paddr;
1680 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1681 paddr = sc->age_rdata.age_tx_ring_paddr;
1682 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1683 paddr = sc->age_rdata.age_cmb_block_paddr;
1684 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1685 paddr = sc->age_rdata.age_smb_block_paddr;
1686 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1687
1688 /* Set Rx/Rx return descriptor counter. */
1689 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1690 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1691 DESC_RRD_CNT_MASK) |
1692 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1693
1694 /* Set Tx descriptor counter. */
1695 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1696 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1697
1698 /* Tell hardware that we're ready to load descriptors. */
1699 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1700
1701 /*
1702 * Initialize mailbox register.
1703 * Updated producer/consumer index information is exchanged
1704 * through this mailbox register. However Tx producer and
1705 * Rx return consumer/Rx producer are all shared such that
1706 * it's hard to separate code path between Tx and Rx without
1707 * locking. If L1 hardware have a separate mail box register
1708 * for Tx and Rx consumer/producer management we could have
1709 * indepent Tx/Rx handler which in turn Rx handler could have
1710 * been run without any locking.
1711 */
1712 AGE_COMMIT_MBOX(sc);
1713
1714 /* Configure IPG/IFG parameters. */
1715 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1716 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1717 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1718 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1719 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1720
1721 /* Set parameters for half-duplex media. */
1722 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1723 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1724 HDPX_CFG_LCOL_MASK) |
1725 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1726 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1727 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1728 HDPX_CFG_ABEBT_MASK) |
1729 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1730 HDPX_CFG_JAMIPG_MASK));
1731
1732 /* Configure interrupt moderation timer. */
1733 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1734 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1735 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1736 reg &= ~MASTER_MTIMER_ENB;
1737 if (AGE_USECS(sc->age_int_mod) == 0)
1738 reg &= ~MASTER_ITIMER_ENB;
1739 else
1740 reg |= MASTER_ITIMER_ENB;
1741 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1742 if (agedebug)
1743 printf("%s: interrupt moderation is %d us.\n",
1744 device_xname(sc->sc_dev), sc->age_int_mod);
1745 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1746
1747 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1748 if (ifp->if_mtu < ETHERMTU)
1749 sc->age_max_frame_size = ETHERMTU;
1750 else
1751 sc->age_max_frame_size = ifp->if_mtu;
1752 sc->age_max_frame_size += ETHER_HDR_LEN +
1753 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1754 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1755
1756 /* Configure jumbo frame. */
1757 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1758 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1759 (((fsize / sizeof(uint64_t)) <<
1760 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1761 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1762 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1763 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1764 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1765
1766 /* Configure flow-control parameters. From Linux. */
1767 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1768 /*
1769 * Magic workaround for old-L1.
1770 * Don't know which hw revision requires this magic.
1771 */
1772 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1773 /*
1774 * Another magic workaround for flow-control mode
1775 * change. From Linux.
1776 */
1777 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1778 }
1779 /*
1780 * TODO
1781 * Should understand pause parameter relationships between FIFO
1782 * size and number of Rx descriptors and Rx return descriptors.
1783 *
1784 * Magic parameters came from Linux.
1785 */
1786 switch (sc->age_chip_rev) {
1787 case 0x8001:
1788 case 0x9001:
1789 case 0x9002:
1790 case 0x9003:
1791 rxf_hi = AGE_RX_RING_CNT / 16;
1792 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1793 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1794 rrd_lo = AGE_RR_RING_CNT / 16;
1795 break;
1796 default:
1797 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1798 rxf_lo = reg / 16;
1799 if (rxf_lo < 192)
1800 rxf_lo = 192;
1801 rxf_hi = (reg * 7) / 8;
1802 if (rxf_hi < rxf_lo)
1803 rxf_hi = rxf_lo + 16;
1804 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1805 rrd_lo = reg / 8;
1806 rrd_hi = (reg * 7) / 8;
1807 if (rrd_lo < 2)
1808 rrd_lo = 2;
1809 if (rrd_hi < rrd_lo)
1810 rrd_hi = rrd_lo + 3;
1811 break;
1812 }
1813 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1814 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1815 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1816 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1817 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1818 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1819 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1820 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1821 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1822 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1823
1824 /* Configure RxQ. */
1825 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1826 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1827 RXQ_CFG_RD_BURST_MASK) |
1828 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1829 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1830 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1831 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1832 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1833
1834 /* Configure TxQ. */
1835 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1836 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1837 TXQ_CFG_TPD_BURST_MASK) |
1838 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1839 TXQ_CFG_TX_FIFO_BURST_MASK) |
1840 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1841 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1842 TXQ_CFG_ENB);
1843
1844 /* Configure DMA parameters. */
1845 CSR_WRITE_4(sc, AGE_DMA_CFG,
1846 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1847 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1848 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1849
1850 /* Configure CMB DMA write threshold. */
1851 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1852 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1853 CMB_WR_THRESH_RRD_MASK) |
1854 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1855 CMB_WR_THRESH_TPD_MASK));
1856
1857 /* Set CMB/SMB timer and enable them. */
1858 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1859 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1860 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1861
1862 /* Request SMB updates for every seconds. */
1863 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1864 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1865
1866 /*
1867 * Disable all WOL bits as WOL can interfere normal Rx
1868 * operation.
1869 */
1870 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1871
1872 /*
1873 * Configure Tx/Rx MACs.
1874 * - Auto-padding for short frames.
1875 * - Enable CRC generation.
1876 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1877 * of MAC is followed after link establishment.
1878 */
1879 CSR_WRITE_4(sc, AGE_MAC_CFG,
1880 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1881 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1882 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1883 MAC_CFG_PREAMBLE_MASK));
1884
1885 /* Set up the receive filter. */
1886 age_rxfilter(sc);
1887 age_rxvlan(sc);
1888
1889 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1890 reg |= MAC_CFG_RXCSUM_ENB;
1891
1892 /* Ack all pending interrupts and clear it. */
1893 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1894 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1895
1896 /* Finally enable Tx/Rx MAC. */
1897 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1898
1899 sc->age_flags &= ~AGE_FLAG_LINK;
1900
1901 /* Switch to the current media. */
1902 mii = &sc->sc_miibus;
1903 mii_mediachg(mii);
1904
1905 callout_schedule(&sc->sc_tick_ch, hz);
1906
1907 ifp->if_flags |= IFF_RUNNING;
1908 ifp->if_flags &= ~IFF_OACTIVE;
1909
1910 return 0;
1911 }
1912
1913 static void
1914 age_stop(struct ifnet *ifp, int disable)
1915 {
1916 struct age_softc *sc = ifp->if_softc;
1917 struct age_txdesc *txd;
1918 struct age_rxdesc *rxd;
1919 uint32_t reg;
1920 int i;
1921
1922 callout_stop(&sc->sc_tick_ch);
1923
1924 /*
1925 * Mark the interface down and cancel the watchdog timer.
1926 */
1927 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1928 ifp->if_timer = 0;
1929
1930 sc->age_flags &= ~AGE_FLAG_LINK;
1931
1932 mii_down(&sc->sc_miibus);
1933
1934 /*
1935 * Disable interrupts.
1936 */
1937 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1938 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1939
1940 /* Stop CMB/SMB updates. */
1941 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1942
1943 /* Stop Rx/Tx MAC. */
1944 age_stop_rxmac(sc);
1945 age_stop_txmac(sc);
1946
1947 /* Stop DMA. */
1948 CSR_WRITE_4(sc, AGE_DMA_CFG,
1949 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1950
1951 /* Stop TxQ/RxQ. */
1952 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1953 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1954 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1955 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1956 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1957 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1958 break;
1959 DELAY(10);
1960 }
1961 if (i == 0)
1962 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1963 device_xname(sc->sc_dev), reg);
1964
1965 /* Reclaim Rx buffers that have been processed. */
1966 if (sc->age_cdata.age_rxhead != NULL)
1967 m_freem(sc->age_cdata.age_rxhead);
1968 AGE_RXCHAIN_RESET(sc);
1969
1970 /*
1971 * Free RX and TX mbufs still in the queues.
1972 */
1973 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1974 rxd = &sc->age_cdata.age_rxdesc[i];
1975 if (rxd->rx_m != NULL) {
1976 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1977 m_freem(rxd->rx_m);
1978 rxd->rx_m = NULL;
1979 }
1980 }
1981 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1982 txd = &sc->age_cdata.age_txdesc[i];
1983 if (txd->tx_m != NULL) {
1984 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1985 m_freem(txd->tx_m);
1986 txd->tx_m = NULL;
1987 }
1988 }
1989 }
1990
1991 static void
1992 age_stats_update(struct age_softc *sc)
1993 {
1994 struct ifnet *ifp = &sc->sc_ec.ec_if;
1995 struct age_stats *stat;
1996 struct smb *smb;
1997
1998 stat = &sc->age_stat;
1999
2000 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2001 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2002
2003 smb = sc->age_rdata.age_smb_block;
2004 if (smb->updated == 0)
2005 return;
2006
2007 /* Rx stats. */
2008 stat->rx_frames += smb->rx_frames;
2009 stat->rx_bcast_frames += smb->rx_bcast_frames;
2010 stat->rx_mcast_frames += smb->rx_mcast_frames;
2011 stat->rx_pause_frames += smb->rx_pause_frames;
2012 stat->rx_control_frames += smb->rx_control_frames;
2013 stat->rx_crcerrs += smb->rx_crcerrs;
2014 stat->rx_lenerrs += smb->rx_lenerrs;
2015 stat->rx_bytes += smb->rx_bytes;
2016 stat->rx_runts += smb->rx_runts;
2017 stat->rx_fragments += smb->rx_fragments;
2018 stat->rx_pkts_64 += smb->rx_pkts_64;
2019 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2020 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2021 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2022 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2023 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2024 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2025 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2026 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2027 stat->rx_desc_oflows += smb->rx_desc_oflows;
2028 stat->rx_alignerrs += smb->rx_alignerrs;
2029 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2030 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2031 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2032
2033 /* Tx stats. */
2034 stat->tx_frames += smb->tx_frames;
2035 stat->tx_bcast_frames += smb->tx_bcast_frames;
2036 stat->tx_mcast_frames += smb->tx_mcast_frames;
2037 stat->tx_pause_frames += smb->tx_pause_frames;
2038 stat->tx_excess_defer += smb->tx_excess_defer;
2039 stat->tx_control_frames += smb->tx_control_frames;
2040 stat->tx_deferred += smb->tx_deferred;
2041 stat->tx_bytes += smb->tx_bytes;
2042 stat->tx_pkts_64 += smb->tx_pkts_64;
2043 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2044 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2045 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2046 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2047 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2048 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2049 stat->tx_single_colls += smb->tx_single_colls;
2050 stat->tx_multi_colls += smb->tx_multi_colls;
2051 stat->tx_late_colls += smb->tx_late_colls;
2052 stat->tx_excess_colls += smb->tx_excess_colls;
2053 stat->tx_underrun += smb->tx_underrun;
2054 stat->tx_desc_underrun += smb->tx_desc_underrun;
2055 stat->tx_lenerrs += smb->tx_lenerrs;
2056 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2057 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2058 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2059
2060 /* Update counters in ifnet. */
2061 ifp->if_opackets += smb->tx_frames;
2062
2063 ifp->if_collisions += smb->tx_single_colls +
2064 smb->tx_multi_colls + smb->tx_late_colls +
2065 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2066
2067 ifp->if_oerrors += smb->tx_excess_colls +
2068 smb->tx_late_colls + smb->tx_underrun +
2069 smb->tx_pkts_truncated;
2070
2071 ifp->if_ipackets += smb->rx_frames;
2072
2073 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2074 smb->rx_runts + smb->rx_pkts_truncated +
2075 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2076 smb->rx_alignerrs;
2077
2078 /* Update done, clear. */
2079 smb->updated = 0;
2080
2081 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2082 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2083 }
2084
2085 static void
2086 age_stop_txmac(struct age_softc *sc)
2087 {
2088 uint32_t reg;
2089 int i;
2090
2091 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2092 if ((reg & MAC_CFG_TX_ENB) != 0) {
2093 reg &= ~MAC_CFG_TX_ENB;
2094 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2095 }
2096 /* Stop Tx DMA engine. */
2097 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2098 if ((reg & DMA_CFG_RD_ENB) != 0) {
2099 reg &= ~DMA_CFG_RD_ENB;
2100 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2101 }
2102 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2103 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2104 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2105 break;
2106 DELAY(10);
2107 }
2108 if (i == 0)
2109 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2110 }
2111
2112 static void
2113 age_stop_rxmac(struct age_softc *sc)
2114 {
2115 uint32_t reg;
2116 int i;
2117
2118 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2119 if ((reg & MAC_CFG_RX_ENB) != 0) {
2120 reg &= ~MAC_CFG_RX_ENB;
2121 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2122 }
2123 /* Stop Rx DMA engine. */
2124 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2125 if ((reg & DMA_CFG_WR_ENB) != 0) {
2126 reg &= ~DMA_CFG_WR_ENB;
2127 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2128 }
2129 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2130 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2131 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2132 break;
2133 DELAY(10);
2134 }
2135 if (i == 0)
2136 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2137 }
2138
2139 static void
2140 age_init_tx_ring(struct age_softc *sc)
2141 {
2142 struct age_ring_data *rd;
2143 struct age_txdesc *txd;
2144 int i;
2145
2146 sc->age_cdata.age_tx_prod = 0;
2147 sc->age_cdata.age_tx_cons = 0;
2148 sc->age_cdata.age_tx_cnt = 0;
2149
2150 rd = &sc->age_rdata;
2151 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2152 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2153 txd = &sc->age_cdata.age_txdesc[i];
2154 txd->tx_desc = &rd->age_tx_ring[i];
2155 txd->tx_m = NULL;
2156 }
2157 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2158 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2159 }
2160
2161 static int
2162 age_init_rx_ring(struct age_softc *sc)
2163 {
2164 struct age_ring_data *rd;
2165 struct age_rxdesc *rxd;
2166 int i;
2167
2168 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2169 rd = &sc->age_rdata;
2170 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2171 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2172 rxd = &sc->age_cdata.age_rxdesc[i];
2173 rxd->rx_m = NULL;
2174 rxd->rx_desc = &rd->age_rx_ring[i];
2175 if (age_newbuf(sc, rxd, 1) != 0)
2176 return ENOBUFS;
2177 }
2178
2179 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2180 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2181
2182 return 0;
2183 }
2184
2185 static void
2186 age_init_rr_ring(struct age_softc *sc)
2187 {
2188 struct age_ring_data *rd;
2189
2190 sc->age_cdata.age_rr_cons = 0;
2191 AGE_RXCHAIN_RESET(sc);
2192
2193 rd = &sc->age_rdata;
2194 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2195 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2196 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2197 }
2198
2199 static void
2200 age_init_cmb_block(struct age_softc *sc)
2201 {
2202 struct age_ring_data *rd;
2203
2204 rd = &sc->age_rdata;
2205 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2206 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2207 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2208 }
2209
2210 static void
2211 age_init_smb_block(struct age_softc *sc)
2212 {
2213 struct age_ring_data *rd;
2214
2215 rd = &sc->age_rdata;
2216 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2217 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2218 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2219 }
2220
2221 static int
2222 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2223 {
2224 struct rx_desc *desc;
2225 struct mbuf *m;
2226 bus_dmamap_t map;
2227 int error;
2228
2229 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2230 if (m == NULL)
2231 return ENOBUFS;
2232 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2233 if (!(m->m_flags & M_EXT)) {
2234 m_freem(m);
2235 return ENOBUFS;
2236 }
2237
2238 m->m_len = m->m_pkthdr.len = MCLBYTES;
2239 m_adj(m, ETHER_ALIGN);
2240
2241 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2242 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2243
2244 if (error != 0) {
2245 if (!error) {
2246 bus_dmamap_unload(sc->sc_dmat,
2247 sc->age_cdata.age_rx_sparemap);
2248 error = EFBIG;
2249 printf("%s: too many segments?!\n",
2250 device_xname(sc->sc_dev));
2251 }
2252 m_freem(m);
2253
2254 if (init)
2255 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2256 return error;
2257 }
2258
2259 if (rxd->rx_m != NULL) {
2260 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2261 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2262 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2263 }
2264 map = rxd->rx_dmamap;
2265 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2266 sc->age_cdata.age_rx_sparemap = map;
2267 rxd->rx_m = m;
2268
2269 desc = rxd->rx_desc;
2270 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2271 desc->len =
2272 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2273 AGE_RD_LEN_SHIFT);
2274
2275 return 0;
2276 }
2277
2278 static void
2279 age_rxvlan(struct age_softc *sc)
2280 {
2281 uint32_t reg;
2282
2283 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2284 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2285 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2286 reg |= MAC_CFG_VLAN_TAG_STRIP;
2287 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2288 }
2289
2290 static void
2291 age_rxfilter(struct age_softc *sc)
2292 {
2293 struct ethercom *ec = &sc->sc_ec;
2294 struct ifnet *ifp = &sc->sc_ec.ec_if;
2295 struct ether_multi *enm;
2296 struct ether_multistep step;
2297 uint32_t crc;
2298 uint32_t mchash[2];
2299 uint32_t rxcfg;
2300
2301 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2302 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2303 ifp->if_flags &= ~IFF_ALLMULTI;
2304
2305 /*
2306 * Always accept broadcast frames.
2307 */
2308 rxcfg |= MAC_CFG_BCAST;
2309
2310 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2311 ifp->if_flags |= IFF_ALLMULTI;
2312 if (ifp->if_flags & IFF_PROMISC)
2313 rxcfg |= MAC_CFG_PROMISC;
2314 else
2315 rxcfg |= MAC_CFG_ALLMULTI;
2316 mchash[0] = mchash[1] = 0xFFFFFFFF;
2317 } else {
2318 /* Program new filter. */
2319 memset(mchash, 0, sizeof(mchash));
2320
2321 ETHER_FIRST_MULTI(step, ec, enm);
2322 while (enm != NULL) {
2323 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2324 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2325 ETHER_NEXT_MULTI(step, enm);
2326 }
2327 }
2328
2329 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2330 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2331 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2332 }
2333