Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.25
      1 /*	$NetBSD: if_age.c,v 1.25 2009/03/03 23:28:44 cegger Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.25 2009/03/03 23:28:44 cegger Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101 static int	age_dma_alloc(struct age_softc *);
    102 static void	age_dma_free(struct age_softc *);
    103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104 static void	age_phy_reset(struct age_softc *);
    105 
    106 static int	age_encap(struct age_softc *, struct mbuf **);
    107 static void	age_init_tx_ring(struct age_softc *);
    108 static int	age_init_rx_ring(struct age_softc *);
    109 static void	age_init_rr_ring(struct age_softc *);
    110 static void	age_init_cmb_block(struct age_softc *);
    111 static void	age_init_smb_block(struct age_softc *);
    112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113 static void	age_mac_config(struct age_softc *);
    114 static void	age_txintr(struct age_softc *, int);
    115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116 static void	age_rxintr(struct age_softc *, int);
    117 static void	age_tick(void *);
    118 static void	age_reset(struct age_softc *);
    119 static void	age_stop(struct ifnet *, int);
    120 static void	age_stats_update(struct age_softc *);
    121 static void	age_stop_txmac(struct age_softc *);
    122 static void	age_stop_rxmac(struct age_softc *);
    123 static void	age_rxvlan(struct age_softc *sc);
    124 static void	age_rxfilter(struct age_softc *);
    125 
    126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127     age_match, age_attach, age_detach, NULL);
    128 
    129 int agedebug = 0;
    130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131 
    132 #define ETHER_ALIGN 2
    133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134 
    135 static int
    136 age_match(device_t dev, cfdata_t match, void *aux)
    137 {
    138 	struct pci_attach_args *pa = aux;
    139 
    140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142 }
    143 
    144 static void
    145 age_attach(device_t parent, device_t self, void *aux)
    146 {
    147 	struct age_softc *sc = device_private(self);
    148 	struct pci_attach_args *pa = aux;
    149 	pci_intr_handle_t ih;
    150 	const char *intrstr;
    151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152 	pcireg_t memtype;
    153 	int error = 0;
    154 
    155 	aprint_naive("\n");
    156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157 
    158 	sc->sc_dev = self;
    159 	sc->sc_dmat = pa->pa_dmat;
    160 	sc->sc_pct = pa->pa_pc;
    161 	sc->sc_pcitag = pa->pa_tag;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172         default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		goto fail;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc);
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		goto fail;
    200 	}
    201 	aprint_normal_dev(self, "%s\n", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_stop = age_stop;
    250 	ifp->if_watchdog = age_watchdog;
    251 	ifp->if_baudrate = IF_Gbps(1);
    252 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    253 	IFQ_SET_READY(&ifp->if_snd);
    254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    255 
    256 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    257 
    258 #ifdef AGE_CHECKSUM
    259 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    260 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    261 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    262 #endif
    263 
    264 #if NVLAN > 0
    265 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    266 #endif
    267 
    268 	/* Set up MII bus. */
    269 	sc->sc_miibus.mii_ifp = ifp;
    270 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    271 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    272 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    273 
    274 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    275 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    276 	    age_mediastatus);
    277 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    278 	   MII_OFFSET_ANY, 0);
    279 
    280 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    281 		aprint_error_dev(self, "no PHY found!\n");
    282 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    283 		    0, NULL);
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    285 	} else
    286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    287 
    288 	if_attach(ifp);
    289 	ether_ifattach(ifp, sc->sc_enaddr);
    290 
    291 	if (!pmf_device_register(self, NULL, age_resume))
    292 		aprint_error_dev(self, "couldn't establish power handler\n");
    293 	else
    294 		pmf_class_network_register(self, ifp);
    295 
    296 	return;
    297 
    298 fail:
    299 	age_dma_free(sc);
    300 	if (sc->sc_irq_handle != NULL) {
    301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302 		sc->sc_irq_handle = NULL;
    303 	}
    304 	if (sc->sc_mem_size) {
    305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306 		sc->sc_mem_size = 0;
    307 	}
    308 }
    309 
    310 static int
    311 age_detach(device_t self, int flags)
    312 {
    313 	struct age_softc *sc = device_private(self);
    314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315 	int s;
    316 
    317 	s = splnet();
    318 	age_stop(ifp, 0);
    319 	splx(s);
    320 
    321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    322 
    323 	/* Delete all remaining media. */
    324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    325 
    326 	ether_ifdetach(ifp);
    327 	if_detach(ifp);
    328 	age_dma_free(sc);
    329 
    330 	if (sc->sc_irq_handle != NULL) {
    331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    332 		sc->sc_irq_handle = NULL;
    333 	}
    334 
    335 	return 0;
    336 }
    337 
    338 /*
    339  *	Read a PHY register on the MII of the L1.
    340  */
    341 static int
    342 age_miibus_readreg(device_t dev, int phy, int reg)
    343 {
    344 	struct age_softc *sc = device_private(dev);
    345 	uint32_t v;
    346 	int i;
    347 
    348 	if (phy != sc->age_phyaddr)
    349 		return 0;
    350 
    351 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    352 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    353 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    354 		DELAY(1);
    355 		v = CSR_READ_4(sc, AGE_MDIO);
    356 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    357 			break;
    358 	}
    359 
    360 	if (i == 0) {
    361 		printf("%s: phy read timeout: phy %d, reg %d\n",
    362 			device_xname(sc->sc_dev), phy, reg);
    363 		return 0;
    364 	}
    365 
    366 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    367 }
    368 
    369 /*
    370  * 	Write a PHY register on the MII of the L1.
    371  */
    372 static void
    373 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    374 {
    375 	struct age_softc *sc = device_private(dev);
    376 	uint32_t v;
    377 	int i;
    378 
    379 	if (phy != sc->age_phyaddr)
    380 		return;
    381 
    382 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    383 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    384 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    385 
    386 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    387 		DELAY(1);
    388 		v = CSR_READ_4(sc, AGE_MDIO);
    389 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == 0) {
    394 		printf("%s: phy write timeout: phy %d, reg %d\n",
    395 		    device_xname(sc->sc_dev), phy, reg);
    396 	}
    397 }
    398 
    399 /*
    400  *	Callback from MII layer when media changes.
    401  */
    402 static void
    403 age_miibus_statchg(device_t dev)
    404 {
    405 	struct age_softc *sc = device_private(dev);
    406 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    407 	struct mii_data *mii;
    408 
    409 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    410 		return;
    411 
    412 	mii = &sc->sc_miibus;
    413 
    414 	sc->age_flags &= ~AGE_FLAG_LINK;
    415 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    416 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    417 		case IFM_10_T:
    418 		case IFM_100_TX:
    419 		case IFM_1000_T:
    420 			sc->age_flags |= AGE_FLAG_LINK;
    421 			break;
    422 		default:
    423 			break;
    424 		}
    425 	}
    426 
    427 	/* Stop Rx/Tx MACs. */
    428 	age_stop_rxmac(sc);
    429 	age_stop_txmac(sc);
    430 
    431 	/* Program MACs with resolved speed/duplex/flow-control. */
    432 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    433 		uint32_t reg;
    434 
    435 		age_mac_config(sc);
    436 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    437 		/* Restart DMA engine and Tx/Rx MAC. */
    438 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    439 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    440 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    441 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    442 	}
    443 }
    444 
    445 /*
    446  *	Get the current interface media status.
    447  */
    448 static void
    449 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    450 {
    451 	struct age_softc *sc = ifp->if_softc;
    452 	struct mii_data *mii = &sc->sc_miibus;
    453 
    454 	mii_pollstat(mii);
    455 	ifmr->ifm_status = mii->mii_media_status;
    456 	ifmr->ifm_active = mii->mii_media_active;
    457 }
    458 
    459 /*
    460  *	Set hardware to newly-selected media.
    461  */
    462 static int
    463 age_mediachange(struct ifnet *ifp)
    464 {
    465 	struct age_softc *sc = ifp->if_softc;
    466 	struct mii_data *mii = &sc->sc_miibus;
    467 	int error;
    468 
    469 	if (mii->mii_instance != 0) {
    470 		struct mii_softc *miisc;
    471 
    472 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    473 			mii_phy_reset(miisc);
    474 	}
    475 	error = mii_mediachg(mii);
    476 
    477 	return error;
    478 }
    479 
    480 static int
    481 age_intr(void *arg)
    482 {
    483         struct age_softc *sc = arg;
    484         struct ifnet *ifp = &sc->sc_ec.ec_if;
    485 	struct cmb *cmb;
    486         uint32_t status;
    487 
    488 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    489 	if (status == 0 || (status & AGE_INTRS) == 0)
    490 		return 0;
    491 
    492 	cmb = sc->age_rdata.age_cmb_block;
    493 	if (cmb == NULL)
    494 		return 0;
    495 
    496 	/* Disable interrupts. */
    497 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    498 
    499 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    500 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    501 	status = le32toh(cmb->intr_status);
    502 	if ((status & AGE_INTRS) == 0)
    503 		goto back;
    504 
    505 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    506 	    TPD_CONS_SHIFT;
    507 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    508 	    RRD_PROD_SHIFT;
    509 
    510 	/* Let hardware know CMB was served. */
    511 	cmb->intr_status = 0;
    512 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    513 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    514 	    BUS_DMASYNC_PREWRITE);
    515 
    516 	if (ifp->if_flags & IFF_RUNNING) {
    517 		if (status & INTR_CMB_RX)
    518 			age_rxintr(sc, sc->age_rr_prod);
    519 
    520 		if (status & INTR_CMB_TX)
    521 			age_txintr(sc, sc->age_tpd_cons);
    522 
    523 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    524 			if (status & INTR_DMA_RD_TO_RST)
    525 				printf("%s: DMA read error! -- resetting\n",
    526 				    device_xname(sc->sc_dev));
    527 			if (status & INTR_DMA_WR_TO_RST)
    528 				printf("%s: DMA write error! -- resetting\n",
    529 				    device_xname(sc->sc_dev));
    530 			age_init(ifp);
    531 		}
    532 
    533 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    534 			age_start(ifp);
    535 
    536 		if (status & INTR_SMB)
    537 			age_stats_update(sc);
    538 	}
    539 
    540 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    541 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    542 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    543 	    BUS_DMASYNC_POSTREAD);
    544 
    545 back:
    546 	/* Re-enable interrupts. */
    547 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    548 
    549 	return 1;
    550 }
    551 
    552 static int
    553 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    554     uint32_t *word)
    555 {
    556 	int i;
    557 	pcireg_t rv;
    558 
    559 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    560 	    offset << PCI_VPD_ADDRESS_SHIFT);
    561 	for (i = AGE_TIMEOUT; i > 0; i--) {
    562 		DELAY(10);
    563 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    564 		    PCI_VPD_ADDRESS(vpdc));
    565 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    566 			break;
    567 	}
    568 	if (i == 0) {
    569 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    570 		*word = 0;
    571 		return ETIMEDOUT;
    572 	}
    573 
    574 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    575 	return 0;
    576 }
    577 
    578 static void
    579 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    580 {
    581 	uint32_t ea[2], off, reg, word;
    582 	int vpd_error, match, vpdc;
    583 
    584 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    585 	if ((reg & SPI_VPD_ENB) != 0) {
    586 		/* Get VPD stored in TWSI EEPROM. */
    587 		reg &= ~SPI_VPD_ENB;
    588 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    589 	}
    590 
    591 	vpd_error = 0;
    592 	ea[0] = ea[1] = 0;
    593 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    594 	    PCI_CAP_VPD, &vpdc, NULL))) {
    595 		/*
    596 		 * PCI VPD capability exists, but it seems that it's
    597 		 * not in the standard form as stated in PCI VPD
    598 		 * specification such that driver could not use
    599 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    600 		 * Search VPD data starting at address 0x0100. The data
    601 		 * should be used as initializers to set AGE_PAR0,
    602 		 * AGE_PAR1 register including other PCI configuration
    603 		 * registers.
    604 		 */
    605 		word = 0;
    606 		match = 0;
    607 		reg = 0;
    608 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    609 		    off += sizeof(uint32_t)) {
    610 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    611 			if (vpd_error != 0)
    612 				break;
    613 			if (match != 0) {
    614 				switch (reg) {
    615 				case AGE_PAR0:
    616 					ea[0] = word;
    617 					break;
    618 				case AGE_PAR1:
    619 					ea[1] = word;
    620 					break;
    621 				default:
    622 					break;
    623 				}
    624 				match = 0;
    625 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    626 				match = 1;
    627 				reg = word >> 16;
    628 			} else
    629 				break;
    630 		}
    631 		if (off >= AGE_VPD_REG_CONF_END)
    632 			vpd_error = ENOENT;
    633 		if (vpd_error == 0) {
    634 			/*
    635 			 * Don't blindly trust ethernet address obtained
    636 			 * from VPD. Check whether ethernet address is
    637 			 * valid one. Otherwise fall-back to reading
    638 			 * PAR register.
    639 			 */
    640 			ea[1] &= 0xFFFF;
    641 			if ((ea[0] == 0 && ea[1] == 0) ||
    642 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    643 				if (agedebug)
    644 					printf("%s: invalid ethernet address "
    645 				    	    "returned from VPD.\n",
    646 				    	    device_xname(sc->sc_dev));
    647 				vpd_error = EINVAL;
    648 			}
    649 		}
    650 		if (vpd_error != 0 && (agedebug))
    651 			printf("%s: VPD access failure!\n",
    652 			    device_xname(sc->sc_dev));
    653 	} else {
    654 		if (agedebug)
    655 			printf("%s: PCI VPD capability not found!\n",
    656 			    device_xname(sc->sc_dev));
    657 	}
    658 
    659 	/*
    660 	 * It seems that L1 also provides a way to extract ethernet
    661 	 * address via SPI flash interface. Because SPI flash memory
    662 	 * device of different vendors vary in their instruction
    663 	 * codes for read ID instruction, it's very hard to get
    664 	 * instructions codes without detailed information for the
    665 	 * flash memory device used on ethernet controller. To simplify
    666 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    667 	 * address which is supposed to be set by hardware during
    668 	 * power on reset.
    669 	 */
    670 	if (vpd_error != 0) {
    671 		/*
    672 		 * VPD is mapped to SPI flash memory or BIOS set it.
    673 		 */
    674 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    675 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    676 	}
    677 
    678 	ea[1] &= 0xFFFF;
    679 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    680 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    681 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    682 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    683 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    684 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    685 }
    686 
    687 static void
    688 age_phy_reset(struct age_softc *sc)
    689 {
    690 	/* Reset PHY. */
    691 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    692 	DELAY(1000);
    693 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    694 	DELAY(1000);
    695 }
    696 
    697 static int
    698 age_dma_alloc(struct age_softc *sc)
    699 {
    700 	struct age_txdesc *txd;
    701 	struct age_rxdesc *rxd;
    702 	int nsegs, error, i;
    703 
    704 	/*
    705 	 * Create DMA stuffs for TX ring
    706 	 */
    707 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    708 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    709 	if (error) {
    710 		sc->age_cdata.age_tx_ring_map = NULL;
    711 		return ENOBUFS;
    712 	}
    713 
    714 	/* Allocate DMA'able memory for TX ring */
    715 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    716 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    717 	    &nsegs, BUS_DMA_WAITOK);
    718 	if (error) {
    719 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    720 		    "error = %i\n", device_xname(sc->sc_dev), error);
    721 		return error;
    722 	}
    723 
    724 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    725 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    726 	    BUS_DMA_NOWAIT);
    727 	if (error)
    728 		return ENOBUFS;
    729 
    730 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    731 
    732 	/*  Load the DMA map for Tx ring. */
    733 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    734 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    735 	if (error) {
    736 		printf("%s: could not load DMA'able memory for Tx ring, "
    737 		    "error = %i\n", device_xname(sc->sc_dev), error);
    738 		bus_dmamem_free(sc->sc_dmat,
    739 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
    740 		return error;
    741 	}
    742 
    743 	sc->age_rdata.age_tx_ring_paddr =
    744 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    745 
    746 	/*
    747 	 * Create DMA stuffs for RX ring
    748 	 */
    749 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    750 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    751 	if (error) {
    752 		sc->age_cdata.age_rx_ring_map = NULL;
    753 		return ENOBUFS;
    754 	}
    755 
    756 	/* Allocate DMA'able memory for RX ring */
    757 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    758 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    759 	    &nsegs, BUS_DMA_WAITOK);
    760 	if (error) {
    761 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    762 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    763 		return error;
    764 	}
    765 
    766 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    767 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    768 	    BUS_DMA_NOWAIT);
    769 	if (error)
    770 		return ENOBUFS;
    771 
    772 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    773 
    774 	/* Load the DMA map for Rx ring. */
    775 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    776 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    777 	if (error) {
    778 		printf("%s: could not load DMA'able memory for Rx ring, "
    779 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    780 		bus_dmamem_free(sc->sc_dmat,
    781 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    782 		return error;
    783 	}
    784 
    785 	sc->age_rdata.age_rx_ring_paddr =
    786 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    787 
    788 	/*
    789 	 * Create DMA stuffs for RX return ring
    790 	 */
    791 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    792 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    793 	if (error) {
    794 		sc->age_cdata.age_rr_ring_map = NULL;
    795 		return ENOBUFS;
    796 	}
    797 
    798 	/* Allocate DMA'able memory for RX return ring */
    799 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    800 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    801 	    &nsegs, BUS_DMA_WAITOK);
    802 	if (error) {
    803 		printf("%s: could not allocate DMA'able memory for Rx "
    804 		    "return ring, error = %i.\n",
    805 		    device_xname(sc->sc_dev), error);
    806 		return error;
    807 	}
    808 
    809 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    810 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    811 	    BUS_DMA_NOWAIT);
    812 	if (error)
    813 		return ENOBUFS;
    814 
    815 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    816 
    817 	/*  Load the DMA map for Rx return ring. */
    818 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    819 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    820 	if (error) {
    821 		printf("%s: could not load DMA'able memory for Rx return ring, "
    822 		    "error = %i\n", device_xname(sc->sc_dev), error);
    823 		bus_dmamem_free(sc->sc_dmat,
    824 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
    825 		return error;
    826 	}
    827 
    828 	sc->age_rdata.age_rr_ring_paddr =
    829 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    830 
    831 	/*
    832 	 * Create DMA stuffs for CMB block
    833 	 */
    834 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    835 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    836 	    &sc->age_cdata.age_cmb_block_map);
    837 	if (error) {
    838 		sc->age_cdata.age_cmb_block_map = NULL;
    839 		return ENOBUFS;
    840 	}
    841 
    842 	/* Allocate DMA'able memory for CMB block */
    843 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    844 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    845 	    &nsegs, BUS_DMA_WAITOK);
    846 	if (error) {
    847 		printf("%s: could not allocate DMA'able memory for "
    848 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    849 		return error;
    850 	}
    851 
    852 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    853 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    854 	    BUS_DMA_NOWAIT);
    855 	if (error)
    856 		return ENOBUFS;
    857 
    858 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    859 
    860 	/*  Load the DMA map for CMB block. */
    861 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    862 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    863 	    BUS_DMA_WAITOK);
    864 	if (error) {
    865 		printf("%s: could not load DMA'able memory for CMB block, "
    866 		    "error = %i\n", device_xname(sc->sc_dev), error);
    867 		bus_dmamem_free(sc->sc_dmat,
    868 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
    869 		return error;
    870 	}
    871 
    872 	sc->age_rdata.age_cmb_block_paddr =
    873 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    874 
    875 	/*
    876 	 * Create DMA stuffs for SMB block
    877 	 */
    878 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    879 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    880 	    &sc->age_cdata.age_smb_block_map);
    881 	if (error) {
    882 		sc->age_cdata.age_smb_block_map = NULL;
    883 		return ENOBUFS;
    884 	}
    885 
    886 	/* Allocate DMA'able memory for SMB block */
    887 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    888 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    889 	    &nsegs, BUS_DMA_WAITOK);
    890 	if (error) {
    891 		printf("%s: could not allocate DMA'able memory for "
    892 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    893 		return error;
    894 	}
    895 
    896 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    897 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    898 	    BUS_DMA_NOWAIT);
    899 	if (error)
    900 		return ENOBUFS;
    901 
    902 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    903 
    904 	/*  Load the DMA map for SMB block */
    905 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    906 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    907 	    BUS_DMA_WAITOK);
    908 	if (error) {
    909 		printf("%s: could not load DMA'able memory for SMB block, "
    910 		    "error = %i\n", device_xname(sc->sc_dev), error);
    911 		bus_dmamem_free(sc->sc_dmat,
    912 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
    913 		return error;
    914 	}
    915 
    916 	sc->age_rdata.age_smb_block_paddr =
    917 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    918 
    919 	/* Create DMA maps for Tx buffers. */
    920 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    921 		txd = &sc->age_cdata.age_txdesc[i];
    922 		txd->tx_m = NULL;
    923 		txd->tx_dmamap = NULL;
    924 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    925 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    926 		    &txd->tx_dmamap);
    927 		if (error) {
    928 			txd->tx_dmamap = NULL;
    929 			printf("%s: could not create Tx dmamap, error = %i.\n",
    930 			    device_xname(sc->sc_dev), error);
    931 			return error;
    932 		}
    933 	}
    934 
    935 	/* Create DMA maps for Rx buffers. */
    936 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    937 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    938 	if (error) {
    939 		sc->age_cdata.age_rx_sparemap = NULL;
    940 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    941 		    device_xname(sc->sc_dev), error);
    942 		return error;
    943 	}
    944 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    945 		rxd = &sc->age_cdata.age_rxdesc[i];
    946 		rxd->rx_m = NULL;
    947 		rxd->rx_dmamap = NULL;
    948 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    949 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    950 		if (error) {
    951 			rxd->rx_dmamap = NULL;
    952 			printf("%s: could not create Rx dmamap, error = %i.\n",
    953 			    device_xname(sc->sc_dev), error);
    954 			return error;
    955 		}
    956 	}
    957 
    958 	return 0;
    959 }
    960 
    961 static void
    962 age_dma_free(struct age_softc *sc)
    963 {
    964 	struct age_txdesc *txd;
    965 	struct age_rxdesc *rxd;
    966 	int i;
    967 
    968 	/* Tx buffers */
    969 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    970 		txd = &sc->age_cdata.age_txdesc[i];
    971 		if (txd->tx_dmamap != NULL) {
    972 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    973 			txd->tx_dmamap = NULL;
    974 		}
    975 	}
    976 	/* Rx buffers */
    977 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    978 		rxd = &sc->age_cdata.age_rxdesc[i];
    979 		if (rxd->rx_dmamap != NULL) {
    980 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    981 			rxd->rx_dmamap = NULL;
    982 		}
    983 	}
    984 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    985 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    986 		sc->age_cdata.age_rx_sparemap = NULL;
    987 	}
    988 
    989 	/* Tx ring. */
    990 	if (sc->age_cdata.age_tx_ring_map != NULL)
    991 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    992 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    993 	    sc->age_rdata.age_tx_ring != NULL)
    994 		bus_dmamem_free(sc->sc_dmat,
    995 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
    996 	sc->age_rdata.age_tx_ring = NULL;
    997 	sc->age_cdata.age_tx_ring_map = NULL;
    998 
    999 	/* Rx ring. */
   1000 	if (sc->age_cdata.age_rx_ring_map != NULL)
   1001 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
   1002 	if (sc->age_cdata.age_rx_ring_map != NULL &&
   1003 	    sc->age_rdata.age_rx_ring != NULL)
   1004 		bus_dmamem_free(sc->sc_dmat,
   1005 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
   1006 	sc->age_rdata.age_rx_ring = NULL;
   1007 	sc->age_cdata.age_rx_ring_map = NULL;
   1008 
   1009 	/* Rx return ring. */
   1010 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1011 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1012 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1013 	    sc->age_rdata.age_rr_ring != NULL)
   1014 		bus_dmamem_free(sc->sc_dmat,
   1015 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
   1016 	sc->age_rdata.age_rr_ring = NULL;
   1017 	sc->age_cdata.age_rr_ring_map = NULL;
   1018 
   1019 	/* CMB block */
   1020 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1021 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1022 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1023 	    sc->age_rdata.age_cmb_block != NULL)
   1024 		bus_dmamem_free(sc->sc_dmat,
   1025 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
   1026 	sc->age_rdata.age_cmb_block = NULL;
   1027 	sc->age_cdata.age_cmb_block_map = NULL;
   1028 
   1029 	/* SMB block */
   1030 	if (sc->age_cdata.age_smb_block_map != NULL)
   1031 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1032 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1033 	    sc->age_rdata.age_smb_block != NULL)
   1034 		bus_dmamem_free(sc->sc_dmat,
   1035 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
   1036 	sc->age_rdata.age_smb_block = NULL;
   1037 	sc->age_cdata.age_smb_block_map = NULL;
   1038 }
   1039 
   1040 static void
   1041 age_start(struct ifnet *ifp)
   1042 {
   1043         struct age_softc *sc = ifp->if_softc;
   1044         struct mbuf *m_head;
   1045 	int enq;
   1046 
   1047 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1048 		return;
   1049 
   1050 	enq = 0;
   1051 	for (;;) {
   1052 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1053 		if (m_head == NULL)
   1054 			break;
   1055 
   1056 		/*
   1057 		 * Pack the data into the transmit ring. If we
   1058 		 * don't have room, set the OACTIVE flag and wait
   1059 		 * for the NIC to drain the ring.
   1060 		 */
   1061 		if (age_encap(sc, &m_head)) {
   1062 			if (m_head == NULL)
   1063 				break;
   1064 			ifp->if_flags |= IFF_OACTIVE;
   1065 			break;
   1066 		}
   1067 		enq = 1;
   1068 
   1069 #if NBPFILTER > 0
   1070 		/*
   1071 		 * If there's a BPF listener, bounce a copy of this frame
   1072 		 * to him.
   1073 		 */
   1074 		if (ifp->if_bpf != NULL)
   1075 			bpf_mtap(ifp->if_bpf, m_head);
   1076 #endif
   1077 	}
   1078 
   1079 	if (enq) {
   1080 		/* Update mbox. */
   1081 		AGE_COMMIT_MBOX(sc);
   1082 		/* Set a timeout in case the chip goes out to lunch. */
   1083 		ifp->if_timer = AGE_TX_TIMEOUT;
   1084 	}
   1085 }
   1086 
   1087 static void
   1088 age_watchdog(struct ifnet *ifp)
   1089 {
   1090 	struct age_softc *sc = ifp->if_softc;
   1091 
   1092 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1093 		printf("%s: watchdog timeout (missed link)\n",
   1094 		    device_xname(sc->sc_dev));
   1095 		ifp->if_oerrors++;
   1096 		age_init(ifp);
   1097 		return;
   1098 	}
   1099 
   1100 	if (sc->age_cdata.age_tx_cnt == 0) {
   1101 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1102 		    "-- recovering\n", device_xname(sc->sc_dev));
   1103 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1104 			age_start(ifp);
   1105 		return;
   1106 	}
   1107 
   1108 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1109 	ifp->if_oerrors++;
   1110 	age_init(ifp);
   1111 
   1112 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1113 		age_start(ifp);
   1114 }
   1115 
   1116 static int
   1117 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1118 {
   1119 	struct age_softc *sc = ifp->if_softc;
   1120 	int s, error;
   1121 
   1122 	s = splnet();
   1123 
   1124 	error = ether_ioctl(ifp, cmd, data);
   1125 	if (error == ENETRESET) {
   1126 		if (ifp->if_flags & IFF_RUNNING)
   1127 			age_rxfilter(sc);
   1128 		error = 0;
   1129 	}
   1130 
   1131 	splx(s);
   1132 	return error;
   1133 }
   1134 
   1135 static void
   1136 age_mac_config(struct age_softc *sc)
   1137 {
   1138 	struct mii_data *mii;
   1139 	uint32_t reg;
   1140 
   1141 	mii = &sc->sc_miibus;
   1142 
   1143 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1144 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1145 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1146 	reg &= ~MAC_CFG_SPEED_MASK;
   1147 
   1148 	/* Reprogram MAC with resolved speed/duplex. */
   1149 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1150 	case IFM_10_T:
   1151 	case IFM_100_TX:
   1152 		reg |= MAC_CFG_SPEED_10_100;
   1153 		break;
   1154 	case IFM_1000_T:
   1155 		reg |= MAC_CFG_SPEED_1000;
   1156 		break;
   1157 	}
   1158 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1159 		reg |= MAC_CFG_FULL_DUPLEX;
   1160 #ifdef notyet
   1161 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1162 			reg |= MAC_CFG_TX_FC;
   1163 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1164 			reg |= MAC_CFG_RX_FC;
   1165 #endif
   1166 	}
   1167 
   1168 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1169 }
   1170 
   1171 static bool
   1172 age_resume(device_t dv PMF_FN_ARGS)
   1173 {
   1174 	struct age_softc *sc = device_private(dv);
   1175 	uint16_t cmd;
   1176 
   1177 	/*
   1178 	 * Clear INTx emulation disable for hardware that
   1179 	 * is set in resume event. From Linux.
   1180 	 */
   1181 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1182 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1183 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1184 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1185 		    PCI_COMMAND_STATUS_REG, cmd);
   1186 	}
   1187 
   1188 	return true;
   1189 }
   1190 
   1191 static int
   1192 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1193 {
   1194 	struct age_txdesc *txd, *txd_last;
   1195 	struct tx_desc *desc;
   1196 	struct mbuf *m;
   1197 	bus_dmamap_t map;
   1198 	uint32_t cflags, poff, vtag;
   1199 	int error, i, nsegs, prod;
   1200 #if NVLAN > 0
   1201 	struct m_tag *mtag;
   1202 #endif
   1203 
   1204 	m = *m_head;
   1205 	cflags = vtag = 0;
   1206 	poff = 0;
   1207 
   1208 	prod = sc->age_cdata.age_tx_prod;
   1209 	txd = &sc->age_cdata.age_txdesc[prod];
   1210 	txd_last = txd;
   1211 	map = txd->tx_dmamap;
   1212 
   1213 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1214 
   1215 	if (error == EFBIG) {
   1216 		error = 0;
   1217 
   1218 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1219 		if (m == NULL) {
   1220 			printf("%s: can't defrag TX mbuf\n",
   1221 			    device_xname(sc->sc_dev));
   1222 			m_freem(*m_head);
   1223 			*m_head = NULL;
   1224 			return ENOBUFS;
   1225 		}
   1226 
   1227 		M_COPY_PKTHDR(m, *m_head);
   1228 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1229 			MCLGET(m, M_DONTWAIT);
   1230 			if (!(m->m_flags & M_EXT)) {
   1231 				m_freem(*m_head);
   1232 				m_freem(m);
   1233 				*m_head = NULL;
   1234 				return ENOBUFS;
   1235 			}
   1236 		}
   1237 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1238 		    mtod(m, void *));
   1239 		m_freem(*m_head);
   1240 		m->m_len = m->m_pkthdr.len;
   1241 		*m_head = m;
   1242 
   1243 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1244 		  	    BUS_DMA_NOWAIT);
   1245 
   1246 		if (error != 0) {
   1247 			printf("%s: could not load defragged TX mbuf\n",
   1248 			    device_xname(sc->sc_dev));
   1249 			if (!error) {
   1250 				bus_dmamap_unload(sc->sc_dmat, map);
   1251 				error = EFBIG;
   1252 			}
   1253 			m_freem(*m_head);
   1254 			*m_head = NULL;
   1255 			return error;
   1256 		}
   1257 	} else if (error) {
   1258 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1259 		return error;
   1260 	}
   1261 
   1262 	nsegs = map->dm_nsegs;
   1263 
   1264 	if (nsegs == 0) {
   1265 		m_freem(*m_head);
   1266 		*m_head = NULL;
   1267 		return EIO;
   1268 	}
   1269 
   1270 	/* Check descriptor overrun. */
   1271 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1272 		bus_dmamap_unload(sc->sc_dmat, map);
   1273 		return ENOBUFS;
   1274 	}
   1275 
   1276 	m = *m_head;
   1277 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1278 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1279 		cflags |= AGE_TD_CSUM;
   1280 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1281 			cflags |= AGE_TD_TCPCSUM;
   1282 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1283 			cflags |= AGE_TD_UDPCSUM;
   1284 		/* Set checksum start offset. */
   1285 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1286 	}
   1287 
   1288 #if NVLAN > 0
   1289 	/* Configure VLAN hardware tag insertion. */
   1290 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1291 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1292 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1293 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1294 	}
   1295 #endif
   1296 
   1297 	desc = NULL;
   1298 	for (i = 0; i < nsegs; i++) {
   1299 		desc = &sc->age_rdata.age_tx_ring[prod];
   1300 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1301 		desc->len =
   1302 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1303 		desc->flags = htole32(cflags);
   1304 		sc->age_cdata.age_tx_cnt++;
   1305 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1306 	}
   1307 
   1308 	/* Update producer index. */
   1309 	sc->age_cdata.age_tx_prod = prod;
   1310 
   1311 	/* Set EOP on the last descriptor. */
   1312 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1313 	desc = &sc->age_rdata.age_tx_ring[prod];
   1314 	desc->flags |= htole32(AGE_TD_EOP);
   1315 
   1316 	/* Swap dmamap of the first and the last. */
   1317 	txd = &sc->age_cdata.age_txdesc[prod];
   1318 	map = txd_last->tx_dmamap;
   1319 	txd_last->tx_dmamap = txd->tx_dmamap;
   1320 	txd->tx_dmamap = map;
   1321 	txd->tx_m = m;
   1322 
   1323 	/* Sync descriptors. */
   1324 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1325 	    BUS_DMASYNC_PREWRITE);
   1326 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1327 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1328 
   1329 	return 0;
   1330 }
   1331 
   1332 static void
   1333 age_txintr(struct age_softc *sc, int tpd_cons)
   1334 {
   1335 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1336 	struct age_txdesc *txd;
   1337 	int cons, prog;
   1338 
   1339 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1340 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1341 
   1342 	/*
   1343 	 * Go through our Tx list and free mbufs for those
   1344 	 * frames which have been transmitted.
   1345 	 */
   1346 	cons = sc->age_cdata.age_tx_cons;
   1347 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1348 		if (sc->age_cdata.age_tx_cnt <= 0)
   1349 			break;
   1350 		prog++;
   1351 		ifp->if_flags &= ~IFF_OACTIVE;
   1352 		sc->age_cdata.age_tx_cnt--;
   1353 		txd = &sc->age_cdata.age_txdesc[cons];
   1354 		/*
   1355 		 * Clear Tx descriptors, it's not required but would
   1356 		 * help debugging in case of Tx issues.
   1357 		 */
   1358 		txd->tx_desc->addr = 0;
   1359 		txd->tx_desc->len = 0;
   1360 		txd->tx_desc->flags = 0;
   1361 
   1362 		if (txd->tx_m == NULL)
   1363 			continue;
   1364 		/* Reclaim transmitted mbufs. */
   1365 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1366 		m_freem(txd->tx_m);
   1367 		txd->tx_m = NULL;
   1368 	}
   1369 
   1370 	if (prog > 0) {
   1371 		sc->age_cdata.age_tx_cons = cons;
   1372 
   1373 		/*
   1374 		 * Unarm watchdog timer only when there are no pending
   1375 		 * Tx descriptors in queue.
   1376 		 */
   1377 		if (sc->age_cdata.age_tx_cnt == 0)
   1378 			ifp->if_timer = 0;
   1379 
   1380 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1381 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1382 		    BUS_DMASYNC_PREWRITE);
   1383 	}
   1384 }
   1385 
   1386 /* Receive a frame. */
   1387 static void
   1388 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1389 {
   1390 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1391 	struct age_rxdesc *rxd;
   1392 	struct rx_desc *desc;
   1393 	struct mbuf *mp, *m;
   1394 	uint32_t status, index;
   1395 	int count, nsegs, pktlen;
   1396 	int rx_cons;
   1397 
   1398 	status = le32toh(rxrd->flags);
   1399 	index = le32toh(rxrd->index);
   1400 	rx_cons = AGE_RX_CONS(index);
   1401 	nsegs = AGE_RX_NSEGS(index);
   1402 
   1403 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1404 	if ((status & AGE_RRD_ERROR) != 0 &&
   1405 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1406 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1407 		/*
   1408 		 * We want to pass the following frames to upper
   1409 		 * layer regardless of error status of Rx return
   1410 		 * ring.
   1411 		 *
   1412 		 *  o IP/TCP/UDP checksum is bad.
   1413 		 *  o frame length and protocol specific length
   1414 		 *     does not match.
   1415 		 */
   1416 		sc->age_cdata.age_rx_cons += nsegs;
   1417 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1418 		return;
   1419 	}
   1420 
   1421 	pktlen = 0;
   1422 	for (count = 0; count < nsegs; count++,
   1423 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1424 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1425 		mp = rxd->rx_m;
   1426 		desc = rxd->rx_desc;
   1427 		/* Add a new receive buffer to the ring. */
   1428 		if (age_newbuf(sc, rxd, 0) != 0) {
   1429 			ifp->if_iqdrops++;
   1430 			/* Reuse Rx buffers. */
   1431 			if (sc->age_cdata.age_rxhead != NULL) {
   1432 				m_freem(sc->age_cdata.age_rxhead);
   1433 				AGE_RXCHAIN_RESET(sc);
   1434 			}
   1435 			break;
   1436 		}
   1437 
   1438 		/* The length of the first mbuf is computed last. */
   1439 		if (count != 0) {
   1440 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1441 			pktlen += mp->m_len;
   1442 		}
   1443 
   1444 		/* Chain received mbufs. */
   1445 		if (sc->age_cdata.age_rxhead == NULL) {
   1446 			sc->age_cdata.age_rxhead = mp;
   1447 			sc->age_cdata.age_rxtail = mp;
   1448 		} else {
   1449 			mp->m_flags &= ~M_PKTHDR;
   1450 			sc->age_cdata.age_rxprev_tail =
   1451 			    sc->age_cdata.age_rxtail;
   1452 			sc->age_cdata.age_rxtail->m_next = mp;
   1453 			sc->age_cdata.age_rxtail = mp;
   1454 		}
   1455 
   1456 		if (count == nsegs - 1) {
   1457 			/*
   1458 			 * It seems that L1 controller has no way
   1459 			 * to tell hardware to strip CRC bytes.
   1460 			 */
   1461 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1462 			if (nsegs > 1) {
   1463 				/* Remove the CRC bytes in chained mbufs. */
   1464 				pktlen -= ETHER_CRC_LEN;
   1465 				if (mp->m_len <= ETHER_CRC_LEN) {
   1466 					sc->age_cdata.age_rxtail =
   1467 					    sc->age_cdata.age_rxprev_tail;
   1468 					sc->age_cdata.age_rxtail->m_len -=
   1469 					    (ETHER_CRC_LEN - mp->m_len);
   1470 					sc->age_cdata.age_rxtail->m_next = NULL;
   1471 					m_freem(mp);
   1472 				} else {
   1473 					mp->m_len -= ETHER_CRC_LEN;
   1474 				}
   1475 			}
   1476 
   1477 			m = sc->age_cdata.age_rxhead;
   1478 			m->m_flags |= M_PKTHDR;
   1479 			m->m_pkthdr.rcvif = ifp;
   1480 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1481 			/* Set the first mbuf length. */
   1482 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1483 
   1484 			/*
   1485 			 * Set checksum information.
   1486 			 * It seems that L1 controller can compute partial
   1487 			 * checksum. The partial checksum value can be used
   1488 			 * to accelerate checksum computation for fragmented
   1489 			 * TCP/UDP packets. Upper network stack already
   1490 			 * takes advantage of the partial checksum value in
   1491 			 * IP reassembly stage. But I'm not sure the
   1492 			 * correctness of the partial hardware checksum
   1493 			 * assistance due to lack of data sheet. If it is
   1494 			 * proven to work on L1 I'll enable it.
   1495 			 */
   1496 			if (status & AGE_RRD_IPV4) {
   1497 				if (status & AGE_RRD_IPCSUM_NOK)
   1498 					m->m_pkthdr.csum_flags |=
   1499 					    M_CSUM_IPv4_BAD;
   1500 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1501 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1502 					m->m_pkthdr.csum_flags |=
   1503 					    M_CSUM_TCP_UDP_BAD;
   1504 				}
   1505 				/*
   1506 				 * Don't mark bad checksum for TCP/UDP frames
   1507 				 * as fragmented frames may always have set
   1508 				 * bad checksummed bit of descriptor status.
   1509 				 */
   1510 			}
   1511 #if NVLAN > 0
   1512 			/* Check for VLAN tagged frames. */
   1513 			if (status & AGE_RRD_VLAN) {
   1514 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1515 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1516 					continue);
   1517 			}
   1518 #endif
   1519 
   1520 #if NBPFILTER > 0
   1521 			if (ifp->if_bpf)
   1522 				bpf_mtap(ifp->if_bpf, m);
   1523 #endif
   1524 			/* Pass it on. */
   1525 			ether_input(ifp, m);
   1526 
   1527 			/* Reset mbuf chains. */
   1528 			AGE_RXCHAIN_RESET(sc);
   1529 		}
   1530 	}
   1531 
   1532 	if (count != nsegs) {
   1533 		sc->age_cdata.age_rx_cons += nsegs;
   1534 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1535 	} else
   1536 		sc->age_cdata.age_rx_cons = rx_cons;
   1537 }
   1538 
   1539 static void
   1540 age_rxintr(struct age_softc *sc, int rr_prod)
   1541 {
   1542 	struct rx_rdesc *rxrd;
   1543 	int rr_cons, nsegs, pktlen, prog;
   1544 
   1545 	rr_cons = sc->age_cdata.age_rr_cons;
   1546 	if (rr_cons == rr_prod)
   1547 		return;
   1548 
   1549 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1550 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1551 	    BUS_DMASYNC_POSTREAD);
   1552 
   1553 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1554 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1555 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1556 		if (nsegs == 0)
   1557 			break;
   1558 		/*
   1559 		 * Check number of segments against received bytes
   1560 		 * Non-matching value would indicate that hardware
   1561 		 * is still trying to update Rx return descriptors.
   1562 		 * I'm not sure whether this check is really needed.
   1563 		 */
   1564 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1565 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1566 		    (MCLBYTES - ETHER_ALIGN)))
   1567 			break;
   1568 
   1569 		/* Received a frame. */
   1570 		age_rxeof(sc, rxrd);
   1571 
   1572 		/* Clear return ring. */
   1573 		rxrd->index = 0;
   1574 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1575 	}
   1576 
   1577 	if (prog > 0) {
   1578 		/* Update the consumer index. */
   1579 		sc->age_cdata.age_rr_cons = rr_cons;
   1580 
   1581 		/* Sync descriptors. */
   1582 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1583 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1584 		    BUS_DMASYNC_PREWRITE);
   1585 
   1586 		/* Notify hardware availability of new Rx buffers. */
   1587 		AGE_COMMIT_MBOX(sc);
   1588 	}
   1589 }
   1590 
   1591 static void
   1592 age_tick(void *xsc)
   1593 {
   1594 	struct age_softc *sc = xsc;
   1595 	struct mii_data *mii = &sc->sc_miibus;
   1596 	int s;
   1597 
   1598 	s = splnet();
   1599 	mii_tick(mii);
   1600 	splx(s);
   1601 
   1602 	callout_schedule(&sc->sc_tick_ch, hz);
   1603 }
   1604 
   1605 static void
   1606 age_reset(struct age_softc *sc)
   1607 {
   1608 	uint32_t reg;
   1609 	int i;
   1610 
   1611 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1612 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1613 		DELAY(1);
   1614 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1615 			break;
   1616 	}
   1617 	if (i == 0)
   1618 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1619 
   1620 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1621 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1622 			break;
   1623 		DELAY(10);
   1624 	}
   1625 
   1626 	if (i == 0)
   1627 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1628 		    reg);
   1629 
   1630 	/* Initialize PCIe module. From Linux. */
   1631 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1632 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1633 }
   1634 
   1635 static int
   1636 age_init(struct ifnet *ifp)
   1637 {
   1638 	struct age_softc *sc = ifp->if_softc;
   1639 	struct mii_data *mii;
   1640 	uint8_t eaddr[ETHER_ADDR_LEN];
   1641 	bus_addr_t paddr;
   1642 	uint32_t reg, fsize;
   1643 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1644 	int error;
   1645 
   1646 	/*
   1647 	 * Cancel any pending I/O.
   1648 	 */
   1649 	age_stop(ifp, 0);
   1650 
   1651 	/*
   1652 	 * Reset the chip to a known state.
   1653 	 */
   1654 	age_reset(sc);
   1655 
   1656 	/* Initialize descriptors. */
   1657 	error = age_init_rx_ring(sc);
   1658         if (error != 0) {
   1659 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1660 		age_stop(ifp, 0);
   1661 		return error;
   1662         }
   1663 	age_init_rr_ring(sc);
   1664 	age_init_tx_ring(sc);
   1665 	age_init_cmb_block(sc);
   1666 	age_init_smb_block(sc);
   1667 
   1668 	/* Reprogram the station address. */
   1669 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1670 	CSR_WRITE_4(sc, AGE_PAR0,
   1671 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1672 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1673 
   1674 	/* Set descriptor base addresses. */
   1675 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1676 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1677 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1678 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1679 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1680 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1681 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1682 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1683 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1684 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1685 	paddr = sc->age_rdata.age_smb_block_paddr;
   1686 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1687 
   1688 	/* Set Rx/Rx return descriptor counter. */
   1689 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1690 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1691 	    DESC_RRD_CNT_MASK) |
   1692 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1693 
   1694 	/* Set Tx descriptor counter. */
   1695 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1696 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1697 
   1698 	/* Tell hardware that we're ready to load descriptors. */
   1699 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1700 
   1701         /*
   1702 	 * Initialize mailbox register.
   1703 	 * Updated producer/consumer index information is exchanged
   1704 	 * through this mailbox register. However Tx producer and
   1705 	 * Rx return consumer/Rx producer are all shared such that
   1706 	 * it's hard to separate code path between Tx and Rx without
   1707 	 * locking. If L1 hardware have a separate mail box register
   1708 	 * for Tx and Rx consumer/producer management we could have
   1709 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1710 	 * been run without any locking.
   1711 	*/
   1712 	AGE_COMMIT_MBOX(sc);
   1713 
   1714 	/* Configure IPG/IFG parameters. */
   1715 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1716 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1717 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1718 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1719 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1720 
   1721 	/* Set parameters for half-duplex media. */
   1722 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1723 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1724 	    HDPX_CFG_LCOL_MASK) |
   1725 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1726 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1727 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1728 	    HDPX_CFG_ABEBT_MASK) |
   1729 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1730 	     HDPX_CFG_JAMIPG_MASK));
   1731 
   1732 	/* Configure interrupt moderation timer. */
   1733 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1734 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1735 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1736 	reg &= ~MASTER_MTIMER_ENB;
   1737 	if (AGE_USECS(sc->age_int_mod) == 0)
   1738 		reg &= ~MASTER_ITIMER_ENB;
   1739 	else
   1740 		reg |= MASTER_ITIMER_ENB;
   1741 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1742 	if (agedebug)
   1743 		printf("%s: interrupt moderation is %d us.\n",
   1744 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1745 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1746 
   1747 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1748 	if (ifp->if_mtu < ETHERMTU)
   1749 		sc->age_max_frame_size = ETHERMTU;
   1750 	else
   1751 		sc->age_max_frame_size = ifp->if_mtu;
   1752 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1753 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1754 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1755 
   1756 	/* Configure jumbo frame. */
   1757 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1758 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1759 	    (((fsize / sizeof(uint64_t)) <<
   1760 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1761 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1762 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1763 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1764 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1765 
   1766 	/* Configure flow-control parameters. From Linux. */
   1767 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1768 		/*
   1769 		 * Magic workaround for old-L1.
   1770 		 * Don't know which hw revision requires this magic.
   1771 		 */
   1772 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1773 		/*
   1774 		 * Another magic workaround for flow-control mode
   1775 		 * change. From Linux.
   1776 		 */
   1777 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1778 	}
   1779 	/*
   1780 	 * TODO
   1781 	 *  Should understand pause parameter relationships between FIFO
   1782 	 *  size and number of Rx descriptors and Rx return descriptors.
   1783 	 *
   1784 	 *  Magic parameters came from Linux.
   1785 	 */
   1786 	switch (sc->age_chip_rev) {
   1787 	case 0x8001:
   1788 	case 0x9001:
   1789 	case 0x9002:
   1790 	case 0x9003:
   1791 		rxf_hi = AGE_RX_RING_CNT / 16;
   1792 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1793 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1794 		rrd_lo = AGE_RR_RING_CNT / 16;
   1795 		break;
   1796 	default:
   1797 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1798 		rxf_lo = reg / 16;
   1799 		if (rxf_lo < 192)
   1800 			rxf_lo = 192;
   1801 		rxf_hi = (reg * 7) / 8;
   1802 		if (rxf_hi < rxf_lo)
   1803 			rxf_hi = rxf_lo + 16;
   1804 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1805 		rrd_lo = reg / 8;
   1806 		rrd_hi = (reg * 7) / 8;
   1807 		if (rrd_lo < 2)
   1808 			rrd_lo = 2;
   1809 		if (rrd_hi < rrd_lo)
   1810 			rrd_hi = rrd_lo + 3;
   1811 		break;
   1812 	}
   1813 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1814 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1815 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1816 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1817 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1818 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1819 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1820 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1821 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1822 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1823 
   1824 	/* Configure RxQ. */
   1825 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1826 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1827 	    RXQ_CFG_RD_BURST_MASK) |
   1828 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1829 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1830 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1831 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1832 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1833 
   1834 	/* Configure TxQ. */
   1835 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1836 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1837 	    TXQ_CFG_TPD_BURST_MASK) |
   1838 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1839 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1840 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1841 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1842 	    TXQ_CFG_ENB);
   1843 
   1844 	/* Configure DMA parameters. */
   1845 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1846 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1847 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1848 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1849 
   1850 	/* Configure CMB DMA write threshold. */
   1851 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1852 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1853 	    CMB_WR_THRESH_RRD_MASK) |
   1854 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1855 	    CMB_WR_THRESH_TPD_MASK));
   1856 
   1857 	/* Set CMB/SMB timer and enable them. */
   1858 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1859 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1860 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1861 
   1862 	/* Request SMB updates for every seconds. */
   1863 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1864 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1865 
   1866 	/*
   1867 	 * Disable all WOL bits as WOL can interfere normal Rx
   1868 	 * operation.
   1869 	 */
   1870 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1871 
   1872         /*
   1873 	 * Configure Tx/Rx MACs.
   1874 	 *  - Auto-padding for short frames.
   1875 	 *  - Enable CRC generation.
   1876 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1877 	 *  of MAC is followed after link establishment.
   1878 	 */
   1879 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1880 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1881 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1882 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1883 	    MAC_CFG_PREAMBLE_MASK));
   1884 
   1885 	/* Set up the receive filter. */
   1886 	age_rxfilter(sc);
   1887 	age_rxvlan(sc);
   1888 
   1889 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1890 	reg |= MAC_CFG_RXCSUM_ENB;
   1891 
   1892 	/* Ack all pending interrupts and clear it. */
   1893 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1894 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1895 
   1896 	/* Finally enable Tx/Rx MAC. */
   1897 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1898 
   1899 	sc->age_flags &= ~AGE_FLAG_LINK;
   1900 
   1901 	/* Switch to the current media. */
   1902 	mii = &sc->sc_miibus;
   1903 	mii_mediachg(mii);
   1904 
   1905 	callout_schedule(&sc->sc_tick_ch, hz);
   1906 
   1907 	ifp->if_flags |= IFF_RUNNING;
   1908 	ifp->if_flags &= ~IFF_OACTIVE;
   1909 
   1910 	return 0;
   1911 }
   1912 
   1913 static void
   1914 age_stop(struct ifnet *ifp, int disable)
   1915 {
   1916 	struct age_softc *sc = ifp->if_softc;
   1917 	struct age_txdesc *txd;
   1918 	struct age_rxdesc *rxd;
   1919 	uint32_t reg;
   1920 	int i;
   1921 
   1922 	callout_stop(&sc->sc_tick_ch);
   1923 
   1924 	/*
   1925 	 * Mark the interface down and cancel the watchdog timer.
   1926 	 */
   1927 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1928 	ifp->if_timer = 0;
   1929 
   1930 	sc->age_flags &= ~AGE_FLAG_LINK;
   1931 
   1932 	mii_down(&sc->sc_miibus);
   1933 
   1934 	/*
   1935 	 * Disable interrupts.
   1936 	 */
   1937 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1938 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1939 
   1940 	/* Stop CMB/SMB updates. */
   1941 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1942 
   1943 	/* Stop Rx/Tx MAC. */
   1944 	age_stop_rxmac(sc);
   1945 	age_stop_txmac(sc);
   1946 
   1947 	/* Stop DMA. */
   1948 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1949 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1950 
   1951 	/* Stop TxQ/RxQ. */
   1952 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1953 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1954 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1955 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1956 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1957 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1958 			break;
   1959 		DELAY(10);
   1960 	}
   1961 	if (i == 0)
   1962 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1963 		    device_xname(sc->sc_dev), reg);
   1964 
   1965 	/* Reclaim Rx buffers that have been processed. */
   1966 	if (sc->age_cdata.age_rxhead != NULL)
   1967 		m_freem(sc->age_cdata.age_rxhead);
   1968 	AGE_RXCHAIN_RESET(sc);
   1969 
   1970 	/*
   1971 	 * Free RX and TX mbufs still in the queues.
   1972 	 */
   1973 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1974 		rxd = &sc->age_cdata.age_rxdesc[i];
   1975 		if (rxd->rx_m != NULL) {
   1976 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1977 			m_freem(rxd->rx_m);
   1978 			rxd->rx_m = NULL;
   1979 		}
   1980 	}
   1981 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1982 		txd = &sc->age_cdata.age_txdesc[i];
   1983 		if (txd->tx_m != NULL) {
   1984 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1985 			m_freem(txd->tx_m);
   1986 			txd->tx_m = NULL;
   1987 		}
   1988 	}
   1989 }
   1990 
   1991 static void
   1992 age_stats_update(struct age_softc *sc)
   1993 {
   1994 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1995 	struct age_stats *stat;
   1996 	struct smb *smb;
   1997 
   1998 	stat = &sc->age_stat;
   1999 
   2000 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2001 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2002 
   2003 	smb = sc->age_rdata.age_smb_block;
   2004 	if (smb->updated == 0)
   2005 		return;
   2006 
   2007 	/* Rx stats. */
   2008 	stat->rx_frames += smb->rx_frames;
   2009 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   2010 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   2011 	stat->rx_pause_frames += smb->rx_pause_frames;
   2012 	stat->rx_control_frames += smb->rx_control_frames;
   2013 	stat->rx_crcerrs += smb->rx_crcerrs;
   2014 	stat->rx_lenerrs += smb->rx_lenerrs;
   2015 	stat->rx_bytes += smb->rx_bytes;
   2016 	stat->rx_runts += smb->rx_runts;
   2017 	stat->rx_fragments += smb->rx_fragments;
   2018 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2019 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2020 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2021 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2022 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2023 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2024 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2025 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2026 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2027 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2028 	stat->rx_alignerrs += smb->rx_alignerrs;
   2029 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2030 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2031 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2032 
   2033 	/* Tx stats. */
   2034 	stat->tx_frames += smb->tx_frames;
   2035 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2036 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2037 	stat->tx_pause_frames += smb->tx_pause_frames;
   2038 	stat->tx_excess_defer += smb->tx_excess_defer;
   2039 	stat->tx_control_frames += smb->tx_control_frames;
   2040 	stat->tx_deferred += smb->tx_deferred;
   2041 	stat->tx_bytes += smb->tx_bytes;
   2042 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2043 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2044 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2045 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2046 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2047 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2048 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2049 	stat->tx_single_colls += smb->tx_single_colls;
   2050 	stat->tx_multi_colls += smb->tx_multi_colls;
   2051 	stat->tx_late_colls += smb->tx_late_colls;
   2052 	stat->tx_excess_colls += smb->tx_excess_colls;
   2053 	stat->tx_underrun += smb->tx_underrun;
   2054 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2055 	stat->tx_lenerrs += smb->tx_lenerrs;
   2056 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2057 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2058 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2059 
   2060 	/* Update counters in ifnet. */
   2061 	ifp->if_opackets += smb->tx_frames;
   2062 
   2063 	ifp->if_collisions += smb->tx_single_colls +
   2064 	    smb->tx_multi_colls + smb->tx_late_colls +
   2065 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2066 
   2067 	ifp->if_oerrors += smb->tx_excess_colls +
   2068 	    smb->tx_late_colls + smb->tx_underrun +
   2069 	    smb->tx_pkts_truncated;
   2070 
   2071 	ifp->if_ipackets += smb->rx_frames;
   2072 
   2073 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2074 	    smb->rx_runts + smb->rx_pkts_truncated +
   2075 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2076 	    smb->rx_alignerrs;
   2077 
   2078 	/* Update done, clear. */
   2079 	smb->updated = 0;
   2080 
   2081 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2082 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2083 }
   2084 
   2085 static void
   2086 age_stop_txmac(struct age_softc *sc)
   2087 {
   2088 	uint32_t reg;
   2089 	int i;
   2090 
   2091 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2092 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2093 		reg &= ~MAC_CFG_TX_ENB;
   2094 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2095 	}
   2096 	/* Stop Tx DMA engine. */
   2097 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2098 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2099 		reg &= ~DMA_CFG_RD_ENB;
   2100 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2101 	}
   2102 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2103 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2104 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2105 			break;
   2106 		DELAY(10);
   2107 	}
   2108 	if (i == 0)
   2109 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2110 }
   2111 
   2112 static void
   2113 age_stop_rxmac(struct age_softc *sc)
   2114 {
   2115 	uint32_t reg;
   2116 	int i;
   2117 
   2118 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2119 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2120 		reg &= ~MAC_CFG_RX_ENB;
   2121 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2122 	}
   2123 	/* Stop Rx DMA engine. */
   2124 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2125 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2126 		reg &= ~DMA_CFG_WR_ENB;
   2127 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2128 	}
   2129 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2130 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2131 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2132 			break;
   2133 		DELAY(10);
   2134 	}
   2135 	if (i == 0)
   2136 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2137 }
   2138 
   2139 static void
   2140 age_init_tx_ring(struct age_softc *sc)
   2141 {
   2142 	struct age_ring_data *rd;
   2143 	struct age_txdesc *txd;
   2144 	int i;
   2145 
   2146 	sc->age_cdata.age_tx_prod = 0;
   2147 	sc->age_cdata.age_tx_cons = 0;
   2148 	sc->age_cdata.age_tx_cnt = 0;
   2149 
   2150 	rd = &sc->age_rdata;
   2151 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2152 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2153 		txd = &sc->age_cdata.age_txdesc[i];
   2154 		txd->tx_desc = &rd->age_tx_ring[i];
   2155 		txd->tx_m = NULL;
   2156 	}
   2157 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2158 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2159 }
   2160 
   2161 static int
   2162 age_init_rx_ring(struct age_softc *sc)
   2163 {
   2164 	struct age_ring_data *rd;
   2165 	struct age_rxdesc *rxd;
   2166 	int i;
   2167 
   2168 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2169 	rd = &sc->age_rdata;
   2170 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2171 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2172 		rxd = &sc->age_cdata.age_rxdesc[i];
   2173 		rxd->rx_m = NULL;
   2174 		rxd->rx_desc = &rd->age_rx_ring[i];
   2175 		if (age_newbuf(sc, rxd, 1) != 0)
   2176 			return ENOBUFS;
   2177 	}
   2178 
   2179 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2180 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2181 
   2182 	return 0;
   2183 }
   2184 
   2185 static void
   2186 age_init_rr_ring(struct age_softc *sc)
   2187 {
   2188 	struct age_ring_data *rd;
   2189 
   2190 	sc->age_cdata.age_rr_cons = 0;
   2191 	AGE_RXCHAIN_RESET(sc);
   2192 
   2193 	rd = &sc->age_rdata;
   2194 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2195 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2196 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2197 }
   2198 
   2199 static void
   2200 age_init_cmb_block(struct age_softc *sc)
   2201 {
   2202 	struct age_ring_data *rd;
   2203 
   2204 	rd = &sc->age_rdata;
   2205 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2206 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2207 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2208 }
   2209 
   2210 static void
   2211 age_init_smb_block(struct age_softc *sc)
   2212 {
   2213 	struct age_ring_data *rd;
   2214 
   2215 	rd = &sc->age_rdata;
   2216 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2217 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2218 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2219 }
   2220 
   2221 static int
   2222 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2223 {
   2224 	struct rx_desc *desc;
   2225 	struct mbuf *m;
   2226 	bus_dmamap_t map;
   2227 	int error;
   2228 
   2229 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2230 	if (m == NULL)
   2231 		return ENOBUFS;
   2232 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2233 	if (!(m->m_flags & M_EXT)) {
   2234 		 m_freem(m);
   2235 		 return ENOBUFS;
   2236 	}
   2237 
   2238 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2239 	m_adj(m, ETHER_ALIGN);
   2240 
   2241 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2242 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2243 
   2244 	if (error != 0) {
   2245 		if (!error) {
   2246 			bus_dmamap_unload(sc->sc_dmat,
   2247 			    sc->age_cdata.age_rx_sparemap);
   2248 			error = EFBIG;
   2249 			printf("%s: too many segments?!\n",
   2250 			    device_xname(sc->sc_dev));
   2251 		}
   2252 		m_freem(m);
   2253 
   2254 		if (init)
   2255 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2256 		return error;
   2257 	}
   2258 
   2259 	if (rxd->rx_m != NULL) {
   2260 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2261 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2262 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2263 	}
   2264 	map = rxd->rx_dmamap;
   2265 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2266 	sc->age_cdata.age_rx_sparemap = map;
   2267 	rxd->rx_m = m;
   2268 
   2269 	desc = rxd->rx_desc;
   2270 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2271 	desc->len =
   2272 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2273 	    AGE_RD_LEN_SHIFT);
   2274 
   2275 	return 0;
   2276 }
   2277 
   2278 static void
   2279 age_rxvlan(struct age_softc *sc)
   2280 {
   2281 	uint32_t reg;
   2282 
   2283 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2284 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2285 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2286 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2287 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2288 }
   2289 
   2290 static void
   2291 age_rxfilter(struct age_softc *sc)
   2292 {
   2293 	struct ethercom *ec = &sc->sc_ec;
   2294 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2295 	struct ether_multi *enm;
   2296 	struct ether_multistep step;
   2297 	uint32_t crc;
   2298 	uint32_t mchash[2];
   2299 	uint32_t rxcfg;
   2300 
   2301 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2302 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2303 	ifp->if_flags &= ~IFF_ALLMULTI;
   2304 
   2305 	/*
   2306 	 * Always accept broadcast frames.
   2307 	 */
   2308 	rxcfg |= MAC_CFG_BCAST;
   2309 
   2310 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2311 		ifp->if_flags |= IFF_ALLMULTI;
   2312 		if (ifp->if_flags & IFF_PROMISC)
   2313 			rxcfg |= MAC_CFG_PROMISC;
   2314 		else
   2315 			rxcfg |= MAC_CFG_ALLMULTI;
   2316 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2317 	} else {
   2318 		/* Program new filter. */
   2319 		memset(mchash, 0, sizeof(mchash));
   2320 
   2321 		ETHER_FIRST_MULTI(step, ec, enm);
   2322 		while (enm != NULL) {
   2323 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2324 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2325 			ETHER_NEXT_MULTI(step, enm);
   2326 		}
   2327 	}
   2328 
   2329 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2330 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2331 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2332 }
   2333