if_age.c revision 1.28 1 /* $NetBSD: if_age.c,v 1.28 2009/04/28 11:47:56 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28 2009/04/28 11:47:56 cegger Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct ifnet *, int);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 struct pci_attach_args *pa = aux;
139
140 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 struct age_softc *sc = device_private(self);
148 struct pci_attach_args *pa = aux;
149 pci_intr_handle_t ih;
150 const char *intrstr;
151 struct ifnet *ifp = &sc->sc_ec.ec_if;
152 pcireg_t memtype;
153 int error = 0;
154
155 aprint_naive("\n");
156 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157
158 sc->sc_dev = self;
159 sc->sc_dmat = pa->pa_dmat;
160 sc->sc_pct = pa->pa_pc;
161 sc->sc_pcitag = pa->pa_tag;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 goto fail;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih);
192 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc);
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 goto fail;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, 0);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (!pmf_device_register(self, NULL, age_resume))
292 aprint_error_dev(self, "couldn't establish power handler\n");
293 else
294 pmf_class_network_register(self, ifp);
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 pmf_device_deregister(self);
318 s = splnet();
319 age_stop(ifp, 0);
320 splx(s);
321
322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323
324 /* Delete all remaining media. */
325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 if (sc->sc_irq_handle != NULL) {
332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 sc->sc_irq_handle = NULL;
334 }
335 if (sc->sc_mem_size) {
336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 sc->sc_mem_size = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Read a PHY register on the MII of the L1.
344 */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 struct age_softc *sc = device_private(dev);
349 uint32_t v;
350 int i;
351
352 if (phy != sc->age_phyaddr)
353 return 0;
354
355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 DELAY(1);
359 v = CSR_READ_4(sc, AGE_MDIO);
360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 break;
362 }
363
364 if (i == 0) {
365 printf("%s: phy read timeout: phy %d, reg %d\n",
366 device_xname(sc->sc_dev), phy, reg);
367 return 0;
368 }
369
370 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372
373 /*
374 * Write a PHY register on the MII of the L1.
375 */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 struct age_softc *sc = device_private(dev);
380 uint32_t v;
381 int i;
382
383 if (phy != sc->age_phyaddr)
384 return;
385
386 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389
390 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 DELAY(1);
392 v = CSR_READ_4(sc, AGE_MDIO);
393 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 break;
395 }
396
397 if (i == 0) {
398 printf("%s: phy write timeout: phy %d, reg %d\n",
399 device_xname(sc->sc_dev), phy, reg);
400 }
401 }
402
403 /*
404 * Callback from MII layer when media changes.
405 */
406 static void
407 age_miibus_statchg(device_t dev)
408 {
409 struct age_softc *sc = device_private(dev);
410 struct ifnet *ifp = &sc->sc_ec.ec_if;
411 struct mii_data *mii;
412
413 if ((ifp->if_flags & IFF_RUNNING) == 0)
414 return;
415
416 mii = &sc->sc_miibus;
417
418 sc->age_flags &= ~AGE_FLAG_LINK;
419 if ((mii->mii_media_status & IFM_AVALID) != 0) {
420 switch (IFM_SUBTYPE(mii->mii_media_active)) {
421 case IFM_10_T:
422 case IFM_100_TX:
423 case IFM_1000_T:
424 sc->age_flags |= AGE_FLAG_LINK;
425 break;
426 default:
427 break;
428 }
429 }
430
431 /* Stop Rx/Tx MACs. */
432 age_stop_rxmac(sc);
433 age_stop_txmac(sc);
434
435 /* Program MACs with resolved speed/duplex/flow-control. */
436 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
437 uint32_t reg;
438
439 age_mac_config(sc);
440 reg = CSR_READ_4(sc, AGE_MAC_CFG);
441 /* Restart DMA engine and Tx/Rx MAC. */
442 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
443 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
444 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
445 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
446 }
447 }
448
449 /*
450 * Get the current interface media status.
451 */
452 static void
453 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
454 {
455 struct age_softc *sc = ifp->if_softc;
456 struct mii_data *mii = &sc->sc_miibus;
457
458 mii_pollstat(mii);
459 ifmr->ifm_status = mii->mii_media_status;
460 ifmr->ifm_active = mii->mii_media_active;
461 }
462
463 /*
464 * Set hardware to newly-selected media.
465 */
466 static int
467 age_mediachange(struct ifnet *ifp)
468 {
469 struct age_softc *sc = ifp->if_softc;
470 struct mii_data *mii = &sc->sc_miibus;
471 int error;
472
473 if (mii->mii_instance != 0) {
474 struct mii_softc *miisc;
475
476 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
477 mii_phy_reset(miisc);
478 }
479 error = mii_mediachg(mii);
480
481 return error;
482 }
483
484 static int
485 age_intr(void *arg)
486 {
487 struct age_softc *sc = arg;
488 struct ifnet *ifp = &sc->sc_ec.ec_if;
489 struct cmb *cmb;
490 uint32_t status;
491
492 status = CSR_READ_4(sc, AGE_INTR_STATUS);
493 if (status == 0 || (status & AGE_INTRS) == 0)
494 return 0;
495
496 cmb = sc->age_rdata.age_cmb_block;
497 if (cmb == NULL) {
498 /* Happens when bringing up the interface
499 * w/o having a carrier. Ack. the interrupt.
500 */
501 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
502 return 0;
503 }
504
505 /* Disable interrupts. */
506 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
507
508 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
509 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
510 status = le32toh(cmb->intr_status);
511 if ((status & AGE_INTRS) == 0)
512 goto back;
513
514 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
515 TPD_CONS_SHIFT;
516 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
517 RRD_PROD_SHIFT;
518
519 /* Let hardware know CMB was served. */
520 cmb->intr_status = 0;
521 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
522 sc->age_cdata.age_cmb_block_map->dm_mapsize,
523 BUS_DMASYNC_PREWRITE);
524
525 if (ifp->if_flags & IFF_RUNNING) {
526 if (status & INTR_CMB_RX)
527 age_rxintr(sc, sc->age_rr_prod);
528
529 if (status & INTR_CMB_TX)
530 age_txintr(sc, sc->age_tpd_cons);
531
532 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
533 if (status & INTR_DMA_RD_TO_RST)
534 printf("%s: DMA read error! -- resetting\n",
535 device_xname(sc->sc_dev));
536 if (status & INTR_DMA_WR_TO_RST)
537 printf("%s: DMA write error! -- resetting\n",
538 device_xname(sc->sc_dev));
539 age_init(ifp);
540 }
541
542 if (!IFQ_IS_EMPTY(&ifp->if_snd))
543 age_start(ifp);
544
545 if (status & INTR_SMB)
546 age_stats_update(sc);
547 }
548
549 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
550 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
551 sc->age_cdata.age_cmb_block_map->dm_mapsize,
552 BUS_DMASYNC_POSTREAD);
553
554 back:
555 /* Re-enable interrupts. */
556 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
557
558 return 1;
559 }
560
561 static int
562 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
563 uint32_t *word)
564 {
565 int i;
566 pcireg_t rv;
567
568 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
569 offset << PCI_VPD_ADDRESS_SHIFT);
570 for (i = AGE_TIMEOUT; i > 0; i--) {
571 DELAY(10);
572 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
573 PCI_VPD_ADDRESS(vpdc));
574 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
575 break;
576 }
577 if (i == 0) {
578 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
579 *word = 0;
580 return ETIMEDOUT;
581 }
582
583 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
584 return 0;
585 }
586
587 static void
588 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
589 {
590 uint32_t ea[2], off, reg, word;
591 int vpd_error, match, vpdc;
592
593 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
594 if ((reg & SPI_VPD_ENB) != 0) {
595 /* Get VPD stored in TWSI EEPROM. */
596 reg &= ~SPI_VPD_ENB;
597 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
598 }
599
600 vpd_error = 0;
601 ea[0] = ea[1] = 0;
602 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
603 PCI_CAP_VPD, &vpdc, NULL))) {
604 /*
605 * PCI VPD capability exists, but it seems that it's
606 * not in the standard form as stated in PCI VPD
607 * specification such that driver could not use
608 * pci_get_vpd_readonly(9) with keyword 'NA'.
609 * Search VPD data starting at address 0x0100. The data
610 * should be used as initializers to set AGE_PAR0,
611 * AGE_PAR1 register including other PCI configuration
612 * registers.
613 */
614 word = 0;
615 match = 0;
616 reg = 0;
617 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
618 off += sizeof(uint32_t)) {
619 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
620 if (vpd_error != 0)
621 break;
622 if (match != 0) {
623 switch (reg) {
624 case AGE_PAR0:
625 ea[0] = word;
626 break;
627 case AGE_PAR1:
628 ea[1] = word;
629 break;
630 default:
631 break;
632 }
633 match = 0;
634 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
635 match = 1;
636 reg = word >> 16;
637 } else
638 break;
639 }
640 if (off >= AGE_VPD_REG_CONF_END)
641 vpd_error = ENOENT;
642 if (vpd_error == 0) {
643 /*
644 * Don't blindly trust ethernet address obtained
645 * from VPD. Check whether ethernet address is
646 * valid one. Otherwise fall-back to reading
647 * PAR register.
648 */
649 ea[1] &= 0xFFFF;
650 if ((ea[0] == 0 && ea[1] == 0) ||
651 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
652 if (agedebug)
653 printf("%s: invalid ethernet address "
654 "returned from VPD.\n",
655 device_xname(sc->sc_dev));
656 vpd_error = EINVAL;
657 }
658 }
659 if (vpd_error != 0 && (agedebug))
660 printf("%s: VPD access failure!\n",
661 device_xname(sc->sc_dev));
662 } else {
663 if (agedebug)
664 printf("%s: PCI VPD capability not found!\n",
665 device_xname(sc->sc_dev));
666 }
667
668 /*
669 * It seems that L1 also provides a way to extract ethernet
670 * address via SPI flash interface. Because SPI flash memory
671 * device of different vendors vary in their instruction
672 * codes for read ID instruction, it's very hard to get
673 * instructions codes without detailed information for the
674 * flash memory device used on ethernet controller. To simplify
675 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
676 * address which is supposed to be set by hardware during
677 * power on reset.
678 */
679 if (vpd_error != 0) {
680 /*
681 * VPD is mapped to SPI flash memory or BIOS set it.
682 */
683 ea[0] = CSR_READ_4(sc, AGE_PAR0);
684 ea[1] = CSR_READ_4(sc, AGE_PAR1);
685 }
686
687 ea[1] &= 0xFFFF;
688 eaddr[0] = (ea[1] >> 8) & 0xFF;
689 eaddr[1] = (ea[1] >> 0) & 0xFF;
690 eaddr[2] = (ea[0] >> 24) & 0xFF;
691 eaddr[3] = (ea[0] >> 16) & 0xFF;
692 eaddr[4] = (ea[0] >> 8) & 0xFF;
693 eaddr[5] = (ea[0] >> 0) & 0xFF;
694 }
695
696 static void
697 age_phy_reset(struct age_softc *sc)
698 {
699 /* Reset PHY. */
700 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
701 DELAY(1000);
702 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
703 DELAY(1000);
704 }
705
706 static int
707 age_dma_alloc(struct age_softc *sc)
708 {
709 struct age_txdesc *txd;
710 struct age_rxdesc *rxd;
711 int nsegs, error, i;
712
713 /*
714 * Create DMA stuffs for TX ring
715 */
716 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
717 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
718 if (error) {
719 sc->age_cdata.age_tx_ring_map = NULL;
720 return ENOBUFS;
721 }
722
723 /* Allocate DMA'able memory for TX ring */
724 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
725 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
726 &nsegs, BUS_DMA_WAITOK);
727 if (error) {
728 printf("%s: could not allocate DMA'able memory for Tx ring, "
729 "error = %i\n", device_xname(sc->sc_dev), error);
730 return error;
731 }
732
733 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
734 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
735 BUS_DMA_NOWAIT);
736 if (error)
737 return ENOBUFS;
738
739 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
740
741 /* Load the DMA map for Tx ring. */
742 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
743 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
744 if (error) {
745 printf("%s: could not load DMA'able memory for Tx ring, "
746 "error = %i\n", device_xname(sc->sc_dev), error);
747 bus_dmamem_free(sc->sc_dmat,
748 &sc->age_rdata.age_tx_ring_seg, 1);
749 return error;
750 }
751
752 sc->age_rdata.age_tx_ring_paddr =
753 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
754
755 /*
756 * Create DMA stuffs for RX ring
757 */
758 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
759 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
760 if (error) {
761 sc->age_cdata.age_rx_ring_map = NULL;
762 return ENOBUFS;
763 }
764
765 /* Allocate DMA'able memory for RX ring */
766 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
767 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
768 &nsegs, BUS_DMA_WAITOK);
769 if (error) {
770 printf("%s: could not allocate DMA'able memory for Rx ring, "
771 "error = %i.\n", device_xname(sc->sc_dev), error);
772 return error;
773 }
774
775 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
776 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
777 BUS_DMA_NOWAIT);
778 if (error)
779 return ENOBUFS;
780
781 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
782
783 /* Load the DMA map for Rx ring. */
784 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
785 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
786 if (error) {
787 printf("%s: could not load DMA'able memory for Rx ring, "
788 "error = %i.\n", device_xname(sc->sc_dev), error);
789 bus_dmamem_free(sc->sc_dmat,
790 &sc->age_rdata.age_rx_ring_seg, 1);
791 return error;
792 }
793
794 sc->age_rdata.age_rx_ring_paddr =
795 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
796
797 /*
798 * Create DMA stuffs for RX return ring
799 */
800 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
801 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
802 if (error) {
803 sc->age_cdata.age_rr_ring_map = NULL;
804 return ENOBUFS;
805 }
806
807 /* Allocate DMA'able memory for RX return ring */
808 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
809 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
810 &nsegs, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not allocate DMA'able memory for Rx "
813 "return ring, error = %i.\n",
814 device_xname(sc->sc_dev), error);
815 return error;
816 }
817
818 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
819 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
820 BUS_DMA_NOWAIT);
821 if (error)
822 return ENOBUFS;
823
824 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
825
826 /* Load the DMA map for Rx return ring. */
827 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
828 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
829 if (error) {
830 printf("%s: could not load DMA'able memory for Rx return ring, "
831 "error = %i\n", device_xname(sc->sc_dev), error);
832 bus_dmamem_free(sc->sc_dmat,
833 &sc->age_rdata.age_rr_ring_seg, 1);
834 return error;
835 }
836
837 sc->age_rdata.age_rr_ring_paddr =
838 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
839
840 /*
841 * Create DMA stuffs for CMB block
842 */
843 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
844 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
845 &sc->age_cdata.age_cmb_block_map);
846 if (error) {
847 sc->age_cdata.age_cmb_block_map = NULL;
848 return ENOBUFS;
849 }
850
851 /* Allocate DMA'able memory for CMB block */
852 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
853 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
854 &nsegs, BUS_DMA_WAITOK);
855 if (error) {
856 printf("%s: could not allocate DMA'able memory for "
857 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
858 return error;
859 }
860
861 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
862 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
863 BUS_DMA_NOWAIT);
864 if (error)
865 return ENOBUFS;
866
867 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
868
869 /* Load the DMA map for CMB block. */
870 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
871 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
872 BUS_DMA_WAITOK);
873 if (error) {
874 printf("%s: could not load DMA'able memory for CMB block, "
875 "error = %i\n", device_xname(sc->sc_dev), error);
876 bus_dmamem_free(sc->sc_dmat,
877 &sc->age_rdata.age_cmb_block_seg, 1);
878 return error;
879 }
880
881 sc->age_rdata.age_cmb_block_paddr =
882 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
883
884 /*
885 * Create DMA stuffs for SMB block
886 */
887 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
888 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
889 &sc->age_cdata.age_smb_block_map);
890 if (error) {
891 sc->age_cdata.age_smb_block_map = NULL;
892 return ENOBUFS;
893 }
894
895 /* Allocate DMA'able memory for SMB block */
896 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
897 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
898 &nsegs, BUS_DMA_WAITOK);
899 if (error) {
900 printf("%s: could not allocate DMA'able memory for "
901 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
902 return error;
903 }
904
905 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
906 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
907 BUS_DMA_NOWAIT);
908 if (error)
909 return ENOBUFS;
910
911 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
912
913 /* Load the DMA map for SMB block */
914 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
915 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
916 BUS_DMA_WAITOK);
917 if (error) {
918 printf("%s: could not load DMA'able memory for SMB block, "
919 "error = %i\n", device_xname(sc->sc_dev), error);
920 bus_dmamem_free(sc->sc_dmat,
921 &sc->age_rdata.age_smb_block_seg, 1);
922 return error;
923 }
924
925 sc->age_rdata.age_smb_block_paddr =
926 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
927
928 /* Create DMA maps for Tx buffers. */
929 for (i = 0; i < AGE_TX_RING_CNT; i++) {
930 txd = &sc->age_cdata.age_txdesc[i];
931 txd->tx_m = NULL;
932 txd->tx_dmamap = NULL;
933 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
934 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
935 &txd->tx_dmamap);
936 if (error) {
937 txd->tx_dmamap = NULL;
938 printf("%s: could not create Tx dmamap, error = %i.\n",
939 device_xname(sc->sc_dev), error);
940 return error;
941 }
942 }
943
944 /* Create DMA maps for Rx buffers. */
945 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
946 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
947 if (error) {
948 sc->age_cdata.age_rx_sparemap = NULL;
949 printf("%s: could not create spare Rx dmamap, error = %i.\n",
950 device_xname(sc->sc_dev), error);
951 return error;
952 }
953 for (i = 0; i < AGE_RX_RING_CNT; i++) {
954 rxd = &sc->age_cdata.age_rxdesc[i];
955 rxd->rx_m = NULL;
956 rxd->rx_dmamap = NULL;
957 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
958 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
959 if (error) {
960 rxd->rx_dmamap = NULL;
961 printf("%s: could not create Rx dmamap, error = %i.\n",
962 device_xname(sc->sc_dev), error);
963 return error;
964 }
965 }
966
967 return 0;
968 }
969
970 static void
971 age_dma_free(struct age_softc *sc)
972 {
973 struct age_txdesc *txd;
974 struct age_rxdesc *rxd;
975 int i;
976
977 /* Tx buffers */
978 for (i = 0; i < AGE_TX_RING_CNT; i++) {
979 txd = &sc->age_cdata.age_txdesc[i];
980 if (txd->tx_dmamap != NULL) {
981 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
982 txd->tx_dmamap = NULL;
983 }
984 }
985 /* Rx buffers */
986 for (i = 0; i < AGE_RX_RING_CNT; i++) {
987 rxd = &sc->age_cdata.age_rxdesc[i];
988 if (rxd->rx_dmamap != NULL) {
989 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
990 rxd->rx_dmamap = NULL;
991 }
992 }
993 if (sc->age_cdata.age_rx_sparemap != NULL) {
994 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
995 sc->age_cdata.age_rx_sparemap = NULL;
996 }
997
998 /* Tx ring. */
999 if (sc->age_cdata.age_tx_ring_map != NULL)
1000 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
1001 if (sc->age_cdata.age_tx_ring_map != NULL &&
1002 sc->age_rdata.age_tx_ring != NULL)
1003 bus_dmamem_free(sc->sc_dmat,
1004 &sc->age_rdata.age_tx_ring_seg, 1);
1005 sc->age_rdata.age_tx_ring = NULL;
1006 sc->age_cdata.age_tx_ring_map = NULL;
1007
1008 /* Rx ring. */
1009 if (sc->age_cdata.age_rx_ring_map != NULL)
1010 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1011 if (sc->age_cdata.age_rx_ring_map != NULL &&
1012 sc->age_rdata.age_rx_ring != NULL)
1013 bus_dmamem_free(sc->sc_dmat,
1014 &sc->age_rdata.age_rx_ring_seg, 1);
1015 sc->age_rdata.age_rx_ring = NULL;
1016 sc->age_cdata.age_rx_ring_map = NULL;
1017
1018 /* Rx return ring. */
1019 if (sc->age_cdata.age_rr_ring_map != NULL)
1020 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1021 if (sc->age_cdata.age_rr_ring_map != NULL &&
1022 sc->age_rdata.age_rr_ring != NULL)
1023 bus_dmamem_free(sc->sc_dmat,
1024 &sc->age_rdata.age_rr_ring_seg, 1);
1025 sc->age_rdata.age_rr_ring = NULL;
1026 sc->age_cdata.age_rr_ring_map = NULL;
1027
1028 /* CMB block */
1029 if (sc->age_cdata.age_cmb_block_map != NULL)
1030 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1031 if (sc->age_cdata.age_cmb_block_map != NULL &&
1032 sc->age_rdata.age_cmb_block != NULL)
1033 bus_dmamem_free(sc->sc_dmat,
1034 &sc->age_rdata.age_cmb_block_seg, 1);
1035 sc->age_rdata.age_cmb_block = NULL;
1036 sc->age_cdata.age_cmb_block_map = NULL;
1037
1038 /* SMB block */
1039 if (sc->age_cdata.age_smb_block_map != NULL)
1040 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1041 if (sc->age_cdata.age_smb_block_map != NULL &&
1042 sc->age_rdata.age_smb_block != NULL)
1043 bus_dmamem_free(sc->sc_dmat,
1044 &sc->age_rdata.age_smb_block_seg, 1);
1045 sc->age_rdata.age_smb_block = NULL;
1046 sc->age_cdata.age_smb_block_map = NULL;
1047 }
1048
1049 static void
1050 age_start(struct ifnet *ifp)
1051 {
1052 struct age_softc *sc = ifp->if_softc;
1053 struct mbuf *m_head;
1054 int enq;
1055
1056 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1057 return;
1058
1059 enq = 0;
1060 for (;;) {
1061 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 if (m_head == NULL)
1063 break;
1064
1065 /*
1066 * Pack the data into the transmit ring. If we
1067 * don't have room, set the OACTIVE flag and wait
1068 * for the NIC to drain the ring.
1069 */
1070 if (age_encap(sc, &m_head)) {
1071 if (m_head == NULL)
1072 break;
1073 ifp->if_flags |= IFF_OACTIVE;
1074 break;
1075 }
1076 enq = 1;
1077
1078 #if NBPFILTER > 0
1079 /*
1080 * If there's a BPF listener, bounce a copy of this frame
1081 * to him.
1082 */
1083 if (ifp->if_bpf != NULL)
1084 bpf_mtap(ifp->if_bpf, m_head);
1085 #endif
1086 }
1087
1088 if (enq) {
1089 /* Update mbox. */
1090 AGE_COMMIT_MBOX(sc);
1091 /* Set a timeout in case the chip goes out to lunch. */
1092 ifp->if_timer = AGE_TX_TIMEOUT;
1093 }
1094 }
1095
1096 static void
1097 age_watchdog(struct ifnet *ifp)
1098 {
1099 struct age_softc *sc = ifp->if_softc;
1100
1101 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1102 printf("%s: watchdog timeout (missed link)\n",
1103 device_xname(sc->sc_dev));
1104 ifp->if_oerrors++;
1105 age_init(ifp);
1106 return;
1107 }
1108
1109 if (sc->age_cdata.age_tx_cnt == 0) {
1110 printf("%s: watchdog timeout (missed Tx interrupts) "
1111 "-- recovering\n", device_xname(sc->sc_dev));
1112 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1113 age_start(ifp);
1114 return;
1115 }
1116
1117 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1118 ifp->if_oerrors++;
1119 age_init(ifp);
1120
1121 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1122 age_start(ifp);
1123 }
1124
1125 static int
1126 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1127 {
1128 struct age_softc *sc = ifp->if_softc;
1129 int s, error;
1130
1131 s = splnet();
1132
1133 error = ether_ioctl(ifp, cmd, data);
1134 if (error == ENETRESET) {
1135 if (ifp->if_flags & IFF_RUNNING)
1136 age_rxfilter(sc);
1137 error = 0;
1138 }
1139
1140 splx(s);
1141 return error;
1142 }
1143
1144 static void
1145 age_mac_config(struct age_softc *sc)
1146 {
1147 struct mii_data *mii;
1148 uint32_t reg;
1149
1150 mii = &sc->sc_miibus;
1151
1152 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1153 reg &= ~MAC_CFG_FULL_DUPLEX;
1154 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1155 reg &= ~MAC_CFG_SPEED_MASK;
1156
1157 /* Reprogram MAC with resolved speed/duplex. */
1158 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1159 case IFM_10_T:
1160 case IFM_100_TX:
1161 reg |= MAC_CFG_SPEED_10_100;
1162 break;
1163 case IFM_1000_T:
1164 reg |= MAC_CFG_SPEED_1000;
1165 break;
1166 }
1167 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1168 reg |= MAC_CFG_FULL_DUPLEX;
1169 #ifdef notyet
1170 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1171 reg |= MAC_CFG_TX_FC;
1172 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1173 reg |= MAC_CFG_RX_FC;
1174 #endif
1175 }
1176
1177 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1178 }
1179
1180 static bool
1181 age_resume(device_t dv PMF_FN_ARGS)
1182 {
1183 struct age_softc *sc = device_private(dv);
1184 uint16_t cmd;
1185
1186 /*
1187 * Clear INTx emulation disable for hardware that
1188 * is set in resume event. From Linux.
1189 */
1190 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1191 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1192 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1193 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1194 PCI_COMMAND_STATUS_REG, cmd);
1195 }
1196
1197 return true;
1198 }
1199
1200 static int
1201 age_encap(struct age_softc *sc, struct mbuf **m_head)
1202 {
1203 struct age_txdesc *txd, *txd_last;
1204 struct tx_desc *desc;
1205 struct mbuf *m;
1206 bus_dmamap_t map;
1207 uint32_t cflags, poff, vtag;
1208 int error, i, nsegs, prod;
1209 #if NVLAN > 0
1210 struct m_tag *mtag;
1211 #endif
1212
1213 m = *m_head;
1214 cflags = vtag = 0;
1215 poff = 0;
1216
1217 prod = sc->age_cdata.age_tx_prod;
1218 txd = &sc->age_cdata.age_txdesc[prod];
1219 txd_last = txd;
1220 map = txd->tx_dmamap;
1221
1222 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1223
1224 if (error == EFBIG) {
1225 error = 0;
1226
1227 MGETHDR(m, M_DONTWAIT, MT_DATA);
1228 if (m == NULL) {
1229 printf("%s: can't defrag TX mbuf\n",
1230 device_xname(sc->sc_dev));
1231 m_freem(*m_head);
1232 *m_head = NULL;
1233 return ENOBUFS;
1234 }
1235
1236 M_COPY_PKTHDR(m, *m_head);
1237 if ((*m_head)->m_pkthdr.len > MHLEN) {
1238 MCLGET(m, M_DONTWAIT);
1239 if (!(m->m_flags & M_EXT)) {
1240 m_freem(*m_head);
1241 m_freem(m);
1242 *m_head = NULL;
1243 return ENOBUFS;
1244 }
1245 }
1246 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1247 mtod(m, void *));
1248 m_freem(*m_head);
1249 m->m_len = m->m_pkthdr.len;
1250 *m_head = m;
1251
1252 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1253 BUS_DMA_NOWAIT);
1254
1255 if (error != 0) {
1256 printf("%s: could not load defragged TX mbuf\n",
1257 device_xname(sc->sc_dev));
1258 if (!error) {
1259 bus_dmamap_unload(sc->sc_dmat, map);
1260 error = EFBIG;
1261 }
1262 m_freem(*m_head);
1263 *m_head = NULL;
1264 return error;
1265 }
1266 } else if (error) {
1267 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1268 return error;
1269 }
1270
1271 nsegs = map->dm_nsegs;
1272
1273 if (nsegs == 0) {
1274 m_freem(*m_head);
1275 *m_head = NULL;
1276 return EIO;
1277 }
1278
1279 /* Check descriptor overrun. */
1280 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1281 bus_dmamap_unload(sc->sc_dmat, map);
1282 return ENOBUFS;
1283 }
1284
1285 m = *m_head;
1286 /* Configure Tx IP/TCP/UDP checksum offload. */
1287 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1288 cflags |= AGE_TD_CSUM;
1289 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1290 cflags |= AGE_TD_TCPCSUM;
1291 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1292 cflags |= AGE_TD_UDPCSUM;
1293 /* Set checksum start offset. */
1294 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1295 }
1296
1297 #if NVLAN > 0
1298 /* Configure VLAN hardware tag insertion. */
1299 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1300 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1301 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1302 cflags |= AGE_TD_INSERT_VLAN_TAG;
1303 }
1304 #endif
1305
1306 desc = NULL;
1307 for (i = 0; i < nsegs; i++) {
1308 desc = &sc->age_rdata.age_tx_ring[prod];
1309 desc->addr = htole64(map->dm_segs[i].ds_addr);
1310 desc->len =
1311 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1312 desc->flags = htole32(cflags);
1313 sc->age_cdata.age_tx_cnt++;
1314 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1315 }
1316
1317 /* Update producer index. */
1318 sc->age_cdata.age_tx_prod = prod;
1319
1320 /* Set EOP on the last descriptor. */
1321 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1322 desc = &sc->age_rdata.age_tx_ring[prod];
1323 desc->flags |= htole32(AGE_TD_EOP);
1324
1325 /* Swap dmamap of the first and the last. */
1326 txd = &sc->age_cdata.age_txdesc[prod];
1327 map = txd_last->tx_dmamap;
1328 txd_last->tx_dmamap = txd->tx_dmamap;
1329 txd->tx_dmamap = map;
1330 txd->tx_m = m;
1331
1332 /* Sync descriptors. */
1333 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1334 BUS_DMASYNC_PREWRITE);
1335 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1336 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1337
1338 return 0;
1339 }
1340
1341 static void
1342 age_txintr(struct age_softc *sc, int tpd_cons)
1343 {
1344 struct ifnet *ifp = &sc->sc_ec.ec_if;
1345 struct age_txdesc *txd;
1346 int cons, prog;
1347
1348 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1349 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1350
1351 /*
1352 * Go through our Tx list and free mbufs for those
1353 * frames which have been transmitted.
1354 */
1355 cons = sc->age_cdata.age_tx_cons;
1356 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1357 if (sc->age_cdata.age_tx_cnt <= 0)
1358 break;
1359 prog++;
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361 sc->age_cdata.age_tx_cnt--;
1362 txd = &sc->age_cdata.age_txdesc[cons];
1363 /*
1364 * Clear Tx descriptors, it's not required but would
1365 * help debugging in case of Tx issues.
1366 */
1367 txd->tx_desc->addr = 0;
1368 txd->tx_desc->len = 0;
1369 txd->tx_desc->flags = 0;
1370
1371 if (txd->tx_m == NULL)
1372 continue;
1373 /* Reclaim transmitted mbufs. */
1374 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1375 m_freem(txd->tx_m);
1376 txd->tx_m = NULL;
1377 }
1378
1379 if (prog > 0) {
1380 sc->age_cdata.age_tx_cons = cons;
1381
1382 /*
1383 * Unarm watchdog timer only when there are no pending
1384 * Tx descriptors in queue.
1385 */
1386 if (sc->age_cdata.age_tx_cnt == 0)
1387 ifp->if_timer = 0;
1388
1389 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1390 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1391 BUS_DMASYNC_PREWRITE);
1392 }
1393 }
1394
1395 /* Receive a frame. */
1396 static void
1397 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1398 {
1399 struct ifnet *ifp = &sc->sc_ec.ec_if;
1400 struct age_rxdesc *rxd;
1401 struct rx_desc *desc;
1402 struct mbuf *mp, *m;
1403 uint32_t status, index;
1404 int count, nsegs, pktlen;
1405 int rx_cons;
1406
1407 status = le32toh(rxrd->flags);
1408 index = le32toh(rxrd->index);
1409 rx_cons = AGE_RX_CONS(index);
1410 nsegs = AGE_RX_NSEGS(index);
1411
1412 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1413 if ((status & AGE_RRD_ERROR) != 0 &&
1414 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1415 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1416 /*
1417 * We want to pass the following frames to upper
1418 * layer regardless of error status of Rx return
1419 * ring.
1420 *
1421 * o IP/TCP/UDP checksum is bad.
1422 * o frame length and protocol specific length
1423 * does not match.
1424 */
1425 sc->age_cdata.age_rx_cons += nsegs;
1426 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1427 return;
1428 }
1429
1430 pktlen = 0;
1431 for (count = 0; count < nsegs; count++,
1432 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1433 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1434 mp = rxd->rx_m;
1435 desc = rxd->rx_desc;
1436 /* Add a new receive buffer to the ring. */
1437 if (age_newbuf(sc, rxd, 0) != 0) {
1438 ifp->if_iqdrops++;
1439 /* Reuse Rx buffers. */
1440 if (sc->age_cdata.age_rxhead != NULL) {
1441 m_freem(sc->age_cdata.age_rxhead);
1442 AGE_RXCHAIN_RESET(sc);
1443 }
1444 break;
1445 }
1446
1447 /* The length of the first mbuf is computed last. */
1448 if (count != 0) {
1449 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1450 pktlen += mp->m_len;
1451 }
1452
1453 /* Chain received mbufs. */
1454 if (sc->age_cdata.age_rxhead == NULL) {
1455 sc->age_cdata.age_rxhead = mp;
1456 sc->age_cdata.age_rxtail = mp;
1457 } else {
1458 mp->m_flags &= ~M_PKTHDR;
1459 sc->age_cdata.age_rxprev_tail =
1460 sc->age_cdata.age_rxtail;
1461 sc->age_cdata.age_rxtail->m_next = mp;
1462 sc->age_cdata.age_rxtail = mp;
1463 }
1464
1465 if (count == nsegs - 1) {
1466 /*
1467 * It seems that L1 controller has no way
1468 * to tell hardware to strip CRC bytes.
1469 */
1470 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1471 if (nsegs > 1) {
1472 /* Remove the CRC bytes in chained mbufs. */
1473 pktlen -= ETHER_CRC_LEN;
1474 if (mp->m_len <= ETHER_CRC_LEN) {
1475 sc->age_cdata.age_rxtail =
1476 sc->age_cdata.age_rxprev_tail;
1477 sc->age_cdata.age_rxtail->m_len -=
1478 (ETHER_CRC_LEN - mp->m_len);
1479 sc->age_cdata.age_rxtail->m_next = NULL;
1480 m_freem(mp);
1481 } else {
1482 mp->m_len -= ETHER_CRC_LEN;
1483 }
1484 }
1485
1486 m = sc->age_cdata.age_rxhead;
1487 m->m_flags |= M_PKTHDR;
1488 m->m_pkthdr.rcvif = ifp;
1489 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1490 /* Set the first mbuf length. */
1491 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1492
1493 /*
1494 * Set checksum information.
1495 * It seems that L1 controller can compute partial
1496 * checksum. The partial checksum value can be used
1497 * to accelerate checksum computation for fragmented
1498 * TCP/UDP packets. Upper network stack already
1499 * takes advantage of the partial checksum value in
1500 * IP reassembly stage. But I'm not sure the
1501 * correctness of the partial hardware checksum
1502 * assistance due to lack of data sheet. If it is
1503 * proven to work on L1 I'll enable it.
1504 */
1505 if (status & AGE_RRD_IPV4) {
1506 if (status & AGE_RRD_IPCSUM_NOK)
1507 m->m_pkthdr.csum_flags |=
1508 M_CSUM_IPv4_BAD;
1509 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1510 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1511 m->m_pkthdr.csum_flags |=
1512 M_CSUM_TCP_UDP_BAD;
1513 }
1514 /*
1515 * Don't mark bad checksum for TCP/UDP frames
1516 * as fragmented frames may always have set
1517 * bad checksummed bit of descriptor status.
1518 */
1519 }
1520 #if NVLAN > 0
1521 /* Check for VLAN tagged frames. */
1522 if (status & AGE_RRD_VLAN) {
1523 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1524 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1525 continue);
1526 }
1527 #endif
1528
1529 #if NBPFILTER > 0
1530 if (ifp->if_bpf)
1531 bpf_mtap(ifp->if_bpf, m);
1532 #endif
1533 /* Pass it on. */
1534 ether_input(ifp, m);
1535
1536 /* Reset mbuf chains. */
1537 AGE_RXCHAIN_RESET(sc);
1538 }
1539 }
1540
1541 if (count != nsegs) {
1542 sc->age_cdata.age_rx_cons += nsegs;
1543 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1544 } else
1545 sc->age_cdata.age_rx_cons = rx_cons;
1546 }
1547
1548 static void
1549 age_rxintr(struct age_softc *sc, int rr_prod)
1550 {
1551 struct rx_rdesc *rxrd;
1552 int rr_cons, nsegs, pktlen, prog;
1553
1554 rr_cons = sc->age_cdata.age_rr_cons;
1555 if (rr_cons == rr_prod)
1556 return;
1557
1558 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1559 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1560 BUS_DMASYNC_POSTREAD);
1561
1562 for (prog = 0; rr_cons != rr_prod; prog++) {
1563 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1564 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1565 if (nsegs == 0)
1566 break;
1567 /*
1568 * Check number of segments against received bytes
1569 * Non-matching value would indicate that hardware
1570 * is still trying to update Rx return descriptors.
1571 * I'm not sure whether this check is really needed.
1572 */
1573 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1574 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1575 (MCLBYTES - ETHER_ALIGN)))
1576 break;
1577
1578 /* Received a frame. */
1579 age_rxeof(sc, rxrd);
1580
1581 /* Clear return ring. */
1582 rxrd->index = 0;
1583 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1584 }
1585
1586 if (prog > 0) {
1587 /* Update the consumer index. */
1588 sc->age_cdata.age_rr_cons = rr_cons;
1589
1590 /* Sync descriptors. */
1591 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1592 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1593 BUS_DMASYNC_PREWRITE);
1594
1595 /* Notify hardware availability of new Rx buffers. */
1596 AGE_COMMIT_MBOX(sc);
1597 }
1598 }
1599
1600 static void
1601 age_tick(void *xsc)
1602 {
1603 struct age_softc *sc = xsc;
1604 struct mii_data *mii = &sc->sc_miibus;
1605 int s;
1606
1607 s = splnet();
1608 mii_tick(mii);
1609 splx(s);
1610
1611 callout_schedule(&sc->sc_tick_ch, hz);
1612 }
1613
1614 static void
1615 age_reset(struct age_softc *sc)
1616 {
1617 uint32_t reg;
1618 int i;
1619
1620 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1621 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1622 DELAY(1);
1623 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1624 break;
1625 }
1626 if (i == 0)
1627 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1628
1629 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1630 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1631 break;
1632 DELAY(10);
1633 }
1634
1635 if (i == 0)
1636 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1637 reg);
1638
1639 /* Initialize PCIe module. From Linux. */
1640 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1641 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1642 }
1643
1644 static int
1645 age_init(struct ifnet *ifp)
1646 {
1647 struct age_softc *sc = ifp->if_softc;
1648 struct mii_data *mii;
1649 uint8_t eaddr[ETHER_ADDR_LEN];
1650 bus_addr_t paddr;
1651 uint32_t reg, fsize;
1652 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1653 int error;
1654
1655 /*
1656 * Cancel any pending I/O.
1657 */
1658 age_stop(ifp, 0);
1659
1660 /*
1661 * Reset the chip to a known state.
1662 */
1663 age_reset(sc);
1664
1665 /* Initialize descriptors. */
1666 error = age_init_rx_ring(sc);
1667 if (error != 0) {
1668 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1669 age_stop(ifp, 0);
1670 return error;
1671 }
1672 age_init_rr_ring(sc);
1673 age_init_tx_ring(sc);
1674 age_init_cmb_block(sc);
1675 age_init_smb_block(sc);
1676
1677 /* Reprogram the station address. */
1678 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1679 CSR_WRITE_4(sc, AGE_PAR0,
1680 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1681 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1682
1683 /* Set descriptor base addresses. */
1684 paddr = sc->age_rdata.age_tx_ring_paddr;
1685 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1686 paddr = sc->age_rdata.age_rx_ring_paddr;
1687 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1688 paddr = sc->age_rdata.age_rr_ring_paddr;
1689 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1690 paddr = sc->age_rdata.age_tx_ring_paddr;
1691 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1692 paddr = sc->age_rdata.age_cmb_block_paddr;
1693 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1694 paddr = sc->age_rdata.age_smb_block_paddr;
1695 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1696
1697 /* Set Rx/Rx return descriptor counter. */
1698 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1699 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1700 DESC_RRD_CNT_MASK) |
1701 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1702
1703 /* Set Tx descriptor counter. */
1704 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1705 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1706
1707 /* Tell hardware that we're ready to load descriptors. */
1708 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1709
1710 /*
1711 * Initialize mailbox register.
1712 * Updated producer/consumer index information is exchanged
1713 * through this mailbox register. However Tx producer and
1714 * Rx return consumer/Rx producer are all shared such that
1715 * it's hard to separate code path between Tx and Rx without
1716 * locking. If L1 hardware have a separate mail box register
1717 * for Tx and Rx consumer/producer management we could have
1718 * indepent Tx/Rx handler which in turn Rx handler could have
1719 * been run without any locking.
1720 */
1721 AGE_COMMIT_MBOX(sc);
1722
1723 /* Configure IPG/IFG parameters. */
1724 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1725 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1726 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1727 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1728 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1729
1730 /* Set parameters for half-duplex media. */
1731 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1732 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1733 HDPX_CFG_LCOL_MASK) |
1734 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1735 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1736 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1737 HDPX_CFG_ABEBT_MASK) |
1738 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1739 HDPX_CFG_JAMIPG_MASK));
1740
1741 /* Configure interrupt moderation timer. */
1742 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1743 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1744 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1745 reg &= ~MASTER_MTIMER_ENB;
1746 if (AGE_USECS(sc->age_int_mod) == 0)
1747 reg &= ~MASTER_ITIMER_ENB;
1748 else
1749 reg |= MASTER_ITIMER_ENB;
1750 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1751 if (agedebug)
1752 printf("%s: interrupt moderation is %d us.\n",
1753 device_xname(sc->sc_dev), sc->age_int_mod);
1754 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1755
1756 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1757 if (ifp->if_mtu < ETHERMTU)
1758 sc->age_max_frame_size = ETHERMTU;
1759 else
1760 sc->age_max_frame_size = ifp->if_mtu;
1761 sc->age_max_frame_size += ETHER_HDR_LEN +
1762 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1763 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1764
1765 /* Configure jumbo frame. */
1766 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1767 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1768 (((fsize / sizeof(uint64_t)) <<
1769 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1770 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1771 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1772 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1773 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1774
1775 /* Configure flow-control parameters. From Linux. */
1776 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1777 /*
1778 * Magic workaround for old-L1.
1779 * Don't know which hw revision requires this magic.
1780 */
1781 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1782 /*
1783 * Another magic workaround for flow-control mode
1784 * change. From Linux.
1785 */
1786 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1787 }
1788 /*
1789 * TODO
1790 * Should understand pause parameter relationships between FIFO
1791 * size and number of Rx descriptors and Rx return descriptors.
1792 *
1793 * Magic parameters came from Linux.
1794 */
1795 switch (sc->age_chip_rev) {
1796 case 0x8001:
1797 case 0x9001:
1798 case 0x9002:
1799 case 0x9003:
1800 rxf_hi = AGE_RX_RING_CNT / 16;
1801 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1802 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1803 rrd_lo = AGE_RR_RING_CNT / 16;
1804 break;
1805 default:
1806 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1807 rxf_lo = reg / 16;
1808 if (rxf_lo < 192)
1809 rxf_lo = 192;
1810 rxf_hi = (reg * 7) / 8;
1811 if (rxf_hi < rxf_lo)
1812 rxf_hi = rxf_lo + 16;
1813 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1814 rrd_lo = reg / 8;
1815 rrd_hi = (reg * 7) / 8;
1816 if (rrd_lo < 2)
1817 rrd_lo = 2;
1818 if (rrd_hi < rrd_lo)
1819 rrd_hi = rrd_lo + 3;
1820 break;
1821 }
1822 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1823 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1824 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1825 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1826 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1827 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1828 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1829 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1830 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1831 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1832
1833 /* Configure RxQ. */
1834 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1835 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1836 RXQ_CFG_RD_BURST_MASK) |
1837 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1838 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1839 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1840 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1841 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1842
1843 /* Configure TxQ. */
1844 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1845 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1846 TXQ_CFG_TPD_BURST_MASK) |
1847 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1848 TXQ_CFG_TX_FIFO_BURST_MASK) |
1849 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1850 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1851 TXQ_CFG_ENB);
1852
1853 /* Configure DMA parameters. */
1854 CSR_WRITE_4(sc, AGE_DMA_CFG,
1855 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1856 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1857 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1858
1859 /* Configure CMB DMA write threshold. */
1860 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1861 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1862 CMB_WR_THRESH_RRD_MASK) |
1863 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1864 CMB_WR_THRESH_TPD_MASK));
1865
1866 /* Set CMB/SMB timer and enable them. */
1867 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1868 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1869 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1870
1871 /* Request SMB updates for every seconds. */
1872 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1873 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1874
1875 /*
1876 * Disable all WOL bits as WOL can interfere normal Rx
1877 * operation.
1878 */
1879 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1880
1881 /*
1882 * Configure Tx/Rx MACs.
1883 * - Auto-padding for short frames.
1884 * - Enable CRC generation.
1885 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1886 * of MAC is followed after link establishment.
1887 */
1888 CSR_WRITE_4(sc, AGE_MAC_CFG,
1889 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1890 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1891 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1892 MAC_CFG_PREAMBLE_MASK));
1893
1894 /* Set up the receive filter. */
1895 age_rxfilter(sc);
1896 age_rxvlan(sc);
1897
1898 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1899 reg |= MAC_CFG_RXCSUM_ENB;
1900
1901 /* Ack all pending interrupts and clear it. */
1902 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1903 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1904
1905 /* Finally enable Tx/Rx MAC. */
1906 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1907
1908 sc->age_flags &= ~AGE_FLAG_LINK;
1909
1910 /* Switch to the current media. */
1911 mii = &sc->sc_miibus;
1912 mii_mediachg(mii);
1913
1914 callout_schedule(&sc->sc_tick_ch, hz);
1915
1916 ifp->if_flags |= IFF_RUNNING;
1917 ifp->if_flags &= ~IFF_OACTIVE;
1918
1919 return 0;
1920 }
1921
1922 static void
1923 age_stop(struct ifnet *ifp, int disable)
1924 {
1925 struct age_softc *sc = ifp->if_softc;
1926 struct age_txdesc *txd;
1927 struct age_rxdesc *rxd;
1928 uint32_t reg;
1929 int i;
1930
1931 callout_stop(&sc->sc_tick_ch);
1932
1933 /*
1934 * Mark the interface down and cancel the watchdog timer.
1935 */
1936 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1937 ifp->if_timer = 0;
1938
1939 sc->age_flags &= ~AGE_FLAG_LINK;
1940
1941 mii_down(&sc->sc_miibus);
1942
1943 /*
1944 * Disable interrupts.
1945 */
1946 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1947 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1948
1949 /* Stop CMB/SMB updates. */
1950 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1951
1952 /* Stop Rx/Tx MAC. */
1953 age_stop_rxmac(sc);
1954 age_stop_txmac(sc);
1955
1956 /* Stop DMA. */
1957 CSR_WRITE_4(sc, AGE_DMA_CFG,
1958 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1959
1960 /* Stop TxQ/RxQ. */
1961 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1962 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1963 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1964 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1965 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1966 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1967 break;
1968 DELAY(10);
1969 }
1970 if (i == 0)
1971 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1972 device_xname(sc->sc_dev), reg);
1973
1974 /* Reclaim Rx buffers that have been processed. */
1975 if (sc->age_cdata.age_rxhead != NULL)
1976 m_freem(sc->age_cdata.age_rxhead);
1977 AGE_RXCHAIN_RESET(sc);
1978
1979 /*
1980 * Free RX and TX mbufs still in the queues.
1981 */
1982 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1983 rxd = &sc->age_cdata.age_rxdesc[i];
1984 if (rxd->rx_m != NULL) {
1985 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1986 m_freem(rxd->rx_m);
1987 rxd->rx_m = NULL;
1988 }
1989 }
1990 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1991 txd = &sc->age_cdata.age_txdesc[i];
1992 if (txd->tx_m != NULL) {
1993 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1994 m_freem(txd->tx_m);
1995 txd->tx_m = NULL;
1996 }
1997 }
1998 }
1999
2000 static void
2001 age_stats_update(struct age_softc *sc)
2002 {
2003 struct ifnet *ifp = &sc->sc_ec.ec_if;
2004 struct age_stats *stat;
2005 struct smb *smb;
2006
2007 stat = &sc->age_stat;
2008
2009 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2010 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2011
2012 smb = sc->age_rdata.age_smb_block;
2013 if (smb->updated == 0)
2014 return;
2015
2016 /* Rx stats. */
2017 stat->rx_frames += smb->rx_frames;
2018 stat->rx_bcast_frames += smb->rx_bcast_frames;
2019 stat->rx_mcast_frames += smb->rx_mcast_frames;
2020 stat->rx_pause_frames += smb->rx_pause_frames;
2021 stat->rx_control_frames += smb->rx_control_frames;
2022 stat->rx_crcerrs += smb->rx_crcerrs;
2023 stat->rx_lenerrs += smb->rx_lenerrs;
2024 stat->rx_bytes += smb->rx_bytes;
2025 stat->rx_runts += smb->rx_runts;
2026 stat->rx_fragments += smb->rx_fragments;
2027 stat->rx_pkts_64 += smb->rx_pkts_64;
2028 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2029 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2030 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2031 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2032 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2033 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2034 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2035 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2036 stat->rx_desc_oflows += smb->rx_desc_oflows;
2037 stat->rx_alignerrs += smb->rx_alignerrs;
2038 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2039 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2040 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2041
2042 /* Tx stats. */
2043 stat->tx_frames += smb->tx_frames;
2044 stat->tx_bcast_frames += smb->tx_bcast_frames;
2045 stat->tx_mcast_frames += smb->tx_mcast_frames;
2046 stat->tx_pause_frames += smb->tx_pause_frames;
2047 stat->tx_excess_defer += smb->tx_excess_defer;
2048 stat->tx_control_frames += smb->tx_control_frames;
2049 stat->tx_deferred += smb->tx_deferred;
2050 stat->tx_bytes += smb->tx_bytes;
2051 stat->tx_pkts_64 += smb->tx_pkts_64;
2052 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2053 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2054 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2055 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2056 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2057 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2058 stat->tx_single_colls += smb->tx_single_colls;
2059 stat->tx_multi_colls += smb->tx_multi_colls;
2060 stat->tx_late_colls += smb->tx_late_colls;
2061 stat->tx_excess_colls += smb->tx_excess_colls;
2062 stat->tx_underrun += smb->tx_underrun;
2063 stat->tx_desc_underrun += smb->tx_desc_underrun;
2064 stat->tx_lenerrs += smb->tx_lenerrs;
2065 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2066 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2067 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2068
2069 /* Update counters in ifnet. */
2070 ifp->if_opackets += smb->tx_frames;
2071
2072 ifp->if_collisions += smb->tx_single_colls +
2073 smb->tx_multi_colls + smb->tx_late_colls +
2074 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2075
2076 ifp->if_oerrors += smb->tx_excess_colls +
2077 smb->tx_late_colls + smb->tx_underrun +
2078 smb->tx_pkts_truncated;
2079
2080 ifp->if_ipackets += smb->rx_frames;
2081
2082 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2083 smb->rx_runts + smb->rx_pkts_truncated +
2084 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2085 smb->rx_alignerrs;
2086
2087 /* Update done, clear. */
2088 smb->updated = 0;
2089
2090 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2091 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2092 }
2093
2094 static void
2095 age_stop_txmac(struct age_softc *sc)
2096 {
2097 uint32_t reg;
2098 int i;
2099
2100 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2101 if ((reg & MAC_CFG_TX_ENB) != 0) {
2102 reg &= ~MAC_CFG_TX_ENB;
2103 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2104 }
2105 /* Stop Tx DMA engine. */
2106 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2107 if ((reg & DMA_CFG_RD_ENB) != 0) {
2108 reg &= ~DMA_CFG_RD_ENB;
2109 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2110 }
2111 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2112 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2113 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2114 break;
2115 DELAY(10);
2116 }
2117 if (i == 0)
2118 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2119 }
2120
2121 static void
2122 age_stop_rxmac(struct age_softc *sc)
2123 {
2124 uint32_t reg;
2125 int i;
2126
2127 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2128 if ((reg & MAC_CFG_RX_ENB) != 0) {
2129 reg &= ~MAC_CFG_RX_ENB;
2130 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2131 }
2132 /* Stop Rx DMA engine. */
2133 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2134 if ((reg & DMA_CFG_WR_ENB) != 0) {
2135 reg &= ~DMA_CFG_WR_ENB;
2136 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2137 }
2138 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2139 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2140 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2141 break;
2142 DELAY(10);
2143 }
2144 if (i == 0)
2145 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2146 }
2147
2148 static void
2149 age_init_tx_ring(struct age_softc *sc)
2150 {
2151 struct age_ring_data *rd;
2152 struct age_txdesc *txd;
2153 int i;
2154
2155 sc->age_cdata.age_tx_prod = 0;
2156 sc->age_cdata.age_tx_cons = 0;
2157 sc->age_cdata.age_tx_cnt = 0;
2158
2159 rd = &sc->age_rdata;
2160 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2161 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2162 txd = &sc->age_cdata.age_txdesc[i];
2163 txd->tx_desc = &rd->age_tx_ring[i];
2164 txd->tx_m = NULL;
2165 }
2166 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2167 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2168 }
2169
2170 static int
2171 age_init_rx_ring(struct age_softc *sc)
2172 {
2173 struct age_ring_data *rd;
2174 struct age_rxdesc *rxd;
2175 int i;
2176
2177 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2178 rd = &sc->age_rdata;
2179 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2180 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2181 rxd = &sc->age_cdata.age_rxdesc[i];
2182 rxd->rx_m = NULL;
2183 rxd->rx_desc = &rd->age_rx_ring[i];
2184 if (age_newbuf(sc, rxd, 1) != 0)
2185 return ENOBUFS;
2186 }
2187
2188 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2189 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2190
2191 return 0;
2192 }
2193
2194 static void
2195 age_init_rr_ring(struct age_softc *sc)
2196 {
2197 struct age_ring_data *rd;
2198
2199 sc->age_cdata.age_rr_cons = 0;
2200 AGE_RXCHAIN_RESET(sc);
2201
2202 rd = &sc->age_rdata;
2203 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2204 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2205 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2206 }
2207
2208 static void
2209 age_init_cmb_block(struct age_softc *sc)
2210 {
2211 struct age_ring_data *rd;
2212
2213 rd = &sc->age_rdata;
2214 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2215 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2216 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2217 }
2218
2219 static void
2220 age_init_smb_block(struct age_softc *sc)
2221 {
2222 struct age_ring_data *rd;
2223
2224 rd = &sc->age_rdata;
2225 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2226 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2227 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2228 }
2229
2230 static int
2231 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2232 {
2233 struct rx_desc *desc;
2234 struct mbuf *m;
2235 bus_dmamap_t map;
2236 int error;
2237
2238 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2239 if (m == NULL)
2240 return ENOBUFS;
2241 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2242 if (!(m->m_flags & M_EXT)) {
2243 m_freem(m);
2244 return ENOBUFS;
2245 }
2246
2247 m->m_len = m->m_pkthdr.len = MCLBYTES;
2248 m_adj(m, ETHER_ALIGN);
2249
2250 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2251 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2252
2253 if (error != 0) {
2254 if (!error) {
2255 bus_dmamap_unload(sc->sc_dmat,
2256 sc->age_cdata.age_rx_sparemap);
2257 error = EFBIG;
2258 printf("%s: too many segments?!\n",
2259 device_xname(sc->sc_dev));
2260 }
2261 m_freem(m);
2262
2263 if (init)
2264 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2265 return error;
2266 }
2267
2268 if (rxd->rx_m != NULL) {
2269 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2270 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2271 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2272 }
2273 map = rxd->rx_dmamap;
2274 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2275 sc->age_cdata.age_rx_sparemap = map;
2276 rxd->rx_m = m;
2277
2278 desc = rxd->rx_desc;
2279 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2280 desc->len =
2281 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2282 AGE_RD_LEN_SHIFT);
2283
2284 return 0;
2285 }
2286
2287 static void
2288 age_rxvlan(struct age_softc *sc)
2289 {
2290 uint32_t reg;
2291
2292 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2293 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2294 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2295 reg |= MAC_CFG_VLAN_TAG_STRIP;
2296 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2297 }
2298
2299 static void
2300 age_rxfilter(struct age_softc *sc)
2301 {
2302 struct ethercom *ec = &sc->sc_ec;
2303 struct ifnet *ifp = &sc->sc_ec.ec_if;
2304 struct ether_multi *enm;
2305 struct ether_multistep step;
2306 uint32_t crc;
2307 uint32_t mchash[2];
2308 uint32_t rxcfg;
2309
2310 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2311 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2312 ifp->if_flags &= ~IFF_ALLMULTI;
2313
2314 /*
2315 * Always accept broadcast frames.
2316 */
2317 rxcfg |= MAC_CFG_BCAST;
2318
2319 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2320 ifp->if_flags |= IFF_ALLMULTI;
2321 if (ifp->if_flags & IFF_PROMISC)
2322 rxcfg |= MAC_CFG_PROMISC;
2323 else
2324 rxcfg |= MAC_CFG_ALLMULTI;
2325 mchash[0] = mchash[1] = 0xFFFFFFFF;
2326 } else {
2327 /* Program new filter. */
2328 memset(mchash, 0, sizeof(mchash));
2329
2330 ETHER_FIRST_MULTI(step, ec, enm);
2331 while (enm != NULL) {
2332 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2333 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2334 ETHER_NEXT_MULTI(step, enm);
2335 }
2336 }
2337
2338 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2339 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2340 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2341 }
2342