if_age.c revision 1.28.2.3 1 /* $NetBSD: if_age.c,v 1.28.2.3 2009/11/08 21:55:46 snj Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28.2.3 2009/11/08 21:55:46 snj Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct ifnet *, int);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 struct pci_attach_args *pa = aux;
139
140 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 struct age_softc *sc = device_private(self);
148 struct pci_attach_args *pa = aux;
149 pci_intr_handle_t ih;
150 const char *intrstr;
151 struct ifnet *ifp = &sc->sc_ec.ec_if;
152 pcireg_t memtype;
153 int error = 0;
154
155 aprint_naive("\n");
156 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157
158 sc->sc_dev = self;
159 sc->sc_dmat = pa->pa_dmat;
160 sc->sc_pct = pa->pa_pc;
161 sc->sc_pcitag = pa->pa_tag;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 goto fail;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih);
192 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc);
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 goto fail;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, MIIF_DOPAUSE);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (!pmf_device_register(self, NULL, age_resume))
292 aprint_error_dev(self, "couldn't establish power handler\n");
293 else
294 pmf_class_network_register(self, ifp);
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 pmf_device_deregister(self);
318 s = splnet();
319 age_stop(ifp, 0);
320 splx(s);
321
322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323
324 /* Delete all remaining media. */
325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 if (sc->sc_irq_handle != NULL) {
332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 sc->sc_irq_handle = NULL;
334 }
335 if (sc->sc_mem_size) {
336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 sc->sc_mem_size = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Read a PHY register on the MII of the L1.
344 */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 struct age_softc *sc = device_private(dev);
349 uint32_t v;
350 int i;
351
352 if (phy != sc->age_phyaddr)
353 return 0;
354
355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 DELAY(1);
359 v = CSR_READ_4(sc, AGE_MDIO);
360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 break;
362 }
363
364 if (i == 0) {
365 printf("%s: phy read timeout: phy %d, reg %d\n",
366 device_xname(sc->sc_dev), phy, reg);
367 return 0;
368 }
369
370 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372
373 /*
374 * Write a PHY register on the MII of the L1.
375 */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 struct age_softc *sc = device_private(dev);
380 uint32_t v;
381 int i;
382
383 if (phy != sc->age_phyaddr)
384 return;
385
386 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389
390 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 DELAY(1);
392 v = CSR_READ_4(sc, AGE_MDIO);
393 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 break;
395 }
396
397 if (i == 0) {
398 printf("%s: phy write timeout: phy %d, reg %d\n",
399 device_xname(sc->sc_dev), phy, reg);
400 }
401 }
402
403 /*
404 * Callback from MII layer when media changes.
405 */
406 static void
407 age_miibus_statchg(device_t dev)
408 {
409 struct age_softc *sc = device_private(dev);
410 struct ifnet *ifp = &sc->sc_ec.ec_if;
411 struct mii_data *mii;
412
413 if ((ifp->if_flags & IFF_RUNNING) == 0)
414 return;
415
416 mii = &sc->sc_miibus;
417
418 sc->age_flags &= ~AGE_FLAG_LINK;
419 if ((mii->mii_media_status & IFM_AVALID) != 0) {
420 switch (IFM_SUBTYPE(mii->mii_media_active)) {
421 case IFM_10_T:
422 case IFM_100_TX:
423 case IFM_1000_T:
424 sc->age_flags |= AGE_FLAG_LINK;
425 break;
426 default:
427 break;
428 }
429 }
430
431 /* Stop Rx/Tx MACs. */
432 age_stop_rxmac(sc);
433 age_stop_txmac(sc);
434
435 /* Program MACs with resolved speed/duplex/flow-control. */
436 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
437 uint32_t reg;
438
439 age_mac_config(sc);
440 reg = CSR_READ_4(sc, AGE_MAC_CFG);
441 /* Restart DMA engine and Tx/Rx MAC. */
442 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
443 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
444 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
445 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
446 }
447 }
448
449 /*
450 * Get the current interface media status.
451 */
452 static void
453 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
454 {
455 struct age_softc *sc = ifp->if_softc;
456 struct mii_data *mii = &sc->sc_miibus;
457
458 mii_pollstat(mii);
459 ifmr->ifm_status = mii->mii_media_status;
460 ifmr->ifm_active = mii->mii_media_active;
461 }
462
463 /*
464 * Set hardware to newly-selected media.
465 */
466 static int
467 age_mediachange(struct ifnet *ifp)
468 {
469 struct age_softc *sc = ifp->if_softc;
470 struct mii_data *mii = &sc->sc_miibus;
471 int error;
472
473 if (mii->mii_instance != 0) {
474 struct mii_softc *miisc;
475
476 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
477 mii_phy_reset(miisc);
478 }
479 error = mii_mediachg(mii);
480
481 return error;
482 }
483
484 static int
485 age_intr(void *arg)
486 {
487 struct age_softc *sc = arg;
488 struct ifnet *ifp = &sc->sc_ec.ec_if;
489 struct cmb *cmb;
490 uint32_t status;
491
492 status = CSR_READ_4(sc, AGE_INTR_STATUS);
493 if (status == 0 || (status & AGE_INTRS) == 0)
494 return 0;
495
496 cmb = sc->age_rdata.age_cmb_block;
497 if (cmb == NULL) {
498 /* Happens when bringing up the interface
499 * w/o having a carrier. Ack. the interrupt.
500 */
501 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
502 return 0;
503 }
504
505 /* Disable interrupts. */
506 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
507
508 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
509 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
510 status = le32toh(cmb->intr_status);
511 if ((status & AGE_INTRS) == 0)
512 goto back;
513
514 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
515 TPD_CONS_SHIFT;
516 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
517 RRD_PROD_SHIFT;
518
519 /* Let hardware know CMB was served. */
520 cmb->intr_status = 0;
521 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
522 sc->age_cdata.age_cmb_block_map->dm_mapsize,
523 BUS_DMASYNC_PREWRITE);
524
525 if (ifp->if_flags & IFF_RUNNING) {
526 if (status & INTR_CMB_RX)
527 age_rxintr(sc, sc->age_rr_prod);
528
529 if (status & INTR_CMB_TX)
530 age_txintr(sc, sc->age_tpd_cons);
531
532 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
533 if (status & INTR_DMA_RD_TO_RST)
534 printf("%s: DMA read error! -- resetting\n",
535 device_xname(sc->sc_dev));
536 if (status & INTR_DMA_WR_TO_RST)
537 printf("%s: DMA write error! -- resetting\n",
538 device_xname(sc->sc_dev));
539 age_init(ifp);
540 }
541
542 if (!IFQ_IS_EMPTY(&ifp->if_snd))
543 age_start(ifp);
544
545 if (status & INTR_SMB)
546 age_stats_update(sc);
547 }
548
549 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
550 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
551 sc->age_cdata.age_cmb_block_map->dm_mapsize,
552 BUS_DMASYNC_POSTREAD);
553
554 back:
555 /* Re-enable interrupts. */
556 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
557
558 return 1;
559 }
560
561 static int
562 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
563 uint32_t *word)
564 {
565 int i;
566 pcireg_t rv;
567
568 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
569 offset << PCI_VPD_ADDRESS_SHIFT);
570 for (i = AGE_TIMEOUT; i > 0; i--) {
571 DELAY(10);
572 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
573 PCI_VPD_ADDRESS(vpdc));
574 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
575 break;
576 }
577 if (i == 0) {
578 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
579 *word = 0;
580 return ETIMEDOUT;
581 }
582
583 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
584 return 0;
585 }
586
587 static void
588 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
589 {
590 uint32_t ea[2], off, reg, word;
591 int vpd_error, match, vpdc;
592
593 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
594 if ((reg & SPI_VPD_ENB) != 0) {
595 /* Get VPD stored in TWSI EEPROM. */
596 reg &= ~SPI_VPD_ENB;
597 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
598 }
599
600 vpd_error = 0;
601 ea[0] = ea[1] = 0;
602 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
603 PCI_CAP_VPD, &vpdc, NULL))) {
604 /*
605 * PCI VPD capability exists, but it seems that it's
606 * not in the standard form as stated in PCI VPD
607 * specification such that driver could not use
608 * pci_get_vpd_readonly(9) with keyword 'NA'.
609 * Search VPD data starting at address 0x0100. The data
610 * should be used as initializers to set AGE_PAR0,
611 * AGE_PAR1 register including other PCI configuration
612 * registers.
613 */
614 word = 0;
615 match = 0;
616 reg = 0;
617 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
618 off += sizeof(uint32_t)) {
619 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
620 if (vpd_error != 0)
621 break;
622 if (match != 0) {
623 switch (reg) {
624 case AGE_PAR0:
625 ea[0] = word;
626 break;
627 case AGE_PAR1:
628 ea[1] = word;
629 break;
630 default:
631 break;
632 }
633 match = 0;
634 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
635 match = 1;
636 reg = word >> 16;
637 } else
638 break;
639 }
640 if (off >= AGE_VPD_REG_CONF_END)
641 vpd_error = ENOENT;
642 if (vpd_error == 0) {
643 /*
644 * Don't blindly trust ethernet address obtained
645 * from VPD. Check whether ethernet address is
646 * valid one. Otherwise fall-back to reading
647 * PAR register.
648 */
649 ea[1] &= 0xFFFF;
650 if ((ea[0] == 0 && ea[1] == 0) ||
651 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
652 if (agedebug)
653 printf("%s: invalid ethernet address "
654 "returned from VPD.\n",
655 device_xname(sc->sc_dev));
656 vpd_error = EINVAL;
657 }
658 }
659 if (vpd_error != 0 && (agedebug))
660 printf("%s: VPD access failure!\n",
661 device_xname(sc->sc_dev));
662 } else {
663 if (agedebug)
664 printf("%s: PCI VPD capability not found!\n",
665 device_xname(sc->sc_dev));
666 }
667
668 /*
669 * It seems that L1 also provides a way to extract ethernet
670 * address via SPI flash interface. Because SPI flash memory
671 * device of different vendors vary in their instruction
672 * codes for read ID instruction, it's very hard to get
673 * instructions codes without detailed information for the
674 * flash memory device used on ethernet controller. To simplify
675 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
676 * address which is supposed to be set by hardware during
677 * power on reset.
678 */
679 if (vpd_error != 0) {
680 /*
681 * VPD is mapped to SPI flash memory or BIOS set it.
682 */
683 ea[0] = CSR_READ_4(sc, AGE_PAR0);
684 ea[1] = CSR_READ_4(sc, AGE_PAR1);
685 }
686
687 ea[1] &= 0xFFFF;
688 eaddr[0] = (ea[1] >> 8) & 0xFF;
689 eaddr[1] = (ea[1] >> 0) & 0xFF;
690 eaddr[2] = (ea[0] >> 24) & 0xFF;
691 eaddr[3] = (ea[0] >> 16) & 0xFF;
692 eaddr[4] = (ea[0] >> 8) & 0xFF;
693 eaddr[5] = (ea[0] >> 0) & 0xFF;
694 }
695
696 static void
697 age_phy_reset(struct age_softc *sc)
698 {
699 /* Reset PHY. */
700 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
701 DELAY(1000);
702 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
703 DELAY(1000);
704 }
705
706 static int
707 age_dma_alloc(struct age_softc *sc)
708 {
709 struct age_txdesc *txd;
710 struct age_rxdesc *rxd;
711 int nsegs, error, i;
712
713 /*
714 * Create DMA stuffs for TX ring
715 */
716 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
717 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
718 if (error) {
719 sc->age_cdata.age_tx_ring_map = NULL;
720 return ENOBUFS;
721 }
722
723 /* Allocate DMA'able memory for TX ring */
724 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
725 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
726 &nsegs, BUS_DMA_WAITOK);
727 if (error) {
728 printf("%s: could not allocate DMA'able memory for Tx ring, "
729 "error = %i\n", device_xname(sc->sc_dev), error);
730 return error;
731 }
732
733 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
734 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
735 BUS_DMA_NOWAIT);
736 if (error)
737 return ENOBUFS;
738
739 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
740
741 /* Load the DMA map for Tx ring. */
742 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
743 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
744 if (error) {
745 printf("%s: could not load DMA'able memory for Tx ring, "
746 "error = %i\n", device_xname(sc->sc_dev), error);
747 bus_dmamem_free(sc->sc_dmat,
748 &sc->age_rdata.age_tx_ring_seg, 1);
749 return error;
750 }
751
752 sc->age_rdata.age_tx_ring_paddr =
753 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
754
755 /*
756 * Create DMA stuffs for RX ring
757 */
758 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
759 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
760 if (error) {
761 sc->age_cdata.age_rx_ring_map = NULL;
762 return ENOBUFS;
763 }
764
765 /* Allocate DMA'able memory for RX ring */
766 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
767 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
768 &nsegs, BUS_DMA_WAITOK);
769 if (error) {
770 printf("%s: could not allocate DMA'able memory for Rx ring, "
771 "error = %i.\n", device_xname(sc->sc_dev), error);
772 return error;
773 }
774
775 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
776 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
777 BUS_DMA_NOWAIT);
778 if (error)
779 return ENOBUFS;
780
781 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
782
783 /* Load the DMA map for Rx ring. */
784 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
785 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
786 if (error) {
787 printf("%s: could not load DMA'able memory for Rx ring, "
788 "error = %i.\n", device_xname(sc->sc_dev), error);
789 bus_dmamem_free(sc->sc_dmat,
790 &sc->age_rdata.age_rx_ring_seg, 1);
791 return error;
792 }
793
794 sc->age_rdata.age_rx_ring_paddr =
795 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
796
797 /*
798 * Create DMA stuffs for RX return ring
799 */
800 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
801 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
802 if (error) {
803 sc->age_cdata.age_rr_ring_map = NULL;
804 return ENOBUFS;
805 }
806
807 /* Allocate DMA'able memory for RX return ring */
808 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
809 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
810 &nsegs, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not allocate DMA'able memory for Rx "
813 "return ring, error = %i.\n",
814 device_xname(sc->sc_dev), error);
815 return error;
816 }
817
818 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
819 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
820 BUS_DMA_NOWAIT);
821 if (error)
822 return ENOBUFS;
823
824 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
825
826 /* Load the DMA map for Rx return ring. */
827 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
828 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
829 if (error) {
830 printf("%s: could not load DMA'able memory for Rx return ring, "
831 "error = %i\n", device_xname(sc->sc_dev), error);
832 bus_dmamem_free(sc->sc_dmat,
833 &sc->age_rdata.age_rr_ring_seg, 1);
834 return error;
835 }
836
837 sc->age_rdata.age_rr_ring_paddr =
838 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
839
840 /*
841 * Create DMA stuffs for CMB block
842 */
843 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
844 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
845 &sc->age_cdata.age_cmb_block_map);
846 if (error) {
847 sc->age_cdata.age_cmb_block_map = NULL;
848 return ENOBUFS;
849 }
850
851 /* Allocate DMA'able memory for CMB block */
852 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
853 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
854 &nsegs, BUS_DMA_WAITOK);
855 if (error) {
856 printf("%s: could not allocate DMA'able memory for "
857 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
858 return error;
859 }
860
861 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
862 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
863 BUS_DMA_NOWAIT);
864 if (error)
865 return ENOBUFS;
866
867 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
868
869 /* Load the DMA map for CMB block. */
870 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
871 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
872 BUS_DMA_WAITOK);
873 if (error) {
874 printf("%s: could not load DMA'able memory for CMB block, "
875 "error = %i\n", device_xname(sc->sc_dev), error);
876 bus_dmamem_free(sc->sc_dmat,
877 &sc->age_rdata.age_cmb_block_seg, 1);
878 return error;
879 }
880
881 sc->age_rdata.age_cmb_block_paddr =
882 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
883
884 /*
885 * Create DMA stuffs for SMB block
886 */
887 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
888 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
889 &sc->age_cdata.age_smb_block_map);
890 if (error) {
891 sc->age_cdata.age_smb_block_map = NULL;
892 return ENOBUFS;
893 }
894
895 /* Allocate DMA'able memory for SMB block */
896 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
897 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
898 &nsegs, BUS_DMA_WAITOK);
899 if (error) {
900 printf("%s: could not allocate DMA'able memory for "
901 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
902 return error;
903 }
904
905 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
906 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
907 BUS_DMA_NOWAIT);
908 if (error)
909 return ENOBUFS;
910
911 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
912
913 /* Load the DMA map for SMB block */
914 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
915 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
916 BUS_DMA_WAITOK);
917 if (error) {
918 printf("%s: could not load DMA'able memory for SMB block, "
919 "error = %i\n", device_xname(sc->sc_dev), error);
920 bus_dmamem_free(sc->sc_dmat,
921 &sc->age_rdata.age_smb_block_seg, 1);
922 return error;
923 }
924
925 sc->age_rdata.age_smb_block_paddr =
926 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
927
928 /* Create DMA maps for Tx buffers. */
929 for (i = 0; i < AGE_TX_RING_CNT; i++) {
930 txd = &sc->age_cdata.age_txdesc[i];
931 txd->tx_m = NULL;
932 txd->tx_dmamap = NULL;
933 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
934 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
935 &txd->tx_dmamap);
936 if (error) {
937 txd->tx_dmamap = NULL;
938 printf("%s: could not create Tx dmamap, error = %i.\n",
939 device_xname(sc->sc_dev), error);
940 return error;
941 }
942 }
943
944 /* Create DMA maps for Rx buffers. */
945 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
946 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
947 if (error) {
948 sc->age_cdata.age_rx_sparemap = NULL;
949 printf("%s: could not create spare Rx dmamap, error = %i.\n",
950 device_xname(sc->sc_dev), error);
951 return error;
952 }
953 for (i = 0; i < AGE_RX_RING_CNT; i++) {
954 rxd = &sc->age_cdata.age_rxdesc[i];
955 rxd->rx_m = NULL;
956 rxd->rx_dmamap = NULL;
957 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
958 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
959 if (error) {
960 rxd->rx_dmamap = NULL;
961 printf("%s: could not create Rx dmamap, error = %i.\n",
962 device_xname(sc->sc_dev), error);
963 return error;
964 }
965 }
966
967 return 0;
968 }
969
970 static void
971 age_dma_free(struct age_softc *sc)
972 {
973 struct age_txdesc *txd;
974 struct age_rxdesc *rxd;
975 int i;
976
977 /* Tx buffers */
978 for (i = 0; i < AGE_TX_RING_CNT; i++) {
979 txd = &sc->age_cdata.age_txdesc[i];
980 if (txd->tx_dmamap != NULL) {
981 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
982 txd->tx_dmamap = NULL;
983 }
984 }
985 /* Rx buffers */
986 for (i = 0; i < AGE_RX_RING_CNT; i++) {
987 rxd = &sc->age_cdata.age_rxdesc[i];
988 if (rxd->rx_dmamap != NULL) {
989 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
990 rxd->rx_dmamap = NULL;
991 }
992 }
993 if (sc->age_cdata.age_rx_sparemap != NULL) {
994 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
995 sc->age_cdata.age_rx_sparemap = NULL;
996 }
997
998 /* Tx ring. */
999 if (sc->age_cdata.age_tx_ring_map != NULL)
1000 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
1001 if (sc->age_cdata.age_tx_ring_map != NULL &&
1002 sc->age_rdata.age_tx_ring != NULL)
1003 bus_dmamem_free(sc->sc_dmat,
1004 &sc->age_rdata.age_tx_ring_seg, 1);
1005 sc->age_rdata.age_tx_ring = NULL;
1006 sc->age_cdata.age_tx_ring_map = NULL;
1007
1008 /* Rx ring. */
1009 if (sc->age_cdata.age_rx_ring_map != NULL)
1010 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1011 if (sc->age_cdata.age_rx_ring_map != NULL &&
1012 sc->age_rdata.age_rx_ring != NULL)
1013 bus_dmamem_free(sc->sc_dmat,
1014 &sc->age_rdata.age_rx_ring_seg, 1);
1015 sc->age_rdata.age_rx_ring = NULL;
1016 sc->age_cdata.age_rx_ring_map = NULL;
1017
1018 /* Rx return ring. */
1019 if (sc->age_cdata.age_rr_ring_map != NULL)
1020 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1021 if (sc->age_cdata.age_rr_ring_map != NULL &&
1022 sc->age_rdata.age_rr_ring != NULL)
1023 bus_dmamem_free(sc->sc_dmat,
1024 &sc->age_rdata.age_rr_ring_seg, 1);
1025 sc->age_rdata.age_rr_ring = NULL;
1026 sc->age_cdata.age_rr_ring_map = NULL;
1027
1028 /* CMB block */
1029 if (sc->age_cdata.age_cmb_block_map != NULL)
1030 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1031 if (sc->age_cdata.age_cmb_block_map != NULL &&
1032 sc->age_rdata.age_cmb_block != NULL)
1033 bus_dmamem_free(sc->sc_dmat,
1034 &sc->age_rdata.age_cmb_block_seg, 1);
1035 sc->age_rdata.age_cmb_block = NULL;
1036 sc->age_cdata.age_cmb_block_map = NULL;
1037
1038 /* SMB block */
1039 if (sc->age_cdata.age_smb_block_map != NULL)
1040 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1041 if (sc->age_cdata.age_smb_block_map != NULL &&
1042 sc->age_rdata.age_smb_block != NULL)
1043 bus_dmamem_free(sc->sc_dmat,
1044 &sc->age_rdata.age_smb_block_seg, 1);
1045 sc->age_rdata.age_smb_block = NULL;
1046 sc->age_cdata.age_smb_block_map = NULL;
1047 }
1048
1049 static void
1050 age_start(struct ifnet *ifp)
1051 {
1052 struct age_softc *sc = ifp->if_softc;
1053 struct mbuf *m_head;
1054 int enq;
1055
1056 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1057 return;
1058
1059 enq = 0;
1060 for (;;) {
1061 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 if (m_head == NULL)
1063 break;
1064
1065 /*
1066 * Pack the data into the transmit ring. If we
1067 * don't have room, set the OACTIVE flag and wait
1068 * for the NIC to drain the ring.
1069 */
1070 if (age_encap(sc, &m_head)) {
1071 if (m_head == NULL)
1072 break;
1073 ifp->if_flags |= IFF_OACTIVE;
1074 break;
1075 }
1076 enq = 1;
1077
1078 #if NBPFILTER > 0
1079 /*
1080 * If there's a BPF listener, bounce a copy of this frame
1081 * to him.
1082 */
1083 if (ifp->if_bpf != NULL)
1084 bpf_mtap(ifp->if_bpf, m_head);
1085 #endif
1086 }
1087
1088 if (enq) {
1089 /* Update mbox. */
1090 AGE_COMMIT_MBOX(sc);
1091 /* Set a timeout in case the chip goes out to lunch. */
1092 ifp->if_timer = AGE_TX_TIMEOUT;
1093 }
1094 }
1095
1096 static void
1097 age_watchdog(struct ifnet *ifp)
1098 {
1099 struct age_softc *sc = ifp->if_softc;
1100
1101 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1102 printf("%s: watchdog timeout (missed link)\n",
1103 device_xname(sc->sc_dev));
1104 ifp->if_oerrors++;
1105 age_init(ifp);
1106 return;
1107 }
1108
1109 if (sc->age_cdata.age_tx_cnt == 0) {
1110 printf("%s: watchdog timeout (missed Tx interrupts) "
1111 "-- recovering\n", device_xname(sc->sc_dev));
1112 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1113 age_start(ifp);
1114 return;
1115 }
1116
1117 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1118 ifp->if_oerrors++;
1119 age_init(ifp);
1120
1121 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1122 age_start(ifp);
1123 }
1124
1125 static int
1126 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1127 {
1128 struct age_softc *sc = ifp->if_softc;
1129 int s, error;
1130
1131 s = splnet();
1132
1133 error = ether_ioctl(ifp, cmd, data);
1134 if (error == ENETRESET) {
1135 if (ifp->if_flags & IFF_RUNNING)
1136 age_rxfilter(sc);
1137 error = 0;
1138 }
1139
1140 splx(s);
1141 return error;
1142 }
1143
1144 static void
1145 age_mac_config(struct age_softc *sc)
1146 {
1147 struct mii_data *mii;
1148 uint32_t reg;
1149
1150 mii = &sc->sc_miibus;
1151
1152 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1153 reg &= ~MAC_CFG_FULL_DUPLEX;
1154 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1155 reg &= ~MAC_CFG_SPEED_MASK;
1156
1157 /* Reprogram MAC with resolved speed/duplex. */
1158 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1159 case IFM_10_T:
1160 case IFM_100_TX:
1161 reg |= MAC_CFG_SPEED_10_100;
1162 break;
1163 case IFM_1000_T:
1164 reg |= MAC_CFG_SPEED_1000;
1165 break;
1166 }
1167 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1168 reg |= MAC_CFG_FULL_DUPLEX;
1169 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1170 reg |= MAC_CFG_TX_FC;
1171 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1172 reg |= MAC_CFG_RX_FC;
1173 }
1174
1175 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1176 }
1177
1178 static bool
1179 age_resume(device_t dv PMF_FN_ARGS)
1180 {
1181 struct age_softc *sc = device_private(dv);
1182 uint16_t cmd;
1183
1184 /*
1185 * Clear INTx emulation disable for hardware that
1186 * is set in resume event. From Linux.
1187 */
1188 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1189 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1190 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1191 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1192 PCI_COMMAND_STATUS_REG, cmd);
1193 }
1194
1195 return true;
1196 }
1197
1198 static int
1199 age_encap(struct age_softc *sc, struct mbuf **m_head)
1200 {
1201 struct age_txdesc *txd, *txd_last;
1202 struct tx_desc *desc;
1203 struct mbuf *m;
1204 bus_dmamap_t map;
1205 uint32_t cflags, poff, vtag;
1206 int error, i, nsegs, prod;
1207 #if NVLAN > 0
1208 struct m_tag *mtag;
1209 #endif
1210
1211 m = *m_head;
1212 cflags = vtag = 0;
1213 poff = 0;
1214
1215 prod = sc->age_cdata.age_tx_prod;
1216 txd = &sc->age_cdata.age_txdesc[prod];
1217 txd_last = txd;
1218 map = txd->tx_dmamap;
1219
1220 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1221
1222 if (error == EFBIG) {
1223 error = 0;
1224
1225 MGETHDR(m, M_DONTWAIT, MT_DATA);
1226 if (m == NULL) {
1227 printf("%s: can't defrag TX mbuf\n",
1228 device_xname(sc->sc_dev));
1229 m_freem(*m_head);
1230 *m_head = NULL;
1231 return ENOBUFS;
1232 }
1233
1234 M_COPY_PKTHDR(m, *m_head);
1235 if ((*m_head)->m_pkthdr.len > MHLEN) {
1236 MCLGET(m, M_DONTWAIT);
1237 if (!(m->m_flags & M_EXT)) {
1238 m_freem(*m_head);
1239 m_freem(m);
1240 *m_head = NULL;
1241 return ENOBUFS;
1242 }
1243 }
1244 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1245 mtod(m, void *));
1246 m_freem(*m_head);
1247 m->m_len = m->m_pkthdr.len;
1248 *m_head = m;
1249
1250 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1251 BUS_DMA_NOWAIT);
1252
1253 if (error != 0) {
1254 printf("%s: could not load defragged TX mbuf\n",
1255 device_xname(sc->sc_dev));
1256 if (!error) {
1257 bus_dmamap_unload(sc->sc_dmat, map);
1258 error = EFBIG;
1259 }
1260 m_freem(*m_head);
1261 *m_head = NULL;
1262 return error;
1263 }
1264 } else if (error) {
1265 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1266 return error;
1267 }
1268
1269 nsegs = map->dm_nsegs;
1270
1271 if (nsegs == 0) {
1272 m_freem(*m_head);
1273 *m_head = NULL;
1274 return EIO;
1275 }
1276
1277 /* Check descriptor overrun. */
1278 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1279 bus_dmamap_unload(sc->sc_dmat, map);
1280 return ENOBUFS;
1281 }
1282
1283 m = *m_head;
1284 /* Configure Tx IP/TCP/UDP checksum offload. */
1285 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1286 cflags |= AGE_TD_CSUM;
1287 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1288 cflags |= AGE_TD_TCPCSUM;
1289 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1290 cflags |= AGE_TD_UDPCSUM;
1291 /* Set checksum start offset. */
1292 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1293 }
1294
1295 #if NVLAN > 0
1296 /* Configure VLAN hardware tag insertion. */
1297 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1298 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1299 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1300 cflags |= AGE_TD_INSERT_VLAN_TAG;
1301 }
1302 #endif
1303
1304 desc = NULL;
1305 for (i = 0; i < nsegs; i++) {
1306 desc = &sc->age_rdata.age_tx_ring[prod];
1307 desc->addr = htole64(map->dm_segs[i].ds_addr);
1308 desc->len =
1309 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1310 desc->flags = htole32(cflags);
1311 sc->age_cdata.age_tx_cnt++;
1312 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1313 }
1314
1315 /* Update producer index. */
1316 sc->age_cdata.age_tx_prod = prod;
1317
1318 /* Set EOP on the last descriptor. */
1319 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1320 desc = &sc->age_rdata.age_tx_ring[prod];
1321 desc->flags |= htole32(AGE_TD_EOP);
1322
1323 /* Swap dmamap of the first and the last. */
1324 txd = &sc->age_cdata.age_txdesc[prod];
1325 map = txd_last->tx_dmamap;
1326 txd_last->tx_dmamap = txd->tx_dmamap;
1327 txd->tx_dmamap = map;
1328 txd->tx_m = m;
1329
1330 /* Sync descriptors. */
1331 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1332 BUS_DMASYNC_PREWRITE);
1333 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1334 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1335
1336 return 0;
1337 }
1338
1339 static void
1340 age_txintr(struct age_softc *sc, int tpd_cons)
1341 {
1342 struct ifnet *ifp = &sc->sc_ec.ec_if;
1343 struct age_txdesc *txd;
1344 int cons, prog;
1345
1346 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1347 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348
1349 /*
1350 * Go through our Tx list and free mbufs for those
1351 * frames which have been transmitted.
1352 */
1353 cons = sc->age_cdata.age_tx_cons;
1354 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1355 if (sc->age_cdata.age_tx_cnt <= 0)
1356 break;
1357 prog++;
1358 ifp->if_flags &= ~IFF_OACTIVE;
1359 sc->age_cdata.age_tx_cnt--;
1360 txd = &sc->age_cdata.age_txdesc[cons];
1361 /*
1362 * Clear Tx descriptors, it's not required but would
1363 * help debugging in case of Tx issues.
1364 */
1365 txd->tx_desc->addr = 0;
1366 txd->tx_desc->len = 0;
1367 txd->tx_desc->flags = 0;
1368
1369 if (txd->tx_m == NULL)
1370 continue;
1371 /* Reclaim transmitted mbufs. */
1372 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1373 m_freem(txd->tx_m);
1374 txd->tx_m = NULL;
1375 }
1376
1377 if (prog > 0) {
1378 sc->age_cdata.age_tx_cons = cons;
1379
1380 /*
1381 * Unarm watchdog timer only when there are no pending
1382 * Tx descriptors in queue.
1383 */
1384 if (sc->age_cdata.age_tx_cnt == 0)
1385 ifp->if_timer = 0;
1386
1387 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1388 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1389 BUS_DMASYNC_PREWRITE);
1390 }
1391 }
1392
1393 /* Receive a frame. */
1394 static void
1395 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1396 {
1397 struct ifnet *ifp = &sc->sc_ec.ec_if;
1398 struct age_rxdesc *rxd;
1399 struct rx_desc *desc;
1400 struct mbuf *mp, *m;
1401 uint32_t status, index;
1402 int count, nsegs, pktlen;
1403 int rx_cons;
1404
1405 status = le32toh(rxrd->flags);
1406 index = le32toh(rxrd->index);
1407 rx_cons = AGE_RX_CONS(index);
1408 nsegs = AGE_RX_NSEGS(index);
1409
1410 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1411 if ((status & AGE_RRD_ERROR) != 0 &&
1412 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1413 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1414 /*
1415 * We want to pass the following frames to upper
1416 * layer regardless of error status of Rx return
1417 * ring.
1418 *
1419 * o IP/TCP/UDP checksum is bad.
1420 * o frame length and protocol specific length
1421 * does not match.
1422 */
1423 sc->age_cdata.age_rx_cons += nsegs;
1424 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1425 return;
1426 }
1427
1428 pktlen = 0;
1429 for (count = 0; count < nsegs; count++,
1430 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1431 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1432 mp = rxd->rx_m;
1433 desc = rxd->rx_desc;
1434 /* Add a new receive buffer to the ring. */
1435 if (age_newbuf(sc, rxd, 0) != 0) {
1436 ifp->if_iqdrops++;
1437 /* Reuse Rx buffers. */
1438 if (sc->age_cdata.age_rxhead != NULL) {
1439 m_freem(sc->age_cdata.age_rxhead);
1440 AGE_RXCHAIN_RESET(sc);
1441 }
1442 break;
1443 }
1444
1445 /* The length of the first mbuf is computed last. */
1446 if (count != 0) {
1447 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1448 pktlen += mp->m_len;
1449 }
1450
1451 /* Chain received mbufs. */
1452 if (sc->age_cdata.age_rxhead == NULL) {
1453 sc->age_cdata.age_rxhead = mp;
1454 sc->age_cdata.age_rxtail = mp;
1455 } else {
1456 mp->m_flags &= ~M_PKTHDR;
1457 sc->age_cdata.age_rxprev_tail =
1458 sc->age_cdata.age_rxtail;
1459 sc->age_cdata.age_rxtail->m_next = mp;
1460 sc->age_cdata.age_rxtail = mp;
1461 }
1462
1463 if (count == nsegs - 1) {
1464 /*
1465 * It seems that L1 controller has no way
1466 * to tell hardware to strip CRC bytes.
1467 */
1468 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1469 if (nsegs > 1) {
1470 /* Remove the CRC bytes in chained mbufs. */
1471 pktlen -= ETHER_CRC_LEN;
1472 if (mp->m_len <= ETHER_CRC_LEN) {
1473 sc->age_cdata.age_rxtail =
1474 sc->age_cdata.age_rxprev_tail;
1475 sc->age_cdata.age_rxtail->m_len -=
1476 (ETHER_CRC_LEN - mp->m_len);
1477 sc->age_cdata.age_rxtail->m_next = NULL;
1478 m_freem(mp);
1479 } else {
1480 mp->m_len -= ETHER_CRC_LEN;
1481 }
1482 }
1483
1484 m = sc->age_cdata.age_rxhead;
1485 m->m_flags |= M_PKTHDR;
1486 m->m_pkthdr.rcvif = ifp;
1487 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1488 /* Set the first mbuf length. */
1489 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1490
1491 /*
1492 * Set checksum information.
1493 * It seems that L1 controller can compute partial
1494 * checksum. The partial checksum value can be used
1495 * to accelerate checksum computation for fragmented
1496 * TCP/UDP packets. Upper network stack already
1497 * takes advantage of the partial checksum value in
1498 * IP reassembly stage. But I'm not sure the
1499 * correctness of the partial hardware checksum
1500 * assistance due to lack of data sheet. If it is
1501 * proven to work on L1 I'll enable it.
1502 */
1503 if (status & AGE_RRD_IPV4) {
1504 if (status & AGE_RRD_IPCSUM_NOK)
1505 m->m_pkthdr.csum_flags |=
1506 M_CSUM_IPv4_BAD;
1507 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1508 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1509 m->m_pkthdr.csum_flags |=
1510 M_CSUM_TCP_UDP_BAD;
1511 }
1512 /*
1513 * Don't mark bad checksum for TCP/UDP frames
1514 * as fragmented frames may always have set
1515 * bad checksummed bit of descriptor status.
1516 */
1517 }
1518 #if NVLAN > 0
1519 /* Check for VLAN tagged frames. */
1520 if (status & AGE_RRD_VLAN) {
1521 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1522 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1523 continue);
1524 }
1525 #endif
1526
1527 #if NBPFILTER > 0
1528 if (ifp->if_bpf)
1529 bpf_mtap(ifp->if_bpf, m);
1530 #endif
1531 /* Pass it on. */
1532 ether_input(ifp, m);
1533
1534 /* Reset mbuf chains. */
1535 AGE_RXCHAIN_RESET(sc);
1536 }
1537 }
1538
1539 if (count != nsegs) {
1540 sc->age_cdata.age_rx_cons += nsegs;
1541 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1542 } else
1543 sc->age_cdata.age_rx_cons = rx_cons;
1544 }
1545
1546 static void
1547 age_rxintr(struct age_softc *sc, int rr_prod)
1548 {
1549 struct rx_rdesc *rxrd;
1550 int rr_cons, nsegs, pktlen, prog;
1551
1552 rr_cons = sc->age_cdata.age_rr_cons;
1553 if (rr_cons == rr_prod)
1554 return;
1555
1556 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1557 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1558 BUS_DMASYNC_POSTREAD);
1559
1560 for (prog = 0; rr_cons != rr_prod; prog++) {
1561 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1562 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1563 if (nsegs == 0)
1564 break;
1565 /*
1566 * Check number of segments against received bytes
1567 * Non-matching value would indicate that hardware
1568 * is still trying to update Rx return descriptors.
1569 * I'm not sure whether this check is really needed.
1570 */
1571 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1572 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1573 (MCLBYTES - ETHER_ALIGN)))
1574 break;
1575
1576 /* Received a frame. */
1577 age_rxeof(sc, rxrd);
1578
1579 /* Clear return ring. */
1580 rxrd->index = 0;
1581 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1582 }
1583
1584 if (prog > 0) {
1585 /* Update the consumer index. */
1586 sc->age_cdata.age_rr_cons = rr_cons;
1587
1588 /* Sync descriptors. */
1589 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1590 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1591 BUS_DMASYNC_PREWRITE);
1592
1593 /* Notify hardware availability of new Rx buffers. */
1594 AGE_COMMIT_MBOX(sc);
1595 }
1596 }
1597
1598 static void
1599 age_tick(void *xsc)
1600 {
1601 struct age_softc *sc = xsc;
1602 struct mii_data *mii = &sc->sc_miibus;
1603 int s;
1604
1605 s = splnet();
1606 mii_tick(mii);
1607 splx(s);
1608
1609 callout_schedule(&sc->sc_tick_ch, hz);
1610 }
1611
1612 static void
1613 age_reset(struct age_softc *sc)
1614 {
1615 uint32_t reg;
1616 int i;
1617
1618 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1619 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1620 DELAY(1);
1621 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1622 break;
1623 }
1624 if (i == 0)
1625 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1626
1627 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1628 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1629 break;
1630 DELAY(10);
1631 }
1632
1633 if (i == 0)
1634 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1635 reg);
1636
1637 /* Initialize PCIe module. From Linux. */
1638 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1639 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1640 }
1641
1642 static int
1643 age_init(struct ifnet *ifp)
1644 {
1645 struct age_softc *sc = ifp->if_softc;
1646 struct mii_data *mii;
1647 uint8_t eaddr[ETHER_ADDR_LEN];
1648 bus_addr_t paddr;
1649 uint32_t reg, fsize;
1650 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1651 int error;
1652
1653 /*
1654 * Cancel any pending I/O.
1655 */
1656 age_stop(ifp, 0);
1657
1658 /*
1659 * Reset the chip to a known state.
1660 */
1661 age_reset(sc);
1662
1663 /* Initialize descriptors. */
1664 error = age_init_rx_ring(sc);
1665 if (error != 0) {
1666 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1667 age_stop(ifp, 0);
1668 return error;
1669 }
1670 age_init_rr_ring(sc);
1671 age_init_tx_ring(sc);
1672 age_init_cmb_block(sc);
1673 age_init_smb_block(sc);
1674
1675 /* Reprogram the station address. */
1676 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1677 CSR_WRITE_4(sc, AGE_PAR0,
1678 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1679 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1680
1681 /* Set descriptor base addresses. */
1682 paddr = sc->age_rdata.age_tx_ring_paddr;
1683 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1684 paddr = sc->age_rdata.age_rx_ring_paddr;
1685 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1686 paddr = sc->age_rdata.age_rr_ring_paddr;
1687 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1688 paddr = sc->age_rdata.age_tx_ring_paddr;
1689 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1690 paddr = sc->age_rdata.age_cmb_block_paddr;
1691 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1692 paddr = sc->age_rdata.age_smb_block_paddr;
1693 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1694
1695 /* Set Rx/Rx return descriptor counter. */
1696 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1697 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1698 DESC_RRD_CNT_MASK) |
1699 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1700
1701 /* Set Tx descriptor counter. */
1702 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1703 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1704
1705 /* Tell hardware that we're ready to load descriptors. */
1706 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1707
1708 /*
1709 * Initialize mailbox register.
1710 * Updated producer/consumer index information is exchanged
1711 * through this mailbox register. However Tx producer and
1712 * Rx return consumer/Rx producer are all shared such that
1713 * it's hard to separate code path between Tx and Rx without
1714 * locking. If L1 hardware have a separate mail box register
1715 * for Tx and Rx consumer/producer management we could have
1716 * indepent Tx/Rx handler which in turn Rx handler could have
1717 * been run without any locking.
1718 */
1719 AGE_COMMIT_MBOX(sc);
1720
1721 /* Configure IPG/IFG parameters. */
1722 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1723 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1724 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1725 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1726 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1727
1728 /* Set parameters for half-duplex media. */
1729 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1730 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1731 HDPX_CFG_LCOL_MASK) |
1732 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1733 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1734 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1735 HDPX_CFG_ABEBT_MASK) |
1736 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1737 HDPX_CFG_JAMIPG_MASK));
1738
1739 /* Configure interrupt moderation timer. */
1740 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1741 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1742 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1743 reg &= ~MASTER_MTIMER_ENB;
1744 if (AGE_USECS(sc->age_int_mod) == 0)
1745 reg &= ~MASTER_ITIMER_ENB;
1746 else
1747 reg |= MASTER_ITIMER_ENB;
1748 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1749 if (agedebug)
1750 printf("%s: interrupt moderation is %d us.\n",
1751 device_xname(sc->sc_dev), sc->age_int_mod);
1752 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1753
1754 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1755 if (ifp->if_mtu < ETHERMTU)
1756 sc->age_max_frame_size = ETHERMTU;
1757 else
1758 sc->age_max_frame_size = ifp->if_mtu;
1759 sc->age_max_frame_size += ETHER_HDR_LEN +
1760 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1761 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1762
1763 /* Configure jumbo frame. */
1764 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1765 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1766 (((fsize / sizeof(uint64_t)) <<
1767 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1768 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1769 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1770 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1771 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1772
1773 /* Configure flow-control parameters. From Linux. */
1774 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1775 /*
1776 * Magic workaround for old-L1.
1777 * Don't know which hw revision requires this magic.
1778 */
1779 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1780 /*
1781 * Another magic workaround for flow-control mode
1782 * change. From Linux.
1783 */
1784 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1785 }
1786 /*
1787 * TODO
1788 * Should understand pause parameter relationships between FIFO
1789 * size and number of Rx descriptors and Rx return descriptors.
1790 *
1791 * Magic parameters came from Linux.
1792 */
1793 switch (sc->age_chip_rev) {
1794 case 0x8001:
1795 case 0x9001:
1796 case 0x9002:
1797 case 0x9003:
1798 rxf_hi = AGE_RX_RING_CNT / 16;
1799 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1800 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1801 rrd_lo = AGE_RR_RING_CNT / 16;
1802 break;
1803 default:
1804 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1805 rxf_lo = reg / 16;
1806 if (rxf_lo < 192)
1807 rxf_lo = 192;
1808 rxf_hi = (reg * 7) / 8;
1809 if (rxf_hi < rxf_lo)
1810 rxf_hi = rxf_lo + 16;
1811 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1812 rrd_lo = reg / 8;
1813 rrd_hi = (reg * 7) / 8;
1814 if (rrd_lo < 2)
1815 rrd_lo = 2;
1816 if (rrd_hi < rrd_lo)
1817 rrd_hi = rrd_lo + 3;
1818 break;
1819 }
1820 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1821 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1822 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1823 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1824 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1825 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1826 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1827 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1828 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1829 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1830
1831 /* Configure RxQ. */
1832 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1833 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1834 RXQ_CFG_RD_BURST_MASK) |
1835 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1836 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1837 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1838 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1839 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1840
1841 /* Configure TxQ. */
1842 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1843 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1844 TXQ_CFG_TPD_BURST_MASK) |
1845 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1846 TXQ_CFG_TX_FIFO_BURST_MASK) |
1847 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1848 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1849 TXQ_CFG_ENB);
1850
1851 /* Configure DMA parameters. */
1852 CSR_WRITE_4(sc, AGE_DMA_CFG,
1853 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1854 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1855 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1856
1857 /* Configure CMB DMA write threshold. */
1858 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1859 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1860 CMB_WR_THRESH_RRD_MASK) |
1861 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1862 CMB_WR_THRESH_TPD_MASK));
1863
1864 /* Set CMB/SMB timer and enable them. */
1865 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1866 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1867 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1868
1869 /* Request SMB updates for every seconds. */
1870 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1871 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1872
1873 /*
1874 * Disable all WOL bits as WOL can interfere normal Rx
1875 * operation.
1876 */
1877 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1878
1879 /*
1880 * Configure Tx/Rx MACs.
1881 * - Auto-padding for short frames.
1882 * - Enable CRC generation.
1883 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1884 * of MAC is followed after link establishment.
1885 */
1886 CSR_WRITE_4(sc, AGE_MAC_CFG,
1887 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1888 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1889 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1890 MAC_CFG_PREAMBLE_MASK));
1891
1892 /* Set up the receive filter. */
1893 age_rxfilter(sc);
1894 age_rxvlan(sc);
1895
1896 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1897 reg |= MAC_CFG_RXCSUM_ENB;
1898
1899 /* Ack all pending interrupts and clear it. */
1900 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1901 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1902
1903 /* Finally enable Tx/Rx MAC. */
1904 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1905
1906 sc->age_flags &= ~AGE_FLAG_LINK;
1907
1908 /* Switch to the current media. */
1909 mii = &sc->sc_miibus;
1910 mii_mediachg(mii);
1911
1912 callout_schedule(&sc->sc_tick_ch, hz);
1913
1914 ifp->if_flags |= IFF_RUNNING;
1915 ifp->if_flags &= ~IFF_OACTIVE;
1916
1917 return 0;
1918 }
1919
1920 static void
1921 age_stop(struct ifnet *ifp, int disable)
1922 {
1923 struct age_softc *sc = ifp->if_softc;
1924 struct age_txdesc *txd;
1925 struct age_rxdesc *rxd;
1926 uint32_t reg;
1927 int i;
1928
1929 callout_stop(&sc->sc_tick_ch);
1930
1931 /*
1932 * Mark the interface down and cancel the watchdog timer.
1933 */
1934 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1935 ifp->if_timer = 0;
1936
1937 sc->age_flags &= ~AGE_FLAG_LINK;
1938
1939 mii_down(&sc->sc_miibus);
1940
1941 /*
1942 * Disable interrupts.
1943 */
1944 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1945 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1946
1947 /* Stop CMB/SMB updates. */
1948 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1949
1950 /* Stop Rx/Tx MAC. */
1951 age_stop_rxmac(sc);
1952 age_stop_txmac(sc);
1953
1954 /* Stop DMA. */
1955 CSR_WRITE_4(sc, AGE_DMA_CFG,
1956 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1957
1958 /* Stop TxQ/RxQ. */
1959 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1960 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1961 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1962 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1963 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1964 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1965 break;
1966 DELAY(10);
1967 }
1968 if (i == 0)
1969 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1970 device_xname(sc->sc_dev), reg);
1971
1972 /* Reclaim Rx buffers that have been processed. */
1973 if (sc->age_cdata.age_rxhead != NULL)
1974 m_freem(sc->age_cdata.age_rxhead);
1975 AGE_RXCHAIN_RESET(sc);
1976
1977 /*
1978 * Free RX and TX mbufs still in the queues.
1979 */
1980 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1981 rxd = &sc->age_cdata.age_rxdesc[i];
1982 if (rxd->rx_m != NULL) {
1983 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1984 m_freem(rxd->rx_m);
1985 rxd->rx_m = NULL;
1986 }
1987 }
1988 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1989 txd = &sc->age_cdata.age_txdesc[i];
1990 if (txd->tx_m != NULL) {
1991 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1992 m_freem(txd->tx_m);
1993 txd->tx_m = NULL;
1994 }
1995 }
1996 }
1997
1998 static void
1999 age_stats_update(struct age_softc *sc)
2000 {
2001 struct ifnet *ifp = &sc->sc_ec.ec_if;
2002 struct age_stats *stat;
2003 struct smb *smb;
2004
2005 stat = &sc->age_stat;
2006
2007 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2008 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2009
2010 smb = sc->age_rdata.age_smb_block;
2011 if (smb->updated == 0)
2012 return;
2013
2014 /* Rx stats. */
2015 stat->rx_frames += smb->rx_frames;
2016 stat->rx_bcast_frames += smb->rx_bcast_frames;
2017 stat->rx_mcast_frames += smb->rx_mcast_frames;
2018 stat->rx_pause_frames += smb->rx_pause_frames;
2019 stat->rx_control_frames += smb->rx_control_frames;
2020 stat->rx_crcerrs += smb->rx_crcerrs;
2021 stat->rx_lenerrs += smb->rx_lenerrs;
2022 stat->rx_bytes += smb->rx_bytes;
2023 stat->rx_runts += smb->rx_runts;
2024 stat->rx_fragments += smb->rx_fragments;
2025 stat->rx_pkts_64 += smb->rx_pkts_64;
2026 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2027 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2028 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2029 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2030 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2031 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2032 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2033 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2034 stat->rx_desc_oflows += smb->rx_desc_oflows;
2035 stat->rx_alignerrs += smb->rx_alignerrs;
2036 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2037 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2038 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2039
2040 /* Tx stats. */
2041 stat->tx_frames += smb->tx_frames;
2042 stat->tx_bcast_frames += smb->tx_bcast_frames;
2043 stat->tx_mcast_frames += smb->tx_mcast_frames;
2044 stat->tx_pause_frames += smb->tx_pause_frames;
2045 stat->tx_excess_defer += smb->tx_excess_defer;
2046 stat->tx_control_frames += smb->tx_control_frames;
2047 stat->tx_deferred += smb->tx_deferred;
2048 stat->tx_bytes += smb->tx_bytes;
2049 stat->tx_pkts_64 += smb->tx_pkts_64;
2050 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2051 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2052 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2053 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2054 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2055 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2056 stat->tx_single_colls += smb->tx_single_colls;
2057 stat->tx_multi_colls += smb->tx_multi_colls;
2058 stat->tx_late_colls += smb->tx_late_colls;
2059 stat->tx_excess_colls += smb->tx_excess_colls;
2060 stat->tx_underrun += smb->tx_underrun;
2061 stat->tx_desc_underrun += smb->tx_desc_underrun;
2062 stat->tx_lenerrs += smb->tx_lenerrs;
2063 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2064 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2065 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2066
2067 /* Update counters in ifnet. */
2068 ifp->if_opackets += smb->tx_frames;
2069
2070 ifp->if_collisions += smb->tx_single_colls +
2071 smb->tx_multi_colls + smb->tx_late_colls +
2072 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2073
2074 ifp->if_oerrors += smb->tx_excess_colls +
2075 smb->tx_late_colls + smb->tx_underrun +
2076 smb->tx_pkts_truncated;
2077
2078 ifp->if_ipackets += smb->rx_frames;
2079
2080 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2081 smb->rx_runts + smb->rx_pkts_truncated +
2082 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2083 smb->rx_alignerrs;
2084
2085 /* Update done, clear. */
2086 smb->updated = 0;
2087
2088 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2089 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2090 }
2091
2092 static void
2093 age_stop_txmac(struct age_softc *sc)
2094 {
2095 uint32_t reg;
2096 int i;
2097
2098 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 if ((reg & MAC_CFG_TX_ENB) != 0) {
2100 reg &= ~MAC_CFG_TX_ENB;
2101 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 }
2103 /* Stop Tx DMA engine. */
2104 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 if ((reg & DMA_CFG_RD_ENB) != 0) {
2106 reg &= ~DMA_CFG_RD_ENB;
2107 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 }
2109 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2112 break;
2113 DELAY(10);
2114 }
2115 if (i == 0)
2116 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2117 }
2118
2119 static void
2120 age_stop_rxmac(struct age_softc *sc)
2121 {
2122 uint32_t reg;
2123 int i;
2124
2125 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2126 if ((reg & MAC_CFG_RX_ENB) != 0) {
2127 reg &= ~MAC_CFG_RX_ENB;
2128 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2129 }
2130 /* Stop Rx DMA engine. */
2131 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2132 if ((reg & DMA_CFG_WR_ENB) != 0) {
2133 reg &= ~DMA_CFG_WR_ENB;
2134 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2135 }
2136 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2137 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2138 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2139 break;
2140 DELAY(10);
2141 }
2142 if (i == 0)
2143 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2144 }
2145
2146 static void
2147 age_init_tx_ring(struct age_softc *sc)
2148 {
2149 struct age_ring_data *rd;
2150 struct age_txdesc *txd;
2151 int i;
2152
2153 sc->age_cdata.age_tx_prod = 0;
2154 sc->age_cdata.age_tx_cons = 0;
2155 sc->age_cdata.age_tx_cnt = 0;
2156
2157 rd = &sc->age_rdata;
2158 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2159 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2160 txd = &sc->age_cdata.age_txdesc[i];
2161 txd->tx_desc = &rd->age_tx_ring[i];
2162 txd->tx_m = NULL;
2163 }
2164 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2165 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2166 }
2167
2168 static int
2169 age_init_rx_ring(struct age_softc *sc)
2170 {
2171 struct age_ring_data *rd;
2172 struct age_rxdesc *rxd;
2173 int i;
2174
2175 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2176 rd = &sc->age_rdata;
2177 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2178 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2179 rxd = &sc->age_cdata.age_rxdesc[i];
2180 rxd->rx_m = NULL;
2181 rxd->rx_desc = &rd->age_rx_ring[i];
2182 if (age_newbuf(sc, rxd, 1) != 0)
2183 return ENOBUFS;
2184 }
2185
2186 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2187 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2188
2189 return 0;
2190 }
2191
2192 static void
2193 age_init_rr_ring(struct age_softc *sc)
2194 {
2195 struct age_ring_data *rd;
2196
2197 sc->age_cdata.age_rr_cons = 0;
2198 AGE_RXCHAIN_RESET(sc);
2199
2200 rd = &sc->age_rdata;
2201 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2202 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2203 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2204 }
2205
2206 static void
2207 age_init_cmb_block(struct age_softc *sc)
2208 {
2209 struct age_ring_data *rd;
2210
2211 rd = &sc->age_rdata;
2212 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2213 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2214 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2215 }
2216
2217 static void
2218 age_init_smb_block(struct age_softc *sc)
2219 {
2220 struct age_ring_data *rd;
2221
2222 rd = &sc->age_rdata;
2223 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2224 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2225 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2226 }
2227
2228 static int
2229 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2230 {
2231 struct rx_desc *desc;
2232 struct mbuf *m;
2233 bus_dmamap_t map;
2234 int error;
2235
2236 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2237 if (m == NULL)
2238 return ENOBUFS;
2239 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2240 if (!(m->m_flags & M_EXT)) {
2241 m_freem(m);
2242 return ENOBUFS;
2243 }
2244
2245 m->m_len = m->m_pkthdr.len = MCLBYTES;
2246 m_adj(m, ETHER_ALIGN);
2247
2248 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2249 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2250
2251 if (error != 0) {
2252 if (!error) {
2253 bus_dmamap_unload(sc->sc_dmat,
2254 sc->age_cdata.age_rx_sparemap);
2255 error = EFBIG;
2256 printf("%s: too many segments?!\n",
2257 device_xname(sc->sc_dev));
2258 }
2259 m_freem(m);
2260
2261 if (init)
2262 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2263 return error;
2264 }
2265
2266 if (rxd->rx_m != NULL) {
2267 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2268 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2269 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2270 }
2271 map = rxd->rx_dmamap;
2272 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2273 sc->age_cdata.age_rx_sparemap = map;
2274 rxd->rx_m = m;
2275
2276 desc = rxd->rx_desc;
2277 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2278 desc->len =
2279 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2280 AGE_RD_LEN_SHIFT);
2281
2282 return 0;
2283 }
2284
2285 static void
2286 age_rxvlan(struct age_softc *sc)
2287 {
2288 uint32_t reg;
2289
2290 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2291 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2292 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2293 reg |= MAC_CFG_VLAN_TAG_STRIP;
2294 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2295 }
2296
2297 static void
2298 age_rxfilter(struct age_softc *sc)
2299 {
2300 struct ethercom *ec = &sc->sc_ec;
2301 struct ifnet *ifp = &sc->sc_ec.ec_if;
2302 struct ether_multi *enm;
2303 struct ether_multistep step;
2304 uint32_t crc;
2305 uint32_t mchash[2];
2306 uint32_t rxcfg;
2307
2308 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2309 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2310 ifp->if_flags &= ~IFF_ALLMULTI;
2311
2312 /*
2313 * Always accept broadcast frames.
2314 */
2315 rxcfg |= MAC_CFG_BCAST;
2316
2317 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2318 ifp->if_flags |= IFF_ALLMULTI;
2319 if (ifp->if_flags & IFF_PROMISC)
2320 rxcfg |= MAC_CFG_PROMISC;
2321 else
2322 rxcfg |= MAC_CFG_ALLMULTI;
2323 mchash[0] = mchash[1] = 0xFFFFFFFF;
2324 } else {
2325 /* Program new filter. */
2326 memset(mchash, 0, sizeof(mchash));
2327
2328 ETHER_FIRST_MULTI(step, ec, enm);
2329 while (enm != NULL) {
2330 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2331 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2332 ETHER_NEXT_MULTI(step, enm);
2333 }
2334 }
2335
2336 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2337 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2338 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2339 }
2340