if_age.c revision 1.28.4.3 1 /* $NetBSD: if_age.c,v 1.28.4.3 2009/08/19 18:47:10 yamt Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28.4.3 2009/08/19 18:47:10 yamt Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_dma_alloc(struct age_softc *);
101 static void age_dma_free(struct age_softc *);
102 static void age_get_macaddr(struct age_softc *, uint8_t[]);
103 static void age_phy_reset(struct age_softc *);
104
105 static int age_encap(struct age_softc *, struct mbuf **);
106 static void age_init_tx_ring(struct age_softc *);
107 static int age_init_rx_ring(struct age_softc *);
108 static void age_init_rr_ring(struct age_softc *);
109 static void age_init_cmb_block(struct age_softc *);
110 static void age_init_smb_block(struct age_softc *);
111 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
112 static void age_mac_config(struct age_softc *);
113 static void age_txintr(struct age_softc *, int);
114 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
115 static void age_rxintr(struct age_softc *, int);
116 static void age_tick(void *);
117 static void age_reset(struct age_softc *);
118 static void age_stop(struct ifnet *, int);
119 static void age_stats_update(struct age_softc *);
120 static void age_stop_txmac(struct age_softc *);
121 static void age_stop_rxmac(struct age_softc *);
122 static void age_rxvlan(struct age_softc *sc);
123 static void age_rxfilter(struct age_softc *);
124
125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
126 age_match, age_attach, age_detach, NULL);
127
128 int agedebug = 0;
129 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
130
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
133
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
136 {
137 struct pci_attach_args *pa = aux;
138
139 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 }
142
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
145 {
146 struct age_softc *sc = device_private(self);
147 struct pci_attach_args *pa = aux;
148 pci_intr_handle_t ih;
149 const char *intrstr;
150 struct ifnet *ifp = &sc->sc_ec.ec_if;
151 pcireg_t memtype;
152 int error = 0;
153
154 aprint_naive("\n");
155 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156
157 sc->sc_dev = self;
158 sc->sc_dmat = pa->pa_dmat;
159 sc->sc_pct = pa->pa_pc;
160 sc->sc_pcitag = pa->pa_tag;
161
162 /*
163 * Allocate IO memory
164 */
165 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 switch (memtype) {
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 break;
171 default:
172 aprint_error_dev(self, "invalid base address register\n");
173 break;
174 }
175
176 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 aprint_error_dev(self, "could not map mem space\n");
179 return;
180 }
181
182 if (pci_intr_map(pa, &ih) != 0) {
183 aprint_error_dev(self, "could not map interrupt\n");
184 goto fail;
185 }
186
187 /*
188 * Allocate IRQ
189 */
190 intrstr = pci_intr_string(sc->sc_pct, ih);
191 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 age_intr, sc);
193 if (sc->sc_irq_handle == NULL) {
194 aprint_error_dev(self, "could not establish interrupt");
195 if (intrstr != NULL)
196 aprint_error(" at %s", intrstr);
197 aprint_error("\n");
198 goto fail;
199 }
200 aprint_normal_dev(self, "%s\n", intrstr);
201
202 /* Set PHY address. */
203 sc->age_phyaddr = AGE_PHY_ADDR;
204
205 /* Reset PHY. */
206 age_phy_reset(sc);
207
208 /* Reset the ethernet controller. */
209 age_reset(sc);
210
211 /* Get PCI and chip id/revision. */
212 sc->age_rev = PCI_REVISION(pa->pa_class);
213 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 MASTER_CHIP_REV_SHIFT;
215
216 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218
219 if (agedebug) {
220 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 }
224
225 /* Set max allowable DMA size. */
226 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228
229 /* Allocate DMA stuffs */
230 error = age_dma_alloc(sc);
231 if (error)
232 goto fail;
233
234 callout_init(&sc->sc_tick_ch, 0);
235 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236
237 /* Load station address. */
238 age_get_macaddr(sc, sc->sc_enaddr);
239
240 aprint_normal_dev(self, "Ethernet address %s\n",
241 ether_sprintf(sc->sc_enaddr));
242
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = age_init;
246 ifp->if_ioctl = age_ioctl;
247 ifp->if_start = age_start;
248 ifp->if_stop = age_stop;
249 ifp->if_watchdog = age_watchdog;
250 ifp->if_baudrate = IF_Gbps(1);
251 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 IFQ_SET_READY(&ifp->if_snd);
253 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254
255 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256
257 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
258 IFCAP_CSUM_TCPv4_Rx |
259 IFCAP_CSUM_UDPv4_Rx;
260 #ifdef AGE_CHECKSUM
261 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
262 IFCAP_CSUM_TCPv4_Tx |
263 IFCAP_CSUM_UDPv4_Tx;
264 #endif
265
266 #if NVLAN > 0
267 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
268 #endif
269
270 /* Set up MII bus. */
271 sc->sc_miibus.mii_ifp = ifp;
272 sc->sc_miibus.mii_readreg = age_miibus_readreg;
273 sc->sc_miibus.mii_writereg = age_miibus_writereg;
274 sc->sc_miibus.mii_statchg = age_miibus_statchg;
275
276 sc->sc_ec.ec_mii = &sc->sc_miibus;
277 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
278 age_mediastatus);
279 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
280 MII_OFFSET_ANY, MIIF_DOPAUSE);
281
282 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
283 aprint_error_dev(self, "no PHY found!\n");
284 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
285 0, NULL);
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
287 } else
288 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
289
290 if_attach(ifp);
291 ether_ifattach(ifp, sc->sc_enaddr);
292
293 if (!pmf_device_register(self, NULL, age_resume))
294 aprint_error_dev(self, "couldn't establish power handler\n");
295 else
296 pmf_class_network_register(self, ifp);
297
298 return;
299
300 fail:
301 age_dma_free(sc);
302 if (sc->sc_irq_handle != NULL) {
303 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 sc->sc_irq_handle = NULL;
305 }
306 if (sc->sc_mem_size) {
307 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 sc->sc_mem_size = 0;
309 }
310 }
311
312 static int
313 age_detach(device_t self, int flags)
314 {
315 struct age_softc *sc = device_private(self);
316 struct ifnet *ifp = &sc->sc_ec.ec_if;
317 int s;
318
319 pmf_device_deregister(self);
320 s = splnet();
321 age_stop(ifp, 0);
322 splx(s);
323
324 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
325
326 /* Delete all remaining media. */
327 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331 age_dma_free(sc);
332
333 if (sc->sc_irq_handle != NULL) {
334 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 sc->sc_irq_handle = NULL;
336 }
337 if (sc->sc_mem_size) {
338 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
339 sc->sc_mem_size = 0;
340 }
341 return 0;
342 }
343
344 /*
345 * Read a PHY register on the MII of the L1.
346 */
347 static int
348 age_miibus_readreg(device_t dev, int phy, int reg)
349 {
350 struct age_softc *sc = device_private(dev);
351 uint32_t v;
352 int i;
353
354 if (phy != sc->age_phyaddr)
355 return 0;
356
357 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
358 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
359 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
360 DELAY(1);
361 v = CSR_READ_4(sc, AGE_MDIO);
362 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
363 break;
364 }
365
366 if (i == 0) {
367 printf("%s: phy read timeout: phy %d, reg %d\n",
368 device_xname(sc->sc_dev), phy, reg);
369 return 0;
370 }
371
372 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
373 }
374
375 /*
376 * Write a PHY register on the MII of the L1.
377 */
378 static void
379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
380 {
381 struct age_softc *sc = device_private(dev);
382 uint32_t v;
383 int i;
384
385 if (phy != sc->age_phyaddr)
386 return;
387
388 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
389 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
390 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
391
392 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
393 DELAY(1);
394 v = CSR_READ_4(sc, AGE_MDIO);
395 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
396 break;
397 }
398
399 if (i == 0) {
400 printf("%s: phy write timeout: phy %d, reg %d\n",
401 device_xname(sc->sc_dev), phy, reg);
402 }
403 }
404
405 /*
406 * Callback from MII layer when media changes.
407 */
408 static void
409 age_miibus_statchg(device_t dev)
410 {
411 struct age_softc *sc = device_private(dev);
412 struct ifnet *ifp = &sc->sc_ec.ec_if;
413 struct mii_data *mii;
414
415 if ((ifp->if_flags & IFF_RUNNING) == 0)
416 return;
417
418 mii = &sc->sc_miibus;
419
420 sc->age_flags &= ~AGE_FLAG_LINK;
421 if ((mii->mii_media_status & IFM_AVALID) != 0) {
422 switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 case IFM_10_T:
424 case IFM_100_TX:
425 case IFM_1000_T:
426 sc->age_flags |= AGE_FLAG_LINK;
427 break;
428 default:
429 break;
430 }
431 }
432
433 /* Stop Rx/Tx MACs. */
434 age_stop_rxmac(sc);
435 age_stop_txmac(sc);
436
437 /* Program MACs with resolved speed/duplex/flow-control. */
438 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
439 uint32_t reg;
440
441 age_mac_config(sc);
442 reg = CSR_READ_4(sc, AGE_MAC_CFG);
443 /* Restart DMA engine and Tx/Rx MAC. */
444 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
445 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
446 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
447 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
448 }
449 }
450
451 /*
452 * Get the current interface media status.
453 */
454 static void
455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
456 {
457 struct age_softc *sc = ifp->if_softc;
458 struct mii_data *mii = &sc->sc_miibus;
459
460 mii_pollstat(mii);
461 ifmr->ifm_status = mii->mii_media_status;
462 ifmr->ifm_active = mii->mii_media_active;
463 }
464
465 /*
466 * Set hardware to newly-selected media.
467 */
468 static int
469 age_mediachange(struct ifnet *ifp)
470 {
471 struct age_softc *sc = ifp->if_softc;
472 struct mii_data *mii = &sc->sc_miibus;
473 int error;
474
475 if (mii->mii_instance != 0) {
476 struct mii_softc *miisc;
477
478 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
479 mii_phy_reset(miisc);
480 }
481 error = mii_mediachg(mii);
482
483 return error;
484 }
485
486 static int
487 age_intr(void *arg)
488 {
489 struct age_softc *sc = arg;
490 struct ifnet *ifp = &sc->sc_ec.ec_if;
491 struct cmb *cmb;
492 uint32_t status;
493
494 status = CSR_READ_4(sc, AGE_INTR_STATUS);
495 if (status == 0 || (status & AGE_INTRS) == 0)
496 return 0;
497
498 cmb = sc->age_rdata.age_cmb_block;
499 if (cmb == NULL) {
500 /* Happens when bringing up the interface
501 * w/o having a carrier. Ack. the interrupt.
502 */
503 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
504 return 0;
505 }
506
507 /* Disable interrupts. */
508 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
509
510 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
511 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
512 status = le32toh(cmb->intr_status);
513 if ((status & AGE_INTRS) == 0)
514 goto back;
515
516 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 TPD_CONS_SHIFT;
518 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 RRD_PROD_SHIFT;
520
521 /* Let hardware know CMB was served. */
522 cmb->intr_status = 0;
523 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 BUS_DMASYNC_PREWRITE);
526
527 if (ifp->if_flags & IFF_RUNNING) {
528 if (status & INTR_CMB_RX)
529 age_rxintr(sc, sc->age_rr_prod);
530
531 if (status & INTR_CMB_TX)
532 age_txintr(sc, sc->age_tpd_cons);
533
534 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 if (status & INTR_DMA_RD_TO_RST)
536 printf("%s: DMA read error! -- resetting\n",
537 device_xname(sc->sc_dev));
538 if (status & INTR_DMA_WR_TO_RST)
539 printf("%s: DMA write error! -- resetting\n",
540 device_xname(sc->sc_dev));
541 age_init(ifp);
542 }
543
544 if (!IFQ_IS_EMPTY(&ifp->if_snd))
545 age_start(ifp);
546
547 if (status & INTR_SMB)
548 age_stats_update(sc);
549 }
550
551 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
552 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 BUS_DMASYNC_POSTREAD);
555
556 back:
557 /* Re-enable interrupts. */
558 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
559
560 return 1;
561 }
562
563 static void
564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
565 {
566 uint32_t ea[2], reg;
567 int i, vpdc;
568
569 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
570 if ((reg & SPI_VPD_ENB) != 0) {
571 /* Get VPD stored in TWSI EEPROM. */
572 reg &= ~SPI_VPD_ENB;
573 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
574 }
575
576 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
577 PCI_CAP_VPD, &vpdc, NULL)) {
578 /*
579 * PCI VPD capability found, let TWSI reload EEPROM.
580 * This will set Ethernet address of controller.
581 */
582 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
583 TWSI_CTRL_SW_LD_START);
584 for (i = 100; i > 0; i++) {
585 DELAY(1000);
586 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
587 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
588 break;
589 }
590 if (i == 0)
591 printf("%s: reloading EEPROM timeout!\n",
592 device_xname(sc->sc_dev));
593 } else {
594 if (agedebug)
595 printf("%s: PCI VPD capability not found!\n",
596 device_xname(sc->sc_dev));
597 }
598
599 ea[0] = CSR_READ_4(sc, AGE_PAR0);
600 ea[1] = CSR_READ_4(sc, AGE_PAR1);
601
602 eaddr[0] = (ea[1] >> 8) & 0xFF;
603 eaddr[1] = (ea[1] >> 0) & 0xFF;
604 eaddr[2] = (ea[0] >> 24) & 0xFF;
605 eaddr[3] = (ea[0] >> 16) & 0xFF;
606 eaddr[4] = (ea[0] >> 8) & 0xFF;
607 eaddr[5] = (ea[0] >> 0) & 0xFF;
608 }
609
610 static void
611 age_phy_reset(struct age_softc *sc)
612 {
613 uint16_t reg, pn;
614 int i, linkup;
615
616 /* Reset PHY. */
617 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
618 DELAY(2000);
619 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
620 DELAY(2000);
621
622 #define ATPHY_DBG_ADDR 0x1D
623 #define ATPHY_DBG_DATA 0x1E
624 #define ATPHY_CDTC 0x16
625 #define PHY_CDTC_ENB 0x0001
626 #define PHY_CDTC_POFF 8
627 #define ATPHY_CDTS 0x1C
628 #define PHY_CDTS_STAT_OK 0x0000
629 #define PHY_CDTS_STAT_SHORT 0x0100
630 #define PHY_CDTS_STAT_OPEN 0x0200
631 #define PHY_CDTS_STAT_INVAL 0x0300
632 #define PHY_CDTS_STAT_MASK 0x0300
633
634 /* Check power saving mode. Magic from Linux. */
635 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
636 for (linkup = 0, pn = 0; pn < 4; pn++) {
637 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
638 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
639 for (i = 200; i > 0; i--) {
640 DELAY(1000);
641 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
642 ATPHY_CDTC);
643 if ((reg & PHY_CDTC_ENB) == 0)
644 break;
645 }
646 DELAY(1000);
647 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
648 ATPHY_CDTS);
649 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
650 linkup++;
651 break;
652 }
653 }
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
655 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
656 if (linkup == 0) {
657 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 ATPHY_DBG_ADDR, 0);
659 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 ATPHY_DBG_DATA, 0x124E);
661 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 ATPHY_DBG_ADDR, 1);
663 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
664 ATPHY_DBG_DATA);
665 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
666 ATPHY_DBG_DATA, reg | 0x03);
667 /* XXX */
668 DELAY(1500 * 1000);
669 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 ATPHY_DBG_ADDR, 0);
671 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
672 ATPHY_DBG_DATA, 0x024E);
673 }
674
675 #undef ATPHY_DBG_ADDR
676 #undef ATPHY_DBG_DATA
677 #undef ATPHY_CDTC
678 #undef PHY_CDTC_ENB
679 #undef PHY_CDTC_POFF
680 #undef ATPHY_CDTS
681 #undef PHY_CDTS_STAT_OK
682 #undef PHY_CDTS_STAT_SHORT
683 #undef PHY_CDTS_STAT_OPEN
684 #undef PHY_CDTS_STAT_INVAL
685 #undef PHY_CDTS_STAT_MASK
686 }
687
688 static int
689 age_dma_alloc(struct age_softc *sc)
690 {
691 struct age_txdesc *txd;
692 struct age_rxdesc *rxd;
693 int nsegs, error, i;
694
695 /*
696 * Create DMA stuffs for TX ring
697 */
698 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
699 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
700 if (error) {
701 sc->age_cdata.age_tx_ring_map = NULL;
702 return ENOBUFS;
703 }
704
705 /* Allocate DMA'able memory for TX ring */
706 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
707 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
708 &nsegs, BUS_DMA_WAITOK);
709 if (error) {
710 printf("%s: could not allocate DMA'able memory for Tx ring, "
711 "error = %i\n", device_xname(sc->sc_dev), error);
712 return error;
713 }
714
715 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
716 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
717 BUS_DMA_NOWAIT);
718 if (error)
719 return ENOBUFS;
720
721 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
722
723 /* Load the DMA map for Tx ring. */
724 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
725 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
726 if (error) {
727 printf("%s: could not load DMA'able memory for Tx ring, "
728 "error = %i\n", device_xname(sc->sc_dev), error);
729 bus_dmamem_free(sc->sc_dmat,
730 &sc->age_rdata.age_tx_ring_seg, 1);
731 return error;
732 }
733
734 sc->age_rdata.age_tx_ring_paddr =
735 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
736
737 /*
738 * Create DMA stuffs for RX ring
739 */
740 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
741 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
742 if (error) {
743 sc->age_cdata.age_rx_ring_map = NULL;
744 return ENOBUFS;
745 }
746
747 /* Allocate DMA'able memory for RX ring */
748 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 &nsegs, BUS_DMA_WAITOK);
751 if (error) {
752 printf("%s: could not allocate DMA'able memory for Rx ring, "
753 "error = %i.\n", device_xname(sc->sc_dev), error);
754 return error;
755 }
756
757 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 BUS_DMA_NOWAIT);
760 if (error)
761 return ENOBUFS;
762
763 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
764
765 /* Load the DMA map for Rx ring. */
766 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 if (error) {
769 printf("%s: could not load DMA'able memory for Rx ring, "
770 "error = %i.\n", device_xname(sc->sc_dev), error);
771 bus_dmamem_free(sc->sc_dmat,
772 &sc->age_rdata.age_rx_ring_seg, 1);
773 return error;
774 }
775
776 sc->age_rdata.age_rx_ring_paddr =
777 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
778
779 /*
780 * Create DMA stuffs for RX return ring
781 */
782 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 if (error) {
785 sc->age_cdata.age_rr_ring_map = NULL;
786 return ENOBUFS;
787 }
788
789 /* Allocate DMA'able memory for RX return ring */
790 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
791 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
792 &nsegs, BUS_DMA_WAITOK);
793 if (error) {
794 printf("%s: could not allocate DMA'able memory for Rx "
795 "return ring, error = %i.\n",
796 device_xname(sc->sc_dev), error);
797 return error;
798 }
799
800 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
801 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
802 BUS_DMA_NOWAIT);
803 if (error)
804 return ENOBUFS;
805
806 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
807
808 /* Load the DMA map for Rx return ring. */
809 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
810 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not load DMA'able memory for Rx return ring, "
813 "error = %i\n", device_xname(sc->sc_dev), error);
814 bus_dmamem_free(sc->sc_dmat,
815 &sc->age_rdata.age_rr_ring_seg, 1);
816 return error;
817 }
818
819 sc->age_rdata.age_rr_ring_paddr =
820 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
821
822 /*
823 * Create DMA stuffs for CMB block
824 */
825 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
826 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
827 &sc->age_cdata.age_cmb_block_map);
828 if (error) {
829 sc->age_cdata.age_cmb_block_map = NULL;
830 return ENOBUFS;
831 }
832
833 /* Allocate DMA'able memory for CMB block */
834 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
835 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
836 &nsegs, BUS_DMA_WAITOK);
837 if (error) {
838 printf("%s: could not allocate DMA'able memory for "
839 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
840 return error;
841 }
842
843 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
844 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
845 BUS_DMA_NOWAIT);
846 if (error)
847 return ENOBUFS;
848
849 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
850
851 /* Load the DMA map for CMB block. */
852 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
853 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
854 BUS_DMA_WAITOK);
855 if (error) {
856 printf("%s: could not load DMA'able memory for CMB block, "
857 "error = %i\n", device_xname(sc->sc_dev), error);
858 bus_dmamem_free(sc->sc_dmat,
859 &sc->age_rdata.age_cmb_block_seg, 1);
860 return error;
861 }
862
863 sc->age_rdata.age_cmb_block_paddr =
864 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
865
866 /*
867 * Create DMA stuffs for SMB block
868 */
869 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
870 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
871 &sc->age_cdata.age_smb_block_map);
872 if (error) {
873 sc->age_cdata.age_smb_block_map = NULL;
874 return ENOBUFS;
875 }
876
877 /* Allocate DMA'able memory for SMB block */
878 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
879 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
880 &nsegs, BUS_DMA_WAITOK);
881 if (error) {
882 printf("%s: could not allocate DMA'able memory for "
883 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
884 return error;
885 }
886
887 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
888 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
889 BUS_DMA_NOWAIT);
890 if (error)
891 return ENOBUFS;
892
893 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
894
895 /* Load the DMA map for SMB block */
896 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
897 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
898 BUS_DMA_WAITOK);
899 if (error) {
900 printf("%s: could not load DMA'able memory for SMB block, "
901 "error = %i\n", device_xname(sc->sc_dev), error);
902 bus_dmamem_free(sc->sc_dmat,
903 &sc->age_rdata.age_smb_block_seg, 1);
904 return error;
905 }
906
907 sc->age_rdata.age_smb_block_paddr =
908 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
909
910 /* Create DMA maps for Tx buffers. */
911 for (i = 0; i < AGE_TX_RING_CNT; i++) {
912 txd = &sc->age_cdata.age_txdesc[i];
913 txd->tx_m = NULL;
914 txd->tx_dmamap = NULL;
915 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
916 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
917 &txd->tx_dmamap);
918 if (error) {
919 txd->tx_dmamap = NULL;
920 printf("%s: could not create Tx dmamap, error = %i.\n",
921 device_xname(sc->sc_dev), error);
922 return error;
923 }
924 }
925
926 /* Create DMA maps for Rx buffers. */
927 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
928 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
929 if (error) {
930 sc->age_cdata.age_rx_sparemap = NULL;
931 printf("%s: could not create spare Rx dmamap, error = %i.\n",
932 device_xname(sc->sc_dev), error);
933 return error;
934 }
935 for (i = 0; i < AGE_RX_RING_CNT; i++) {
936 rxd = &sc->age_cdata.age_rxdesc[i];
937 rxd->rx_m = NULL;
938 rxd->rx_dmamap = NULL;
939 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
940 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
941 if (error) {
942 rxd->rx_dmamap = NULL;
943 printf("%s: could not create Rx dmamap, error = %i.\n",
944 device_xname(sc->sc_dev), error);
945 return error;
946 }
947 }
948
949 return 0;
950 }
951
952 static void
953 age_dma_free(struct age_softc *sc)
954 {
955 struct age_txdesc *txd;
956 struct age_rxdesc *rxd;
957 int i;
958
959 /* Tx buffers */
960 for (i = 0; i < AGE_TX_RING_CNT; i++) {
961 txd = &sc->age_cdata.age_txdesc[i];
962 if (txd->tx_dmamap != NULL) {
963 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
964 txd->tx_dmamap = NULL;
965 }
966 }
967 /* Rx buffers */
968 for (i = 0; i < AGE_RX_RING_CNT; i++) {
969 rxd = &sc->age_cdata.age_rxdesc[i];
970 if (rxd->rx_dmamap != NULL) {
971 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
972 rxd->rx_dmamap = NULL;
973 }
974 }
975 if (sc->age_cdata.age_rx_sparemap != NULL) {
976 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
977 sc->age_cdata.age_rx_sparemap = NULL;
978 }
979
980 /* Tx ring. */
981 if (sc->age_cdata.age_tx_ring_map != NULL)
982 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
983 if (sc->age_cdata.age_tx_ring_map != NULL &&
984 sc->age_rdata.age_tx_ring != NULL)
985 bus_dmamem_free(sc->sc_dmat,
986 &sc->age_rdata.age_tx_ring_seg, 1);
987 sc->age_rdata.age_tx_ring = NULL;
988 sc->age_cdata.age_tx_ring_map = NULL;
989
990 /* Rx ring. */
991 if (sc->age_cdata.age_rx_ring_map != NULL)
992 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
993 if (sc->age_cdata.age_rx_ring_map != NULL &&
994 sc->age_rdata.age_rx_ring != NULL)
995 bus_dmamem_free(sc->sc_dmat,
996 &sc->age_rdata.age_rx_ring_seg, 1);
997 sc->age_rdata.age_rx_ring = NULL;
998 sc->age_cdata.age_rx_ring_map = NULL;
999
1000 /* Rx return ring. */
1001 if (sc->age_cdata.age_rr_ring_map != NULL)
1002 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1003 if (sc->age_cdata.age_rr_ring_map != NULL &&
1004 sc->age_rdata.age_rr_ring != NULL)
1005 bus_dmamem_free(sc->sc_dmat,
1006 &sc->age_rdata.age_rr_ring_seg, 1);
1007 sc->age_rdata.age_rr_ring = NULL;
1008 sc->age_cdata.age_rr_ring_map = NULL;
1009
1010 /* CMB block */
1011 if (sc->age_cdata.age_cmb_block_map != NULL)
1012 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1013 if (sc->age_cdata.age_cmb_block_map != NULL &&
1014 sc->age_rdata.age_cmb_block != NULL)
1015 bus_dmamem_free(sc->sc_dmat,
1016 &sc->age_rdata.age_cmb_block_seg, 1);
1017 sc->age_rdata.age_cmb_block = NULL;
1018 sc->age_cdata.age_cmb_block_map = NULL;
1019
1020 /* SMB block */
1021 if (sc->age_cdata.age_smb_block_map != NULL)
1022 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1023 if (sc->age_cdata.age_smb_block_map != NULL &&
1024 sc->age_rdata.age_smb_block != NULL)
1025 bus_dmamem_free(sc->sc_dmat,
1026 &sc->age_rdata.age_smb_block_seg, 1);
1027 sc->age_rdata.age_smb_block = NULL;
1028 sc->age_cdata.age_smb_block_map = NULL;
1029 }
1030
1031 static void
1032 age_start(struct ifnet *ifp)
1033 {
1034 struct age_softc *sc = ifp->if_softc;
1035 struct mbuf *m_head;
1036 int enq;
1037
1038 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1039 return;
1040
1041 enq = 0;
1042 for (;;) {
1043 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1044 if (m_head == NULL)
1045 break;
1046
1047 /*
1048 * Pack the data into the transmit ring. If we
1049 * don't have room, set the OACTIVE flag and wait
1050 * for the NIC to drain the ring.
1051 */
1052 if (age_encap(sc, &m_head)) {
1053 if (m_head == NULL)
1054 break;
1055 ifp->if_flags |= IFF_OACTIVE;
1056 break;
1057 }
1058 enq = 1;
1059
1060 #if NBPFILTER > 0
1061 /*
1062 * If there's a BPF listener, bounce a copy of this frame
1063 * to him.
1064 */
1065 if (ifp->if_bpf != NULL)
1066 bpf_mtap(ifp->if_bpf, m_head);
1067 #endif
1068 }
1069
1070 if (enq) {
1071 /* Update mbox. */
1072 AGE_COMMIT_MBOX(sc);
1073 /* Set a timeout in case the chip goes out to lunch. */
1074 ifp->if_timer = AGE_TX_TIMEOUT;
1075 }
1076 }
1077
1078 static void
1079 age_watchdog(struct ifnet *ifp)
1080 {
1081 struct age_softc *sc = ifp->if_softc;
1082
1083 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1084 printf("%s: watchdog timeout (missed link)\n",
1085 device_xname(sc->sc_dev));
1086 ifp->if_oerrors++;
1087 age_init(ifp);
1088 return;
1089 }
1090
1091 if (sc->age_cdata.age_tx_cnt == 0) {
1092 printf("%s: watchdog timeout (missed Tx interrupts) "
1093 "-- recovering\n", device_xname(sc->sc_dev));
1094 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1095 age_start(ifp);
1096 return;
1097 }
1098
1099 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1100 ifp->if_oerrors++;
1101 age_init(ifp);
1102
1103 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1104 age_start(ifp);
1105 }
1106
1107 static int
1108 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1109 {
1110 struct age_softc *sc = ifp->if_softc;
1111 int s, error;
1112
1113 s = splnet();
1114
1115 error = ether_ioctl(ifp, cmd, data);
1116 if (error == ENETRESET) {
1117 if (ifp->if_flags & IFF_RUNNING)
1118 age_rxfilter(sc);
1119 error = 0;
1120 }
1121
1122 splx(s);
1123 return error;
1124 }
1125
1126 static void
1127 age_mac_config(struct age_softc *sc)
1128 {
1129 struct mii_data *mii;
1130 uint32_t reg;
1131
1132 mii = &sc->sc_miibus;
1133
1134 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1135 reg &= ~MAC_CFG_FULL_DUPLEX;
1136 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1137 reg &= ~MAC_CFG_SPEED_MASK;
1138
1139 /* Reprogram MAC with resolved speed/duplex. */
1140 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1141 case IFM_10_T:
1142 case IFM_100_TX:
1143 reg |= MAC_CFG_SPEED_10_100;
1144 break;
1145 case IFM_1000_T:
1146 reg |= MAC_CFG_SPEED_1000;
1147 break;
1148 }
1149 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1150 reg |= MAC_CFG_FULL_DUPLEX;
1151 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1152 reg |= MAC_CFG_TX_FC;
1153 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1154 reg |= MAC_CFG_RX_FC;
1155 }
1156
1157 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1158 }
1159
1160 static bool
1161 age_resume(device_t dv PMF_FN_ARGS)
1162 {
1163 struct age_softc *sc = device_private(dv);
1164 uint16_t cmd;
1165
1166 /*
1167 * Clear INTx emulation disable for hardware that
1168 * is set in resume event. From Linux.
1169 */
1170 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1171 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1172 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1173 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1174 PCI_COMMAND_STATUS_REG, cmd);
1175 }
1176
1177 return true;
1178 }
1179
1180 static int
1181 age_encap(struct age_softc *sc, struct mbuf **m_head)
1182 {
1183 struct age_txdesc *txd, *txd_last;
1184 struct tx_desc *desc;
1185 struct mbuf *m;
1186 bus_dmamap_t map;
1187 uint32_t cflags, poff, vtag;
1188 int error, i, nsegs, prod;
1189 #if NVLAN > 0
1190 struct m_tag *mtag;
1191 #endif
1192
1193 m = *m_head;
1194 cflags = vtag = 0;
1195 poff = 0;
1196
1197 prod = sc->age_cdata.age_tx_prod;
1198 txd = &sc->age_cdata.age_txdesc[prod];
1199 txd_last = txd;
1200 map = txd->tx_dmamap;
1201
1202 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1203
1204 if (error == EFBIG) {
1205 error = 0;
1206
1207 MGETHDR(m, M_DONTWAIT, MT_DATA);
1208 if (m == NULL) {
1209 printf("%s: can't defrag TX mbuf\n",
1210 device_xname(sc->sc_dev));
1211 m_freem(*m_head);
1212 *m_head = NULL;
1213 return ENOBUFS;
1214 }
1215
1216 M_COPY_PKTHDR(m, *m_head);
1217 if ((*m_head)->m_pkthdr.len > MHLEN) {
1218 MCLGET(m, M_DONTWAIT);
1219 if (!(m->m_flags & M_EXT)) {
1220 m_freem(*m_head);
1221 m_freem(m);
1222 *m_head = NULL;
1223 return ENOBUFS;
1224 }
1225 }
1226 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1227 mtod(m, void *));
1228 m_freem(*m_head);
1229 m->m_len = m->m_pkthdr.len;
1230 *m_head = m;
1231
1232 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1233 BUS_DMA_NOWAIT);
1234
1235 if (error != 0) {
1236 printf("%s: could not load defragged TX mbuf\n",
1237 device_xname(sc->sc_dev));
1238 if (!error) {
1239 bus_dmamap_unload(sc->sc_dmat, map);
1240 error = EFBIG;
1241 }
1242 m_freem(*m_head);
1243 *m_head = NULL;
1244 return error;
1245 }
1246 } else if (error) {
1247 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1248 return error;
1249 }
1250
1251 nsegs = map->dm_nsegs;
1252
1253 if (nsegs == 0) {
1254 m_freem(*m_head);
1255 *m_head = NULL;
1256 return EIO;
1257 }
1258
1259 /* Check descriptor overrun. */
1260 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1261 bus_dmamap_unload(sc->sc_dmat, map);
1262 return ENOBUFS;
1263 }
1264
1265 m = *m_head;
1266 /* Configure Tx IP/TCP/UDP checksum offload. */
1267 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1268 cflags |= AGE_TD_CSUM;
1269 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1270 cflags |= AGE_TD_TCPCSUM;
1271 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1272 cflags |= AGE_TD_UDPCSUM;
1273 /* Set checksum start offset. */
1274 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1275 }
1276
1277 #if NVLAN > 0
1278 /* Configure VLAN hardware tag insertion. */
1279 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1280 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1281 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1282 cflags |= AGE_TD_INSERT_VLAN_TAG;
1283 }
1284 #endif
1285
1286 desc = NULL;
1287 for (i = 0; i < nsegs; i++) {
1288 desc = &sc->age_rdata.age_tx_ring[prod];
1289 desc->addr = htole64(map->dm_segs[i].ds_addr);
1290 desc->len =
1291 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1292 desc->flags = htole32(cflags);
1293 sc->age_cdata.age_tx_cnt++;
1294 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1295 }
1296
1297 /* Update producer index. */
1298 sc->age_cdata.age_tx_prod = prod;
1299
1300 /* Set EOP on the last descriptor. */
1301 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1302 desc = &sc->age_rdata.age_tx_ring[prod];
1303 desc->flags |= htole32(AGE_TD_EOP);
1304
1305 /* Swap dmamap of the first and the last. */
1306 txd = &sc->age_cdata.age_txdesc[prod];
1307 map = txd_last->tx_dmamap;
1308 txd_last->tx_dmamap = txd->tx_dmamap;
1309 txd->tx_dmamap = map;
1310 txd->tx_m = m;
1311
1312 /* Sync descriptors. */
1313 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1314 BUS_DMASYNC_PREWRITE);
1315 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1316 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1317
1318 return 0;
1319 }
1320
1321 static void
1322 age_txintr(struct age_softc *sc, int tpd_cons)
1323 {
1324 struct ifnet *ifp = &sc->sc_ec.ec_if;
1325 struct age_txdesc *txd;
1326 int cons, prog;
1327
1328 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1329 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1330
1331 /*
1332 * Go through our Tx list and free mbufs for those
1333 * frames which have been transmitted.
1334 */
1335 cons = sc->age_cdata.age_tx_cons;
1336 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1337 if (sc->age_cdata.age_tx_cnt <= 0)
1338 break;
1339 prog++;
1340 ifp->if_flags &= ~IFF_OACTIVE;
1341 sc->age_cdata.age_tx_cnt--;
1342 txd = &sc->age_cdata.age_txdesc[cons];
1343 /*
1344 * Clear Tx descriptors, it's not required but would
1345 * help debugging in case of Tx issues.
1346 */
1347 txd->tx_desc->addr = 0;
1348 txd->tx_desc->len = 0;
1349 txd->tx_desc->flags = 0;
1350
1351 if (txd->tx_m == NULL)
1352 continue;
1353 /* Reclaim transmitted mbufs. */
1354 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1355 m_freem(txd->tx_m);
1356 txd->tx_m = NULL;
1357 }
1358
1359 if (prog > 0) {
1360 sc->age_cdata.age_tx_cons = cons;
1361
1362 /*
1363 * Unarm watchdog timer only when there are no pending
1364 * Tx descriptors in queue.
1365 */
1366 if (sc->age_cdata.age_tx_cnt == 0)
1367 ifp->if_timer = 0;
1368
1369 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1370 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1371 BUS_DMASYNC_PREWRITE);
1372 }
1373 }
1374
1375 /* Receive a frame. */
1376 static void
1377 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1378 {
1379 struct ifnet *ifp = &sc->sc_ec.ec_if;
1380 struct age_rxdesc *rxd;
1381 struct rx_desc *desc;
1382 struct mbuf *mp, *m;
1383 uint32_t status, index;
1384 int count, nsegs, pktlen;
1385 int rx_cons;
1386
1387 status = le32toh(rxrd->flags);
1388 index = le32toh(rxrd->index);
1389 rx_cons = AGE_RX_CONS(index);
1390 nsegs = AGE_RX_NSEGS(index);
1391
1392 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1393 if ((status & AGE_RRD_ERROR) != 0 &&
1394 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1395 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1396 /*
1397 * We want to pass the following frames to upper
1398 * layer regardless of error status of Rx return
1399 * ring.
1400 *
1401 * o IP/TCP/UDP checksum is bad.
1402 * o frame length and protocol specific length
1403 * does not match.
1404 */
1405 sc->age_cdata.age_rx_cons += nsegs;
1406 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1407 return;
1408 }
1409
1410 pktlen = 0;
1411 for (count = 0; count < nsegs; count++,
1412 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1413 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1414 mp = rxd->rx_m;
1415 desc = rxd->rx_desc;
1416 /* Add a new receive buffer to the ring. */
1417 if (age_newbuf(sc, rxd, 0) != 0) {
1418 ifp->if_iqdrops++;
1419 /* Reuse Rx buffers. */
1420 if (sc->age_cdata.age_rxhead != NULL) {
1421 m_freem(sc->age_cdata.age_rxhead);
1422 AGE_RXCHAIN_RESET(sc);
1423 }
1424 break;
1425 }
1426
1427 /* The length of the first mbuf is computed last. */
1428 if (count != 0) {
1429 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1430 pktlen += mp->m_len;
1431 }
1432
1433 /* Chain received mbufs. */
1434 if (sc->age_cdata.age_rxhead == NULL) {
1435 sc->age_cdata.age_rxhead = mp;
1436 sc->age_cdata.age_rxtail = mp;
1437 } else {
1438 mp->m_flags &= ~M_PKTHDR;
1439 sc->age_cdata.age_rxprev_tail =
1440 sc->age_cdata.age_rxtail;
1441 sc->age_cdata.age_rxtail->m_next = mp;
1442 sc->age_cdata.age_rxtail = mp;
1443 }
1444
1445 if (count == nsegs - 1) {
1446 /*
1447 * It seems that L1 controller has no way
1448 * to tell hardware to strip CRC bytes.
1449 */
1450 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1451 if (nsegs > 1) {
1452 /* Remove the CRC bytes in chained mbufs. */
1453 pktlen -= ETHER_CRC_LEN;
1454 if (mp->m_len <= ETHER_CRC_LEN) {
1455 sc->age_cdata.age_rxtail =
1456 sc->age_cdata.age_rxprev_tail;
1457 sc->age_cdata.age_rxtail->m_len -=
1458 (ETHER_CRC_LEN - mp->m_len);
1459 sc->age_cdata.age_rxtail->m_next = NULL;
1460 m_freem(mp);
1461 } else {
1462 mp->m_len -= ETHER_CRC_LEN;
1463 }
1464 }
1465
1466 m = sc->age_cdata.age_rxhead;
1467 m->m_flags |= M_PKTHDR;
1468 m->m_pkthdr.rcvif = ifp;
1469 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1470 /* Set the first mbuf length. */
1471 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1472
1473 /*
1474 * Set checksum information.
1475 * It seems that L1 controller can compute partial
1476 * checksum. The partial checksum value can be used
1477 * to accelerate checksum computation for fragmented
1478 * TCP/UDP packets. Upper network stack already
1479 * takes advantage of the partial checksum value in
1480 * IP reassembly stage. But I'm not sure the
1481 * correctness of the partial hardware checksum
1482 * assistance due to lack of data sheet. If it is
1483 * proven to work on L1 I'll enable it.
1484 */
1485 if (status & AGE_RRD_IPV4) {
1486 if (status & AGE_RRD_IPCSUM_NOK)
1487 m->m_pkthdr.csum_flags |=
1488 M_CSUM_IPv4_BAD;
1489 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1490 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1491 m->m_pkthdr.csum_flags |=
1492 M_CSUM_TCP_UDP_BAD;
1493 }
1494 /*
1495 * Don't mark bad checksum for TCP/UDP frames
1496 * as fragmented frames may always have set
1497 * bad checksummed bit of descriptor status.
1498 */
1499 }
1500 #if NVLAN > 0
1501 /* Check for VLAN tagged frames. */
1502 if (status & AGE_RRD_VLAN) {
1503 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1504 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1505 continue);
1506 }
1507 #endif
1508
1509 #if NBPFILTER > 0
1510 if (ifp->if_bpf)
1511 bpf_mtap(ifp->if_bpf, m);
1512 #endif
1513 /* Pass it on. */
1514 ether_input(ifp, m);
1515
1516 /* Reset mbuf chains. */
1517 AGE_RXCHAIN_RESET(sc);
1518 }
1519 }
1520
1521 if (count != nsegs) {
1522 sc->age_cdata.age_rx_cons += nsegs;
1523 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1524 } else
1525 sc->age_cdata.age_rx_cons = rx_cons;
1526 }
1527
1528 static void
1529 age_rxintr(struct age_softc *sc, int rr_prod)
1530 {
1531 struct rx_rdesc *rxrd;
1532 int rr_cons, nsegs, pktlen, prog;
1533
1534 rr_cons = sc->age_cdata.age_rr_cons;
1535 if (rr_cons == rr_prod)
1536 return;
1537
1538 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1539 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1540 BUS_DMASYNC_POSTREAD);
1541
1542 for (prog = 0; rr_cons != rr_prod; prog++) {
1543 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1544 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1545 if (nsegs == 0)
1546 break;
1547 /*
1548 * Check number of segments against received bytes
1549 * Non-matching value would indicate that hardware
1550 * is still trying to update Rx return descriptors.
1551 * I'm not sure whether this check is really needed.
1552 */
1553 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1554 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1555 (MCLBYTES - ETHER_ALIGN)))
1556 break;
1557
1558 /* Received a frame. */
1559 age_rxeof(sc, rxrd);
1560
1561 /* Clear return ring. */
1562 rxrd->index = 0;
1563 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1564 }
1565
1566 if (prog > 0) {
1567 /* Update the consumer index. */
1568 sc->age_cdata.age_rr_cons = rr_cons;
1569
1570 /* Sync descriptors. */
1571 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1572 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1573 BUS_DMASYNC_PREWRITE);
1574
1575 /* Notify hardware availability of new Rx buffers. */
1576 AGE_COMMIT_MBOX(sc);
1577 }
1578 }
1579
1580 static void
1581 age_tick(void *xsc)
1582 {
1583 struct age_softc *sc = xsc;
1584 struct mii_data *mii = &sc->sc_miibus;
1585 int s;
1586
1587 s = splnet();
1588 mii_tick(mii);
1589 splx(s);
1590
1591 callout_schedule(&sc->sc_tick_ch, hz);
1592 }
1593
1594 static void
1595 age_reset(struct age_softc *sc)
1596 {
1597 uint32_t reg;
1598 int i;
1599
1600 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1601 CSR_READ_4(sc, AGE_MASTER_CFG);
1602 DELAY(1000);
1603 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1604 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1605 break;
1606 DELAY(10);
1607 }
1608
1609 if (i == 0)
1610 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1611 reg);
1612
1613 /* Initialize PCIe module. From Linux. */
1614 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1615 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1616 }
1617
1618 static int
1619 age_init(struct ifnet *ifp)
1620 {
1621 struct age_softc *sc = ifp->if_softc;
1622 struct mii_data *mii;
1623 uint8_t eaddr[ETHER_ADDR_LEN];
1624 bus_addr_t paddr;
1625 uint32_t reg, fsize;
1626 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1627 int error;
1628
1629 /*
1630 * Cancel any pending I/O.
1631 */
1632 age_stop(ifp, 0);
1633
1634 /*
1635 * Reset the chip to a known state.
1636 */
1637 age_reset(sc);
1638
1639 /* Initialize descriptors. */
1640 error = age_init_rx_ring(sc);
1641 if (error != 0) {
1642 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1643 age_stop(ifp, 0);
1644 return error;
1645 }
1646 age_init_rr_ring(sc);
1647 age_init_tx_ring(sc);
1648 age_init_cmb_block(sc);
1649 age_init_smb_block(sc);
1650
1651 /* Reprogram the station address. */
1652 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1653 CSR_WRITE_4(sc, AGE_PAR0,
1654 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1655 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1656
1657 /* Set descriptor base addresses. */
1658 paddr = sc->age_rdata.age_tx_ring_paddr;
1659 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1660 paddr = sc->age_rdata.age_rx_ring_paddr;
1661 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1662 paddr = sc->age_rdata.age_rr_ring_paddr;
1663 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1664 paddr = sc->age_rdata.age_tx_ring_paddr;
1665 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1666 paddr = sc->age_rdata.age_cmb_block_paddr;
1667 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1668 paddr = sc->age_rdata.age_smb_block_paddr;
1669 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1670
1671 /* Set Rx/Rx return descriptor counter. */
1672 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1673 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1674 DESC_RRD_CNT_MASK) |
1675 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1676
1677 /* Set Tx descriptor counter. */
1678 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1679 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1680
1681 /* Tell hardware that we're ready to load descriptors. */
1682 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1683
1684 /*
1685 * Initialize mailbox register.
1686 * Updated producer/consumer index information is exchanged
1687 * through this mailbox register. However Tx producer and
1688 * Rx return consumer/Rx producer are all shared such that
1689 * it's hard to separate code path between Tx and Rx without
1690 * locking. If L1 hardware have a separate mail box register
1691 * for Tx and Rx consumer/producer management we could have
1692 * indepent Tx/Rx handler which in turn Rx handler could have
1693 * been run without any locking.
1694 */
1695 AGE_COMMIT_MBOX(sc);
1696
1697 /* Configure IPG/IFG parameters. */
1698 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1699 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1700 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1701 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1702 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1703
1704 /* Set parameters for half-duplex media. */
1705 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1706 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1707 HDPX_CFG_LCOL_MASK) |
1708 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1709 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1710 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1711 HDPX_CFG_ABEBT_MASK) |
1712 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1713 HDPX_CFG_JAMIPG_MASK));
1714
1715 /* Configure interrupt moderation timer. */
1716 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1717 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1718 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1719 reg &= ~MASTER_MTIMER_ENB;
1720 if (AGE_USECS(sc->age_int_mod) == 0)
1721 reg &= ~MASTER_ITIMER_ENB;
1722 else
1723 reg |= MASTER_ITIMER_ENB;
1724 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1725 if (agedebug)
1726 printf("%s: interrupt moderation is %d us.\n",
1727 device_xname(sc->sc_dev), sc->age_int_mod);
1728 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1729
1730 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1731 if (ifp->if_mtu < ETHERMTU)
1732 sc->age_max_frame_size = ETHERMTU;
1733 else
1734 sc->age_max_frame_size = ifp->if_mtu;
1735 sc->age_max_frame_size += ETHER_HDR_LEN +
1736 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1737 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1738
1739 /* Configure jumbo frame. */
1740 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1741 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1742 (((fsize / sizeof(uint64_t)) <<
1743 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1744 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1745 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1746 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1747 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1748
1749 /* Configure flow-control parameters. From Linux. */
1750 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1751 /*
1752 * Magic workaround for old-L1.
1753 * Don't know which hw revision requires this magic.
1754 */
1755 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1756 /*
1757 * Another magic workaround for flow-control mode
1758 * change. From Linux.
1759 */
1760 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1761 }
1762 /*
1763 * TODO
1764 * Should understand pause parameter relationships between FIFO
1765 * size and number of Rx descriptors and Rx return descriptors.
1766 *
1767 * Magic parameters came from Linux.
1768 */
1769 switch (sc->age_chip_rev) {
1770 case 0x8001:
1771 case 0x9001:
1772 case 0x9002:
1773 case 0x9003:
1774 rxf_hi = AGE_RX_RING_CNT / 16;
1775 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1776 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1777 rrd_lo = AGE_RR_RING_CNT / 16;
1778 break;
1779 default:
1780 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1781 rxf_lo = reg / 16;
1782 if (rxf_lo < 192)
1783 rxf_lo = 192;
1784 rxf_hi = (reg * 7) / 8;
1785 if (rxf_hi < rxf_lo)
1786 rxf_hi = rxf_lo + 16;
1787 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1788 rrd_lo = reg / 8;
1789 rrd_hi = (reg * 7) / 8;
1790 if (rrd_lo < 2)
1791 rrd_lo = 2;
1792 if (rrd_hi < rrd_lo)
1793 rrd_hi = rrd_lo + 3;
1794 break;
1795 }
1796 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1797 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1798 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1799 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1800 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1801 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1802 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1803 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1804 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1805 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1806
1807 /* Configure RxQ. */
1808 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1809 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1810 RXQ_CFG_RD_BURST_MASK) |
1811 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1812 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1813 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1814 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1815 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1816
1817 /* Configure TxQ. */
1818 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1819 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1820 TXQ_CFG_TPD_BURST_MASK) |
1821 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1822 TXQ_CFG_TX_FIFO_BURST_MASK) |
1823 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1824 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1825 TXQ_CFG_ENB);
1826
1827 /* Configure DMA parameters. */
1828 CSR_WRITE_4(sc, AGE_DMA_CFG,
1829 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1830 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1831 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1832
1833 /* Configure CMB DMA write threshold. */
1834 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1835 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1836 CMB_WR_THRESH_RRD_MASK) |
1837 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1838 CMB_WR_THRESH_TPD_MASK));
1839
1840 /* Set CMB/SMB timer and enable them. */
1841 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1842 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1843 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1844
1845 /* Request SMB updates for every seconds. */
1846 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1847 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1848
1849 /*
1850 * Disable all WOL bits as WOL can interfere normal Rx
1851 * operation.
1852 */
1853 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1854
1855 /*
1856 * Configure Tx/Rx MACs.
1857 * - Auto-padding for short frames.
1858 * - Enable CRC generation.
1859 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1860 * of MAC is followed after link establishment.
1861 */
1862 CSR_WRITE_4(sc, AGE_MAC_CFG,
1863 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1864 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1865 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1866 MAC_CFG_PREAMBLE_MASK));
1867
1868 /* Set up the receive filter. */
1869 age_rxfilter(sc);
1870 age_rxvlan(sc);
1871
1872 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1873 reg |= MAC_CFG_RXCSUM_ENB;
1874
1875 /* Ack all pending interrupts and clear it. */
1876 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1877 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1878
1879 /* Finally enable Tx/Rx MAC. */
1880 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1881
1882 sc->age_flags &= ~AGE_FLAG_LINK;
1883
1884 /* Switch to the current media. */
1885 mii = &sc->sc_miibus;
1886 mii_mediachg(mii);
1887
1888 callout_schedule(&sc->sc_tick_ch, hz);
1889
1890 ifp->if_flags |= IFF_RUNNING;
1891 ifp->if_flags &= ~IFF_OACTIVE;
1892
1893 return 0;
1894 }
1895
1896 static void
1897 age_stop(struct ifnet *ifp, int disable)
1898 {
1899 struct age_softc *sc = ifp->if_softc;
1900 struct age_txdesc *txd;
1901 struct age_rxdesc *rxd;
1902 uint32_t reg;
1903 int i;
1904
1905 callout_stop(&sc->sc_tick_ch);
1906
1907 /*
1908 * Mark the interface down and cancel the watchdog timer.
1909 */
1910 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1911 ifp->if_timer = 0;
1912
1913 sc->age_flags &= ~AGE_FLAG_LINK;
1914
1915 mii_down(&sc->sc_miibus);
1916
1917 /*
1918 * Disable interrupts.
1919 */
1920 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1921 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1922
1923 /* Stop CMB/SMB updates. */
1924 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1925
1926 /* Stop Rx/Tx MAC. */
1927 age_stop_rxmac(sc);
1928 age_stop_txmac(sc);
1929
1930 /* Stop DMA. */
1931 CSR_WRITE_4(sc, AGE_DMA_CFG,
1932 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1933
1934 /* Stop TxQ/RxQ. */
1935 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1936 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1937 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1938 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1939 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1940 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1941 break;
1942 DELAY(10);
1943 }
1944 if (i == 0)
1945 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1946 device_xname(sc->sc_dev), reg);
1947
1948 /* Reclaim Rx buffers that have been processed. */
1949 if (sc->age_cdata.age_rxhead != NULL)
1950 m_freem(sc->age_cdata.age_rxhead);
1951 AGE_RXCHAIN_RESET(sc);
1952
1953 /*
1954 * Free RX and TX mbufs still in the queues.
1955 */
1956 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1957 rxd = &sc->age_cdata.age_rxdesc[i];
1958 if (rxd->rx_m != NULL) {
1959 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1960 m_freem(rxd->rx_m);
1961 rxd->rx_m = NULL;
1962 }
1963 }
1964 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1965 txd = &sc->age_cdata.age_txdesc[i];
1966 if (txd->tx_m != NULL) {
1967 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1968 m_freem(txd->tx_m);
1969 txd->tx_m = NULL;
1970 }
1971 }
1972 }
1973
1974 static void
1975 age_stats_update(struct age_softc *sc)
1976 {
1977 struct ifnet *ifp = &sc->sc_ec.ec_if;
1978 struct age_stats *stat;
1979 struct smb *smb;
1980
1981 stat = &sc->age_stat;
1982
1983 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1984 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1985
1986 smb = sc->age_rdata.age_smb_block;
1987 if (smb->updated == 0)
1988 return;
1989
1990 /* Rx stats. */
1991 stat->rx_frames += smb->rx_frames;
1992 stat->rx_bcast_frames += smb->rx_bcast_frames;
1993 stat->rx_mcast_frames += smb->rx_mcast_frames;
1994 stat->rx_pause_frames += smb->rx_pause_frames;
1995 stat->rx_control_frames += smb->rx_control_frames;
1996 stat->rx_crcerrs += smb->rx_crcerrs;
1997 stat->rx_lenerrs += smb->rx_lenerrs;
1998 stat->rx_bytes += smb->rx_bytes;
1999 stat->rx_runts += smb->rx_runts;
2000 stat->rx_fragments += smb->rx_fragments;
2001 stat->rx_pkts_64 += smb->rx_pkts_64;
2002 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2003 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2004 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2005 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2006 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2007 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2008 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2009 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2010 stat->rx_desc_oflows += smb->rx_desc_oflows;
2011 stat->rx_alignerrs += smb->rx_alignerrs;
2012 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2013 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2014 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2015
2016 /* Tx stats. */
2017 stat->tx_frames += smb->tx_frames;
2018 stat->tx_bcast_frames += smb->tx_bcast_frames;
2019 stat->tx_mcast_frames += smb->tx_mcast_frames;
2020 stat->tx_pause_frames += smb->tx_pause_frames;
2021 stat->tx_excess_defer += smb->tx_excess_defer;
2022 stat->tx_control_frames += smb->tx_control_frames;
2023 stat->tx_deferred += smb->tx_deferred;
2024 stat->tx_bytes += smb->tx_bytes;
2025 stat->tx_pkts_64 += smb->tx_pkts_64;
2026 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2027 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2028 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2029 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2030 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2031 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2032 stat->tx_single_colls += smb->tx_single_colls;
2033 stat->tx_multi_colls += smb->tx_multi_colls;
2034 stat->tx_late_colls += smb->tx_late_colls;
2035 stat->tx_excess_colls += smb->tx_excess_colls;
2036 stat->tx_underrun += smb->tx_underrun;
2037 stat->tx_desc_underrun += smb->tx_desc_underrun;
2038 stat->tx_lenerrs += smb->tx_lenerrs;
2039 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2040 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2041 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2042
2043 /* Update counters in ifnet. */
2044 ifp->if_opackets += smb->tx_frames;
2045
2046 ifp->if_collisions += smb->tx_single_colls +
2047 smb->tx_multi_colls + smb->tx_late_colls +
2048 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2049
2050 ifp->if_oerrors += smb->tx_excess_colls +
2051 smb->tx_late_colls + smb->tx_underrun +
2052 smb->tx_pkts_truncated;
2053
2054 ifp->if_ipackets += smb->rx_frames;
2055
2056 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2057 smb->rx_runts + smb->rx_pkts_truncated +
2058 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2059 smb->rx_alignerrs;
2060
2061 /* Update done, clear. */
2062 smb->updated = 0;
2063
2064 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2065 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2066 }
2067
2068 static void
2069 age_stop_txmac(struct age_softc *sc)
2070 {
2071 uint32_t reg;
2072 int i;
2073
2074 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2075 if ((reg & MAC_CFG_TX_ENB) != 0) {
2076 reg &= ~MAC_CFG_TX_ENB;
2077 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2078 }
2079 /* Stop Tx DMA engine. */
2080 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2081 if ((reg & DMA_CFG_RD_ENB) != 0) {
2082 reg &= ~DMA_CFG_RD_ENB;
2083 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2084 }
2085 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2086 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2087 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2088 break;
2089 DELAY(10);
2090 }
2091 if (i == 0)
2092 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2093 }
2094
2095 static void
2096 age_stop_rxmac(struct age_softc *sc)
2097 {
2098 uint32_t reg;
2099 int i;
2100
2101 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2102 if ((reg & MAC_CFG_RX_ENB) != 0) {
2103 reg &= ~MAC_CFG_RX_ENB;
2104 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2105 }
2106 /* Stop Rx DMA engine. */
2107 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2108 if ((reg & DMA_CFG_WR_ENB) != 0) {
2109 reg &= ~DMA_CFG_WR_ENB;
2110 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2111 }
2112 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2113 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2114 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2115 break;
2116 DELAY(10);
2117 }
2118 if (i == 0)
2119 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2120 }
2121
2122 static void
2123 age_init_tx_ring(struct age_softc *sc)
2124 {
2125 struct age_ring_data *rd;
2126 struct age_txdesc *txd;
2127 int i;
2128
2129 sc->age_cdata.age_tx_prod = 0;
2130 sc->age_cdata.age_tx_cons = 0;
2131 sc->age_cdata.age_tx_cnt = 0;
2132
2133 rd = &sc->age_rdata;
2134 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2135 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2136 txd = &sc->age_cdata.age_txdesc[i];
2137 txd->tx_desc = &rd->age_tx_ring[i];
2138 txd->tx_m = NULL;
2139 }
2140 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2141 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2142 }
2143
2144 static int
2145 age_init_rx_ring(struct age_softc *sc)
2146 {
2147 struct age_ring_data *rd;
2148 struct age_rxdesc *rxd;
2149 int i;
2150
2151 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2152 rd = &sc->age_rdata;
2153 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2154 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2155 rxd = &sc->age_cdata.age_rxdesc[i];
2156 rxd->rx_m = NULL;
2157 rxd->rx_desc = &rd->age_rx_ring[i];
2158 if (age_newbuf(sc, rxd, 1) != 0)
2159 return ENOBUFS;
2160 }
2161
2162 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2163 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2164
2165 return 0;
2166 }
2167
2168 static void
2169 age_init_rr_ring(struct age_softc *sc)
2170 {
2171 struct age_ring_data *rd;
2172
2173 sc->age_cdata.age_rr_cons = 0;
2174 AGE_RXCHAIN_RESET(sc);
2175
2176 rd = &sc->age_rdata;
2177 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2178 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2179 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2180 }
2181
2182 static void
2183 age_init_cmb_block(struct age_softc *sc)
2184 {
2185 struct age_ring_data *rd;
2186
2187 rd = &sc->age_rdata;
2188 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2189 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2190 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2191 }
2192
2193 static void
2194 age_init_smb_block(struct age_softc *sc)
2195 {
2196 struct age_ring_data *rd;
2197
2198 rd = &sc->age_rdata;
2199 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2200 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2201 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2202 }
2203
2204 static int
2205 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2206 {
2207 struct rx_desc *desc;
2208 struct mbuf *m;
2209 bus_dmamap_t map;
2210 int error;
2211
2212 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2213 if (m == NULL)
2214 return ENOBUFS;
2215 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2216 if (!(m->m_flags & M_EXT)) {
2217 m_freem(m);
2218 return ENOBUFS;
2219 }
2220
2221 m->m_len = m->m_pkthdr.len = MCLBYTES;
2222 m_adj(m, ETHER_ALIGN);
2223
2224 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2225 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2226
2227 if (error != 0) {
2228 if (!error) {
2229 bus_dmamap_unload(sc->sc_dmat,
2230 sc->age_cdata.age_rx_sparemap);
2231 error = EFBIG;
2232 printf("%s: too many segments?!\n",
2233 device_xname(sc->sc_dev));
2234 }
2235 m_freem(m);
2236
2237 if (init)
2238 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2239 return error;
2240 }
2241
2242 if (rxd->rx_m != NULL) {
2243 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2244 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2245 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2246 }
2247 map = rxd->rx_dmamap;
2248 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2249 sc->age_cdata.age_rx_sparemap = map;
2250 rxd->rx_m = m;
2251
2252 desc = rxd->rx_desc;
2253 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2254 desc->len =
2255 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2256 AGE_RD_LEN_SHIFT);
2257
2258 return 0;
2259 }
2260
2261 static void
2262 age_rxvlan(struct age_softc *sc)
2263 {
2264 uint32_t reg;
2265
2266 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2267 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2268 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2269 reg |= MAC_CFG_VLAN_TAG_STRIP;
2270 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2271 }
2272
2273 static void
2274 age_rxfilter(struct age_softc *sc)
2275 {
2276 struct ethercom *ec = &sc->sc_ec;
2277 struct ifnet *ifp = &sc->sc_ec.ec_if;
2278 struct ether_multi *enm;
2279 struct ether_multistep step;
2280 uint32_t crc;
2281 uint32_t mchash[2];
2282 uint32_t rxcfg;
2283
2284 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2285 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2286 ifp->if_flags &= ~IFF_ALLMULTI;
2287
2288 /*
2289 * Always accept broadcast frames.
2290 */
2291 rxcfg |= MAC_CFG_BCAST;
2292
2293 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2294 ifp->if_flags |= IFF_ALLMULTI;
2295 if (ifp->if_flags & IFF_PROMISC)
2296 rxcfg |= MAC_CFG_PROMISC;
2297 else
2298 rxcfg |= MAC_CFG_ALLMULTI;
2299 mchash[0] = mchash[1] = 0xFFFFFFFF;
2300 } else {
2301 /* Program new filter. */
2302 memset(mchash, 0, sizeof(mchash));
2303
2304 ETHER_FIRST_MULTI(step, ec, enm);
2305 while (enm != NULL) {
2306 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2307 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2308 ETHER_NEXT_MULTI(step, enm);
2309 }
2310 }
2311
2312 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2313 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2314 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2315 }
2316