Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.28.4.4
      1 /*	$NetBSD: if_age.c,v 1.28.4.4 2009/09/16 13:37:50 yamt Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28.4.4 2009/09/16 13:37:50 yamt Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_dma_alloc(struct age_softc *);
    101 static void	age_dma_free(struct age_softc *);
    102 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    103 static void	age_phy_reset(struct age_softc *);
    104 
    105 static int	age_encap(struct age_softc *, struct mbuf **);
    106 static void	age_init_tx_ring(struct age_softc *);
    107 static int	age_init_rx_ring(struct age_softc *);
    108 static void	age_init_rr_ring(struct age_softc *);
    109 static void	age_init_cmb_block(struct age_softc *);
    110 static void	age_init_smb_block(struct age_softc *);
    111 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    112 static void	age_mac_config(struct age_softc *);
    113 static void	age_txintr(struct age_softc *, int);
    114 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    115 static void	age_rxintr(struct age_softc *, int);
    116 static void	age_tick(void *);
    117 static void	age_reset(struct age_softc *);
    118 static void	age_stop(struct ifnet *, int);
    119 static void	age_stats_update(struct age_softc *);
    120 static void	age_stop_txmac(struct age_softc *);
    121 static void	age_stop_rxmac(struct age_softc *);
    122 static void	age_rxvlan(struct age_softc *sc);
    123 static void	age_rxfilter(struct age_softc *);
    124 
    125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    126     age_match, age_attach, age_detach, NULL);
    127 
    128 int agedebug = 0;
    129 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    130 
    131 #define ETHER_ALIGN 2
    132 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    133 
    134 static int
    135 age_match(device_t dev, cfdata_t match, void *aux)
    136 {
    137 	struct pci_attach_args *pa = aux;
    138 
    139 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    140 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    141 }
    142 
    143 static void
    144 age_attach(device_t parent, device_t self, void *aux)
    145 {
    146 	struct age_softc *sc = device_private(self);
    147 	struct pci_attach_args *pa = aux;
    148 	pci_intr_handle_t ih;
    149 	const char *intrstr;
    150 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    151 	pcireg_t memtype;
    152 	int error = 0;
    153 
    154 	aprint_naive("\n");
    155 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    156 
    157 	sc->sc_dev = self;
    158 	sc->sc_dmat = pa->pa_dmat;
    159 	sc->sc_pct = pa->pa_pc;
    160 	sc->sc_pcitag = pa->pa_tag;
    161 
    162 	/*
    163 	 * Allocate IO memory
    164 	 */
    165 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    166 	switch (memtype) {
    167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    170 		break;
    171         default:
    172 		aprint_error_dev(self, "invalid base address register\n");
    173 		break;
    174 	}
    175 
    176 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    177 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    178 		aprint_error_dev(self, "could not map mem space\n");
    179 		return;
    180 	}
    181 
    182 	if (pci_intr_map(pa, &ih) != 0) {
    183 		aprint_error_dev(self, "could not map interrupt\n");
    184 		goto fail;
    185 	}
    186 
    187 	/*
    188 	 * Allocate IRQ
    189 	 */
    190 	intrstr = pci_intr_string(sc->sc_pct, ih);
    191 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    192 	    age_intr, sc);
    193 	if (sc->sc_irq_handle == NULL) {
    194 		aprint_error_dev(self, "could not establish interrupt");
    195 		if (intrstr != NULL)
    196 			aprint_error(" at %s", intrstr);
    197 		aprint_error("\n");
    198 		goto fail;
    199 	}
    200 	aprint_normal_dev(self, "%s\n", intrstr);
    201 
    202 	/* Set PHY address. */
    203 	sc->age_phyaddr = AGE_PHY_ADDR;
    204 
    205 	/* Reset PHY. */
    206 	age_phy_reset(sc);
    207 
    208 	/* Reset the ethernet controller. */
    209 	age_reset(sc);
    210 
    211 	/* Get PCI and chip id/revision. */
    212 	sc->age_rev = PCI_REVISION(pa->pa_class);
    213 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    214 	    MASTER_CHIP_REV_SHIFT;
    215 
    216 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    217 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    218 
    219 	if (agedebug) {
    220 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    221 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    222 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    223 	}
    224 
    225 	/* Set max allowable DMA size. */
    226 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    227 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    228 
    229 	/* Allocate DMA stuffs */
    230 	error = age_dma_alloc(sc);
    231 	if (error)
    232 		goto fail;
    233 
    234 	callout_init(&sc->sc_tick_ch, 0);
    235 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    236 
    237 	/* Load station address. */
    238 	age_get_macaddr(sc, sc->sc_enaddr);
    239 
    240 	aprint_normal_dev(self, "Ethernet address %s\n",
    241 	    ether_sprintf(sc->sc_enaddr));
    242 
    243 	ifp->if_softc = sc;
    244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    245 	ifp->if_init = age_init;
    246 	ifp->if_ioctl = age_ioctl;
    247 	ifp->if_start = age_start;
    248 	ifp->if_stop = age_stop;
    249 	ifp->if_watchdog = age_watchdog;
    250 	ifp->if_baudrate = IF_Gbps(1);
    251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    252 	IFQ_SET_READY(&ifp->if_snd);
    253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    254 
    255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    256 
    257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    258 				IFCAP_CSUM_TCPv4_Rx |
    259 				IFCAP_CSUM_UDPv4_Rx;
    260 #ifdef AGE_CHECKSUM
    261 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    262 				IFCAP_CSUM_TCPv4_Tx |
    263 				IFCAP_CSUM_UDPv4_Tx;
    264 #endif
    265 
    266 #if NVLAN > 0
    267 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    268 #endif
    269 
    270 	/* Set up MII bus. */
    271 	sc->sc_miibus.mii_ifp = ifp;
    272 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    273 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    274 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    275 
    276 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    277 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    278 	    age_mediastatus);
    279 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    280 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    281 
    282 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    283 		aprint_error_dev(self, "no PHY found!\n");
    284 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    285 		    0, NULL);
    286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    287 	} else
    288 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    289 
    290 	if_attach(ifp);
    291 	ether_ifattach(ifp, sc->sc_enaddr);
    292 
    293 	if (pmf_device_register(self, NULL, age_resume))
    294 		pmf_class_network_register(self, ifp);
    295 	else
    296 		aprint_error_dev(self, "couldn't establish power handler\n");
    297 
    298 	return;
    299 
    300 fail:
    301 	age_dma_free(sc);
    302 	if (sc->sc_irq_handle != NULL) {
    303 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    304 		sc->sc_irq_handle = NULL;
    305 	}
    306 	if (sc->sc_mem_size) {
    307 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    308 		sc->sc_mem_size = 0;
    309 	}
    310 }
    311 
    312 static int
    313 age_detach(device_t self, int flags)
    314 {
    315 	struct age_softc *sc = device_private(self);
    316 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    317 	int s;
    318 
    319 	pmf_device_deregister(self);
    320 	s = splnet();
    321 	age_stop(ifp, 0);
    322 	splx(s);
    323 
    324 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    325 
    326 	/* Delete all remaining media. */
    327 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    328 
    329 	ether_ifdetach(ifp);
    330 	if_detach(ifp);
    331 	age_dma_free(sc);
    332 
    333 	if (sc->sc_irq_handle != NULL) {
    334 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    335 		sc->sc_irq_handle = NULL;
    336 	}
    337 	if (sc->sc_mem_size) {
    338 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    339 		sc->sc_mem_size = 0;
    340 	}
    341 	return 0;
    342 }
    343 
    344 /*
    345  *	Read a PHY register on the MII of the L1.
    346  */
    347 static int
    348 age_miibus_readreg(device_t dev, int phy, int reg)
    349 {
    350 	struct age_softc *sc = device_private(dev);
    351 	uint32_t v;
    352 	int i;
    353 
    354 	if (phy != sc->age_phyaddr)
    355 		return 0;
    356 
    357 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    358 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    359 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    360 		DELAY(1);
    361 		v = CSR_READ_4(sc, AGE_MDIO);
    362 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    363 			break;
    364 	}
    365 
    366 	if (i == 0) {
    367 		printf("%s: phy read timeout: phy %d, reg %d\n",
    368 			device_xname(sc->sc_dev), phy, reg);
    369 		return 0;
    370 	}
    371 
    372 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    373 }
    374 
    375 /*
    376  * 	Write a PHY register on the MII of the L1.
    377  */
    378 static void
    379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    380 {
    381 	struct age_softc *sc = device_private(dev);
    382 	uint32_t v;
    383 	int i;
    384 
    385 	if (phy != sc->age_phyaddr)
    386 		return;
    387 
    388 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    389 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    390 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    391 
    392 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    393 		DELAY(1);
    394 		v = CSR_READ_4(sc, AGE_MDIO);
    395 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    396 			break;
    397 	}
    398 
    399 	if (i == 0) {
    400 		printf("%s: phy write timeout: phy %d, reg %d\n",
    401 		    device_xname(sc->sc_dev), phy, reg);
    402 	}
    403 }
    404 
    405 /*
    406  *	Callback from MII layer when media changes.
    407  */
    408 static void
    409 age_miibus_statchg(device_t dev)
    410 {
    411 	struct age_softc *sc = device_private(dev);
    412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    413 	struct mii_data *mii;
    414 
    415 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    416 		return;
    417 
    418 	mii = &sc->sc_miibus;
    419 
    420 	sc->age_flags &= ~AGE_FLAG_LINK;
    421 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    423 		case IFM_10_T:
    424 		case IFM_100_TX:
    425 		case IFM_1000_T:
    426 			sc->age_flags |= AGE_FLAG_LINK;
    427 			break;
    428 		default:
    429 			break;
    430 		}
    431 	}
    432 
    433 	/* Stop Rx/Tx MACs. */
    434 	age_stop_rxmac(sc);
    435 	age_stop_txmac(sc);
    436 
    437 	/* Program MACs with resolved speed/duplex/flow-control. */
    438 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    439 		uint32_t reg;
    440 
    441 		age_mac_config(sc);
    442 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    443 		/* Restart DMA engine and Tx/Rx MAC. */
    444 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    445 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    446 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    447 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    448 	}
    449 }
    450 
    451 /*
    452  *	Get the current interface media status.
    453  */
    454 static void
    455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    456 {
    457 	struct age_softc *sc = ifp->if_softc;
    458 	struct mii_data *mii = &sc->sc_miibus;
    459 
    460 	mii_pollstat(mii);
    461 	ifmr->ifm_status = mii->mii_media_status;
    462 	ifmr->ifm_active = mii->mii_media_active;
    463 }
    464 
    465 /*
    466  *	Set hardware to newly-selected media.
    467  */
    468 static int
    469 age_mediachange(struct ifnet *ifp)
    470 {
    471 	struct age_softc *sc = ifp->if_softc;
    472 	struct mii_data *mii = &sc->sc_miibus;
    473 	int error;
    474 
    475 	if (mii->mii_instance != 0) {
    476 		struct mii_softc *miisc;
    477 
    478 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    479 			mii_phy_reset(miisc);
    480 	}
    481 	error = mii_mediachg(mii);
    482 
    483 	return error;
    484 }
    485 
    486 static int
    487 age_intr(void *arg)
    488 {
    489         struct age_softc *sc = arg;
    490         struct ifnet *ifp = &sc->sc_ec.ec_if;
    491 	struct cmb *cmb;
    492         uint32_t status;
    493 
    494 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    495 	if (status == 0 || (status & AGE_INTRS) == 0)
    496 		return 0;
    497 
    498 	cmb = sc->age_rdata.age_cmb_block;
    499 	if (cmb == NULL) {
    500 		/* Happens when bringing up the interface
    501 		 * w/o having a carrier. Ack. the interrupt.
    502 		 */
    503 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    504 		return 0;
    505 	}
    506 
    507 	/* Disable interrupts. */
    508 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    509 
    510 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    511 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    512 	status = le32toh(cmb->intr_status);
    513 	if ((status & AGE_INTRS) == 0)
    514 		goto back;
    515 
    516 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    517 	    TPD_CONS_SHIFT;
    518 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    519 	    RRD_PROD_SHIFT;
    520 
    521 	/* Let hardware know CMB was served. */
    522 	cmb->intr_status = 0;
    523 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    524 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    525 	    BUS_DMASYNC_PREWRITE);
    526 
    527 	if (ifp->if_flags & IFF_RUNNING) {
    528 		if (status & INTR_CMB_RX)
    529 			age_rxintr(sc, sc->age_rr_prod);
    530 
    531 		if (status & INTR_CMB_TX)
    532 			age_txintr(sc, sc->age_tpd_cons);
    533 
    534 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    535 			if (status & INTR_DMA_RD_TO_RST)
    536 				printf("%s: DMA read error! -- resetting\n",
    537 				    device_xname(sc->sc_dev));
    538 			if (status & INTR_DMA_WR_TO_RST)
    539 				printf("%s: DMA write error! -- resetting\n",
    540 				    device_xname(sc->sc_dev));
    541 			age_init(ifp);
    542 		}
    543 
    544 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    545 			age_start(ifp);
    546 
    547 		if (status & INTR_SMB)
    548 			age_stats_update(sc);
    549 	}
    550 
    551 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    552 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    553 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    554 	    BUS_DMASYNC_POSTREAD);
    555 
    556 back:
    557 	/* Re-enable interrupts. */
    558 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    559 
    560 	return 1;
    561 }
    562 
    563 static void
    564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    565 {
    566 	uint32_t ea[2], reg;
    567 	int i, vpdc;
    568 
    569 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    570 	if ((reg & SPI_VPD_ENB) != 0) {
    571 		/* Get VPD stored in TWSI EEPROM. */
    572 		reg &= ~SPI_VPD_ENB;
    573 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    574 	}
    575 
    576 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    577 	    PCI_CAP_VPD, &vpdc, NULL)) {
    578 		/*
    579 		 * PCI VPD capability found, let TWSI reload EEPROM.
    580 		 * This will set Ethernet address of controller.
    581 		 */
    582 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    583 		    TWSI_CTRL_SW_LD_START);
    584 		for (i = 100; i > 0; i++) {
    585 			DELAY(1000);
    586 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    587 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    588 				break;
    589 		}
    590 		if (i == 0)
    591 			printf("%s: reloading EEPROM timeout!\n",
    592 			    device_xname(sc->sc_dev));
    593 	} else {
    594 		if (agedebug)
    595 			printf("%s: PCI VPD capability not found!\n",
    596 			    device_xname(sc->sc_dev));
    597 	}
    598 
    599 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    600 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    601 
    602 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    603 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    604 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    605 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    606 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    607 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    608 }
    609 
    610 static void
    611 age_phy_reset(struct age_softc *sc)
    612 {
    613 	uint16_t reg, pn;
    614 	int i, linkup;
    615 
    616 	/* Reset PHY. */
    617 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    618 	DELAY(2000);
    619 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    620 	DELAY(2000);
    621 
    622 #define ATPHY_DBG_ADDR		0x1D
    623 #define ATPHY_DBG_DATA		0x1E
    624 #define ATPHY_CDTC		0x16
    625 #define PHY_CDTC_ENB		0x0001
    626 #define PHY_CDTC_POFF		8
    627 #define ATPHY_CDTS		0x1C
    628 #define PHY_CDTS_STAT_OK	0x0000
    629 #define PHY_CDTS_STAT_SHORT	0x0100
    630 #define PHY_CDTS_STAT_OPEN	0x0200
    631 #define PHY_CDTS_STAT_INVAL	0x0300
    632 #define PHY_CDTS_STAT_MASK	0x0300
    633 
    634 	/* Check power saving mode. Magic from Linux. */
    635 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    636 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    637 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    638 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    639 		for (i = 200; i > 0; i--) {
    640 			DELAY(1000);
    641 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    642 			    ATPHY_CDTC);
    643 			if ((reg & PHY_CDTC_ENB) == 0)
    644 				break;
    645 		}
    646 		DELAY(1000);
    647 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    648 		    ATPHY_CDTS);
    649 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    650 			linkup++;
    651 			break;
    652 		}
    653 	}
    654 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    655 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    656 	if (linkup == 0) {
    657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    658 		    ATPHY_DBG_ADDR, 0);
    659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    660 		    ATPHY_DBG_DATA, 0x124E);
    661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    662 		    ATPHY_DBG_ADDR, 1);
    663 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    664 		    ATPHY_DBG_DATA);
    665 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    666 		    ATPHY_DBG_DATA, reg | 0x03);
    667 		/* XXX */
    668 		DELAY(1500 * 1000);
    669 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    670 		    ATPHY_DBG_ADDR, 0);
    671 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    672 		    ATPHY_DBG_DATA, 0x024E);
    673 	}
    674 
    675 #undef ATPHY_DBG_ADDR
    676 #undef ATPHY_DBG_DATA
    677 #undef ATPHY_CDTC
    678 #undef PHY_CDTC_ENB
    679 #undef PHY_CDTC_POFF
    680 #undef ATPHY_CDTS
    681 #undef PHY_CDTS_STAT_OK
    682 #undef PHY_CDTS_STAT_SHORT
    683 #undef PHY_CDTS_STAT_OPEN
    684 #undef PHY_CDTS_STAT_INVAL
    685 #undef PHY_CDTS_STAT_MASK
    686 }
    687 
    688 static int
    689 age_dma_alloc(struct age_softc *sc)
    690 {
    691 	struct age_txdesc *txd;
    692 	struct age_rxdesc *rxd;
    693 	int nsegs, error, i;
    694 
    695 	/*
    696 	 * Create DMA stuffs for TX ring
    697 	 */
    698 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    699 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    700 	if (error) {
    701 		sc->age_cdata.age_tx_ring_map = NULL;
    702 		return ENOBUFS;
    703 	}
    704 
    705 	/* Allocate DMA'able memory for TX ring */
    706 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    707 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    708 	    &nsegs, BUS_DMA_WAITOK);
    709 	if (error) {
    710 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    711 		    "error = %i\n", device_xname(sc->sc_dev), error);
    712 		return error;
    713 	}
    714 
    715 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    716 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    717 	    BUS_DMA_NOWAIT);
    718 	if (error)
    719 		return ENOBUFS;
    720 
    721 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    722 
    723 	/*  Load the DMA map for Tx ring. */
    724 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    725 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    726 	if (error) {
    727 		printf("%s: could not load DMA'able memory for Tx ring, "
    728 		    "error = %i\n", device_xname(sc->sc_dev), error);
    729 		bus_dmamem_free(sc->sc_dmat,
    730 		    &sc->age_rdata.age_tx_ring_seg, 1);
    731 		return error;
    732 	}
    733 
    734 	sc->age_rdata.age_tx_ring_paddr =
    735 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    736 
    737 	/*
    738 	 * Create DMA stuffs for RX ring
    739 	 */
    740 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    741 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    742 	if (error) {
    743 		sc->age_cdata.age_rx_ring_map = NULL;
    744 		return ENOBUFS;
    745 	}
    746 
    747 	/* Allocate DMA'able memory for RX ring */
    748 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    749 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    750 	    &nsegs, BUS_DMA_WAITOK);
    751 	if (error) {
    752 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    753 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    754 		return error;
    755 	}
    756 
    757 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    758 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    759 	    BUS_DMA_NOWAIT);
    760 	if (error)
    761 		return ENOBUFS;
    762 
    763 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    764 
    765 	/* Load the DMA map for Rx ring. */
    766 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    767 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    768 	if (error) {
    769 		printf("%s: could not load DMA'able memory for Rx ring, "
    770 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    771 		bus_dmamem_free(sc->sc_dmat,
    772 		    &sc->age_rdata.age_rx_ring_seg, 1);
    773 		return error;
    774 	}
    775 
    776 	sc->age_rdata.age_rx_ring_paddr =
    777 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    778 
    779 	/*
    780 	 * Create DMA stuffs for RX return ring
    781 	 */
    782 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    783 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    784 	if (error) {
    785 		sc->age_cdata.age_rr_ring_map = NULL;
    786 		return ENOBUFS;
    787 	}
    788 
    789 	/* Allocate DMA'able memory for RX return ring */
    790 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    791 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    792 	    &nsegs, BUS_DMA_WAITOK);
    793 	if (error) {
    794 		printf("%s: could not allocate DMA'able memory for Rx "
    795 		    "return ring, error = %i.\n",
    796 		    device_xname(sc->sc_dev), error);
    797 		return error;
    798 	}
    799 
    800 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    801 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    802 	    BUS_DMA_NOWAIT);
    803 	if (error)
    804 		return ENOBUFS;
    805 
    806 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    807 
    808 	/*  Load the DMA map for Rx return ring. */
    809 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    810 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    811 	if (error) {
    812 		printf("%s: could not load DMA'able memory for Rx return ring, "
    813 		    "error = %i\n", device_xname(sc->sc_dev), error);
    814 		bus_dmamem_free(sc->sc_dmat,
    815 		    &sc->age_rdata.age_rr_ring_seg, 1);
    816 		return error;
    817 	}
    818 
    819 	sc->age_rdata.age_rr_ring_paddr =
    820 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    821 
    822 	/*
    823 	 * Create DMA stuffs for CMB block
    824 	 */
    825 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    826 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    827 	    &sc->age_cdata.age_cmb_block_map);
    828 	if (error) {
    829 		sc->age_cdata.age_cmb_block_map = NULL;
    830 		return ENOBUFS;
    831 	}
    832 
    833 	/* Allocate DMA'able memory for CMB block */
    834 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    835 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    836 	    &nsegs, BUS_DMA_WAITOK);
    837 	if (error) {
    838 		printf("%s: could not allocate DMA'able memory for "
    839 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    840 		return error;
    841 	}
    842 
    843 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    844 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    845 	    BUS_DMA_NOWAIT);
    846 	if (error)
    847 		return ENOBUFS;
    848 
    849 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    850 
    851 	/*  Load the DMA map for CMB block. */
    852 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    853 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    854 	    BUS_DMA_WAITOK);
    855 	if (error) {
    856 		printf("%s: could not load DMA'able memory for CMB block, "
    857 		    "error = %i\n", device_xname(sc->sc_dev), error);
    858 		bus_dmamem_free(sc->sc_dmat,
    859 		    &sc->age_rdata.age_cmb_block_seg, 1);
    860 		return error;
    861 	}
    862 
    863 	sc->age_rdata.age_cmb_block_paddr =
    864 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    865 
    866 	/*
    867 	 * Create DMA stuffs for SMB block
    868 	 */
    869 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    870 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    871 	    &sc->age_cdata.age_smb_block_map);
    872 	if (error) {
    873 		sc->age_cdata.age_smb_block_map = NULL;
    874 		return ENOBUFS;
    875 	}
    876 
    877 	/* Allocate DMA'able memory for SMB block */
    878 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    879 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    880 	    &nsegs, BUS_DMA_WAITOK);
    881 	if (error) {
    882 		printf("%s: could not allocate DMA'able memory for "
    883 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    884 		return error;
    885 	}
    886 
    887 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    888 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    889 	    BUS_DMA_NOWAIT);
    890 	if (error)
    891 		return ENOBUFS;
    892 
    893 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    894 
    895 	/*  Load the DMA map for SMB block */
    896 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    897 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    898 	    BUS_DMA_WAITOK);
    899 	if (error) {
    900 		printf("%s: could not load DMA'able memory for SMB block, "
    901 		    "error = %i\n", device_xname(sc->sc_dev), error);
    902 		bus_dmamem_free(sc->sc_dmat,
    903 		    &sc->age_rdata.age_smb_block_seg, 1);
    904 		return error;
    905 	}
    906 
    907 	sc->age_rdata.age_smb_block_paddr =
    908 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    909 
    910 	/* Create DMA maps for Tx buffers. */
    911 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    912 		txd = &sc->age_cdata.age_txdesc[i];
    913 		txd->tx_m = NULL;
    914 		txd->tx_dmamap = NULL;
    915 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    916 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    917 		    &txd->tx_dmamap);
    918 		if (error) {
    919 			txd->tx_dmamap = NULL;
    920 			printf("%s: could not create Tx dmamap, error = %i.\n",
    921 			    device_xname(sc->sc_dev), error);
    922 			return error;
    923 		}
    924 	}
    925 
    926 	/* Create DMA maps for Rx buffers. */
    927 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    928 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    929 	if (error) {
    930 		sc->age_cdata.age_rx_sparemap = NULL;
    931 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    932 		    device_xname(sc->sc_dev), error);
    933 		return error;
    934 	}
    935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    936 		rxd = &sc->age_cdata.age_rxdesc[i];
    937 		rxd->rx_m = NULL;
    938 		rxd->rx_dmamap = NULL;
    939 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    940 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    941 		if (error) {
    942 			rxd->rx_dmamap = NULL;
    943 			printf("%s: could not create Rx dmamap, error = %i.\n",
    944 			    device_xname(sc->sc_dev), error);
    945 			return error;
    946 		}
    947 	}
    948 
    949 	return 0;
    950 }
    951 
    952 static void
    953 age_dma_free(struct age_softc *sc)
    954 {
    955 	struct age_txdesc *txd;
    956 	struct age_rxdesc *rxd;
    957 	int i;
    958 
    959 	/* Tx buffers */
    960 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    961 		txd = &sc->age_cdata.age_txdesc[i];
    962 		if (txd->tx_dmamap != NULL) {
    963 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    964 			txd->tx_dmamap = NULL;
    965 		}
    966 	}
    967 	/* Rx buffers */
    968 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    969 		rxd = &sc->age_cdata.age_rxdesc[i];
    970 		if (rxd->rx_dmamap != NULL) {
    971 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    972 			rxd->rx_dmamap = NULL;
    973 		}
    974 	}
    975 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    976 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    977 		sc->age_cdata.age_rx_sparemap = NULL;
    978 	}
    979 
    980 	/* Tx ring. */
    981 	if (sc->age_cdata.age_tx_ring_map != NULL)
    982 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    983 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    984 	    sc->age_rdata.age_tx_ring != NULL)
    985 		bus_dmamem_free(sc->sc_dmat,
    986 		    &sc->age_rdata.age_tx_ring_seg, 1);
    987 	sc->age_rdata.age_tx_ring = NULL;
    988 	sc->age_cdata.age_tx_ring_map = NULL;
    989 
    990 	/* Rx ring. */
    991 	if (sc->age_cdata.age_rx_ring_map != NULL)
    992 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    993 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    994 	    sc->age_rdata.age_rx_ring != NULL)
    995 		bus_dmamem_free(sc->sc_dmat,
    996 		    &sc->age_rdata.age_rx_ring_seg, 1);
    997 	sc->age_rdata.age_rx_ring = NULL;
    998 	sc->age_cdata.age_rx_ring_map = NULL;
    999 
   1000 	/* Rx return ring. */
   1001 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1002 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1003 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1004 	    sc->age_rdata.age_rr_ring != NULL)
   1005 		bus_dmamem_free(sc->sc_dmat,
   1006 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1007 	sc->age_rdata.age_rr_ring = NULL;
   1008 	sc->age_cdata.age_rr_ring_map = NULL;
   1009 
   1010 	/* CMB block */
   1011 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1012 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1013 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1014 	    sc->age_rdata.age_cmb_block != NULL)
   1015 		bus_dmamem_free(sc->sc_dmat,
   1016 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1017 	sc->age_rdata.age_cmb_block = NULL;
   1018 	sc->age_cdata.age_cmb_block_map = NULL;
   1019 
   1020 	/* SMB block */
   1021 	if (sc->age_cdata.age_smb_block_map != NULL)
   1022 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1023 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1024 	    sc->age_rdata.age_smb_block != NULL)
   1025 		bus_dmamem_free(sc->sc_dmat,
   1026 		    &sc->age_rdata.age_smb_block_seg, 1);
   1027 	sc->age_rdata.age_smb_block = NULL;
   1028 	sc->age_cdata.age_smb_block_map = NULL;
   1029 }
   1030 
   1031 static void
   1032 age_start(struct ifnet *ifp)
   1033 {
   1034         struct age_softc *sc = ifp->if_softc;
   1035         struct mbuf *m_head;
   1036 	int enq;
   1037 
   1038 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1039 		return;
   1040 
   1041 	enq = 0;
   1042 	for (;;) {
   1043 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1044 		if (m_head == NULL)
   1045 			break;
   1046 
   1047 		/*
   1048 		 * Pack the data into the transmit ring. If we
   1049 		 * don't have room, set the OACTIVE flag and wait
   1050 		 * for the NIC to drain the ring.
   1051 		 */
   1052 		if (age_encap(sc, &m_head)) {
   1053 			if (m_head == NULL)
   1054 				break;
   1055 			ifp->if_flags |= IFF_OACTIVE;
   1056 			break;
   1057 		}
   1058 		enq = 1;
   1059 
   1060 #if NBPFILTER > 0
   1061 		/*
   1062 		 * If there's a BPF listener, bounce a copy of this frame
   1063 		 * to him.
   1064 		 */
   1065 		if (ifp->if_bpf != NULL)
   1066 			bpf_mtap(ifp->if_bpf, m_head);
   1067 #endif
   1068 	}
   1069 
   1070 	if (enq) {
   1071 		/* Update mbox. */
   1072 		AGE_COMMIT_MBOX(sc);
   1073 		/* Set a timeout in case the chip goes out to lunch. */
   1074 		ifp->if_timer = AGE_TX_TIMEOUT;
   1075 	}
   1076 }
   1077 
   1078 static void
   1079 age_watchdog(struct ifnet *ifp)
   1080 {
   1081 	struct age_softc *sc = ifp->if_softc;
   1082 
   1083 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1084 		printf("%s: watchdog timeout (missed link)\n",
   1085 		    device_xname(sc->sc_dev));
   1086 		ifp->if_oerrors++;
   1087 		age_init(ifp);
   1088 		return;
   1089 	}
   1090 
   1091 	if (sc->age_cdata.age_tx_cnt == 0) {
   1092 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1093 		    "-- recovering\n", device_xname(sc->sc_dev));
   1094 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1095 			age_start(ifp);
   1096 		return;
   1097 	}
   1098 
   1099 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1100 	ifp->if_oerrors++;
   1101 	age_init(ifp);
   1102 
   1103 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1104 		age_start(ifp);
   1105 }
   1106 
   1107 static int
   1108 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1109 {
   1110 	struct age_softc *sc = ifp->if_softc;
   1111 	int s, error;
   1112 
   1113 	s = splnet();
   1114 
   1115 	error = ether_ioctl(ifp, cmd, data);
   1116 	if (error == ENETRESET) {
   1117 		if (ifp->if_flags & IFF_RUNNING)
   1118 			age_rxfilter(sc);
   1119 		error = 0;
   1120 	}
   1121 
   1122 	splx(s);
   1123 	return error;
   1124 }
   1125 
   1126 static void
   1127 age_mac_config(struct age_softc *sc)
   1128 {
   1129 	struct mii_data *mii;
   1130 	uint32_t reg;
   1131 
   1132 	mii = &sc->sc_miibus;
   1133 
   1134 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1135 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1136 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1137 	reg &= ~MAC_CFG_SPEED_MASK;
   1138 
   1139 	/* Reprogram MAC with resolved speed/duplex. */
   1140 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1141 	case IFM_10_T:
   1142 	case IFM_100_TX:
   1143 		reg |= MAC_CFG_SPEED_10_100;
   1144 		break;
   1145 	case IFM_1000_T:
   1146 		reg |= MAC_CFG_SPEED_1000;
   1147 		break;
   1148 	}
   1149 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1150 		reg |= MAC_CFG_FULL_DUPLEX;
   1151 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1152 			reg |= MAC_CFG_TX_FC;
   1153 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1154 			reg |= MAC_CFG_RX_FC;
   1155 	}
   1156 
   1157 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1158 }
   1159 
   1160 static bool
   1161 age_resume(device_t dv PMF_FN_ARGS)
   1162 {
   1163 	struct age_softc *sc = device_private(dv);
   1164 	uint16_t cmd;
   1165 
   1166 	/*
   1167 	 * Clear INTx emulation disable for hardware that
   1168 	 * is set in resume event. From Linux.
   1169 	 */
   1170 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1171 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1172 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1173 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1174 		    PCI_COMMAND_STATUS_REG, cmd);
   1175 	}
   1176 
   1177 	return true;
   1178 }
   1179 
   1180 static int
   1181 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1182 {
   1183 	struct age_txdesc *txd, *txd_last;
   1184 	struct tx_desc *desc;
   1185 	struct mbuf *m;
   1186 	bus_dmamap_t map;
   1187 	uint32_t cflags, poff, vtag;
   1188 	int error, i, nsegs, prod;
   1189 #if NVLAN > 0
   1190 	struct m_tag *mtag;
   1191 #endif
   1192 
   1193 	m = *m_head;
   1194 	cflags = vtag = 0;
   1195 	poff = 0;
   1196 
   1197 	prod = sc->age_cdata.age_tx_prod;
   1198 	txd = &sc->age_cdata.age_txdesc[prod];
   1199 	txd_last = txd;
   1200 	map = txd->tx_dmamap;
   1201 
   1202 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1203 
   1204 	if (error == EFBIG) {
   1205 		error = 0;
   1206 
   1207 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1208 		if (m == NULL) {
   1209 			printf("%s: can't defrag TX mbuf\n",
   1210 			    device_xname(sc->sc_dev));
   1211 			m_freem(*m_head);
   1212 			*m_head = NULL;
   1213 			return ENOBUFS;
   1214 		}
   1215 
   1216 		M_COPY_PKTHDR(m, *m_head);
   1217 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1218 			MCLGET(m, M_DONTWAIT);
   1219 			if (!(m->m_flags & M_EXT)) {
   1220 				m_freem(*m_head);
   1221 				m_freem(m);
   1222 				*m_head = NULL;
   1223 				return ENOBUFS;
   1224 			}
   1225 		}
   1226 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1227 		    mtod(m, void *));
   1228 		m_freem(*m_head);
   1229 		m->m_len = m->m_pkthdr.len;
   1230 		*m_head = m;
   1231 
   1232 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1233 		  	    BUS_DMA_NOWAIT);
   1234 
   1235 		if (error != 0) {
   1236 			printf("%s: could not load defragged TX mbuf\n",
   1237 			    device_xname(sc->sc_dev));
   1238 			if (!error) {
   1239 				bus_dmamap_unload(sc->sc_dmat, map);
   1240 				error = EFBIG;
   1241 			}
   1242 			m_freem(*m_head);
   1243 			*m_head = NULL;
   1244 			return error;
   1245 		}
   1246 	} else if (error) {
   1247 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1248 		return error;
   1249 	}
   1250 
   1251 	nsegs = map->dm_nsegs;
   1252 
   1253 	if (nsegs == 0) {
   1254 		m_freem(*m_head);
   1255 		*m_head = NULL;
   1256 		return EIO;
   1257 	}
   1258 
   1259 	/* Check descriptor overrun. */
   1260 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1261 		bus_dmamap_unload(sc->sc_dmat, map);
   1262 		return ENOBUFS;
   1263 	}
   1264 
   1265 	m = *m_head;
   1266 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1267 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1268 		cflags |= AGE_TD_CSUM;
   1269 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1270 			cflags |= AGE_TD_TCPCSUM;
   1271 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1272 			cflags |= AGE_TD_UDPCSUM;
   1273 		/* Set checksum start offset. */
   1274 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1275 	}
   1276 
   1277 #if NVLAN > 0
   1278 	/* Configure VLAN hardware tag insertion. */
   1279 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1280 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1281 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1282 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1283 	}
   1284 #endif
   1285 
   1286 	desc = NULL;
   1287 	for (i = 0; i < nsegs; i++) {
   1288 		desc = &sc->age_rdata.age_tx_ring[prod];
   1289 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1290 		desc->len =
   1291 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1292 		desc->flags = htole32(cflags);
   1293 		sc->age_cdata.age_tx_cnt++;
   1294 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1295 	}
   1296 
   1297 	/* Update producer index. */
   1298 	sc->age_cdata.age_tx_prod = prod;
   1299 
   1300 	/* Set EOP on the last descriptor. */
   1301 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1302 	desc = &sc->age_rdata.age_tx_ring[prod];
   1303 	desc->flags |= htole32(AGE_TD_EOP);
   1304 
   1305 	/* Swap dmamap of the first and the last. */
   1306 	txd = &sc->age_cdata.age_txdesc[prod];
   1307 	map = txd_last->tx_dmamap;
   1308 	txd_last->tx_dmamap = txd->tx_dmamap;
   1309 	txd->tx_dmamap = map;
   1310 	txd->tx_m = m;
   1311 
   1312 	/* Sync descriptors. */
   1313 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1314 	    BUS_DMASYNC_PREWRITE);
   1315 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1316 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1317 
   1318 	return 0;
   1319 }
   1320 
   1321 static void
   1322 age_txintr(struct age_softc *sc, int tpd_cons)
   1323 {
   1324 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1325 	struct age_txdesc *txd;
   1326 	int cons, prog;
   1327 
   1328 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1329 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1330 
   1331 	/*
   1332 	 * Go through our Tx list and free mbufs for those
   1333 	 * frames which have been transmitted.
   1334 	 */
   1335 	cons = sc->age_cdata.age_tx_cons;
   1336 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1337 		if (sc->age_cdata.age_tx_cnt <= 0)
   1338 			break;
   1339 		prog++;
   1340 		ifp->if_flags &= ~IFF_OACTIVE;
   1341 		sc->age_cdata.age_tx_cnt--;
   1342 		txd = &sc->age_cdata.age_txdesc[cons];
   1343 		/*
   1344 		 * Clear Tx descriptors, it's not required but would
   1345 		 * help debugging in case of Tx issues.
   1346 		 */
   1347 		txd->tx_desc->addr = 0;
   1348 		txd->tx_desc->len = 0;
   1349 		txd->tx_desc->flags = 0;
   1350 
   1351 		if (txd->tx_m == NULL)
   1352 			continue;
   1353 		/* Reclaim transmitted mbufs. */
   1354 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1355 		m_freem(txd->tx_m);
   1356 		txd->tx_m = NULL;
   1357 	}
   1358 
   1359 	if (prog > 0) {
   1360 		sc->age_cdata.age_tx_cons = cons;
   1361 
   1362 		/*
   1363 		 * Unarm watchdog timer only when there are no pending
   1364 		 * Tx descriptors in queue.
   1365 		 */
   1366 		if (sc->age_cdata.age_tx_cnt == 0)
   1367 			ifp->if_timer = 0;
   1368 
   1369 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1370 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1371 		    BUS_DMASYNC_PREWRITE);
   1372 	}
   1373 }
   1374 
   1375 /* Receive a frame. */
   1376 static void
   1377 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1378 {
   1379 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1380 	struct age_rxdesc *rxd;
   1381 	struct rx_desc *desc;
   1382 	struct mbuf *mp, *m;
   1383 	uint32_t status, index;
   1384 	int count, nsegs, pktlen;
   1385 	int rx_cons;
   1386 
   1387 	status = le32toh(rxrd->flags);
   1388 	index = le32toh(rxrd->index);
   1389 	rx_cons = AGE_RX_CONS(index);
   1390 	nsegs = AGE_RX_NSEGS(index);
   1391 
   1392 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1393 	if ((status & AGE_RRD_ERROR) != 0 &&
   1394 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1395 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1396 		/*
   1397 		 * We want to pass the following frames to upper
   1398 		 * layer regardless of error status of Rx return
   1399 		 * ring.
   1400 		 *
   1401 		 *  o IP/TCP/UDP checksum is bad.
   1402 		 *  o frame length and protocol specific length
   1403 		 *     does not match.
   1404 		 */
   1405 		sc->age_cdata.age_rx_cons += nsegs;
   1406 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1407 		return;
   1408 	}
   1409 
   1410 	pktlen = 0;
   1411 	for (count = 0; count < nsegs; count++,
   1412 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1413 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1414 		mp = rxd->rx_m;
   1415 		desc = rxd->rx_desc;
   1416 		/* Add a new receive buffer to the ring. */
   1417 		if (age_newbuf(sc, rxd, 0) != 0) {
   1418 			ifp->if_iqdrops++;
   1419 			/* Reuse Rx buffers. */
   1420 			if (sc->age_cdata.age_rxhead != NULL) {
   1421 				m_freem(sc->age_cdata.age_rxhead);
   1422 				AGE_RXCHAIN_RESET(sc);
   1423 			}
   1424 			break;
   1425 		}
   1426 
   1427 		/* The length of the first mbuf is computed last. */
   1428 		if (count != 0) {
   1429 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1430 			pktlen += mp->m_len;
   1431 		}
   1432 
   1433 		/* Chain received mbufs. */
   1434 		if (sc->age_cdata.age_rxhead == NULL) {
   1435 			sc->age_cdata.age_rxhead = mp;
   1436 			sc->age_cdata.age_rxtail = mp;
   1437 		} else {
   1438 			mp->m_flags &= ~M_PKTHDR;
   1439 			sc->age_cdata.age_rxprev_tail =
   1440 			    sc->age_cdata.age_rxtail;
   1441 			sc->age_cdata.age_rxtail->m_next = mp;
   1442 			sc->age_cdata.age_rxtail = mp;
   1443 		}
   1444 
   1445 		if (count == nsegs - 1) {
   1446 			/*
   1447 			 * It seems that L1 controller has no way
   1448 			 * to tell hardware to strip CRC bytes.
   1449 			 */
   1450 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1451 			if (nsegs > 1) {
   1452 				/* Remove the CRC bytes in chained mbufs. */
   1453 				pktlen -= ETHER_CRC_LEN;
   1454 				if (mp->m_len <= ETHER_CRC_LEN) {
   1455 					sc->age_cdata.age_rxtail =
   1456 					    sc->age_cdata.age_rxprev_tail;
   1457 					sc->age_cdata.age_rxtail->m_len -=
   1458 					    (ETHER_CRC_LEN - mp->m_len);
   1459 					sc->age_cdata.age_rxtail->m_next = NULL;
   1460 					m_freem(mp);
   1461 				} else {
   1462 					mp->m_len -= ETHER_CRC_LEN;
   1463 				}
   1464 			}
   1465 
   1466 			m = sc->age_cdata.age_rxhead;
   1467 			m->m_flags |= M_PKTHDR;
   1468 			m->m_pkthdr.rcvif = ifp;
   1469 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1470 			/* Set the first mbuf length. */
   1471 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1472 
   1473 			/*
   1474 			 * Set checksum information.
   1475 			 * It seems that L1 controller can compute partial
   1476 			 * checksum. The partial checksum value can be used
   1477 			 * to accelerate checksum computation for fragmented
   1478 			 * TCP/UDP packets. Upper network stack already
   1479 			 * takes advantage of the partial checksum value in
   1480 			 * IP reassembly stage. But I'm not sure the
   1481 			 * correctness of the partial hardware checksum
   1482 			 * assistance due to lack of data sheet. If it is
   1483 			 * proven to work on L1 I'll enable it.
   1484 			 */
   1485 			if (status & AGE_RRD_IPV4) {
   1486 				if (status & AGE_RRD_IPCSUM_NOK)
   1487 					m->m_pkthdr.csum_flags |=
   1488 					    M_CSUM_IPv4_BAD;
   1489 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1490 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1491 					m->m_pkthdr.csum_flags |=
   1492 					    M_CSUM_TCP_UDP_BAD;
   1493 				}
   1494 				/*
   1495 				 * Don't mark bad checksum for TCP/UDP frames
   1496 				 * as fragmented frames may always have set
   1497 				 * bad checksummed bit of descriptor status.
   1498 				 */
   1499 			}
   1500 #if NVLAN > 0
   1501 			/* Check for VLAN tagged frames. */
   1502 			if (status & AGE_RRD_VLAN) {
   1503 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1504 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1505 					continue);
   1506 			}
   1507 #endif
   1508 
   1509 #if NBPFILTER > 0
   1510 			if (ifp->if_bpf)
   1511 				bpf_mtap(ifp->if_bpf, m);
   1512 #endif
   1513 			/* Pass it on. */
   1514 			ether_input(ifp, m);
   1515 
   1516 			/* Reset mbuf chains. */
   1517 			AGE_RXCHAIN_RESET(sc);
   1518 		}
   1519 	}
   1520 
   1521 	if (count != nsegs) {
   1522 		sc->age_cdata.age_rx_cons += nsegs;
   1523 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1524 	} else
   1525 		sc->age_cdata.age_rx_cons = rx_cons;
   1526 }
   1527 
   1528 static void
   1529 age_rxintr(struct age_softc *sc, int rr_prod)
   1530 {
   1531 	struct rx_rdesc *rxrd;
   1532 	int rr_cons, nsegs, pktlen, prog;
   1533 
   1534 	rr_cons = sc->age_cdata.age_rr_cons;
   1535 	if (rr_cons == rr_prod)
   1536 		return;
   1537 
   1538 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1539 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1540 	    BUS_DMASYNC_POSTREAD);
   1541 
   1542 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1543 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1544 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1545 		if (nsegs == 0)
   1546 			break;
   1547 		/*
   1548 		 * Check number of segments against received bytes
   1549 		 * Non-matching value would indicate that hardware
   1550 		 * is still trying to update Rx return descriptors.
   1551 		 * I'm not sure whether this check is really needed.
   1552 		 */
   1553 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1554 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1555 		    (MCLBYTES - ETHER_ALIGN)))
   1556 			break;
   1557 
   1558 		/* Received a frame. */
   1559 		age_rxeof(sc, rxrd);
   1560 
   1561 		/* Clear return ring. */
   1562 		rxrd->index = 0;
   1563 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1564 	}
   1565 
   1566 	if (prog > 0) {
   1567 		/* Update the consumer index. */
   1568 		sc->age_cdata.age_rr_cons = rr_cons;
   1569 
   1570 		/* Sync descriptors. */
   1571 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1572 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1573 		    BUS_DMASYNC_PREWRITE);
   1574 
   1575 		/* Notify hardware availability of new Rx buffers. */
   1576 		AGE_COMMIT_MBOX(sc);
   1577 	}
   1578 }
   1579 
   1580 static void
   1581 age_tick(void *xsc)
   1582 {
   1583 	struct age_softc *sc = xsc;
   1584 	struct mii_data *mii = &sc->sc_miibus;
   1585 	int s;
   1586 
   1587 	s = splnet();
   1588 	mii_tick(mii);
   1589 	splx(s);
   1590 
   1591 	callout_schedule(&sc->sc_tick_ch, hz);
   1592 }
   1593 
   1594 static void
   1595 age_reset(struct age_softc *sc)
   1596 {
   1597 	uint32_t reg;
   1598 	int i;
   1599 
   1600 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1601 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1602 	DELAY(1000);
   1603 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1604 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1605 			break;
   1606 		DELAY(10);
   1607 	}
   1608 
   1609 	if (i == 0)
   1610 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1611 		    reg);
   1612 
   1613 	/* Initialize PCIe module. From Linux. */
   1614 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1615 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1616 }
   1617 
   1618 static int
   1619 age_init(struct ifnet *ifp)
   1620 {
   1621 	struct age_softc *sc = ifp->if_softc;
   1622 	struct mii_data *mii;
   1623 	uint8_t eaddr[ETHER_ADDR_LEN];
   1624 	bus_addr_t paddr;
   1625 	uint32_t reg, fsize;
   1626 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1627 	int error;
   1628 
   1629 	/*
   1630 	 * Cancel any pending I/O.
   1631 	 */
   1632 	age_stop(ifp, 0);
   1633 
   1634 	/*
   1635 	 * Reset the chip to a known state.
   1636 	 */
   1637 	age_reset(sc);
   1638 
   1639 	/* Initialize descriptors. */
   1640 	error = age_init_rx_ring(sc);
   1641         if (error != 0) {
   1642 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1643 		age_stop(ifp, 0);
   1644 		return error;
   1645         }
   1646 	age_init_rr_ring(sc);
   1647 	age_init_tx_ring(sc);
   1648 	age_init_cmb_block(sc);
   1649 	age_init_smb_block(sc);
   1650 
   1651 	/* Reprogram the station address. */
   1652 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1653 	CSR_WRITE_4(sc, AGE_PAR0,
   1654 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1655 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1656 
   1657 	/* Set descriptor base addresses. */
   1658 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1659 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1660 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1661 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1662 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1663 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1664 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1665 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1666 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1667 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1668 	paddr = sc->age_rdata.age_smb_block_paddr;
   1669 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1670 
   1671 	/* Set Rx/Rx return descriptor counter. */
   1672 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1673 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1674 	    DESC_RRD_CNT_MASK) |
   1675 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1676 
   1677 	/* Set Tx descriptor counter. */
   1678 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1679 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1680 
   1681 	/* Tell hardware that we're ready to load descriptors. */
   1682 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1683 
   1684         /*
   1685 	 * Initialize mailbox register.
   1686 	 * Updated producer/consumer index information is exchanged
   1687 	 * through this mailbox register. However Tx producer and
   1688 	 * Rx return consumer/Rx producer are all shared such that
   1689 	 * it's hard to separate code path between Tx and Rx without
   1690 	 * locking. If L1 hardware have a separate mail box register
   1691 	 * for Tx and Rx consumer/producer management we could have
   1692 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1693 	 * been run without any locking.
   1694 	*/
   1695 	AGE_COMMIT_MBOX(sc);
   1696 
   1697 	/* Configure IPG/IFG parameters. */
   1698 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1699 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1700 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1701 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1702 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1703 
   1704 	/* Set parameters for half-duplex media. */
   1705 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1706 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1707 	    HDPX_CFG_LCOL_MASK) |
   1708 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1709 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1710 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1711 	    HDPX_CFG_ABEBT_MASK) |
   1712 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1713 	     HDPX_CFG_JAMIPG_MASK));
   1714 
   1715 	/* Configure interrupt moderation timer. */
   1716 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1717 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1718 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1719 	reg &= ~MASTER_MTIMER_ENB;
   1720 	if (AGE_USECS(sc->age_int_mod) == 0)
   1721 		reg &= ~MASTER_ITIMER_ENB;
   1722 	else
   1723 		reg |= MASTER_ITIMER_ENB;
   1724 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1725 	if (agedebug)
   1726 		printf("%s: interrupt moderation is %d us.\n",
   1727 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1728 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1729 
   1730 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1731 	if (ifp->if_mtu < ETHERMTU)
   1732 		sc->age_max_frame_size = ETHERMTU;
   1733 	else
   1734 		sc->age_max_frame_size = ifp->if_mtu;
   1735 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1736 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1737 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1738 
   1739 	/* Configure jumbo frame. */
   1740 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1741 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1742 	    (((fsize / sizeof(uint64_t)) <<
   1743 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1744 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1745 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1746 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1747 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1748 
   1749 	/* Configure flow-control parameters. From Linux. */
   1750 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1751 		/*
   1752 		 * Magic workaround for old-L1.
   1753 		 * Don't know which hw revision requires this magic.
   1754 		 */
   1755 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1756 		/*
   1757 		 * Another magic workaround for flow-control mode
   1758 		 * change. From Linux.
   1759 		 */
   1760 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1761 	}
   1762 	/*
   1763 	 * TODO
   1764 	 *  Should understand pause parameter relationships between FIFO
   1765 	 *  size and number of Rx descriptors and Rx return descriptors.
   1766 	 *
   1767 	 *  Magic parameters came from Linux.
   1768 	 */
   1769 	switch (sc->age_chip_rev) {
   1770 	case 0x8001:
   1771 	case 0x9001:
   1772 	case 0x9002:
   1773 	case 0x9003:
   1774 		rxf_hi = AGE_RX_RING_CNT / 16;
   1775 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1776 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1777 		rrd_lo = AGE_RR_RING_CNT / 16;
   1778 		break;
   1779 	default:
   1780 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1781 		rxf_lo = reg / 16;
   1782 		if (rxf_lo < 192)
   1783 			rxf_lo = 192;
   1784 		rxf_hi = (reg * 7) / 8;
   1785 		if (rxf_hi < rxf_lo)
   1786 			rxf_hi = rxf_lo + 16;
   1787 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1788 		rrd_lo = reg / 8;
   1789 		rrd_hi = (reg * 7) / 8;
   1790 		if (rrd_lo < 2)
   1791 			rrd_lo = 2;
   1792 		if (rrd_hi < rrd_lo)
   1793 			rrd_hi = rrd_lo + 3;
   1794 		break;
   1795 	}
   1796 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1797 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1798 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1799 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1800 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1801 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1802 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1803 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1804 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1805 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1806 
   1807 	/* Configure RxQ. */
   1808 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1809 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1810 	    RXQ_CFG_RD_BURST_MASK) |
   1811 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1812 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1813 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1814 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1815 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1816 
   1817 	/* Configure TxQ. */
   1818 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1819 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1820 	    TXQ_CFG_TPD_BURST_MASK) |
   1821 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1822 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1823 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1824 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1825 	    TXQ_CFG_ENB);
   1826 
   1827 	/* Configure DMA parameters. */
   1828 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1829 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1830 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1831 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1832 
   1833 	/* Configure CMB DMA write threshold. */
   1834 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1835 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1836 	    CMB_WR_THRESH_RRD_MASK) |
   1837 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1838 	    CMB_WR_THRESH_TPD_MASK));
   1839 
   1840 	/* Set CMB/SMB timer and enable them. */
   1841 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1842 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1843 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1844 
   1845 	/* Request SMB updates for every seconds. */
   1846 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1847 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1848 
   1849 	/*
   1850 	 * Disable all WOL bits as WOL can interfere normal Rx
   1851 	 * operation.
   1852 	 */
   1853 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1854 
   1855         /*
   1856 	 * Configure Tx/Rx MACs.
   1857 	 *  - Auto-padding for short frames.
   1858 	 *  - Enable CRC generation.
   1859 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1860 	 *  of MAC is followed after link establishment.
   1861 	 */
   1862 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1863 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1864 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1865 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1866 	    MAC_CFG_PREAMBLE_MASK));
   1867 
   1868 	/* Set up the receive filter. */
   1869 	age_rxfilter(sc);
   1870 	age_rxvlan(sc);
   1871 
   1872 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1873 	reg |= MAC_CFG_RXCSUM_ENB;
   1874 
   1875 	/* Ack all pending interrupts and clear it. */
   1876 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1877 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1878 
   1879 	/* Finally enable Tx/Rx MAC. */
   1880 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1881 
   1882 	sc->age_flags &= ~AGE_FLAG_LINK;
   1883 
   1884 	/* Switch to the current media. */
   1885 	mii = &sc->sc_miibus;
   1886 	mii_mediachg(mii);
   1887 
   1888 	callout_schedule(&sc->sc_tick_ch, hz);
   1889 
   1890 	ifp->if_flags |= IFF_RUNNING;
   1891 	ifp->if_flags &= ~IFF_OACTIVE;
   1892 
   1893 	return 0;
   1894 }
   1895 
   1896 static void
   1897 age_stop(struct ifnet *ifp, int disable)
   1898 {
   1899 	struct age_softc *sc = ifp->if_softc;
   1900 	struct age_txdesc *txd;
   1901 	struct age_rxdesc *rxd;
   1902 	uint32_t reg;
   1903 	int i;
   1904 
   1905 	callout_stop(&sc->sc_tick_ch);
   1906 
   1907 	/*
   1908 	 * Mark the interface down and cancel the watchdog timer.
   1909 	 */
   1910 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1911 	ifp->if_timer = 0;
   1912 
   1913 	sc->age_flags &= ~AGE_FLAG_LINK;
   1914 
   1915 	mii_down(&sc->sc_miibus);
   1916 
   1917 	/*
   1918 	 * Disable interrupts.
   1919 	 */
   1920 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1921 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1922 
   1923 	/* Stop CMB/SMB updates. */
   1924 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1925 
   1926 	/* Stop Rx/Tx MAC. */
   1927 	age_stop_rxmac(sc);
   1928 	age_stop_txmac(sc);
   1929 
   1930 	/* Stop DMA. */
   1931 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1932 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1933 
   1934 	/* Stop TxQ/RxQ. */
   1935 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1936 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1937 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1938 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1939 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1940 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1941 			break;
   1942 		DELAY(10);
   1943 	}
   1944 	if (i == 0)
   1945 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1946 		    device_xname(sc->sc_dev), reg);
   1947 
   1948 	/* Reclaim Rx buffers that have been processed. */
   1949 	if (sc->age_cdata.age_rxhead != NULL)
   1950 		m_freem(sc->age_cdata.age_rxhead);
   1951 	AGE_RXCHAIN_RESET(sc);
   1952 
   1953 	/*
   1954 	 * Free RX and TX mbufs still in the queues.
   1955 	 */
   1956 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1957 		rxd = &sc->age_cdata.age_rxdesc[i];
   1958 		if (rxd->rx_m != NULL) {
   1959 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1960 			m_freem(rxd->rx_m);
   1961 			rxd->rx_m = NULL;
   1962 		}
   1963 	}
   1964 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1965 		txd = &sc->age_cdata.age_txdesc[i];
   1966 		if (txd->tx_m != NULL) {
   1967 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1968 			m_freem(txd->tx_m);
   1969 			txd->tx_m = NULL;
   1970 		}
   1971 	}
   1972 }
   1973 
   1974 static void
   1975 age_stats_update(struct age_softc *sc)
   1976 {
   1977 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1978 	struct age_stats *stat;
   1979 	struct smb *smb;
   1980 
   1981 	stat = &sc->age_stat;
   1982 
   1983 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1984 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1985 
   1986 	smb = sc->age_rdata.age_smb_block;
   1987 	if (smb->updated == 0)
   1988 		return;
   1989 
   1990 	/* Rx stats. */
   1991 	stat->rx_frames += smb->rx_frames;
   1992 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1993 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1994 	stat->rx_pause_frames += smb->rx_pause_frames;
   1995 	stat->rx_control_frames += smb->rx_control_frames;
   1996 	stat->rx_crcerrs += smb->rx_crcerrs;
   1997 	stat->rx_lenerrs += smb->rx_lenerrs;
   1998 	stat->rx_bytes += smb->rx_bytes;
   1999 	stat->rx_runts += smb->rx_runts;
   2000 	stat->rx_fragments += smb->rx_fragments;
   2001 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2002 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2003 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2004 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2005 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2006 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2007 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2008 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2009 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2010 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2011 	stat->rx_alignerrs += smb->rx_alignerrs;
   2012 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2013 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2014 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2015 
   2016 	/* Tx stats. */
   2017 	stat->tx_frames += smb->tx_frames;
   2018 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2019 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2020 	stat->tx_pause_frames += smb->tx_pause_frames;
   2021 	stat->tx_excess_defer += smb->tx_excess_defer;
   2022 	stat->tx_control_frames += smb->tx_control_frames;
   2023 	stat->tx_deferred += smb->tx_deferred;
   2024 	stat->tx_bytes += smb->tx_bytes;
   2025 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2026 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2027 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2028 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2029 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2030 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2031 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2032 	stat->tx_single_colls += smb->tx_single_colls;
   2033 	stat->tx_multi_colls += smb->tx_multi_colls;
   2034 	stat->tx_late_colls += smb->tx_late_colls;
   2035 	stat->tx_excess_colls += smb->tx_excess_colls;
   2036 	stat->tx_underrun += smb->tx_underrun;
   2037 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2038 	stat->tx_lenerrs += smb->tx_lenerrs;
   2039 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2040 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2041 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2042 
   2043 	/* Update counters in ifnet. */
   2044 	ifp->if_opackets += smb->tx_frames;
   2045 
   2046 	ifp->if_collisions += smb->tx_single_colls +
   2047 	    smb->tx_multi_colls + smb->tx_late_colls +
   2048 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2049 
   2050 	ifp->if_oerrors += smb->tx_excess_colls +
   2051 	    smb->tx_late_colls + smb->tx_underrun +
   2052 	    smb->tx_pkts_truncated;
   2053 
   2054 	ifp->if_ipackets += smb->rx_frames;
   2055 
   2056 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2057 	    smb->rx_runts + smb->rx_pkts_truncated +
   2058 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2059 	    smb->rx_alignerrs;
   2060 
   2061 	/* Update done, clear. */
   2062 	smb->updated = 0;
   2063 
   2064 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2065 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2066 }
   2067 
   2068 static void
   2069 age_stop_txmac(struct age_softc *sc)
   2070 {
   2071 	uint32_t reg;
   2072 	int i;
   2073 
   2074 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2075 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2076 		reg &= ~MAC_CFG_TX_ENB;
   2077 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2078 	}
   2079 	/* Stop Tx DMA engine. */
   2080 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2081 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2082 		reg &= ~DMA_CFG_RD_ENB;
   2083 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2084 	}
   2085 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2086 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2087 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2088 			break;
   2089 		DELAY(10);
   2090 	}
   2091 	if (i == 0)
   2092 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2093 }
   2094 
   2095 static void
   2096 age_stop_rxmac(struct age_softc *sc)
   2097 {
   2098 	uint32_t reg;
   2099 	int i;
   2100 
   2101 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2102 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2103 		reg &= ~MAC_CFG_RX_ENB;
   2104 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2105 	}
   2106 	/* Stop Rx DMA engine. */
   2107 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2108 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2109 		reg &= ~DMA_CFG_WR_ENB;
   2110 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2111 	}
   2112 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2113 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2114 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2115 			break;
   2116 		DELAY(10);
   2117 	}
   2118 	if (i == 0)
   2119 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2120 }
   2121 
   2122 static void
   2123 age_init_tx_ring(struct age_softc *sc)
   2124 {
   2125 	struct age_ring_data *rd;
   2126 	struct age_txdesc *txd;
   2127 	int i;
   2128 
   2129 	sc->age_cdata.age_tx_prod = 0;
   2130 	sc->age_cdata.age_tx_cons = 0;
   2131 	sc->age_cdata.age_tx_cnt = 0;
   2132 
   2133 	rd = &sc->age_rdata;
   2134 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2135 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2136 		txd = &sc->age_cdata.age_txdesc[i];
   2137 		txd->tx_desc = &rd->age_tx_ring[i];
   2138 		txd->tx_m = NULL;
   2139 	}
   2140 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2141 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2142 }
   2143 
   2144 static int
   2145 age_init_rx_ring(struct age_softc *sc)
   2146 {
   2147 	struct age_ring_data *rd;
   2148 	struct age_rxdesc *rxd;
   2149 	int i;
   2150 
   2151 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2152 	rd = &sc->age_rdata;
   2153 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2154 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2155 		rxd = &sc->age_cdata.age_rxdesc[i];
   2156 		rxd->rx_m = NULL;
   2157 		rxd->rx_desc = &rd->age_rx_ring[i];
   2158 		if (age_newbuf(sc, rxd, 1) != 0)
   2159 			return ENOBUFS;
   2160 	}
   2161 
   2162 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2163 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2164 
   2165 	return 0;
   2166 }
   2167 
   2168 static void
   2169 age_init_rr_ring(struct age_softc *sc)
   2170 {
   2171 	struct age_ring_data *rd;
   2172 
   2173 	sc->age_cdata.age_rr_cons = 0;
   2174 	AGE_RXCHAIN_RESET(sc);
   2175 
   2176 	rd = &sc->age_rdata;
   2177 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2178 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2179 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2180 }
   2181 
   2182 static void
   2183 age_init_cmb_block(struct age_softc *sc)
   2184 {
   2185 	struct age_ring_data *rd;
   2186 
   2187 	rd = &sc->age_rdata;
   2188 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2189 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2190 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2191 }
   2192 
   2193 static void
   2194 age_init_smb_block(struct age_softc *sc)
   2195 {
   2196 	struct age_ring_data *rd;
   2197 
   2198 	rd = &sc->age_rdata;
   2199 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2200 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2201 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2202 }
   2203 
   2204 static int
   2205 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2206 {
   2207 	struct rx_desc *desc;
   2208 	struct mbuf *m;
   2209 	bus_dmamap_t map;
   2210 	int error;
   2211 
   2212 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2213 	if (m == NULL)
   2214 		return ENOBUFS;
   2215 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2216 	if (!(m->m_flags & M_EXT)) {
   2217 		 m_freem(m);
   2218 		 return ENOBUFS;
   2219 	}
   2220 
   2221 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2222 	m_adj(m, ETHER_ALIGN);
   2223 
   2224 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2225 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2226 
   2227 	if (error != 0) {
   2228 		if (!error) {
   2229 			bus_dmamap_unload(sc->sc_dmat,
   2230 			    sc->age_cdata.age_rx_sparemap);
   2231 			error = EFBIG;
   2232 			printf("%s: too many segments?!\n",
   2233 			    device_xname(sc->sc_dev));
   2234 		}
   2235 		m_freem(m);
   2236 
   2237 		if (init)
   2238 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2239 		return error;
   2240 	}
   2241 
   2242 	if (rxd->rx_m != NULL) {
   2243 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2244 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2245 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2246 	}
   2247 	map = rxd->rx_dmamap;
   2248 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2249 	sc->age_cdata.age_rx_sparemap = map;
   2250 	rxd->rx_m = m;
   2251 
   2252 	desc = rxd->rx_desc;
   2253 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2254 	desc->len =
   2255 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2256 	    AGE_RD_LEN_SHIFT);
   2257 
   2258 	return 0;
   2259 }
   2260 
   2261 static void
   2262 age_rxvlan(struct age_softc *sc)
   2263 {
   2264 	uint32_t reg;
   2265 
   2266 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2267 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2268 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2269 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2270 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2271 }
   2272 
   2273 static void
   2274 age_rxfilter(struct age_softc *sc)
   2275 {
   2276 	struct ethercom *ec = &sc->sc_ec;
   2277 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2278 	struct ether_multi *enm;
   2279 	struct ether_multistep step;
   2280 	uint32_t crc;
   2281 	uint32_t mchash[2];
   2282 	uint32_t rxcfg;
   2283 
   2284 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2285 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2286 	ifp->if_flags &= ~IFF_ALLMULTI;
   2287 
   2288 	/*
   2289 	 * Always accept broadcast frames.
   2290 	 */
   2291 	rxcfg |= MAC_CFG_BCAST;
   2292 
   2293 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2294 		ifp->if_flags |= IFF_ALLMULTI;
   2295 		if (ifp->if_flags & IFF_PROMISC)
   2296 			rxcfg |= MAC_CFG_PROMISC;
   2297 		else
   2298 			rxcfg |= MAC_CFG_ALLMULTI;
   2299 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2300 	} else {
   2301 		/* Program new filter. */
   2302 		memset(mchash, 0, sizeof(mchash));
   2303 
   2304 		ETHER_FIRST_MULTI(step, ec, enm);
   2305 		while (enm != NULL) {
   2306 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2307 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2308 			ETHER_NEXT_MULTI(step, enm);
   2309 		}
   2310 	}
   2311 
   2312 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2313 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2314 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2315 }
   2316