Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.35
      1 /*	$NetBSD: if_age.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t, pmf_qual_t);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_dma_alloc(struct age_softc *);
    101 static void	age_dma_free(struct age_softc *);
    102 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    103 static void	age_phy_reset(struct age_softc *);
    104 
    105 static int	age_encap(struct age_softc *, struct mbuf **);
    106 static void	age_init_tx_ring(struct age_softc *);
    107 static int	age_init_rx_ring(struct age_softc *);
    108 static void	age_init_rr_ring(struct age_softc *);
    109 static void	age_init_cmb_block(struct age_softc *);
    110 static void	age_init_smb_block(struct age_softc *);
    111 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    112 static void	age_mac_config(struct age_softc *);
    113 static void	age_txintr(struct age_softc *, int);
    114 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    115 static void	age_rxintr(struct age_softc *, int);
    116 static void	age_tick(void *);
    117 static void	age_reset(struct age_softc *);
    118 static void	age_stop(struct ifnet *, int);
    119 static void	age_stats_update(struct age_softc *);
    120 static void	age_stop_txmac(struct age_softc *);
    121 static void	age_stop_rxmac(struct age_softc *);
    122 static void	age_rxvlan(struct age_softc *sc);
    123 static void	age_rxfilter(struct age_softc *);
    124 
    125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    126     age_match, age_attach, age_detach, NULL);
    127 
    128 int agedebug = 0;
    129 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    130 
    131 #define ETHER_ALIGN 2
    132 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    133 
    134 static int
    135 age_match(device_t dev, cfdata_t match, void *aux)
    136 {
    137 	struct pci_attach_args *pa = aux;
    138 
    139 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    140 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    141 }
    142 
    143 static void
    144 age_attach(device_t parent, device_t self, void *aux)
    145 {
    146 	struct age_softc *sc = device_private(self);
    147 	struct pci_attach_args *pa = aux;
    148 	pci_intr_handle_t ih;
    149 	const char *intrstr;
    150 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    151 	pcireg_t memtype;
    152 	int error = 0;
    153 
    154 	aprint_naive("\n");
    155 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    156 
    157 	sc->sc_dev = self;
    158 	sc->sc_dmat = pa->pa_dmat;
    159 	sc->sc_pct = pa->pa_pc;
    160 	sc->sc_pcitag = pa->pa_tag;
    161 
    162 	/*
    163 	 * Allocate IO memory
    164 	 */
    165 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    166 	switch (memtype) {
    167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    170 		break;
    171         default:
    172 		aprint_error_dev(self, "invalid base address register\n");
    173 		break;
    174 	}
    175 
    176 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    177 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    178 		aprint_error_dev(self, "could not map mem space\n");
    179 		return;
    180 	}
    181 
    182 	if (pci_intr_map(pa, &ih) != 0) {
    183 		aprint_error_dev(self, "could not map interrupt\n");
    184 		goto fail;
    185 	}
    186 
    187 	/*
    188 	 * Allocate IRQ
    189 	 */
    190 	intrstr = pci_intr_string(sc->sc_pct, ih);
    191 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    192 	    age_intr, sc);
    193 	if (sc->sc_irq_handle == NULL) {
    194 		aprint_error_dev(self, "could not establish interrupt");
    195 		if (intrstr != NULL)
    196 			aprint_error(" at %s", intrstr);
    197 		aprint_error("\n");
    198 		goto fail;
    199 	}
    200 	aprint_normal_dev(self, "%s\n", intrstr);
    201 
    202 	/* Set PHY address. */
    203 	sc->age_phyaddr = AGE_PHY_ADDR;
    204 
    205 	/* Reset PHY. */
    206 	age_phy_reset(sc);
    207 
    208 	/* Reset the ethernet controller. */
    209 	age_reset(sc);
    210 
    211 	/* Get PCI and chip id/revision. */
    212 	sc->age_rev = PCI_REVISION(pa->pa_class);
    213 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    214 	    MASTER_CHIP_REV_SHIFT;
    215 
    216 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    217 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    218 
    219 	if (agedebug) {
    220 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    221 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    222 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    223 	}
    224 
    225 	/* Set max allowable DMA size. */
    226 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    227 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    228 
    229 	/* Allocate DMA stuffs */
    230 	error = age_dma_alloc(sc);
    231 	if (error)
    232 		goto fail;
    233 
    234 	callout_init(&sc->sc_tick_ch, 0);
    235 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    236 
    237 	/* Load station address. */
    238 	age_get_macaddr(sc, sc->sc_enaddr);
    239 
    240 	aprint_normal_dev(self, "Ethernet address %s\n",
    241 	    ether_sprintf(sc->sc_enaddr));
    242 
    243 	ifp->if_softc = sc;
    244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    245 	ifp->if_init = age_init;
    246 	ifp->if_ioctl = age_ioctl;
    247 	ifp->if_start = age_start;
    248 	ifp->if_stop = age_stop;
    249 	ifp->if_watchdog = age_watchdog;
    250 	ifp->if_baudrate = IF_Gbps(1);
    251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    252 	IFQ_SET_READY(&ifp->if_snd);
    253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    254 
    255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    256 
    257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    258 				IFCAP_CSUM_TCPv4_Rx |
    259 				IFCAP_CSUM_UDPv4_Rx;
    260 #ifdef AGE_CHECKSUM
    261 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    262 				IFCAP_CSUM_TCPv4_Tx |
    263 				IFCAP_CSUM_UDPv4_Tx;
    264 #endif
    265 
    266 #if NVLAN > 0
    267 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    268 #endif
    269 
    270 	/* Set up MII bus. */
    271 	sc->sc_miibus.mii_ifp = ifp;
    272 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    273 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    274 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    275 
    276 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    277 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    278 	    age_mediastatus);
    279 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    280 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    281 
    282 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    283 		aprint_error_dev(self, "no PHY found!\n");
    284 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    285 		    0, NULL);
    286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    287 	} else
    288 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    289 
    290 	if_attach(ifp);
    291 	ether_ifattach(ifp, sc->sc_enaddr);
    292 
    293 	if (pmf_device_register(self, NULL, age_resume))
    294 		pmf_class_network_register(self, ifp);
    295 	else
    296 		aprint_error_dev(self, "couldn't establish power handler\n");
    297 
    298 	return;
    299 
    300 fail:
    301 	age_dma_free(sc);
    302 	if (sc->sc_irq_handle != NULL) {
    303 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    304 		sc->sc_irq_handle = NULL;
    305 	}
    306 	if (sc->sc_mem_size) {
    307 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    308 		sc->sc_mem_size = 0;
    309 	}
    310 }
    311 
    312 static int
    313 age_detach(device_t self, int flags)
    314 {
    315 	struct age_softc *sc = device_private(self);
    316 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    317 	int s;
    318 
    319 	pmf_device_deregister(self);
    320 	s = splnet();
    321 	age_stop(ifp, 0);
    322 	splx(s);
    323 
    324 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    325 
    326 	/* Delete all remaining media. */
    327 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    328 
    329 	ether_ifdetach(ifp);
    330 	if_detach(ifp);
    331 	age_dma_free(sc);
    332 
    333 	if (sc->sc_irq_handle != NULL) {
    334 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    335 		sc->sc_irq_handle = NULL;
    336 	}
    337 	if (sc->sc_mem_size) {
    338 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    339 		sc->sc_mem_size = 0;
    340 	}
    341 	return 0;
    342 }
    343 
    344 /*
    345  *	Read a PHY register on the MII of the L1.
    346  */
    347 static int
    348 age_miibus_readreg(device_t dev, int phy, int reg)
    349 {
    350 	struct age_softc *sc = device_private(dev);
    351 	uint32_t v;
    352 	int i;
    353 
    354 	if (phy != sc->age_phyaddr)
    355 		return 0;
    356 
    357 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    358 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    359 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    360 		DELAY(1);
    361 		v = CSR_READ_4(sc, AGE_MDIO);
    362 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    363 			break;
    364 	}
    365 
    366 	if (i == 0) {
    367 		printf("%s: phy read timeout: phy %d, reg %d\n",
    368 			device_xname(sc->sc_dev), phy, reg);
    369 		return 0;
    370 	}
    371 
    372 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    373 }
    374 
    375 /*
    376  * 	Write a PHY register on the MII of the L1.
    377  */
    378 static void
    379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    380 {
    381 	struct age_softc *sc = device_private(dev);
    382 	uint32_t v;
    383 	int i;
    384 
    385 	if (phy != sc->age_phyaddr)
    386 		return;
    387 
    388 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    389 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    390 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    391 
    392 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    393 		DELAY(1);
    394 		v = CSR_READ_4(sc, AGE_MDIO);
    395 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    396 			break;
    397 	}
    398 
    399 	if (i == 0) {
    400 		printf("%s: phy write timeout: phy %d, reg %d\n",
    401 		    device_xname(sc->sc_dev), phy, reg);
    402 	}
    403 }
    404 
    405 /*
    406  *	Callback from MII layer when media changes.
    407  */
    408 static void
    409 age_miibus_statchg(device_t dev)
    410 {
    411 	struct age_softc *sc = device_private(dev);
    412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    413 	struct mii_data *mii;
    414 
    415 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    416 		return;
    417 
    418 	mii = &sc->sc_miibus;
    419 
    420 	sc->age_flags &= ~AGE_FLAG_LINK;
    421 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    423 		case IFM_10_T:
    424 		case IFM_100_TX:
    425 		case IFM_1000_T:
    426 			sc->age_flags |= AGE_FLAG_LINK;
    427 			break;
    428 		default:
    429 			break;
    430 		}
    431 	}
    432 
    433 	/* Stop Rx/Tx MACs. */
    434 	age_stop_rxmac(sc);
    435 	age_stop_txmac(sc);
    436 
    437 	/* Program MACs with resolved speed/duplex/flow-control. */
    438 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    439 		uint32_t reg;
    440 
    441 		age_mac_config(sc);
    442 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    443 		/* Restart DMA engine and Tx/Rx MAC. */
    444 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    445 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    446 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    447 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    448 	}
    449 }
    450 
    451 /*
    452  *	Get the current interface media status.
    453  */
    454 static void
    455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    456 {
    457 	struct age_softc *sc = ifp->if_softc;
    458 	struct mii_data *mii = &sc->sc_miibus;
    459 
    460 	mii_pollstat(mii);
    461 	ifmr->ifm_status = mii->mii_media_status;
    462 	ifmr->ifm_active = mii->mii_media_active;
    463 }
    464 
    465 /*
    466  *	Set hardware to newly-selected media.
    467  */
    468 static int
    469 age_mediachange(struct ifnet *ifp)
    470 {
    471 	struct age_softc *sc = ifp->if_softc;
    472 	struct mii_data *mii = &sc->sc_miibus;
    473 	int error;
    474 
    475 	if (mii->mii_instance != 0) {
    476 		struct mii_softc *miisc;
    477 
    478 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    479 			mii_phy_reset(miisc);
    480 	}
    481 	error = mii_mediachg(mii);
    482 
    483 	return error;
    484 }
    485 
    486 static int
    487 age_intr(void *arg)
    488 {
    489         struct age_softc *sc = arg;
    490         struct ifnet *ifp = &sc->sc_ec.ec_if;
    491 	struct cmb *cmb;
    492         uint32_t status;
    493 
    494 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    495 	if (status == 0 || (status & AGE_INTRS) == 0)
    496 		return 0;
    497 
    498 	cmb = sc->age_rdata.age_cmb_block;
    499 	if (cmb == NULL) {
    500 		/* Happens when bringing up the interface
    501 		 * w/o having a carrier. Ack. the interrupt.
    502 		 */
    503 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    504 		return 0;
    505 	}
    506 
    507 	/* Disable interrupts. */
    508 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    509 
    510 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    511 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    512 	status = le32toh(cmb->intr_status);
    513 	if ((status & AGE_INTRS) == 0)
    514 		goto back;
    515 
    516 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    517 	    TPD_CONS_SHIFT;
    518 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    519 	    RRD_PROD_SHIFT;
    520 
    521 	/* Let hardware know CMB was served. */
    522 	cmb->intr_status = 0;
    523 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    524 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    525 	    BUS_DMASYNC_PREWRITE);
    526 
    527 	if (ifp->if_flags & IFF_RUNNING) {
    528 		if (status & INTR_CMB_RX)
    529 			age_rxintr(sc, sc->age_rr_prod);
    530 
    531 		if (status & INTR_CMB_TX)
    532 			age_txintr(sc, sc->age_tpd_cons);
    533 
    534 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    535 			if (status & INTR_DMA_RD_TO_RST)
    536 				printf("%s: DMA read error! -- resetting\n",
    537 				    device_xname(sc->sc_dev));
    538 			if (status & INTR_DMA_WR_TO_RST)
    539 				printf("%s: DMA write error! -- resetting\n",
    540 				    device_xname(sc->sc_dev));
    541 			age_init(ifp);
    542 		}
    543 
    544 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    545 			age_start(ifp);
    546 
    547 		if (status & INTR_SMB)
    548 			age_stats_update(sc);
    549 	}
    550 
    551 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    552 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    553 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    554 	    BUS_DMASYNC_POSTREAD);
    555 
    556 back:
    557 	/* Re-enable interrupts. */
    558 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    559 
    560 	return 1;
    561 }
    562 
    563 static void
    564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    565 {
    566 	uint32_t ea[2], reg;
    567 	int i, vpdc;
    568 
    569 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    570 	if ((reg & SPI_VPD_ENB) != 0) {
    571 		/* Get VPD stored in TWSI EEPROM. */
    572 		reg &= ~SPI_VPD_ENB;
    573 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    574 	}
    575 
    576 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    577 	    PCI_CAP_VPD, &vpdc, NULL)) {
    578 		/*
    579 		 * PCI VPD capability found, let TWSI reload EEPROM.
    580 		 * This will set Ethernet address of controller.
    581 		 */
    582 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    583 		    TWSI_CTRL_SW_LD_START);
    584 		for (i = 100; i > 0; i++) {
    585 			DELAY(1000);
    586 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    587 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    588 				break;
    589 		}
    590 		if (i == 0)
    591 			printf("%s: reloading EEPROM timeout!\n",
    592 			    device_xname(sc->sc_dev));
    593 	} else {
    594 		if (agedebug)
    595 			printf("%s: PCI VPD capability not found!\n",
    596 			    device_xname(sc->sc_dev));
    597 	}
    598 
    599 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    600 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    601 
    602 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    603 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    604 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    605 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    606 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    607 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    608 }
    609 
    610 static void
    611 age_phy_reset(struct age_softc *sc)
    612 {
    613 	uint16_t reg, pn;
    614 	int i, linkup;
    615 
    616 	/* Reset PHY. */
    617 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    618 	DELAY(2000);
    619 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    620 	DELAY(2000);
    621 
    622 #define ATPHY_DBG_ADDR		0x1D
    623 #define ATPHY_DBG_DATA		0x1E
    624 #define ATPHY_CDTC		0x16
    625 #define PHY_CDTC_ENB		0x0001
    626 #define PHY_CDTC_POFF		8
    627 #define ATPHY_CDTS		0x1C
    628 #define PHY_CDTS_STAT_OK	0x0000
    629 #define PHY_CDTS_STAT_SHORT	0x0100
    630 #define PHY_CDTS_STAT_OPEN	0x0200
    631 #define PHY_CDTS_STAT_INVAL	0x0300
    632 #define PHY_CDTS_STAT_MASK	0x0300
    633 
    634 	/* Check power saving mode. Magic from Linux. */
    635 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    636 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    637 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    638 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    639 		for (i = 200; i > 0; i--) {
    640 			DELAY(1000);
    641 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    642 			    ATPHY_CDTC);
    643 			if ((reg & PHY_CDTC_ENB) == 0)
    644 				break;
    645 		}
    646 		DELAY(1000);
    647 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    648 		    ATPHY_CDTS);
    649 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    650 			linkup++;
    651 			break;
    652 		}
    653 	}
    654 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    655 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    656 	if (linkup == 0) {
    657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    658 		    ATPHY_DBG_ADDR, 0);
    659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    660 		    ATPHY_DBG_DATA, 0x124E);
    661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    662 		    ATPHY_DBG_ADDR, 1);
    663 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    664 		    ATPHY_DBG_DATA);
    665 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    666 		    ATPHY_DBG_DATA, reg | 0x03);
    667 		/* XXX */
    668 		DELAY(1500 * 1000);
    669 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    670 		    ATPHY_DBG_ADDR, 0);
    671 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    672 		    ATPHY_DBG_DATA, 0x024E);
    673 	}
    674 
    675 #undef ATPHY_DBG_ADDR
    676 #undef ATPHY_DBG_DATA
    677 #undef ATPHY_CDTC
    678 #undef PHY_CDTC_ENB
    679 #undef PHY_CDTC_POFF
    680 #undef ATPHY_CDTS
    681 #undef PHY_CDTS_STAT_OK
    682 #undef PHY_CDTS_STAT_SHORT
    683 #undef PHY_CDTS_STAT_OPEN
    684 #undef PHY_CDTS_STAT_INVAL
    685 #undef PHY_CDTS_STAT_MASK
    686 }
    687 
    688 static int
    689 age_dma_alloc(struct age_softc *sc)
    690 {
    691 	struct age_txdesc *txd;
    692 	struct age_rxdesc *rxd;
    693 	int nsegs, error, i;
    694 
    695 	/*
    696 	 * Create DMA stuffs for TX ring
    697 	 */
    698 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    699 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    700 	if (error) {
    701 		sc->age_cdata.age_tx_ring_map = NULL;
    702 		return ENOBUFS;
    703 	}
    704 
    705 	/* Allocate DMA'able memory for TX ring */
    706 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    707 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    708 	    &nsegs, BUS_DMA_WAITOK);
    709 	if (error) {
    710 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    711 		    "error = %i\n", device_xname(sc->sc_dev), error);
    712 		return error;
    713 	}
    714 
    715 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    716 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    717 	    BUS_DMA_NOWAIT);
    718 	if (error)
    719 		return ENOBUFS;
    720 
    721 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    722 
    723 	/*  Load the DMA map for Tx ring. */
    724 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    725 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    726 	if (error) {
    727 		printf("%s: could not load DMA'able memory for Tx ring, "
    728 		    "error = %i\n", device_xname(sc->sc_dev), error);
    729 		bus_dmamem_free(sc->sc_dmat,
    730 		    &sc->age_rdata.age_tx_ring_seg, 1);
    731 		return error;
    732 	}
    733 
    734 	sc->age_rdata.age_tx_ring_paddr =
    735 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    736 
    737 	/*
    738 	 * Create DMA stuffs for RX ring
    739 	 */
    740 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    741 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    742 	if (error) {
    743 		sc->age_cdata.age_rx_ring_map = NULL;
    744 		return ENOBUFS;
    745 	}
    746 
    747 	/* Allocate DMA'able memory for RX ring */
    748 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    749 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    750 	    &nsegs, BUS_DMA_WAITOK);
    751 	if (error) {
    752 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    753 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    754 		return error;
    755 	}
    756 
    757 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    758 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    759 	    BUS_DMA_NOWAIT);
    760 	if (error)
    761 		return ENOBUFS;
    762 
    763 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    764 
    765 	/* Load the DMA map for Rx ring. */
    766 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    767 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    768 	if (error) {
    769 		printf("%s: could not load DMA'able memory for Rx ring, "
    770 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    771 		bus_dmamem_free(sc->sc_dmat,
    772 		    &sc->age_rdata.age_rx_ring_seg, 1);
    773 		return error;
    774 	}
    775 
    776 	sc->age_rdata.age_rx_ring_paddr =
    777 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    778 
    779 	/*
    780 	 * Create DMA stuffs for RX return ring
    781 	 */
    782 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    783 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    784 	if (error) {
    785 		sc->age_cdata.age_rr_ring_map = NULL;
    786 		return ENOBUFS;
    787 	}
    788 
    789 	/* Allocate DMA'able memory for RX return ring */
    790 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    791 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    792 	    &nsegs, BUS_DMA_WAITOK);
    793 	if (error) {
    794 		printf("%s: could not allocate DMA'able memory for Rx "
    795 		    "return ring, error = %i.\n",
    796 		    device_xname(sc->sc_dev), error);
    797 		return error;
    798 	}
    799 
    800 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    801 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    802 	    BUS_DMA_NOWAIT);
    803 	if (error)
    804 		return ENOBUFS;
    805 
    806 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    807 
    808 	/*  Load the DMA map for Rx return ring. */
    809 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    810 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    811 	if (error) {
    812 		printf("%s: could not load DMA'able memory for Rx return ring, "
    813 		    "error = %i\n", device_xname(sc->sc_dev), error);
    814 		bus_dmamem_free(sc->sc_dmat,
    815 		    &sc->age_rdata.age_rr_ring_seg, 1);
    816 		return error;
    817 	}
    818 
    819 	sc->age_rdata.age_rr_ring_paddr =
    820 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    821 
    822 	/*
    823 	 * Create DMA stuffs for CMB block
    824 	 */
    825 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    826 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    827 	    &sc->age_cdata.age_cmb_block_map);
    828 	if (error) {
    829 		sc->age_cdata.age_cmb_block_map = NULL;
    830 		return ENOBUFS;
    831 	}
    832 
    833 	/* Allocate DMA'able memory for CMB block */
    834 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    835 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    836 	    &nsegs, BUS_DMA_WAITOK);
    837 	if (error) {
    838 		printf("%s: could not allocate DMA'able memory for "
    839 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    840 		return error;
    841 	}
    842 
    843 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    844 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    845 	    BUS_DMA_NOWAIT);
    846 	if (error)
    847 		return ENOBUFS;
    848 
    849 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    850 
    851 	/*  Load the DMA map for CMB block. */
    852 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    853 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    854 	    BUS_DMA_WAITOK);
    855 	if (error) {
    856 		printf("%s: could not load DMA'able memory for CMB block, "
    857 		    "error = %i\n", device_xname(sc->sc_dev), error);
    858 		bus_dmamem_free(sc->sc_dmat,
    859 		    &sc->age_rdata.age_cmb_block_seg, 1);
    860 		return error;
    861 	}
    862 
    863 	sc->age_rdata.age_cmb_block_paddr =
    864 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    865 
    866 	/*
    867 	 * Create DMA stuffs for SMB block
    868 	 */
    869 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    870 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    871 	    &sc->age_cdata.age_smb_block_map);
    872 	if (error) {
    873 		sc->age_cdata.age_smb_block_map = NULL;
    874 		return ENOBUFS;
    875 	}
    876 
    877 	/* Allocate DMA'able memory for SMB block */
    878 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    879 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    880 	    &nsegs, BUS_DMA_WAITOK);
    881 	if (error) {
    882 		printf("%s: could not allocate DMA'able memory for "
    883 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    884 		return error;
    885 	}
    886 
    887 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    888 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    889 	    BUS_DMA_NOWAIT);
    890 	if (error)
    891 		return ENOBUFS;
    892 
    893 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    894 
    895 	/*  Load the DMA map for SMB block */
    896 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    897 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    898 	    BUS_DMA_WAITOK);
    899 	if (error) {
    900 		printf("%s: could not load DMA'able memory for SMB block, "
    901 		    "error = %i\n", device_xname(sc->sc_dev), error);
    902 		bus_dmamem_free(sc->sc_dmat,
    903 		    &sc->age_rdata.age_smb_block_seg, 1);
    904 		return error;
    905 	}
    906 
    907 	sc->age_rdata.age_smb_block_paddr =
    908 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    909 
    910 	/* Create DMA maps for Tx buffers. */
    911 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    912 		txd = &sc->age_cdata.age_txdesc[i];
    913 		txd->tx_m = NULL;
    914 		txd->tx_dmamap = NULL;
    915 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    916 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    917 		    &txd->tx_dmamap);
    918 		if (error) {
    919 			txd->tx_dmamap = NULL;
    920 			printf("%s: could not create Tx dmamap, error = %i.\n",
    921 			    device_xname(sc->sc_dev), error);
    922 			return error;
    923 		}
    924 	}
    925 
    926 	/* Create DMA maps for Rx buffers. */
    927 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    928 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    929 	if (error) {
    930 		sc->age_cdata.age_rx_sparemap = NULL;
    931 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    932 		    device_xname(sc->sc_dev), error);
    933 		return error;
    934 	}
    935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    936 		rxd = &sc->age_cdata.age_rxdesc[i];
    937 		rxd->rx_m = NULL;
    938 		rxd->rx_dmamap = NULL;
    939 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    940 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    941 		if (error) {
    942 			rxd->rx_dmamap = NULL;
    943 			printf("%s: could not create Rx dmamap, error = %i.\n",
    944 			    device_xname(sc->sc_dev), error);
    945 			return error;
    946 		}
    947 	}
    948 
    949 	return 0;
    950 }
    951 
    952 static void
    953 age_dma_free(struct age_softc *sc)
    954 {
    955 	struct age_txdesc *txd;
    956 	struct age_rxdesc *rxd;
    957 	int i;
    958 
    959 	/* Tx buffers */
    960 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    961 		txd = &sc->age_cdata.age_txdesc[i];
    962 		if (txd->tx_dmamap != NULL) {
    963 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    964 			txd->tx_dmamap = NULL;
    965 		}
    966 	}
    967 	/* Rx buffers */
    968 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    969 		rxd = &sc->age_cdata.age_rxdesc[i];
    970 		if (rxd->rx_dmamap != NULL) {
    971 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    972 			rxd->rx_dmamap = NULL;
    973 		}
    974 	}
    975 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    976 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    977 		sc->age_cdata.age_rx_sparemap = NULL;
    978 	}
    979 
    980 	/* Tx ring. */
    981 	if (sc->age_cdata.age_tx_ring_map != NULL)
    982 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    983 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    984 	    sc->age_rdata.age_tx_ring != NULL)
    985 		bus_dmamem_free(sc->sc_dmat,
    986 		    &sc->age_rdata.age_tx_ring_seg, 1);
    987 	sc->age_rdata.age_tx_ring = NULL;
    988 	sc->age_cdata.age_tx_ring_map = NULL;
    989 
    990 	/* Rx ring. */
    991 	if (sc->age_cdata.age_rx_ring_map != NULL)
    992 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    993 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    994 	    sc->age_rdata.age_rx_ring != NULL)
    995 		bus_dmamem_free(sc->sc_dmat,
    996 		    &sc->age_rdata.age_rx_ring_seg, 1);
    997 	sc->age_rdata.age_rx_ring = NULL;
    998 	sc->age_cdata.age_rx_ring_map = NULL;
    999 
   1000 	/* Rx return ring. */
   1001 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1002 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1003 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1004 	    sc->age_rdata.age_rr_ring != NULL)
   1005 		bus_dmamem_free(sc->sc_dmat,
   1006 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1007 	sc->age_rdata.age_rr_ring = NULL;
   1008 	sc->age_cdata.age_rr_ring_map = NULL;
   1009 
   1010 	/* CMB block */
   1011 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1012 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1013 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1014 	    sc->age_rdata.age_cmb_block != NULL)
   1015 		bus_dmamem_free(sc->sc_dmat,
   1016 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1017 	sc->age_rdata.age_cmb_block = NULL;
   1018 	sc->age_cdata.age_cmb_block_map = NULL;
   1019 
   1020 	/* SMB block */
   1021 	if (sc->age_cdata.age_smb_block_map != NULL)
   1022 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1023 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1024 	    sc->age_rdata.age_smb_block != NULL)
   1025 		bus_dmamem_free(sc->sc_dmat,
   1026 		    &sc->age_rdata.age_smb_block_seg, 1);
   1027 	sc->age_rdata.age_smb_block = NULL;
   1028 	sc->age_cdata.age_smb_block_map = NULL;
   1029 }
   1030 
   1031 static void
   1032 age_start(struct ifnet *ifp)
   1033 {
   1034         struct age_softc *sc = ifp->if_softc;
   1035         struct mbuf *m_head;
   1036 	int enq;
   1037 
   1038 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1039 		return;
   1040 
   1041 	enq = 0;
   1042 	for (;;) {
   1043 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1044 		if (m_head == NULL)
   1045 			break;
   1046 
   1047 		/*
   1048 		 * Pack the data into the transmit ring. If we
   1049 		 * don't have room, set the OACTIVE flag and wait
   1050 		 * for the NIC to drain the ring.
   1051 		 */
   1052 		if (age_encap(sc, &m_head)) {
   1053 			if (m_head == NULL)
   1054 				break;
   1055 			IF_PREPEND(&ifp->if_snd, m_head);
   1056 			ifp->if_flags |= IFF_OACTIVE;
   1057 			break;
   1058 		}
   1059 		enq = 1;
   1060 
   1061 #if NBPFILTER > 0
   1062 		/*
   1063 		 * If there's a BPF listener, bounce a copy of this frame
   1064 		 * to him.
   1065 		 */
   1066 		if (ifp->if_bpf != NULL)
   1067 			bpf_mtap(ifp->if_bpf, m_head);
   1068 #endif
   1069 	}
   1070 
   1071 	if (enq) {
   1072 		/* Update mbox. */
   1073 		AGE_COMMIT_MBOX(sc);
   1074 		/* Set a timeout in case the chip goes out to lunch. */
   1075 		ifp->if_timer = AGE_TX_TIMEOUT;
   1076 	}
   1077 }
   1078 
   1079 static void
   1080 age_watchdog(struct ifnet *ifp)
   1081 {
   1082 	struct age_softc *sc = ifp->if_softc;
   1083 
   1084 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1085 		printf("%s: watchdog timeout (missed link)\n",
   1086 		    device_xname(sc->sc_dev));
   1087 		ifp->if_oerrors++;
   1088 		age_init(ifp);
   1089 		return;
   1090 	}
   1091 
   1092 	if (sc->age_cdata.age_tx_cnt == 0) {
   1093 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1094 		    "-- recovering\n", device_xname(sc->sc_dev));
   1095 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1096 			age_start(ifp);
   1097 		return;
   1098 	}
   1099 
   1100 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1101 	ifp->if_oerrors++;
   1102 	age_init(ifp);
   1103 
   1104 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1105 		age_start(ifp);
   1106 }
   1107 
   1108 static int
   1109 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1110 {
   1111 	struct age_softc *sc = ifp->if_softc;
   1112 	int s, error;
   1113 
   1114 	s = splnet();
   1115 
   1116 	error = ether_ioctl(ifp, cmd, data);
   1117 	if (error == ENETRESET) {
   1118 		if (ifp->if_flags & IFF_RUNNING)
   1119 			age_rxfilter(sc);
   1120 		error = 0;
   1121 	}
   1122 
   1123 	splx(s);
   1124 	return error;
   1125 }
   1126 
   1127 static void
   1128 age_mac_config(struct age_softc *sc)
   1129 {
   1130 	struct mii_data *mii;
   1131 	uint32_t reg;
   1132 
   1133 	mii = &sc->sc_miibus;
   1134 
   1135 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1136 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1137 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1138 	reg &= ~MAC_CFG_SPEED_MASK;
   1139 
   1140 	/* Reprogram MAC with resolved speed/duplex. */
   1141 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1142 	case IFM_10_T:
   1143 	case IFM_100_TX:
   1144 		reg |= MAC_CFG_SPEED_10_100;
   1145 		break;
   1146 	case IFM_1000_T:
   1147 		reg |= MAC_CFG_SPEED_1000;
   1148 		break;
   1149 	}
   1150 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1151 		reg |= MAC_CFG_FULL_DUPLEX;
   1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1153 			reg |= MAC_CFG_TX_FC;
   1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1155 			reg |= MAC_CFG_RX_FC;
   1156 	}
   1157 
   1158 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1159 }
   1160 
   1161 static bool
   1162 age_resume(device_t dv, pmf_qual_t qual)
   1163 {
   1164 	struct age_softc *sc = device_private(dv);
   1165 	uint16_t cmd;
   1166 
   1167 	/*
   1168 	 * Clear INTx emulation disable for hardware that
   1169 	 * is set in resume event. From Linux.
   1170 	 */
   1171 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1172 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1173 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1174 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1175 		    PCI_COMMAND_STATUS_REG, cmd);
   1176 	}
   1177 
   1178 	return true;
   1179 }
   1180 
   1181 static int
   1182 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1183 {
   1184 	struct age_txdesc *txd, *txd_last;
   1185 	struct tx_desc *desc;
   1186 	struct mbuf *m;
   1187 	bus_dmamap_t map;
   1188 	uint32_t cflags, poff, vtag;
   1189 	int error, i, nsegs, prod;
   1190 #if NVLAN > 0
   1191 	struct m_tag *mtag;
   1192 #endif
   1193 
   1194 	m = *m_head;
   1195 	cflags = vtag = 0;
   1196 	poff = 0;
   1197 
   1198 	prod = sc->age_cdata.age_tx_prod;
   1199 	txd = &sc->age_cdata.age_txdesc[prod];
   1200 	txd_last = txd;
   1201 	map = txd->tx_dmamap;
   1202 
   1203 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1204 
   1205 	if (error == EFBIG) {
   1206 		error = 0;
   1207 
   1208 		*m_head = m_pullup(*m_head, MHLEN);
   1209 		if (*m_head == NULL) {
   1210 			printf("%s: can't defrag TX mbuf\n",
   1211 			    device_xname(sc->sc_dev));
   1212 			return ENOBUFS;
   1213 		}
   1214 
   1215 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1216 		  	    BUS_DMA_NOWAIT);
   1217 
   1218 		if (error != 0) {
   1219 			printf("%s: could not load defragged TX mbuf\n",
   1220 			    device_xname(sc->sc_dev));
   1221 			m_freem(*m_head);
   1222 			*m_head = NULL;
   1223 			return error;
   1224 		}
   1225 	} else if (error) {
   1226 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1227 		return error;
   1228 	}
   1229 
   1230 	nsegs = map->dm_nsegs;
   1231 
   1232 	if (nsegs == 0) {
   1233 		m_freem(*m_head);
   1234 		*m_head = NULL;
   1235 		return EIO;
   1236 	}
   1237 
   1238 	/* Check descriptor overrun. */
   1239 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1240 		bus_dmamap_unload(sc->sc_dmat, map);
   1241 		return ENOBUFS;
   1242 	}
   1243 
   1244 	m = *m_head;
   1245 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1246 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1247 		cflags |= AGE_TD_CSUM;
   1248 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1249 			cflags |= AGE_TD_TCPCSUM;
   1250 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1251 			cflags |= AGE_TD_UDPCSUM;
   1252 		/* Set checksum start offset. */
   1253 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1254 	}
   1255 
   1256 #if NVLAN > 0
   1257 	/* Configure VLAN hardware tag insertion. */
   1258 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1259 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1260 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1261 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1262 	}
   1263 #endif
   1264 
   1265 	desc = NULL;
   1266 	for (i = 0; i < nsegs; i++) {
   1267 		desc = &sc->age_rdata.age_tx_ring[prod];
   1268 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1269 		desc->len =
   1270 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1271 		desc->flags = htole32(cflags);
   1272 		sc->age_cdata.age_tx_cnt++;
   1273 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1274 	}
   1275 
   1276 	/* Update producer index. */
   1277 	sc->age_cdata.age_tx_prod = prod;
   1278 
   1279 	/* Set EOP on the last descriptor. */
   1280 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1281 	desc = &sc->age_rdata.age_tx_ring[prod];
   1282 	desc->flags |= htole32(AGE_TD_EOP);
   1283 
   1284 	/* Swap dmamap of the first and the last. */
   1285 	txd = &sc->age_cdata.age_txdesc[prod];
   1286 	map = txd_last->tx_dmamap;
   1287 	txd_last->tx_dmamap = txd->tx_dmamap;
   1288 	txd->tx_dmamap = map;
   1289 	txd->tx_m = m;
   1290 
   1291 	/* Sync descriptors. */
   1292 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1293 	    BUS_DMASYNC_PREWRITE);
   1294 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1295 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1296 
   1297 	return 0;
   1298 }
   1299 
   1300 static void
   1301 age_txintr(struct age_softc *sc, int tpd_cons)
   1302 {
   1303 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1304 	struct age_txdesc *txd;
   1305 	int cons, prog;
   1306 
   1307 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1308 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1309 
   1310 	/*
   1311 	 * Go through our Tx list and free mbufs for those
   1312 	 * frames which have been transmitted.
   1313 	 */
   1314 	cons = sc->age_cdata.age_tx_cons;
   1315 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1316 		if (sc->age_cdata.age_tx_cnt <= 0)
   1317 			break;
   1318 		prog++;
   1319 		ifp->if_flags &= ~IFF_OACTIVE;
   1320 		sc->age_cdata.age_tx_cnt--;
   1321 		txd = &sc->age_cdata.age_txdesc[cons];
   1322 		/*
   1323 		 * Clear Tx descriptors, it's not required but would
   1324 		 * help debugging in case of Tx issues.
   1325 		 */
   1326 		txd->tx_desc->addr = 0;
   1327 		txd->tx_desc->len = 0;
   1328 		txd->tx_desc->flags = 0;
   1329 
   1330 		if (txd->tx_m == NULL)
   1331 			continue;
   1332 		/* Reclaim transmitted mbufs. */
   1333 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1334 		m_freem(txd->tx_m);
   1335 		txd->tx_m = NULL;
   1336 	}
   1337 
   1338 	if (prog > 0) {
   1339 		sc->age_cdata.age_tx_cons = cons;
   1340 
   1341 		/*
   1342 		 * Unarm watchdog timer only when there are no pending
   1343 		 * Tx descriptors in queue.
   1344 		 */
   1345 		if (sc->age_cdata.age_tx_cnt == 0)
   1346 			ifp->if_timer = 0;
   1347 
   1348 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1349 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1350 		    BUS_DMASYNC_PREWRITE);
   1351 	}
   1352 }
   1353 
   1354 /* Receive a frame. */
   1355 static void
   1356 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1357 {
   1358 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1359 	struct age_rxdesc *rxd;
   1360 	struct rx_desc *desc;
   1361 	struct mbuf *mp, *m;
   1362 	uint32_t status, index;
   1363 	int count, nsegs, pktlen;
   1364 	int rx_cons;
   1365 
   1366 	status = le32toh(rxrd->flags);
   1367 	index = le32toh(rxrd->index);
   1368 	rx_cons = AGE_RX_CONS(index);
   1369 	nsegs = AGE_RX_NSEGS(index);
   1370 
   1371 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1372 	if ((status & AGE_RRD_ERROR) != 0 &&
   1373 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1374 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1375 		/*
   1376 		 * We want to pass the following frames to upper
   1377 		 * layer regardless of error status of Rx return
   1378 		 * ring.
   1379 		 *
   1380 		 *  o IP/TCP/UDP checksum is bad.
   1381 		 *  o frame length and protocol specific length
   1382 		 *     does not match.
   1383 		 */
   1384 		sc->age_cdata.age_rx_cons += nsegs;
   1385 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1386 		return;
   1387 	}
   1388 
   1389 	pktlen = 0;
   1390 	for (count = 0; count < nsegs; count++,
   1391 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1392 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1393 		mp = rxd->rx_m;
   1394 		desc = rxd->rx_desc;
   1395 		/* Add a new receive buffer to the ring. */
   1396 		if (age_newbuf(sc, rxd, 0) != 0) {
   1397 			ifp->if_iqdrops++;
   1398 			/* Reuse Rx buffers. */
   1399 			if (sc->age_cdata.age_rxhead != NULL) {
   1400 				m_freem(sc->age_cdata.age_rxhead);
   1401 				AGE_RXCHAIN_RESET(sc);
   1402 			}
   1403 			break;
   1404 		}
   1405 
   1406 		/* The length of the first mbuf is computed last. */
   1407 		if (count != 0) {
   1408 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1409 			pktlen += mp->m_len;
   1410 		}
   1411 
   1412 		/* Chain received mbufs. */
   1413 		if (sc->age_cdata.age_rxhead == NULL) {
   1414 			sc->age_cdata.age_rxhead = mp;
   1415 			sc->age_cdata.age_rxtail = mp;
   1416 		} else {
   1417 			mp->m_flags &= ~M_PKTHDR;
   1418 			sc->age_cdata.age_rxprev_tail =
   1419 			    sc->age_cdata.age_rxtail;
   1420 			sc->age_cdata.age_rxtail->m_next = mp;
   1421 			sc->age_cdata.age_rxtail = mp;
   1422 		}
   1423 
   1424 		if (count == nsegs - 1) {
   1425 			/*
   1426 			 * It seems that L1 controller has no way
   1427 			 * to tell hardware to strip CRC bytes.
   1428 			 */
   1429 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1430 			if (nsegs > 1) {
   1431 				/* Remove the CRC bytes in chained mbufs. */
   1432 				pktlen -= ETHER_CRC_LEN;
   1433 				if (mp->m_len <= ETHER_CRC_LEN) {
   1434 					sc->age_cdata.age_rxtail =
   1435 					    sc->age_cdata.age_rxprev_tail;
   1436 					sc->age_cdata.age_rxtail->m_len -=
   1437 					    (ETHER_CRC_LEN - mp->m_len);
   1438 					sc->age_cdata.age_rxtail->m_next = NULL;
   1439 					m_freem(mp);
   1440 				} else {
   1441 					mp->m_len -= ETHER_CRC_LEN;
   1442 				}
   1443 			}
   1444 
   1445 			m = sc->age_cdata.age_rxhead;
   1446 			m->m_flags |= M_PKTHDR;
   1447 			m->m_pkthdr.rcvif = ifp;
   1448 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1449 			/* Set the first mbuf length. */
   1450 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1451 
   1452 			/*
   1453 			 * Set checksum information.
   1454 			 * It seems that L1 controller can compute partial
   1455 			 * checksum. The partial checksum value can be used
   1456 			 * to accelerate checksum computation for fragmented
   1457 			 * TCP/UDP packets. Upper network stack already
   1458 			 * takes advantage of the partial checksum value in
   1459 			 * IP reassembly stage. But I'm not sure the
   1460 			 * correctness of the partial hardware checksum
   1461 			 * assistance due to lack of data sheet. If it is
   1462 			 * proven to work on L1 I'll enable it.
   1463 			 */
   1464 			if (status & AGE_RRD_IPV4) {
   1465 				if (status & AGE_RRD_IPCSUM_NOK)
   1466 					m->m_pkthdr.csum_flags |=
   1467 					    M_CSUM_IPv4_BAD;
   1468 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1469 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1470 					m->m_pkthdr.csum_flags |=
   1471 					    M_CSUM_TCP_UDP_BAD;
   1472 				}
   1473 				/*
   1474 				 * Don't mark bad checksum for TCP/UDP frames
   1475 				 * as fragmented frames may always have set
   1476 				 * bad checksummed bit of descriptor status.
   1477 				 */
   1478 			}
   1479 #if NVLAN > 0
   1480 			/* Check for VLAN tagged frames. */
   1481 			if (status & AGE_RRD_VLAN) {
   1482 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1483 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1484 					continue);
   1485 			}
   1486 #endif
   1487 
   1488 #if NBPFILTER > 0
   1489 			if (ifp->if_bpf)
   1490 				bpf_mtap(ifp->if_bpf, m);
   1491 #endif
   1492 			/* Pass it on. */
   1493 			ether_input(ifp, m);
   1494 
   1495 			/* Reset mbuf chains. */
   1496 			AGE_RXCHAIN_RESET(sc);
   1497 		}
   1498 	}
   1499 
   1500 	if (count != nsegs) {
   1501 		sc->age_cdata.age_rx_cons += nsegs;
   1502 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1503 	} else
   1504 		sc->age_cdata.age_rx_cons = rx_cons;
   1505 }
   1506 
   1507 static void
   1508 age_rxintr(struct age_softc *sc, int rr_prod)
   1509 {
   1510 	struct rx_rdesc *rxrd;
   1511 	int rr_cons, nsegs, pktlen, prog;
   1512 
   1513 	rr_cons = sc->age_cdata.age_rr_cons;
   1514 	if (rr_cons == rr_prod)
   1515 		return;
   1516 
   1517 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1518 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1519 	    BUS_DMASYNC_POSTREAD);
   1520 
   1521 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1522 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1523 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1524 		if (nsegs == 0)
   1525 			break;
   1526 		/*
   1527 		 * Check number of segments against received bytes
   1528 		 * Non-matching value would indicate that hardware
   1529 		 * is still trying to update Rx return descriptors.
   1530 		 * I'm not sure whether this check is really needed.
   1531 		 */
   1532 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1533 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1534 		    (MCLBYTES - ETHER_ALIGN)))
   1535 			break;
   1536 
   1537 		/* Received a frame. */
   1538 		age_rxeof(sc, rxrd);
   1539 
   1540 		/* Clear return ring. */
   1541 		rxrd->index = 0;
   1542 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1543 	}
   1544 
   1545 	if (prog > 0) {
   1546 		/* Update the consumer index. */
   1547 		sc->age_cdata.age_rr_cons = rr_cons;
   1548 
   1549 		/* Sync descriptors. */
   1550 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1551 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1552 		    BUS_DMASYNC_PREWRITE);
   1553 
   1554 		/* Notify hardware availability of new Rx buffers. */
   1555 		AGE_COMMIT_MBOX(sc);
   1556 	}
   1557 }
   1558 
   1559 static void
   1560 age_tick(void *xsc)
   1561 {
   1562 	struct age_softc *sc = xsc;
   1563 	struct mii_data *mii = &sc->sc_miibus;
   1564 	int s;
   1565 
   1566 	s = splnet();
   1567 	mii_tick(mii);
   1568 	splx(s);
   1569 
   1570 	callout_schedule(&sc->sc_tick_ch, hz);
   1571 }
   1572 
   1573 static void
   1574 age_reset(struct age_softc *sc)
   1575 {
   1576 	uint32_t reg;
   1577 	int i;
   1578 
   1579 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1580 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1581 	DELAY(1000);
   1582 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1583 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1584 			break;
   1585 		DELAY(10);
   1586 	}
   1587 
   1588 	if (i == 0)
   1589 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1590 		    reg);
   1591 
   1592 	/* Initialize PCIe module. From Linux. */
   1593 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1594 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1595 }
   1596 
   1597 static int
   1598 age_init(struct ifnet *ifp)
   1599 {
   1600 	struct age_softc *sc = ifp->if_softc;
   1601 	struct mii_data *mii;
   1602 	uint8_t eaddr[ETHER_ADDR_LEN];
   1603 	bus_addr_t paddr;
   1604 	uint32_t reg, fsize;
   1605 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1606 	int error;
   1607 
   1608 	/*
   1609 	 * Cancel any pending I/O.
   1610 	 */
   1611 	age_stop(ifp, 0);
   1612 
   1613 	/*
   1614 	 * Reset the chip to a known state.
   1615 	 */
   1616 	age_reset(sc);
   1617 
   1618 	/* Initialize descriptors. */
   1619 	error = age_init_rx_ring(sc);
   1620         if (error != 0) {
   1621 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1622 		age_stop(ifp, 0);
   1623 		return error;
   1624         }
   1625 	age_init_rr_ring(sc);
   1626 	age_init_tx_ring(sc);
   1627 	age_init_cmb_block(sc);
   1628 	age_init_smb_block(sc);
   1629 
   1630 	/* Reprogram the station address. */
   1631 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1632 	CSR_WRITE_4(sc, AGE_PAR0,
   1633 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1634 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1635 
   1636 	/* Set descriptor base addresses. */
   1637 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1638 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1639 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1640 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1641 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1642 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1643 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1644 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1645 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1646 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1647 	paddr = sc->age_rdata.age_smb_block_paddr;
   1648 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1649 
   1650 	/* Set Rx/Rx return descriptor counter. */
   1651 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1652 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1653 	    DESC_RRD_CNT_MASK) |
   1654 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1655 
   1656 	/* Set Tx descriptor counter. */
   1657 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1658 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1659 
   1660 	/* Tell hardware that we're ready to load descriptors. */
   1661 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1662 
   1663         /*
   1664 	 * Initialize mailbox register.
   1665 	 * Updated producer/consumer index information is exchanged
   1666 	 * through this mailbox register. However Tx producer and
   1667 	 * Rx return consumer/Rx producer are all shared such that
   1668 	 * it's hard to separate code path between Tx and Rx without
   1669 	 * locking. If L1 hardware have a separate mail box register
   1670 	 * for Tx and Rx consumer/producer management we could have
   1671 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1672 	 * been run without any locking.
   1673 	*/
   1674 	AGE_COMMIT_MBOX(sc);
   1675 
   1676 	/* Configure IPG/IFG parameters. */
   1677 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1678 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1679 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1680 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1681 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1682 
   1683 	/* Set parameters for half-duplex media. */
   1684 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1685 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1686 	    HDPX_CFG_LCOL_MASK) |
   1687 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1688 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1689 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1690 	    HDPX_CFG_ABEBT_MASK) |
   1691 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1692 	     HDPX_CFG_JAMIPG_MASK));
   1693 
   1694 	/* Configure interrupt moderation timer. */
   1695 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1696 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1697 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1698 	reg &= ~MASTER_MTIMER_ENB;
   1699 	if (AGE_USECS(sc->age_int_mod) == 0)
   1700 		reg &= ~MASTER_ITIMER_ENB;
   1701 	else
   1702 		reg |= MASTER_ITIMER_ENB;
   1703 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1704 	if (agedebug)
   1705 		printf("%s: interrupt moderation is %d us.\n",
   1706 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1707 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1708 
   1709 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1710 	if (ifp->if_mtu < ETHERMTU)
   1711 		sc->age_max_frame_size = ETHERMTU;
   1712 	else
   1713 		sc->age_max_frame_size = ifp->if_mtu;
   1714 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1715 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1716 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1717 
   1718 	/* Configure jumbo frame. */
   1719 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1720 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1721 	    (((fsize / sizeof(uint64_t)) <<
   1722 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1723 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1724 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1725 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1726 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1727 
   1728 	/* Configure flow-control parameters. From Linux. */
   1729 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1730 		/*
   1731 		 * Magic workaround for old-L1.
   1732 		 * Don't know which hw revision requires this magic.
   1733 		 */
   1734 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1735 		/*
   1736 		 * Another magic workaround for flow-control mode
   1737 		 * change. From Linux.
   1738 		 */
   1739 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1740 	}
   1741 	/*
   1742 	 * TODO
   1743 	 *  Should understand pause parameter relationships between FIFO
   1744 	 *  size and number of Rx descriptors and Rx return descriptors.
   1745 	 *
   1746 	 *  Magic parameters came from Linux.
   1747 	 */
   1748 	switch (sc->age_chip_rev) {
   1749 	case 0x8001:
   1750 	case 0x9001:
   1751 	case 0x9002:
   1752 	case 0x9003:
   1753 		rxf_hi = AGE_RX_RING_CNT / 16;
   1754 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1755 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1756 		rrd_lo = AGE_RR_RING_CNT / 16;
   1757 		break;
   1758 	default:
   1759 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1760 		rxf_lo = reg / 16;
   1761 		if (rxf_lo < 192)
   1762 			rxf_lo = 192;
   1763 		rxf_hi = (reg * 7) / 8;
   1764 		if (rxf_hi < rxf_lo)
   1765 			rxf_hi = rxf_lo + 16;
   1766 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1767 		rrd_lo = reg / 8;
   1768 		rrd_hi = (reg * 7) / 8;
   1769 		if (rrd_lo < 2)
   1770 			rrd_lo = 2;
   1771 		if (rrd_hi < rrd_lo)
   1772 			rrd_hi = rrd_lo + 3;
   1773 		break;
   1774 	}
   1775 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1776 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1777 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1778 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1779 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1780 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1781 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1782 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1783 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1784 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1785 
   1786 	/* Configure RxQ. */
   1787 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1788 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1789 	    RXQ_CFG_RD_BURST_MASK) |
   1790 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1791 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1792 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1793 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1794 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1795 
   1796 	/* Configure TxQ. */
   1797 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1798 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1799 	    TXQ_CFG_TPD_BURST_MASK) |
   1800 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1801 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1802 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1803 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1804 	    TXQ_CFG_ENB);
   1805 
   1806 	/* Configure DMA parameters. */
   1807 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1808 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1809 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1810 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1811 
   1812 	/* Configure CMB DMA write threshold. */
   1813 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1814 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1815 	    CMB_WR_THRESH_RRD_MASK) |
   1816 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1817 	    CMB_WR_THRESH_TPD_MASK));
   1818 
   1819 	/* Set CMB/SMB timer and enable them. */
   1820 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1821 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1822 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1823 
   1824 	/* Request SMB updates for every seconds. */
   1825 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1826 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1827 
   1828 	/*
   1829 	 * Disable all WOL bits as WOL can interfere normal Rx
   1830 	 * operation.
   1831 	 */
   1832 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1833 
   1834         /*
   1835 	 * Configure Tx/Rx MACs.
   1836 	 *  - Auto-padding for short frames.
   1837 	 *  - Enable CRC generation.
   1838 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1839 	 *  of MAC is followed after link establishment.
   1840 	 */
   1841 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1842 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1843 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1844 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1845 	    MAC_CFG_PREAMBLE_MASK));
   1846 
   1847 	/* Set up the receive filter. */
   1848 	age_rxfilter(sc);
   1849 	age_rxvlan(sc);
   1850 
   1851 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1852 	reg |= MAC_CFG_RXCSUM_ENB;
   1853 
   1854 	/* Ack all pending interrupts and clear it. */
   1855 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1856 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1857 
   1858 	/* Finally enable Tx/Rx MAC. */
   1859 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1860 
   1861 	sc->age_flags &= ~AGE_FLAG_LINK;
   1862 
   1863 	/* Switch to the current media. */
   1864 	mii = &sc->sc_miibus;
   1865 	mii_mediachg(mii);
   1866 
   1867 	callout_schedule(&sc->sc_tick_ch, hz);
   1868 
   1869 	ifp->if_flags |= IFF_RUNNING;
   1870 	ifp->if_flags &= ~IFF_OACTIVE;
   1871 
   1872 	return 0;
   1873 }
   1874 
   1875 static void
   1876 age_stop(struct ifnet *ifp, int disable)
   1877 {
   1878 	struct age_softc *sc = ifp->if_softc;
   1879 	struct age_txdesc *txd;
   1880 	struct age_rxdesc *rxd;
   1881 	uint32_t reg;
   1882 	int i;
   1883 
   1884 	callout_stop(&sc->sc_tick_ch);
   1885 
   1886 	/*
   1887 	 * Mark the interface down and cancel the watchdog timer.
   1888 	 */
   1889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1890 	ifp->if_timer = 0;
   1891 
   1892 	sc->age_flags &= ~AGE_FLAG_LINK;
   1893 
   1894 	mii_down(&sc->sc_miibus);
   1895 
   1896 	/*
   1897 	 * Disable interrupts.
   1898 	 */
   1899 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1900 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1901 
   1902 	/* Stop CMB/SMB updates. */
   1903 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1904 
   1905 	/* Stop Rx/Tx MAC. */
   1906 	age_stop_rxmac(sc);
   1907 	age_stop_txmac(sc);
   1908 
   1909 	/* Stop DMA. */
   1910 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1911 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1912 
   1913 	/* Stop TxQ/RxQ. */
   1914 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1915 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1916 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1917 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1918 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1919 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1920 			break;
   1921 		DELAY(10);
   1922 	}
   1923 	if (i == 0)
   1924 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1925 		    device_xname(sc->sc_dev), reg);
   1926 
   1927 	/* Reclaim Rx buffers that have been processed. */
   1928 	if (sc->age_cdata.age_rxhead != NULL)
   1929 		m_freem(sc->age_cdata.age_rxhead);
   1930 	AGE_RXCHAIN_RESET(sc);
   1931 
   1932 	/*
   1933 	 * Free RX and TX mbufs still in the queues.
   1934 	 */
   1935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1936 		rxd = &sc->age_cdata.age_rxdesc[i];
   1937 		if (rxd->rx_m != NULL) {
   1938 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1939 			m_freem(rxd->rx_m);
   1940 			rxd->rx_m = NULL;
   1941 		}
   1942 	}
   1943 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1944 		txd = &sc->age_cdata.age_txdesc[i];
   1945 		if (txd->tx_m != NULL) {
   1946 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1947 			m_freem(txd->tx_m);
   1948 			txd->tx_m = NULL;
   1949 		}
   1950 	}
   1951 }
   1952 
   1953 static void
   1954 age_stats_update(struct age_softc *sc)
   1955 {
   1956 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1957 	struct age_stats *stat;
   1958 	struct smb *smb;
   1959 
   1960 	stat = &sc->age_stat;
   1961 
   1962 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1963 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1964 
   1965 	smb = sc->age_rdata.age_smb_block;
   1966 	if (smb->updated == 0)
   1967 		return;
   1968 
   1969 	/* Rx stats. */
   1970 	stat->rx_frames += smb->rx_frames;
   1971 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1972 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1973 	stat->rx_pause_frames += smb->rx_pause_frames;
   1974 	stat->rx_control_frames += smb->rx_control_frames;
   1975 	stat->rx_crcerrs += smb->rx_crcerrs;
   1976 	stat->rx_lenerrs += smb->rx_lenerrs;
   1977 	stat->rx_bytes += smb->rx_bytes;
   1978 	stat->rx_runts += smb->rx_runts;
   1979 	stat->rx_fragments += smb->rx_fragments;
   1980 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1981 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1982 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1983 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1984 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1985 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1986 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1987 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1988 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   1989 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   1990 	stat->rx_alignerrs += smb->rx_alignerrs;
   1991 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   1992 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   1993 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   1994 
   1995 	/* Tx stats. */
   1996 	stat->tx_frames += smb->tx_frames;
   1997 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   1998 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   1999 	stat->tx_pause_frames += smb->tx_pause_frames;
   2000 	stat->tx_excess_defer += smb->tx_excess_defer;
   2001 	stat->tx_control_frames += smb->tx_control_frames;
   2002 	stat->tx_deferred += smb->tx_deferred;
   2003 	stat->tx_bytes += smb->tx_bytes;
   2004 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2005 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2006 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2007 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2008 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2009 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2010 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2011 	stat->tx_single_colls += smb->tx_single_colls;
   2012 	stat->tx_multi_colls += smb->tx_multi_colls;
   2013 	stat->tx_late_colls += smb->tx_late_colls;
   2014 	stat->tx_excess_colls += smb->tx_excess_colls;
   2015 	stat->tx_underrun += smb->tx_underrun;
   2016 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2017 	stat->tx_lenerrs += smb->tx_lenerrs;
   2018 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2019 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2020 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2021 
   2022 	/* Update counters in ifnet. */
   2023 	ifp->if_opackets += smb->tx_frames;
   2024 
   2025 	ifp->if_collisions += smb->tx_single_colls +
   2026 	    smb->tx_multi_colls + smb->tx_late_colls +
   2027 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2028 
   2029 	ifp->if_oerrors += smb->tx_excess_colls +
   2030 	    smb->tx_late_colls + smb->tx_underrun +
   2031 	    smb->tx_pkts_truncated;
   2032 
   2033 	ifp->if_ipackets += smb->rx_frames;
   2034 
   2035 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2036 	    smb->rx_runts + smb->rx_pkts_truncated +
   2037 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2038 	    smb->rx_alignerrs;
   2039 
   2040 	/* Update done, clear. */
   2041 	smb->updated = 0;
   2042 
   2043 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2044 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2045 }
   2046 
   2047 static void
   2048 age_stop_txmac(struct age_softc *sc)
   2049 {
   2050 	uint32_t reg;
   2051 	int i;
   2052 
   2053 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2054 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2055 		reg &= ~MAC_CFG_TX_ENB;
   2056 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2057 	}
   2058 	/* Stop Tx DMA engine. */
   2059 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2060 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2061 		reg &= ~DMA_CFG_RD_ENB;
   2062 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2063 	}
   2064 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2065 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2066 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2067 			break;
   2068 		DELAY(10);
   2069 	}
   2070 	if (i == 0)
   2071 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2072 }
   2073 
   2074 static void
   2075 age_stop_rxmac(struct age_softc *sc)
   2076 {
   2077 	uint32_t reg;
   2078 	int i;
   2079 
   2080 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2081 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2082 		reg &= ~MAC_CFG_RX_ENB;
   2083 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2084 	}
   2085 	/* Stop Rx DMA engine. */
   2086 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2087 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2088 		reg &= ~DMA_CFG_WR_ENB;
   2089 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2090 	}
   2091 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2092 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2093 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2094 			break;
   2095 		DELAY(10);
   2096 	}
   2097 	if (i == 0)
   2098 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2099 }
   2100 
   2101 static void
   2102 age_init_tx_ring(struct age_softc *sc)
   2103 {
   2104 	struct age_ring_data *rd;
   2105 	struct age_txdesc *txd;
   2106 	int i;
   2107 
   2108 	sc->age_cdata.age_tx_prod = 0;
   2109 	sc->age_cdata.age_tx_cons = 0;
   2110 	sc->age_cdata.age_tx_cnt = 0;
   2111 
   2112 	rd = &sc->age_rdata;
   2113 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2114 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2115 		txd = &sc->age_cdata.age_txdesc[i];
   2116 		txd->tx_desc = &rd->age_tx_ring[i];
   2117 		txd->tx_m = NULL;
   2118 	}
   2119 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2120 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2121 }
   2122 
   2123 static int
   2124 age_init_rx_ring(struct age_softc *sc)
   2125 {
   2126 	struct age_ring_data *rd;
   2127 	struct age_rxdesc *rxd;
   2128 	int i;
   2129 
   2130 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2131 	rd = &sc->age_rdata;
   2132 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2133 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2134 		rxd = &sc->age_cdata.age_rxdesc[i];
   2135 		rxd->rx_m = NULL;
   2136 		rxd->rx_desc = &rd->age_rx_ring[i];
   2137 		if (age_newbuf(sc, rxd, 1) != 0)
   2138 			return ENOBUFS;
   2139 	}
   2140 
   2141 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2142 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2143 
   2144 	return 0;
   2145 }
   2146 
   2147 static void
   2148 age_init_rr_ring(struct age_softc *sc)
   2149 {
   2150 	struct age_ring_data *rd;
   2151 
   2152 	sc->age_cdata.age_rr_cons = 0;
   2153 	AGE_RXCHAIN_RESET(sc);
   2154 
   2155 	rd = &sc->age_rdata;
   2156 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2157 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2158 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2159 }
   2160 
   2161 static void
   2162 age_init_cmb_block(struct age_softc *sc)
   2163 {
   2164 	struct age_ring_data *rd;
   2165 
   2166 	rd = &sc->age_rdata;
   2167 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2168 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2169 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2170 }
   2171 
   2172 static void
   2173 age_init_smb_block(struct age_softc *sc)
   2174 {
   2175 	struct age_ring_data *rd;
   2176 
   2177 	rd = &sc->age_rdata;
   2178 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2179 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2180 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2181 }
   2182 
   2183 static int
   2184 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2185 {
   2186 	struct rx_desc *desc;
   2187 	struct mbuf *m;
   2188 	bus_dmamap_t map;
   2189 	int error;
   2190 
   2191 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2192 	if (m == NULL)
   2193 		return ENOBUFS;
   2194 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2195 	if (!(m->m_flags & M_EXT)) {
   2196 		 m_freem(m);
   2197 		 return ENOBUFS;
   2198 	}
   2199 
   2200 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2201 	m_adj(m, ETHER_ALIGN);
   2202 
   2203 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2204 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2205 
   2206 	if (error != 0) {
   2207 		if (!error) {
   2208 			bus_dmamap_unload(sc->sc_dmat,
   2209 			    sc->age_cdata.age_rx_sparemap);
   2210 			error = EFBIG;
   2211 			printf("%s: too many segments?!\n",
   2212 			    device_xname(sc->sc_dev));
   2213 		}
   2214 		m_freem(m);
   2215 
   2216 		if (init)
   2217 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2218 		return error;
   2219 	}
   2220 
   2221 	if (rxd->rx_m != NULL) {
   2222 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2223 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2224 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2225 	}
   2226 	map = rxd->rx_dmamap;
   2227 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2228 	sc->age_cdata.age_rx_sparemap = map;
   2229 	rxd->rx_m = m;
   2230 
   2231 	desc = rxd->rx_desc;
   2232 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2233 	desc->len =
   2234 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2235 	    AGE_RD_LEN_SHIFT);
   2236 
   2237 	return 0;
   2238 }
   2239 
   2240 static void
   2241 age_rxvlan(struct age_softc *sc)
   2242 {
   2243 	uint32_t reg;
   2244 
   2245 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2246 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2247 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2248 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2249 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2250 }
   2251 
   2252 static void
   2253 age_rxfilter(struct age_softc *sc)
   2254 {
   2255 	struct ethercom *ec = &sc->sc_ec;
   2256 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2257 	struct ether_multi *enm;
   2258 	struct ether_multistep step;
   2259 	uint32_t crc;
   2260 	uint32_t mchash[2];
   2261 	uint32_t rxcfg;
   2262 
   2263 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2264 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2265 	ifp->if_flags &= ~IFF_ALLMULTI;
   2266 
   2267 	/*
   2268 	 * Always accept broadcast frames.
   2269 	 */
   2270 	rxcfg |= MAC_CFG_BCAST;
   2271 
   2272 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2273 		ifp->if_flags |= IFF_ALLMULTI;
   2274 		if (ifp->if_flags & IFF_PROMISC)
   2275 			rxcfg |= MAC_CFG_PROMISC;
   2276 		else
   2277 			rxcfg |= MAC_CFG_ALLMULTI;
   2278 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2279 	} else {
   2280 		/* Program new filter. */
   2281 		memset(mchash, 0, sizeof(mchash));
   2282 
   2283 		ETHER_FIRST_MULTI(step, ec, enm);
   2284 		while (enm != NULL) {
   2285 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2286 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2287 			ETHER_NEXT_MULTI(step, enm);
   2288 		}
   2289 	}
   2290 
   2291 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2292 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2293 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2294 }
   2295