if_age.c revision 1.36 1 /* $NetBSD: if_age.c,v 1.36 2010/01/19 22:07:00 pooka Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.36 2010/01/19 22:07:00 pooka Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <sys/rnd.h>
69
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76
77 #include <dev/pci/if_agereg.h>
78
79 static int age_match(device_t, cfdata_t, void *);
80 static void age_attach(device_t, device_t, void *);
81 static int age_detach(device_t, int);
82
83 static bool age_resume(device_t, pmf_qual_t);
84
85 static int age_miibus_readreg(device_t, int, int);
86 static void age_miibus_writereg(device_t, int, int, int);
87 static void age_miibus_statchg(device_t);
88
89 static int age_init(struct ifnet *);
90 static int age_ioctl(struct ifnet *, u_long, void *);
91 static void age_start(struct ifnet *);
92 static void age_watchdog(struct ifnet *);
93 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
94 static int age_mediachange(struct ifnet *);
95
96 static int age_intr(void *);
97 static int age_dma_alloc(struct age_softc *);
98 static void age_dma_free(struct age_softc *);
99 static void age_get_macaddr(struct age_softc *, uint8_t[]);
100 static void age_phy_reset(struct age_softc *);
101
102 static int age_encap(struct age_softc *, struct mbuf **);
103 static void age_init_tx_ring(struct age_softc *);
104 static int age_init_rx_ring(struct age_softc *);
105 static void age_init_rr_ring(struct age_softc *);
106 static void age_init_cmb_block(struct age_softc *);
107 static void age_init_smb_block(struct age_softc *);
108 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
109 static void age_mac_config(struct age_softc *);
110 static void age_txintr(struct age_softc *, int);
111 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
112 static void age_rxintr(struct age_softc *, int);
113 static void age_tick(void *);
114 static void age_reset(struct age_softc *);
115 static void age_stop(struct ifnet *, int);
116 static void age_stats_update(struct age_softc *);
117 static void age_stop_txmac(struct age_softc *);
118 static void age_stop_rxmac(struct age_softc *);
119 static void age_rxvlan(struct age_softc *sc);
120 static void age_rxfilter(struct age_softc *);
121
122 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
123 age_match, age_attach, age_detach, NULL);
124
125 int agedebug = 0;
126 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
127
128 #define ETHER_ALIGN 2
129 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
130
131 static int
132 age_match(device_t dev, cfdata_t match, void *aux)
133 {
134 struct pci_attach_args *pa = aux;
135
136 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
137 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
138 }
139
140 static void
141 age_attach(device_t parent, device_t self, void *aux)
142 {
143 struct age_softc *sc = device_private(self);
144 struct pci_attach_args *pa = aux;
145 pci_intr_handle_t ih;
146 const char *intrstr;
147 struct ifnet *ifp = &sc->sc_ec.ec_if;
148 pcireg_t memtype;
149 int error = 0;
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_dmat = pa->pa_dmat;
156 sc->sc_pct = pa->pa_pc;
157 sc->sc_pcitag = pa->pa_tag;
158
159 /*
160 * Allocate IO memory
161 */
162 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
163 switch (memtype) {
164 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
167 break;
168 default:
169 aprint_error_dev(self, "invalid base address register\n");
170 break;
171 }
172
173 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
174 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
175 aprint_error_dev(self, "could not map mem space\n");
176 return;
177 }
178
179 if (pci_intr_map(pa, &ih) != 0) {
180 aprint_error_dev(self, "could not map interrupt\n");
181 goto fail;
182 }
183
184 /*
185 * Allocate IRQ
186 */
187 intrstr = pci_intr_string(sc->sc_pct, ih);
188 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
189 age_intr, sc);
190 if (sc->sc_irq_handle == NULL) {
191 aprint_error_dev(self, "could not establish interrupt");
192 if (intrstr != NULL)
193 aprint_error(" at %s", intrstr);
194 aprint_error("\n");
195 goto fail;
196 }
197 aprint_normal_dev(self, "%s\n", intrstr);
198
199 /* Set PHY address. */
200 sc->age_phyaddr = AGE_PHY_ADDR;
201
202 /* Reset PHY. */
203 age_phy_reset(sc);
204
205 /* Reset the ethernet controller. */
206 age_reset(sc);
207
208 /* Get PCI and chip id/revision. */
209 sc->age_rev = PCI_REVISION(pa->pa_class);
210 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
211 MASTER_CHIP_REV_SHIFT;
212
213 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
214 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
215
216 if (agedebug) {
217 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
218 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
219 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
220 }
221
222 /* Set max allowable DMA size. */
223 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
224 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
225
226 /* Allocate DMA stuffs */
227 error = age_dma_alloc(sc);
228 if (error)
229 goto fail;
230
231 callout_init(&sc->sc_tick_ch, 0);
232 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
233
234 /* Load station address. */
235 age_get_macaddr(sc, sc->sc_enaddr);
236
237 aprint_normal_dev(self, "Ethernet address %s\n",
238 ether_sprintf(sc->sc_enaddr));
239
240 ifp->if_softc = sc;
241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
242 ifp->if_init = age_init;
243 ifp->if_ioctl = age_ioctl;
244 ifp->if_start = age_start;
245 ifp->if_stop = age_stop;
246 ifp->if_watchdog = age_watchdog;
247 ifp->if_baudrate = IF_Gbps(1);
248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 IFQ_SET_READY(&ifp->if_snd);
250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251
252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253
254 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
255 IFCAP_CSUM_TCPv4_Rx |
256 IFCAP_CSUM_UDPv4_Rx;
257 #ifdef AGE_CHECKSUM
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
259 IFCAP_CSUM_TCPv4_Tx |
260 IFCAP_CSUM_UDPv4_Tx;
261 #endif
262
263 #if NVLAN > 0
264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266
267 /* Set up MII bus. */
268 sc->sc_miibus.mii_ifp = ifp;
269 sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 sc->sc_miibus.mii_statchg = age_miibus_statchg;
272
273 sc->sc_ec.ec_mii = &sc->sc_miibus;
274 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
275 age_mediastatus);
276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 MII_OFFSET_ANY, MIIF_DOPAUSE);
278
279 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
280 aprint_error_dev(self, "no PHY found!\n");
281 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
282 0, NULL);
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
284 } else
285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
286
287 if_attach(ifp);
288 ether_ifattach(ifp, sc->sc_enaddr);
289
290 if (pmf_device_register(self, NULL, age_resume))
291 pmf_class_network_register(self, ifp);
292 else
293 aprint_error_dev(self, "couldn't establish power handler\n");
294
295 return;
296
297 fail:
298 age_dma_free(sc);
299 if (sc->sc_irq_handle != NULL) {
300 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
301 sc->sc_irq_handle = NULL;
302 }
303 if (sc->sc_mem_size) {
304 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
305 sc->sc_mem_size = 0;
306 }
307 }
308
309 static int
310 age_detach(device_t self, int flags)
311 {
312 struct age_softc *sc = device_private(self);
313 struct ifnet *ifp = &sc->sc_ec.ec_if;
314 int s;
315
316 pmf_device_deregister(self);
317 s = splnet();
318 age_stop(ifp, 0);
319 splx(s);
320
321 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
322
323 /* Delete all remaining media. */
324 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
325
326 ether_ifdetach(ifp);
327 if_detach(ifp);
328 age_dma_free(sc);
329
330 if (sc->sc_irq_handle != NULL) {
331 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
332 sc->sc_irq_handle = NULL;
333 }
334 if (sc->sc_mem_size) {
335 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
336 sc->sc_mem_size = 0;
337 }
338 return 0;
339 }
340
341 /*
342 * Read a PHY register on the MII of the L1.
343 */
344 static int
345 age_miibus_readreg(device_t dev, int phy, int reg)
346 {
347 struct age_softc *sc = device_private(dev);
348 uint32_t v;
349 int i;
350
351 if (phy != sc->age_phyaddr)
352 return 0;
353
354 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
355 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
356 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
357 DELAY(1);
358 v = CSR_READ_4(sc, AGE_MDIO);
359 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
360 break;
361 }
362
363 if (i == 0) {
364 printf("%s: phy read timeout: phy %d, reg %d\n",
365 device_xname(sc->sc_dev), phy, reg);
366 return 0;
367 }
368
369 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
370 }
371
372 /*
373 * Write a PHY register on the MII of the L1.
374 */
375 static void
376 age_miibus_writereg(device_t dev, int phy, int reg, int val)
377 {
378 struct age_softc *sc = device_private(dev);
379 uint32_t v;
380 int i;
381
382 if (phy != sc->age_phyaddr)
383 return;
384
385 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
386 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
387 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
388
389 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
390 DELAY(1);
391 v = CSR_READ_4(sc, AGE_MDIO);
392 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
393 break;
394 }
395
396 if (i == 0) {
397 printf("%s: phy write timeout: phy %d, reg %d\n",
398 device_xname(sc->sc_dev), phy, reg);
399 }
400 }
401
402 /*
403 * Callback from MII layer when media changes.
404 */
405 static void
406 age_miibus_statchg(device_t dev)
407 {
408 struct age_softc *sc = device_private(dev);
409 struct ifnet *ifp = &sc->sc_ec.ec_if;
410 struct mii_data *mii;
411
412 if ((ifp->if_flags & IFF_RUNNING) == 0)
413 return;
414
415 mii = &sc->sc_miibus;
416
417 sc->age_flags &= ~AGE_FLAG_LINK;
418 if ((mii->mii_media_status & IFM_AVALID) != 0) {
419 switch (IFM_SUBTYPE(mii->mii_media_active)) {
420 case IFM_10_T:
421 case IFM_100_TX:
422 case IFM_1000_T:
423 sc->age_flags |= AGE_FLAG_LINK;
424 break;
425 default:
426 break;
427 }
428 }
429
430 /* Stop Rx/Tx MACs. */
431 age_stop_rxmac(sc);
432 age_stop_txmac(sc);
433
434 /* Program MACs with resolved speed/duplex/flow-control. */
435 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
436 uint32_t reg;
437
438 age_mac_config(sc);
439 reg = CSR_READ_4(sc, AGE_MAC_CFG);
440 /* Restart DMA engine and Tx/Rx MAC. */
441 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
442 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
443 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
444 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
445 }
446 }
447
448 /*
449 * Get the current interface media status.
450 */
451 static void
452 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
453 {
454 struct age_softc *sc = ifp->if_softc;
455 struct mii_data *mii = &sc->sc_miibus;
456
457 mii_pollstat(mii);
458 ifmr->ifm_status = mii->mii_media_status;
459 ifmr->ifm_active = mii->mii_media_active;
460 }
461
462 /*
463 * Set hardware to newly-selected media.
464 */
465 static int
466 age_mediachange(struct ifnet *ifp)
467 {
468 struct age_softc *sc = ifp->if_softc;
469 struct mii_data *mii = &sc->sc_miibus;
470 int error;
471
472 if (mii->mii_instance != 0) {
473 struct mii_softc *miisc;
474
475 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
476 mii_phy_reset(miisc);
477 }
478 error = mii_mediachg(mii);
479
480 return error;
481 }
482
483 static int
484 age_intr(void *arg)
485 {
486 struct age_softc *sc = arg;
487 struct ifnet *ifp = &sc->sc_ec.ec_if;
488 struct cmb *cmb;
489 uint32_t status;
490
491 status = CSR_READ_4(sc, AGE_INTR_STATUS);
492 if (status == 0 || (status & AGE_INTRS) == 0)
493 return 0;
494
495 cmb = sc->age_rdata.age_cmb_block;
496 if (cmb == NULL) {
497 /* Happens when bringing up the interface
498 * w/o having a carrier. Ack. the interrupt.
499 */
500 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
501 return 0;
502 }
503
504 /* Disable interrupts. */
505 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
506
507 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
508 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
509 status = le32toh(cmb->intr_status);
510 if ((status & AGE_INTRS) == 0)
511 goto back;
512
513 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
514 TPD_CONS_SHIFT;
515 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
516 RRD_PROD_SHIFT;
517
518 /* Let hardware know CMB was served. */
519 cmb->intr_status = 0;
520 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
521 sc->age_cdata.age_cmb_block_map->dm_mapsize,
522 BUS_DMASYNC_PREWRITE);
523
524 if (ifp->if_flags & IFF_RUNNING) {
525 if (status & INTR_CMB_RX)
526 age_rxintr(sc, sc->age_rr_prod);
527
528 if (status & INTR_CMB_TX)
529 age_txintr(sc, sc->age_tpd_cons);
530
531 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
532 if (status & INTR_DMA_RD_TO_RST)
533 printf("%s: DMA read error! -- resetting\n",
534 device_xname(sc->sc_dev));
535 if (status & INTR_DMA_WR_TO_RST)
536 printf("%s: DMA write error! -- resetting\n",
537 device_xname(sc->sc_dev));
538 age_init(ifp);
539 }
540
541 if (!IFQ_IS_EMPTY(&ifp->if_snd))
542 age_start(ifp);
543
544 if (status & INTR_SMB)
545 age_stats_update(sc);
546 }
547
548 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
549 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
550 sc->age_cdata.age_cmb_block_map->dm_mapsize,
551 BUS_DMASYNC_POSTREAD);
552
553 back:
554 /* Re-enable interrupts. */
555 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
556
557 return 1;
558 }
559
560 static void
561 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
562 {
563 uint32_t ea[2], reg;
564 int i, vpdc;
565
566 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
567 if ((reg & SPI_VPD_ENB) != 0) {
568 /* Get VPD stored in TWSI EEPROM. */
569 reg &= ~SPI_VPD_ENB;
570 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
571 }
572
573 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
574 PCI_CAP_VPD, &vpdc, NULL)) {
575 /*
576 * PCI VPD capability found, let TWSI reload EEPROM.
577 * This will set Ethernet address of controller.
578 */
579 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
580 TWSI_CTRL_SW_LD_START);
581 for (i = 100; i > 0; i++) {
582 DELAY(1000);
583 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
584 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
585 break;
586 }
587 if (i == 0)
588 printf("%s: reloading EEPROM timeout!\n",
589 device_xname(sc->sc_dev));
590 } else {
591 if (agedebug)
592 printf("%s: PCI VPD capability not found!\n",
593 device_xname(sc->sc_dev));
594 }
595
596 ea[0] = CSR_READ_4(sc, AGE_PAR0);
597 ea[1] = CSR_READ_4(sc, AGE_PAR1);
598
599 eaddr[0] = (ea[1] >> 8) & 0xFF;
600 eaddr[1] = (ea[1] >> 0) & 0xFF;
601 eaddr[2] = (ea[0] >> 24) & 0xFF;
602 eaddr[3] = (ea[0] >> 16) & 0xFF;
603 eaddr[4] = (ea[0] >> 8) & 0xFF;
604 eaddr[5] = (ea[0] >> 0) & 0xFF;
605 }
606
607 static void
608 age_phy_reset(struct age_softc *sc)
609 {
610 uint16_t reg, pn;
611 int i, linkup;
612
613 /* Reset PHY. */
614 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
615 DELAY(2000);
616 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
617 DELAY(2000);
618
619 #define ATPHY_DBG_ADDR 0x1D
620 #define ATPHY_DBG_DATA 0x1E
621 #define ATPHY_CDTC 0x16
622 #define PHY_CDTC_ENB 0x0001
623 #define PHY_CDTC_POFF 8
624 #define ATPHY_CDTS 0x1C
625 #define PHY_CDTS_STAT_OK 0x0000
626 #define PHY_CDTS_STAT_SHORT 0x0100
627 #define PHY_CDTS_STAT_OPEN 0x0200
628 #define PHY_CDTS_STAT_INVAL 0x0300
629 #define PHY_CDTS_STAT_MASK 0x0300
630
631 /* Check power saving mode. Magic from Linux. */
632 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
633 for (linkup = 0, pn = 0; pn < 4; pn++) {
634 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
635 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
636 for (i = 200; i > 0; i--) {
637 DELAY(1000);
638 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
639 ATPHY_CDTC);
640 if ((reg & PHY_CDTC_ENB) == 0)
641 break;
642 }
643 DELAY(1000);
644 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
645 ATPHY_CDTS);
646 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
647 linkup++;
648 break;
649 }
650 }
651 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
652 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
653 if (linkup == 0) {
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_ADDR, 0);
656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_DATA, 0x124E);
658 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
659 ATPHY_DBG_ADDR, 1);
660 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
661 ATPHY_DBG_DATA);
662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 ATPHY_DBG_DATA, reg | 0x03);
664 /* XXX */
665 DELAY(1500 * 1000);
666 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
667 ATPHY_DBG_ADDR, 0);
668 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
669 ATPHY_DBG_DATA, 0x024E);
670 }
671
672 #undef ATPHY_DBG_ADDR
673 #undef ATPHY_DBG_DATA
674 #undef ATPHY_CDTC
675 #undef PHY_CDTC_ENB
676 #undef PHY_CDTC_POFF
677 #undef ATPHY_CDTS
678 #undef PHY_CDTS_STAT_OK
679 #undef PHY_CDTS_STAT_SHORT
680 #undef PHY_CDTS_STAT_OPEN
681 #undef PHY_CDTS_STAT_INVAL
682 #undef PHY_CDTS_STAT_MASK
683 }
684
685 static int
686 age_dma_alloc(struct age_softc *sc)
687 {
688 struct age_txdesc *txd;
689 struct age_rxdesc *rxd;
690 int nsegs, error, i;
691
692 /*
693 * Create DMA stuffs for TX ring
694 */
695 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
696 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
697 if (error) {
698 sc->age_cdata.age_tx_ring_map = NULL;
699 return ENOBUFS;
700 }
701
702 /* Allocate DMA'able memory for TX ring */
703 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
704 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
705 &nsegs, BUS_DMA_WAITOK);
706 if (error) {
707 printf("%s: could not allocate DMA'able memory for Tx ring, "
708 "error = %i\n", device_xname(sc->sc_dev), error);
709 return error;
710 }
711
712 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
713 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
714 BUS_DMA_NOWAIT);
715 if (error)
716 return ENOBUFS;
717
718 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
719
720 /* Load the DMA map for Tx ring. */
721 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
722 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
723 if (error) {
724 printf("%s: could not load DMA'able memory for Tx ring, "
725 "error = %i\n", device_xname(sc->sc_dev), error);
726 bus_dmamem_free(sc->sc_dmat,
727 &sc->age_rdata.age_tx_ring_seg, 1);
728 return error;
729 }
730
731 sc->age_rdata.age_tx_ring_paddr =
732 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
733
734 /*
735 * Create DMA stuffs for RX ring
736 */
737 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
738 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
739 if (error) {
740 sc->age_cdata.age_rx_ring_map = NULL;
741 return ENOBUFS;
742 }
743
744 /* Allocate DMA'able memory for RX ring */
745 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
746 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
747 &nsegs, BUS_DMA_WAITOK);
748 if (error) {
749 printf("%s: could not allocate DMA'able memory for Rx ring, "
750 "error = %i.\n", device_xname(sc->sc_dev), error);
751 return error;
752 }
753
754 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
755 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
756 BUS_DMA_NOWAIT);
757 if (error)
758 return ENOBUFS;
759
760 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
761
762 /* Load the DMA map for Rx ring. */
763 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
764 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
765 if (error) {
766 printf("%s: could not load DMA'able memory for Rx ring, "
767 "error = %i.\n", device_xname(sc->sc_dev), error);
768 bus_dmamem_free(sc->sc_dmat,
769 &sc->age_rdata.age_rx_ring_seg, 1);
770 return error;
771 }
772
773 sc->age_rdata.age_rx_ring_paddr =
774 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
775
776 /*
777 * Create DMA stuffs for RX return ring
778 */
779 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
780 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
781 if (error) {
782 sc->age_cdata.age_rr_ring_map = NULL;
783 return ENOBUFS;
784 }
785
786 /* Allocate DMA'able memory for RX return ring */
787 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
788 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
789 &nsegs, BUS_DMA_WAITOK);
790 if (error) {
791 printf("%s: could not allocate DMA'able memory for Rx "
792 "return ring, error = %i.\n",
793 device_xname(sc->sc_dev), error);
794 return error;
795 }
796
797 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
798 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
799 BUS_DMA_NOWAIT);
800 if (error)
801 return ENOBUFS;
802
803 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
804
805 /* Load the DMA map for Rx return ring. */
806 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
807 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
808 if (error) {
809 printf("%s: could not load DMA'able memory for Rx return ring, "
810 "error = %i\n", device_xname(sc->sc_dev), error);
811 bus_dmamem_free(sc->sc_dmat,
812 &sc->age_rdata.age_rr_ring_seg, 1);
813 return error;
814 }
815
816 sc->age_rdata.age_rr_ring_paddr =
817 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
818
819 /*
820 * Create DMA stuffs for CMB block
821 */
822 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
823 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
824 &sc->age_cdata.age_cmb_block_map);
825 if (error) {
826 sc->age_cdata.age_cmb_block_map = NULL;
827 return ENOBUFS;
828 }
829
830 /* Allocate DMA'able memory for CMB block */
831 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
832 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
833 &nsegs, BUS_DMA_WAITOK);
834 if (error) {
835 printf("%s: could not allocate DMA'able memory for "
836 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
837 return error;
838 }
839
840 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
841 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
842 BUS_DMA_NOWAIT);
843 if (error)
844 return ENOBUFS;
845
846 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
847
848 /* Load the DMA map for CMB block. */
849 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
850 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
851 BUS_DMA_WAITOK);
852 if (error) {
853 printf("%s: could not load DMA'able memory for CMB block, "
854 "error = %i\n", device_xname(sc->sc_dev), error);
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->age_rdata.age_cmb_block_seg, 1);
857 return error;
858 }
859
860 sc->age_rdata.age_cmb_block_paddr =
861 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
862
863 /*
864 * Create DMA stuffs for SMB block
865 */
866 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
867 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
868 &sc->age_cdata.age_smb_block_map);
869 if (error) {
870 sc->age_cdata.age_smb_block_map = NULL;
871 return ENOBUFS;
872 }
873
874 /* Allocate DMA'able memory for SMB block */
875 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
876 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
877 &nsegs, BUS_DMA_WAITOK);
878 if (error) {
879 printf("%s: could not allocate DMA'able memory for "
880 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
881 return error;
882 }
883
884 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
885 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
886 BUS_DMA_NOWAIT);
887 if (error)
888 return ENOBUFS;
889
890 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
891
892 /* Load the DMA map for SMB block */
893 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
894 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
895 BUS_DMA_WAITOK);
896 if (error) {
897 printf("%s: could not load DMA'able memory for SMB block, "
898 "error = %i\n", device_xname(sc->sc_dev), error);
899 bus_dmamem_free(sc->sc_dmat,
900 &sc->age_rdata.age_smb_block_seg, 1);
901 return error;
902 }
903
904 sc->age_rdata.age_smb_block_paddr =
905 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
906
907 /* Create DMA maps for Tx buffers. */
908 for (i = 0; i < AGE_TX_RING_CNT; i++) {
909 txd = &sc->age_cdata.age_txdesc[i];
910 txd->tx_m = NULL;
911 txd->tx_dmamap = NULL;
912 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
913 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
914 &txd->tx_dmamap);
915 if (error) {
916 txd->tx_dmamap = NULL;
917 printf("%s: could not create Tx dmamap, error = %i.\n",
918 device_xname(sc->sc_dev), error);
919 return error;
920 }
921 }
922
923 /* Create DMA maps for Rx buffers. */
924 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
925 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
926 if (error) {
927 sc->age_cdata.age_rx_sparemap = NULL;
928 printf("%s: could not create spare Rx dmamap, error = %i.\n",
929 device_xname(sc->sc_dev), error);
930 return error;
931 }
932 for (i = 0; i < AGE_RX_RING_CNT; i++) {
933 rxd = &sc->age_cdata.age_rxdesc[i];
934 rxd->rx_m = NULL;
935 rxd->rx_dmamap = NULL;
936 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
937 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
938 if (error) {
939 rxd->rx_dmamap = NULL;
940 printf("%s: could not create Rx dmamap, error = %i.\n",
941 device_xname(sc->sc_dev), error);
942 return error;
943 }
944 }
945
946 return 0;
947 }
948
949 static void
950 age_dma_free(struct age_softc *sc)
951 {
952 struct age_txdesc *txd;
953 struct age_rxdesc *rxd;
954 int i;
955
956 /* Tx buffers */
957 for (i = 0; i < AGE_TX_RING_CNT; i++) {
958 txd = &sc->age_cdata.age_txdesc[i];
959 if (txd->tx_dmamap != NULL) {
960 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
961 txd->tx_dmamap = NULL;
962 }
963 }
964 /* Rx buffers */
965 for (i = 0; i < AGE_RX_RING_CNT; i++) {
966 rxd = &sc->age_cdata.age_rxdesc[i];
967 if (rxd->rx_dmamap != NULL) {
968 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
969 rxd->rx_dmamap = NULL;
970 }
971 }
972 if (sc->age_cdata.age_rx_sparemap != NULL) {
973 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
974 sc->age_cdata.age_rx_sparemap = NULL;
975 }
976
977 /* Tx ring. */
978 if (sc->age_cdata.age_tx_ring_map != NULL)
979 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
980 if (sc->age_cdata.age_tx_ring_map != NULL &&
981 sc->age_rdata.age_tx_ring != NULL)
982 bus_dmamem_free(sc->sc_dmat,
983 &sc->age_rdata.age_tx_ring_seg, 1);
984 sc->age_rdata.age_tx_ring = NULL;
985 sc->age_cdata.age_tx_ring_map = NULL;
986
987 /* Rx ring. */
988 if (sc->age_cdata.age_rx_ring_map != NULL)
989 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
990 if (sc->age_cdata.age_rx_ring_map != NULL &&
991 sc->age_rdata.age_rx_ring != NULL)
992 bus_dmamem_free(sc->sc_dmat,
993 &sc->age_rdata.age_rx_ring_seg, 1);
994 sc->age_rdata.age_rx_ring = NULL;
995 sc->age_cdata.age_rx_ring_map = NULL;
996
997 /* Rx return ring. */
998 if (sc->age_cdata.age_rr_ring_map != NULL)
999 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1000 if (sc->age_cdata.age_rr_ring_map != NULL &&
1001 sc->age_rdata.age_rr_ring != NULL)
1002 bus_dmamem_free(sc->sc_dmat,
1003 &sc->age_rdata.age_rr_ring_seg, 1);
1004 sc->age_rdata.age_rr_ring = NULL;
1005 sc->age_cdata.age_rr_ring_map = NULL;
1006
1007 /* CMB block */
1008 if (sc->age_cdata.age_cmb_block_map != NULL)
1009 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1010 if (sc->age_cdata.age_cmb_block_map != NULL &&
1011 sc->age_rdata.age_cmb_block != NULL)
1012 bus_dmamem_free(sc->sc_dmat,
1013 &sc->age_rdata.age_cmb_block_seg, 1);
1014 sc->age_rdata.age_cmb_block = NULL;
1015 sc->age_cdata.age_cmb_block_map = NULL;
1016
1017 /* SMB block */
1018 if (sc->age_cdata.age_smb_block_map != NULL)
1019 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1020 if (sc->age_cdata.age_smb_block_map != NULL &&
1021 sc->age_rdata.age_smb_block != NULL)
1022 bus_dmamem_free(sc->sc_dmat,
1023 &sc->age_rdata.age_smb_block_seg, 1);
1024 sc->age_rdata.age_smb_block = NULL;
1025 sc->age_cdata.age_smb_block_map = NULL;
1026 }
1027
1028 static void
1029 age_start(struct ifnet *ifp)
1030 {
1031 struct age_softc *sc = ifp->if_softc;
1032 struct mbuf *m_head;
1033 int enq;
1034
1035 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1036 return;
1037
1038 enq = 0;
1039 for (;;) {
1040 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1041 if (m_head == NULL)
1042 break;
1043
1044 /*
1045 * Pack the data into the transmit ring. If we
1046 * don't have room, set the OACTIVE flag and wait
1047 * for the NIC to drain the ring.
1048 */
1049 if (age_encap(sc, &m_head)) {
1050 if (m_head == NULL)
1051 break;
1052 IF_PREPEND(&ifp->if_snd, m_head);
1053 ifp->if_flags |= IFF_OACTIVE;
1054 break;
1055 }
1056 enq = 1;
1057
1058 /*
1059 * If there's a BPF listener, bounce a copy of this frame
1060 * to him.
1061 */
1062 if (ifp->if_bpf != NULL)
1063 bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
1064 }
1065
1066 if (enq) {
1067 /* Update mbox. */
1068 AGE_COMMIT_MBOX(sc);
1069 /* Set a timeout in case the chip goes out to lunch. */
1070 ifp->if_timer = AGE_TX_TIMEOUT;
1071 }
1072 }
1073
1074 static void
1075 age_watchdog(struct ifnet *ifp)
1076 {
1077 struct age_softc *sc = ifp->if_softc;
1078
1079 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1080 printf("%s: watchdog timeout (missed link)\n",
1081 device_xname(sc->sc_dev));
1082 ifp->if_oerrors++;
1083 age_init(ifp);
1084 return;
1085 }
1086
1087 if (sc->age_cdata.age_tx_cnt == 0) {
1088 printf("%s: watchdog timeout (missed Tx interrupts) "
1089 "-- recovering\n", device_xname(sc->sc_dev));
1090 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1091 age_start(ifp);
1092 return;
1093 }
1094
1095 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1096 ifp->if_oerrors++;
1097 age_init(ifp);
1098
1099 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1100 age_start(ifp);
1101 }
1102
1103 static int
1104 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1105 {
1106 struct age_softc *sc = ifp->if_softc;
1107 int s, error;
1108
1109 s = splnet();
1110
1111 error = ether_ioctl(ifp, cmd, data);
1112 if (error == ENETRESET) {
1113 if (ifp->if_flags & IFF_RUNNING)
1114 age_rxfilter(sc);
1115 error = 0;
1116 }
1117
1118 splx(s);
1119 return error;
1120 }
1121
1122 static void
1123 age_mac_config(struct age_softc *sc)
1124 {
1125 struct mii_data *mii;
1126 uint32_t reg;
1127
1128 mii = &sc->sc_miibus;
1129
1130 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1131 reg &= ~MAC_CFG_FULL_DUPLEX;
1132 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1133 reg &= ~MAC_CFG_SPEED_MASK;
1134
1135 /* Reprogram MAC with resolved speed/duplex. */
1136 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1137 case IFM_10_T:
1138 case IFM_100_TX:
1139 reg |= MAC_CFG_SPEED_10_100;
1140 break;
1141 case IFM_1000_T:
1142 reg |= MAC_CFG_SPEED_1000;
1143 break;
1144 }
1145 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1146 reg |= MAC_CFG_FULL_DUPLEX;
1147 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1148 reg |= MAC_CFG_TX_FC;
1149 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1150 reg |= MAC_CFG_RX_FC;
1151 }
1152
1153 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1154 }
1155
1156 static bool
1157 age_resume(device_t dv, pmf_qual_t qual)
1158 {
1159 struct age_softc *sc = device_private(dv);
1160 uint16_t cmd;
1161
1162 /*
1163 * Clear INTx emulation disable for hardware that
1164 * is set in resume event. From Linux.
1165 */
1166 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1167 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1168 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1169 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1170 PCI_COMMAND_STATUS_REG, cmd);
1171 }
1172
1173 return true;
1174 }
1175
1176 static int
1177 age_encap(struct age_softc *sc, struct mbuf **m_head)
1178 {
1179 struct age_txdesc *txd, *txd_last;
1180 struct tx_desc *desc;
1181 struct mbuf *m;
1182 bus_dmamap_t map;
1183 uint32_t cflags, poff, vtag;
1184 int error, i, nsegs, prod;
1185 #if NVLAN > 0
1186 struct m_tag *mtag;
1187 #endif
1188
1189 m = *m_head;
1190 cflags = vtag = 0;
1191 poff = 0;
1192
1193 prod = sc->age_cdata.age_tx_prod;
1194 txd = &sc->age_cdata.age_txdesc[prod];
1195 txd_last = txd;
1196 map = txd->tx_dmamap;
1197
1198 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1199
1200 if (error == EFBIG) {
1201 error = 0;
1202
1203 *m_head = m_pullup(*m_head, MHLEN);
1204 if (*m_head == NULL) {
1205 printf("%s: can't defrag TX mbuf\n",
1206 device_xname(sc->sc_dev));
1207 return ENOBUFS;
1208 }
1209
1210 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1211 BUS_DMA_NOWAIT);
1212
1213 if (error != 0) {
1214 printf("%s: could not load defragged TX mbuf\n",
1215 device_xname(sc->sc_dev));
1216 m_freem(*m_head);
1217 *m_head = NULL;
1218 return error;
1219 }
1220 } else if (error) {
1221 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1222 return error;
1223 }
1224
1225 nsegs = map->dm_nsegs;
1226
1227 if (nsegs == 0) {
1228 m_freem(*m_head);
1229 *m_head = NULL;
1230 return EIO;
1231 }
1232
1233 /* Check descriptor overrun. */
1234 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1235 bus_dmamap_unload(sc->sc_dmat, map);
1236 return ENOBUFS;
1237 }
1238
1239 m = *m_head;
1240 /* Configure Tx IP/TCP/UDP checksum offload. */
1241 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1242 cflags |= AGE_TD_CSUM;
1243 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1244 cflags |= AGE_TD_TCPCSUM;
1245 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1246 cflags |= AGE_TD_UDPCSUM;
1247 /* Set checksum start offset. */
1248 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1249 }
1250
1251 #if NVLAN > 0
1252 /* Configure VLAN hardware tag insertion. */
1253 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1254 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1255 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1256 cflags |= AGE_TD_INSERT_VLAN_TAG;
1257 }
1258 #endif
1259
1260 desc = NULL;
1261 for (i = 0; i < nsegs; i++) {
1262 desc = &sc->age_rdata.age_tx_ring[prod];
1263 desc->addr = htole64(map->dm_segs[i].ds_addr);
1264 desc->len =
1265 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1266 desc->flags = htole32(cflags);
1267 sc->age_cdata.age_tx_cnt++;
1268 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1269 }
1270
1271 /* Update producer index. */
1272 sc->age_cdata.age_tx_prod = prod;
1273
1274 /* Set EOP on the last descriptor. */
1275 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1276 desc = &sc->age_rdata.age_tx_ring[prod];
1277 desc->flags |= htole32(AGE_TD_EOP);
1278
1279 /* Swap dmamap of the first and the last. */
1280 txd = &sc->age_cdata.age_txdesc[prod];
1281 map = txd_last->tx_dmamap;
1282 txd_last->tx_dmamap = txd->tx_dmamap;
1283 txd->tx_dmamap = map;
1284 txd->tx_m = m;
1285
1286 /* Sync descriptors. */
1287 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1288 BUS_DMASYNC_PREWRITE);
1289 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1290 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1291
1292 return 0;
1293 }
1294
1295 static void
1296 age_txintr(struct age_softc *sc, int tpd_cons)
1297 {
1298 struct ifnet *ifp = &sc->sc_ec.ec_if;
1299 struct age_txdesc *txd;
1300 int cons, prog;
1301
1302 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1303 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1304
1305 /*
1306 * Go through our Tx list and free mbufs for those
1307 * frames which have been transmitted.
1308 */
1309 cons = sc->age_cdata.age_tx_cons;
1310 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1311 if (sc->age_cdata.age_tx_cnt <= 0)
1312 break;
1313 prog++;
1314 ifp->if_flags &= ~IFF_OACTIVE;
1315 sc->age_cdata.age_tx_cnt--;
1316 txd = &sc->age_cdata.age_txdesc[cons];
1317 /*
1318 * Clear Tx descriptors, it's not required but would
1319 * help debugging in case of Tx issues.
1320 */
1321 txd->tx_desc->addr = 0;
1322 txd->tx_desc->len = 0;
1323 txd->tx_desc->flags = 0;
1324
1325 if (txd->tx_m == NULL)
1326 continue;
1327 /* Reclaim transmitted mbufs. */
1328 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1329 m_freem(txd->tx_m);
1330 txd->tx_m = NULL;
1331 }
1332
1333 if (prog > 0) {
1334 sc->age_cdata.age_tx_cons = cons;
1335
1336 /*
1337 * Unarm watchdog timer only when there are no pending
1338 * Tx descriptors in queue.
1339 */
1340 if (sc->age_cdata.age_tx_cnt == 0)
1341 ifp->if_timer = 0;
1342
1343 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1344 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1345 BUS_DMASYNC_PREWRITE);
1346 }
1347 }
1348
1349 /* Receive a frame. */
1350 static void
1351 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1352 {
1353 struct ifnet *ifp = &sc->sc_ec.ec_if;
1354 struct age_rxdesc *rxd;
1355 struct rx_desc *desc;
1356 struct mbuf *mp, *m;
1357 uint32_t status, index;
1358 int count, nsegs, pktlen;
1359 int rx_cons;
1360
1361 status = le32toh(rxrd->flags);
1362 index = le32toh(rxrd->index);
1363 rx_cons = AGE_RX_CONS(index);
1364 nsegs = AGE_RX_NSEGS(index);
1365
1366 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1367 if ((status & AGE_RRD_ERROR) != 0 &&
1368 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1369 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1370 /*
1371 * We want to pass the following frames to upper
1372 * layer regardless of error status of Rx return
1373 * ring.
1374 *
1375 * o IP/TCP/UDP checksum is bad.
1376 * o frame length and protocol specific length
1377 * does not match.
1378 */
1379 sc->age_cdata.age_rx_cons += nsegs;
1380 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1381 return;
1382 }
1383
1384 pktlen = 0;
1385 for (count = 0; count < nsegs; count++,
1386 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1387 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1388 mp = rxd->rx_m;
1389 desc = rxd->rx_desc;
1390 /* Add a new receive buffer to the ring. */
1391 if (age_newbuf(sc, rxd, 0) != 0) {
1392 ifp->if_iqdrops++;
1393 /* Reuse Rx buffers. */
1394 if (sc->age_cdata.age_rxhead != NULL) {
1395 m_freem(sc->age_cdata.age_rxhead);
1396 AGE_RXCHAIN_RESET(sc);
1397 }
1398 break;
1399 }
1400
1401 /* The length of the first mbuf is computed last. */
1402 if (count != 0) {
1403 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1404 pktlen += mp->m_len;
1405 }
1406
1407 /* Chain received mbufs. */
1408 if (sc->age_cdata.age_rxhead == NULL) {
1409 sc->age_cdata.age_rxhead = mp;
1410 sc->age_cdata.age_rxtail = mp;
1411 } else {
1412 mp->m_flags &= ~M_PKTHDR;
1413 sc->age_cdata.age_rxprev_tail =
1414 sc->age_cdata.age_rxtail;
1415 sc->age_cdata.age_rxtail->m_next = mp;
1416 sc->age_cdata.age_rxtail = mp;
1417 }
1418
1419 if (count == nsegs - 1) {
1420 /*
1421 * It seems that L1 controller has no way
1422 * to tell hardware to strip CRC bytes.
1423 */
1424 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1425 if (nsegs > 1) {
1426 /* Remove the CRC bytes in chained mbufs. */
1427 pktlen -= ETHER_CRC_LEN;
1428 if (mp->m_len <= ETHER_CRC_LEN) {
1429 sc->age_cdata.age_rxtail =
1430 sc->age_cdata.age_rxprev_tail;
1431 sc->age_cdata.age_rxtail->m_len -=
1432 (ETHER_CRC_LEN - mp->m_len);
1433 sc->age_cdata.age_rxtail->m_next = NULL;
1434 m_freem(mp);
1435 } else {
1436 mp->m_len -= ETHER_CRC_LEN;
1437 }
1438 }
1439
1440 m = sc->age_cdata.age_rxhead;
1441 m->m_flags |= M_PKTHDR;
1442 m->m_pkthdr.rcvif = ifp;
1443 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1444 /* Set the first mbuf length. */
1445 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1446
1447 /*
1448 * Set checksum information.
1449 * It seems that L1 controller can compute partial
1450 * checksum. The partial checksum value can be used
1451 * to accelerate checksum computation for fragmented
1452 * TCP/UDP packets. Upper network stack already
1453 * takes advantage of the partial checksum value in
1454 * IP reassembly stage. But I'm not sure the
1455 * correctness of the partial hardware checksum
1456 * assistance due to lack of data sheet. If it is
1457 * proven to work on L1 I'll enable it.
1458 */
1459 if (status & AGE_RRD_IPV4) {
1460 if (status & AGE_RRD_IPCSUM_NOK)
1461 m->m_pkthdr.csum_flags |=
1462 M_CSUM_IPv4_BAD;
1463 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1464 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1465 m->m_pkthdr.csum_flags |=
1466 M_CSUM_TCP_UDP_BAD;
1467 }
1468 /*
1469 * Don't mark bad checksum for TCP/UDP frames
1470 * as fragmented frames may always have set
1471 * bad checksummed bit of descriptor status.
1472 */
1473 }
1474 #if NVLAN > 0
1475 /* Check for VLAN tagged frames. */
1476 if (status & AGE_RRD_VLAN) {
1477 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1478 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1479 continue);
1480 }
1481 #endif
1482
1483 if (ifp->if_bpf)
1484 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1485 /* Pass it on. */
1486 ether_input(ifp, m);
1487
1488 /* Reset mbuf chains. */
1489 AGE_RXCHAIN_RESET(sc);
1490 }
1491 }
1492
1493 if (count != nsegs) {
1494 sc->age_cdata.age_rx_cons += nsegs;
1495 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1496 } else
1497 sc->age_cdata.age_rx_cons = rx_cons;
1498 }
1499
1500 static void
1501 age_rxintr(struct age_softc *sc, int rr_prod)
1502 {
1503 struct rx_rdesc *rxrd;
1504 int rr_cons, nsegs, pktlen, prog;
1505
1506 rr_cons = sc->age_cdata.age_rr_cons;
1507 if (rr_cons == rr_prod)
1508 return;
1509
1510 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1511 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1512 BUS_DMASYNC_POSTREAD);
1513
1514 for (prog = 0; rr_cons != rr_prod; prog++) {
1515 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1516 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1517 if (nsegs == 0)
1518 break;
1519 /*
1520 * Check number of segments against received bytes
1521 * Non-matching value would indicate that hardware
1522 * is still trying to update Rx return descriptors.
1523 * I'm not sure whether this check is really needed.
1524 */
1525 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1526 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1527 (MCLBYTES - ETHER_ALIGN)))
1528 break;
1529
1530 /* Received a frame. */
1531 age_rxeof(sc, rxrd);
1532
1533 /* Clear return ring. */
1534 rxrd->index = 0;
1535 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1536 }
1537
1538 if (prog > 0) {
1539 /* Update the consumer index. */
1540 sc->age_cdata.age_rr_cons = rr_cons;
1541
1542 /* Sync descriptors. */
1543 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1544 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1545 BUS_DMASYNC_PREWRITE);
1546
1547 /* Notify hardware availability of new Rx buffers. */
1548 AGE_COMMIT_MBOX(sc);
1549 }
1550 }
1551
1552 static void
1553 age_tick(void *xsc)
1554 {
1555 struct age_softc *sc = xsc;
1556 struct mii_data *mii = &sc->sc_miibus;
1557 int s;
1558
1559 s = splnet();
1560 mii_tick(mii);
1561 splx(s);
1562
1563 callout_schedule(&sc->sc_tick_ch, hz);
1564 }
1565
1566 static void
1567 age_reset(struct age_softc *sc)
1568 {
1569 uint32_t reg;
1570 int i;
1571
1572 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1573 CSR_READ_4(sc, AGE_MASTER_CFG);
1574 DELAY(1000);
1575 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1576 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1577 break;
1578 DELAY(10);
1579 }
1580
1581 if (i == 0)
1582 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1583 reg);
1584
1585 /* Initialize PCIe module. From Linux. */
1586 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1587 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1588 }
1589
1590 static int
1591 age_init(struct ifnet *ifp)
1592 {
1593 struct age_softc *sc = ifp->if_softc;
1594 struct mii_data *mii;
1595 uint8_t eaddr[ETHER_ADDR_LEN];
1596 bus_addr_t paddr;
1597 uint32_t reg, fsize;
1598 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1599 int error;
1600
1601 /*
1602 * Cancel any pending I/O.
1603 */
1604 age_stop(ifp, 0);
1605
1606 /*
1607 * Reset the chip to a known state.
1608 */
1609 age_reset(sc);
1610
1611 /* Initialize descriptors. */
1612 error = age_init_rx_ring(sc);
1613 if (error != 0) {
1614 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1615 age_stop(ifp, 0);
1616 return error;
1617 }
1618 age_init_rr_ring(sc);
1619 age_init_tx_ring(sc);
1620 age_init_cmb_block(sc);
1621 age_init_smb_block(sc);
1622
1623 /* Reprogram the station address. */
1624 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1625 CSR_WRITE_4(sc, AGE_PAR0,
1626 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1627 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1628
1629 /* Set descriptor base addresses. */
1630 paddr = sc->age_rdata.age_tx_ring_paddr;
1631 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1632 paddr = sc->age_rdata.age_rx_ring_paddr;
1633 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1634 paddr = sc->age_rdata.age_rr_ring_paddr;
1635 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1636 paddr = sc->age_rdata.age_tx_ring_paddr;
1637 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1638 paddr = sc->age_rdata.age_cmb_block_paddr;
1639 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1640 paddr = sc->age_rdata.age_smb_block_paddr;
1641 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1642
1643 /* Set Rx/Rx return descriptor counter. */
1644 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1645 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1646 DESC_RRD_CNT_MASK) |
1647 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1648
1649 /* Set Tx descriptor counter. */
1650 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1651 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1652
1653 /* Tell hardware that we're ready to load descriptors. */
1654 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1655
1656 /*
1657 * Initialize mailbox register.
1658 * Updated producer/consumer index information is exchanged
1659 * through this mailbox register. However Tx producer and
1660 * Rx return consumer/Rx producer are all shared such that
1661 * it's hard to separate code path between Tx and Rx without
1662 * locking. If L1 hardware have a separate mail box register
1663 * for Tx and Rx consumer/producer management we could have
1664 * indepent Tx/Rx handler which in turn Rx handler could have
1665 * been run without any locking.
1666 */
1667 AGE_COMMIT_MBOX(sc);
1668
1669 /* Configure IPG/IFG parameters. */
1670 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1671 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1672 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1673 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1674 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1675
1676 /* Set parameters for half-duplex media. */
1677 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1678 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1679 HDPX_CFG_LCOL_MASK) |
1680 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1681 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1682 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1683 HDPX_CFG_ABEBT_MASK) |
1684 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1685 HDPX_CFG_JAMIPG_MASK));
1686
1687 /* Configure interrupt moderation timer. */
1688 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1689 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1690 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1691 reg &= ~MASTER_MTIMER_ENB;
1692 if (AGE_USECS(sc->age_int_mod) == 0)
1693 reg &= ~MASTER_ITIMER_ENB;
1694 else
1695 reg |= MASTER_ITIMER_ENB;
1696 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1697 if (agedebug)
1698 printf("%s: interrupt moderation is %d us.\n",
1699 device_xname(sc->sc_dev), sc->age_int_mod);
1700 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1701
1702 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1703 if (ifp->if_mtu < ETHERMTU)
1704 sc->age_max_frame_size = ETHERMTU;
1705 else
1706 sc->age_max_frame_size = ifp->if_mtu;
1707 sc->age_max_frame_size += ETHER_HDR_LEN +
1708 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1709 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1710
1711 /* Configure jumbo frame. */
1712 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1713 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1714 (((fsize / sizeof(uint64_t)) <<
1715 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1716 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1717 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1718 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1719 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1720
1721 /* Configure flow-control parameters. From Linux. */
1722 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1723 /*
1724 * Magic workaround for old-L1.
1725 * Don't know which hw revision requires this magic.
1726 */
1727 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1728 /*
1729 * Another magic workaround for flow-control mode
1730 * change. From Linux.
1731 */
1732 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1733 }
1734 /*
1735 * TODO
1736 * Should understand pause parameter relationships between FIFO
1737 * size and number of Rx descriptors and Rx return descriptors.
1738 *
1739 * Magic parameters came from Linux.
1740 */
1741 switch (sc->age_chip_rev) {
1742 case 0x8001:
1743 case 0x9001:
1744 case 0x9002:
1745 case 0x9003:
1746 rxf_hi = AGE_RX_RING_CNT / 16;
1747 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1748 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1749 rrd_lo = AGE_RR_RING_CNT / 16;
1750 break;
1751 default:
1752 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1753 rxf_lo = reg / 16;
1754 if (rxf_lo < 192)
1755 rxf_lo = 192;
1756 rxf_hi = (reg * 7) / 8;
1757 if (rxf_hi < rxf_lo)
1758 rxf_hi = rxf_lo + 16;
1759 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1760 rrd_lo = reg / 8;
1761 rrd_hi = (reg * 7) / 8;
1762 if (rrd_lo < 2)
1763 rrd_lo = 2;
1764 if (rrd_hi < rrd_lo)
1765 rrd_hi = rrd_lo + 3;
1766 break;
1767 }
1768 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1769 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1770 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1771 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1772 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1773 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1774 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1775 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1776 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1777 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1778
1779 /* Configure RxQ. */
1780 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1781 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1782 RXQ_CFG_RD_BURST_MASK) |
1783 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1784 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1785 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1786 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1787 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1788
1789 /* Configure TxQ. */
1790 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1791 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1792 TXQ_CFG_TPD_BURST_MASK) |
1793 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1794 TXQ_CFG_TX_FIFO_BURST_MASK) |
1795 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1796 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1797 TXQ_CFG_ENB);
1798
1799 /* Configure DMA parameters. */
1800 CSR_WRITE_4(sc, AGE_DMA_CFG,
1801 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1802 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1803 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1804
1805 /* Configure CMB DMA write threshold. */
1806 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1807 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1808 CMB_WR_THRESH_RRD_MASK) |
1809 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1810 CMB_WR_THRESH_TPD_MASK));
1811
1812 /* Set CMB/SMB timer and enable them. */
1813 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1814 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1815 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1816
1817 /* Request SMB updates for every seconds. */
1818 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1819 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1820
1821 /*
1822 * Disable all WOL bits as WOL can interfere normal Rx
1823 * operation.
1824 */
1825 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1826
1827 /*
1828 * Configure Tx/Rx MACs.
1829 * - Auto-padding for short frames.
1830 * - Enable CRC generation.
1831 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1832 * of MAC is followed after link establishment.
1833 */
1834 CSR_WRITE_4(sc, AGE_MAC_CFG,
1835 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1836 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1837 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1838 MAC_CFG_PREAMBLE_MASK));
1839
1840 /* Set up the receive filter. */
1841 age_rxfilter(sc);
1842 age_rxvlan(sc);
1843
1844 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1845 reg |= MAC_CFG_RXCSUM_ENB;
1846
1847 /* Ack all pending interrupts and clear it. */
1848 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1849 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1850
1851 /* Finally enable Tx/Rx MAC. */
1852 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1853
1854 sc->age_flags &= ~AGE_FLAG_LINK;
1855
1856 /* Switch to the current media. */
1857 mii = &sc->sc_miibus;
1858 mii_mediachg(mii);
1859
1860 callout_schedule(&sc->sc_tick_ch, hz);
1861
1862 ifp->if_flags |= IFF_RUNNING;
1863 ifp->if_flags &= ~IFF_OACTIVE;
1864
1865 return 0;
1866 }
1867
1868 static void
1869 age_stop(struct ifnet *ifp, int disable)
1870 {
1871 struct age_softc *sc = ifp->if_softc;
1872 struct age_txdesc *txd;
1873 struct age_rxdesc *rxd;
1874 uint32_t reg;
1875 int i;
1876
1877 callout_stop(&sc->sc_tick_ch);
1878
1879 /*
1880 * Mark the interface down and cancel the watchdog timer.
1881 */
1882 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1883 ifp->if_timer = 0;
1884
1885 sc->age_flags &= ~AGE_FLAG_LINK;
1886
1887 mii_down(&sc->sc_miibus);
1888
1889 /*
1890 * Disable interrupts.
1891 */
1892 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1893 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1894
1895 /* Stop CMB/SMB updates. */
1896 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1897
1898 /* Stop Rx/Tx MAC. */
1899 age_stop_rxmac(sc);
1900 age_stop_txmac(sc);
1901
1902 /* Stop DMA. */
1903 CSR_WRITE_4(sc, AGE_DMA_CFG,
1904 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1905
1906 /* Stop TxQ/RxQ. */
1907 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1908 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1909 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1910 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1911 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1912 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1913 break;
1914 DELAY(10);
1915 }
1916 if (i == 0)
1917 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1918 device_xname(sc->sc_dev), reg);
1919
1920 /* Reclaim Rx buffers that have been processed. */
1921 if (sc->age_cdata.age_rxhead != NULL)
1922 m_freem(sc->age_cdata.age_rxhead);
1923 AGE_RXCHAIN_RESET(sc);
1924
1925 /*
1926 * Free RX and TX mbufs still in the queues.
1927 */
1928 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1929 rxd = &sc->age_cdata.age_rxdesc[i];
1930 if (rxd->rx_m != NULL) {
1931 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1932 m_freem(rxd->rx_m);
1933 rxd->rx_m = NULL;
1934 }
1935 }
1936 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1937 txd = &sc->age_cdata.age_txdesc[i];
1938 if (txd->tx_m != NULL) {
1939 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1940 m_freem(txd->tx_m);
1941 txd->tx_m = NULL;
1942 }
1943 }
1944 }
1945
1946 static void
1947 age_stats_update(struct age_softc *sc)
1948 {
1949 struct ifnet *ifp = &sc->sc_ec.ec_if;
1950 struct age_stats *stat;
1951 struct smb *smb;
1952
1953 stat = &sc->age_stat;
1954
1955 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1956 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1957
1958 smb = sc->age_rdata.age_smb_block;
1959 if (smb->updated == 0)
1960 return;
1961
1962 /* Rx stats. */
1963 stat->rx_frames += smb->rx_frames;
1964 stat->rx_bcast_frames += smb->rx_bcast_frames;
1965 stat->rx_mcast_frames += smb->rx_mcast_frames;
1966 stat->rx_pause_frames += smb->rx_pause_frames;
1967 stat->rx_control_frames += smb->rx_control_frames;
1968 stat->rx_crcerrs += smb->rx_crcerrs;
1969 stat->rx_lenerrs += smb->rx_lenerrs;
1970 stat->rx_bytes += smb->rx_bytes;
1971 stat->rx_runts += smb->rx_runts;
1972 stat->rx_fragments += smb->rx_fragments;
1973 stat->rx_pkts_64 += smb->rx_pkts_64;
1974 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1975 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1976 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1977 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1978 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1979 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1980 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1981 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1982 stat->rx_desc_oflows += smb->rx_desc_oflows;
1983 stat->rx_alignerrs += smb->rx_alignerrs;
1984 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1985 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1986 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1987
1988 /* Tx stats. */
1989 stat->tx_frames += smb->tx_frames;
1990 stat->tx_bcast_frames += smb->tx_bcast_frames;
1991 stat->tx_mcast_frames += smb->tx_mcast_frames;
1992 stat->tx_pause_frames += smb->tx_pause_frames;
1993 stat->tx_excess_defer += smb->tx_excess_defer;
1994 stat->tx_control_frames += smb->tx_control_frames;
1995 stat->tx_deferred += smb->tx_deferred;
1996 stat->tx_bytes += smb->tx_bytes;
1997 stat->tx_pkts_64 += smb->tx_pkts_64;
1998 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1999 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2000 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2001 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2002 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2003 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2004 stat->tx_single_colls += smb->tx_single_colls;
2005 stat->tx_multi_colls += smb->tx_multi_colls;
2006 stat->tx_late_colls += smb->tx_late_colls;
2007 stat->tx_excess_colls += smb->tx_excess_colls;
2008 stat->tx_underrun += smb->tx_underrun;
2009 stat->tx_desc_underrun += smb->tx_desc_underrun;
2010 stat->tx_lenerrs += smb->tx_lenerrs;
2011 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2012 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2013 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2014
2015 /* Update counters in ifnet. */
2016 ifp->if_opackets += smb->tx_frames;
2017
2018 ifp->if_collisions += smb->tx_single_colls +
2019 smb->tx_multi_colls + smb->tx_late_colls +
2020 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2021
2022 ifp->if_oerrors += smb->tx_excess_colls +
2023 smb->tx_late_colls + smb->tx_underrun +
2024 smb->tx_pkts_truncated;
2025
2026 ifp->if_ipackets += smb->rx_frames;
2027
2028 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2029 smb->rx_runts + smb->rx_pkts_truncated +
2030 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2031 smb->rx_alignerrs;
2032
2033 /* Update done, clear. */
2034 smb->updated = 0;
2035
2036 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2037 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2038 }
2039
2040 static void
2041 age_stop_txmac(struct age_softc *sc)
2042 {
2043 uint32_t reg;
2044 int i;
2045
2046 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2047 if ((reg & MAC_CFG_TX_ENB) != 0) {
2048 reg &= ~MAC_CFG_TX_ENB;
2049 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2050 }
2051 /* Stop Tx DMA engine. */
2052 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2053 if ((reg & DMA_CFG_RD_ENB) != 0) {
2054 reg &= ~DMA_CFG_RD_ENB;
2055 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2056 }
2057 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2058 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2059 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2060 break;
2061 DELAY(10);
2062 }
2063 if (i == 0)
2064 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2065 }
2066
2067 static void
2068 age_stop_rxmac(struct age_softc *sc)
2069 {
2070 uint32_t reg;
2071 int i;
2072
2073 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2074 if ((reg & MAC_CFG_RX_ENB) != 0) {
2075 reg &= ~MAC_CFG_RX_ENB;
2076 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2077 }
2078 /* Stop Rx DMA engine. */
2079 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2080 if ((reg & DMA_CFG_WR_ENB) != 0) {
2081 reg &= ~DMA_CFG_WR_ENB;
2082 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2083 }
2084 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2085 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2086 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2087 break;
2088 DELAY(10);
2089 }
2090 if (i == 0)
2091 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2092 }
2093
2094 static void
2095 age_init_tx_ring(struct age_softc *sc)
2096 {
2097 struct age_ring_data *rd;
2098 struct age_txdesc *txd;
2099 int i;
2100
2101 sc->age_cdata.age_tx_prod = 0;
2102 sc->age_cdata.age_tx_cons = 0;
2103 sc->age_cdata.age_tx_cnt = 0;
2104
2105 rd = &sc->age_rdata;
2106 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2107 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2108 txd = &sc->age_cdata.age_txdesc[i];
2109 txd->tx_desc = &rd->age_tx_ring[i];
2110 txd->tx_m = NULL;
2111 }
2112 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2113 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2114 }
2115
2116 static int
2117 age_init_rx_ring(struct age_softc *sc)
2118 {
2119 struct age_ring_data *rd;
2120 struct age_rxdesc *rxd;
2121 int i;
2122
2123 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2124 rd = &sc->age_rdata;
2125 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2126 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2127 rxd = &sc->age_cdata.age_rxdesc[i];
2128 rxd->rx_m = NULL;
2129 rxd->rx_desc = &rd->age_rx_ring[i];
2130 if (age_newbuf(sc, rxd, 1) != 0)
2131 return ENOBUFS;
2132 }
2133
2134 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2135 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2136
2137 return 0;
2138 }
2139
2140 static void
2141 age_init_rr_ring(struct age_softc *sc)
2142 {
2143 struct age_ring_data *rd;
2144
2145 sc->age_cdata.age_rr_cons = 0;
2146 AGE_RXCHAIN_RESET(sc);
2147
2148 rd = &sc->age_rdata;
2149 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2150 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2151 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2152 }
2153
2154 static void
2155 age_init_cmb_block(struct age_softc *sc)
2156 {
2157 struct age_ring_data *rd;
2158
2159 rd = &sc->age_rdata;
2160 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2161 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2162 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2163 }
2164
2165 static void
2166 age_init_smb_block(struct age_softc *sc)
2167 {
2168 struct age_ring_data *rd;
2169
2170 rd = &sc->age_rdata;
2171 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2172 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2173 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2174 }
2175
2176 static int
2177 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2178 {
2179 struct rx_desc *desc;
2180 struct mbuf *m;
2181 bus_dmamap_t map;
2182 int error;
2183
2184 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2185 if (m == NULL)
2186 return ENOBUFS;
2187 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2188 if (!(m->m_flags & M_EXT)) {
2189 m_freem(m);
2190 return ENOBUFS;
2191 }
2192
2193 m->m_len = m->m_pkthdr.len = MCLBYTES;
2194 m_adj(m, ETHER_ALIGN);
2195
2196 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2197 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2198
2199 if (error != 0) {
2200 if (!error) {
2201 bus_dmamap_unload(sc->sc_dmat,
2202 sc->age_cdata.age_rx_sparemap);
2203 error = EFBIG;
2204 printf("%s: too many segments?!\n",
2205 device_xname(sc->sc_dev));
2206 }
2207 m_freem(m);
2208
2209 if (init)
2210 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2211 return error;
2212 }
2213
2214 if (rxd->rx_m != NULL) {
2215 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2216 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2217 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2218 }
2219 map = rxd->rx_dmamap;
2220 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2221 sc->age_cdata.age_rx_sparemap = map;
2222 rxd->rx_m = m;
2223
2224 desc = rxd->rx_desc;
2225 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2226 desc->len =
2227 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2228 AGE_RD_LEN_SHIFT);
2229
2230 return 0;
2231 }
2232
2233 static void
2234 age_rxvlan(struct age_softc *sc)
2235 {
2236 uint32_t reg;
2237
2238 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2239 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2240 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2241 reg |= MAC_CFG_VLAN_TAG_STRIP;
2242 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2243 }
2244
2245 static void
2246 age_rxfilter(struct age_softc *sc)
2247 {
2248 struct ethercom *ec = &sc->sc_ec;
2249 struct ifnet *ifp = &sc->sc_ec.ec_if;
2250 struct ether_multi *enm;
2251 struct ether_multistep step;
2252 uint32_t crc;
2253 uint32_t mchash[2];
2254 uint32_t rxcfg;
2255
2256 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2257 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2258 ifp->if_flags &= ~IFF_ALLMULTI;
2259
2260 /*
2261 * Always accept broadcast frames.
2262 */
2263 rxcfg |= MAC_CFG_BCAST;
2264
2265 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2266 ifp->if_flags |= IFF_ALLMULTI;
2267 if (ifp->if_flags & IFF_PROMISC)
2268 rxcfg |= MAC_CFG_PROMISC;
2269 else
2270 rxcfg |= MAC_CFG_ALLMULTI;
2271 mchash[0] = mchash[1] = 0xFFFFFFFF;
2272 } else {
2273 /* Program new filter. */
2274 memset(mchash, 0, sizeof(mchash));
2275
2276 ETHER_FIRST_MULTI(step, ec, enm);
2277 while (enm != NULL) {
2278 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2279 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2280 ETHER_NEXT_MULTI(step, enm);
2281 }
2282 }
2283
2284 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2285 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2286 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2287 }
2288