Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.38
      1 /*	$NetBSD: if_age.c,v 1.38 2010/04/05 07:20:24 joerg Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.38 2010/04/05 07:20:24 joerg Exp $");
     35 
     36 #include "vlan.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/proc.h>
     40 #include <sys/endian.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/queue.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/callout.h>
     49 #include <sys/socket.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 
     56 #ifdef INET
     57 #include <netinet/in.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/in_var.h>
     60 #include <netinet/ip.h>
     61 #endif
     62 
     63 #include <net/if_types.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net/bpf.h>
     67 
     68 #include <sys/rnd.h>
     69 
     70 #include <dev/mii/mii.h>
     71 #include <dev/mii/miivar.h>
     72 
     73 #include <dev/pci/pcireg.h>
     74 #include <dev/pci/pcivar.h>
     75 #include <dev/pci/pcidevs.h>
     76 
     77 #include <dev/pci/if_agereg.h>
     78 
     79 static int	age_match(device_t, cfdata_t, void *);
     80 static void	age_attach(device_t, device_t, void *);
     81 static int	age_detach(device_t, int);
     82 
     83 static bool	age_resume(device_t, const pmf_qual_t *);
     84 
     85 static int	age_miibus_readreg(device_t, int, int);
     86 static void	age_miibus_writereg(device_t, int, int, int);
     87 static void	age_miibus_statchg(device_t);
     88 
     89 static int	age_init(struct ifnet *);
     90 static int	age_ioctl(struct ifnet *, u_long, void *);
     91 static void	age_start(struct ifnet *);
     92 static void	age_watchdog(struct ifnet *);
     93 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     94 static int	age_mediachange(struct ifnet *);
     95 
     96 static int	age_intr(void *);
     97 static int	age_dma_alloc(struct age_softc *);
     98 static void	age_dma_free(struct age_softc *);
     99 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    100 static void	age_phy_reset(struct age_softc *);
    101 
    102 static int	age_encap(struct age_softc *, struct mbuf **);
    103 static void	age_init_tx_ring(struct age_softc *);
    104 static int	age_init_rx_ring(struct age_softc *);
    105 static void	age_init_rr_ring(struct age_softc *);
    106 static void	age_init_cmb_block(struct age_softc *);
    107 static void	age_init_smb_block(struct age_softc *);
    108 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    109 static void	age_mac_config(struct age_softc *);
    110 static void	age_txintr(struct age_softc *, int);
    111 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    112 static void	age_rxintr(struct age_softc *, int);
    113 static void	age_tick(void *);
    114 static void	age_reset(struct age_softc *);
    115 static void	age_stop(struct ifnet *, int);
    116 static void	age_stats_update(struct age_softc *);
    117 static void	age_stop_txmac(struct age_softc *);
    118 static void	age_stop_rxmac(struct age_softc *);
    119 static void	age_rxvlan(struct age_softc *sc);
    120 static void	age_rxfilter(struct age_softc *);
    121 
    122 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    123     age_match, age_attach, age_detach, NULL);
    124 
    125 int agedebug = 0;
    126 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    127 
    128 #define ETHER_ALIGN 2
    129 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    130 
    131 static int
    132 age_match(device_t dev, cfdata_t match, void *aux)
    133 {
    134 	struct pci_attach_args *pa = aux;
    135 
    136 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    137 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    138 }
    139 
    140 static void
    141 age_attach(device_t parent, device_t self, void *aux)
    142 {
    143 	struct age_softc *sc = device_private(self);
    144 	struct pci_attach_args *pa = aux;
    145 	pci_intr_handle_t ih;
    146 	const char *intrstr;
    147 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    148 	pcireg_t memtype;
    149 	int error = 0;
    150 
    151 	aprint_naive("\n");
    152 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    153 
    154 	sc->sc_dev = self;
    155 	sc->sc_dmat = pa->pa_dmat;
    156 	sc->sc_pct = pa->pa_pc;
    157 	sc->sc_pcitag = pa->pa_tag;
    158 
    159 	/*
    160 	 * Allocate IO memory
    161 	 */
    162 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    163 	switch (memtype) {
    164         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    167 		break;
    168         default:
    169 		aprint_error_dev(self, "invalid base address register\n");
    170 		break;
    171 	}
    172 
    173 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    174 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    175 		aprint_error_dev(self, "could not map mem space\n");
    176 		return;
    177 	}
    178 
    179 	if (pci_intr_map(pa, &ih) != 0) {
    180 		aprint_error_dev(self, "could not map interrupt\n");
    181 		goto fail;
    182 	}
    183 
    184 	/*
    185 	 * Allocate IRQ
    186 	 */
    187 	intrstr = pci_intr_string(sc->sc_pct, ih);
    188 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    189 	    age_intr, sc);
    190 	if (sc->sc_irq_handle == NULL) {
    191 		aprint_error_dev(self, "could not establish interrupt");
    192 		if (intrstr != NULL)
    193 			aprint_error(" at %s", intrstr);
    194 		aprint_error("\n");
    195 		goto fail;
    196 	}
    197 	aprint_normal_dev(self, "%s\n", intrstr);
    198 
    199 	/* Set PHY address. */
    200 	sc->age_phyaddr = AGE_PHY_ADDR;
    201 
    202 	/* Reset PHY. */
    203 	age_phy_reset(sc);
    204 
    205 	/* Reset the ethernet controller. */
    206 	age_reset(sc);
    207 
    208 	/* Get PCI and chip id/revision. */
    209 	sc->age_rev = PCI_REVISION(pa->pa_class);
    210 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    211 	    MASTER_CHIP_REV_SHIFT;
    212 
    213 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    214 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    215 
    216 	if (agedebug) {
    217 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    218 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    219 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    220 	}
    221 
    222 	/* Set max allowable DMA size. */
    223 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    224 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    225 
    226 	/* Allocate DMA stuffs */
    227 	error = age_dma_alloc(sc);
    228 	if (error)
    229 		goto fail;
    230 
    231 	callout_init(&sc->sc_tick_ch, 0);
    232 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    233 
    234 	/* Load station address. */
    235 	age_get_macaddr(sc, sc->sc_enaddr);
    236 
    237 	aprint_normal_dev(self, "Ethernet address %s\n",
    238 	    ether_sprintf(sc->sc_enaddr));
    239 
    240 	ifp->if_softc = sc;
    241 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    242 	ifp->if_init = age_init;
    243 	ifp->if_ioctl = age_ioctl;
    244 	ifp->if_start = age_start;
    245 	ifp->if_stop = age_stop;
    246 	ifp->if_watchdog = age_watchdog;
    247 	ifp->if_baudrate = IF_Gbps(1);
    248 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    251 
    252 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    253 
    254 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    255 				IFCAP_CSUM_TCPv4_Rx |
    256 				IFCAP_CSUM_UDPv4_Rx;
    257 #ifdef AGE_CHECKSUM
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    259 				IFCAP_CSUM_TCPv4_Tx |
    260 				IFCAP_CSUM_UDPv4_Tx;
    261 #endif
    262 
    263 #if NVLAN > 0
    264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    265 #endif
    266 
    267 	/* Set up MII bus. */
    268 	sc->sc_miibus.mii_ifp = ifp;
    269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    272 
    273 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    275 	    age_mediastatus);
    276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    277 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    278 
    279 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    280 		aprint_error_dev(self, "no PHY found!\n");
    281 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    282 		    0, NULL);
    283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    284 	} else
    285 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    286 
    287 	if_attach(ifp);
    288 	ether_ifattach(ifp, sc->sc_enaddr);
    289 
    290 	if (pmf_device_register(self, NULL, age_resume))
    291 		pmf_class_network_register(self, ifp);
    292 	else
    293 		aprint_error_dev(self, "couldn't establish power handler\n");
    294 
    295 	return;
    296 
    297 fail:
    298 	age_dma_free(sc);
    299 	if (sc->sc_irq_handle != NULL) {
    300 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    301 		sc->sc_irq_handle = NULL;
    302 	}
    303 	if (sc->sc_mem_size) {
    304 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    305 		sc->sc_mem_size = 0;
    306 	}
    307 }
    308 
    309 static int
    310 age_detach(device_t self, int flags)
    311 {
    312 	struct age_softc *sc = device_private(self);
    313 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    314 	int s;
    315 
    316 	pmf_device_deregister(self);
    317 	s = splnet();
    318 	age_stop(ifp, 0);
    319 	splx(s);
    320 
    321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    322 
    323 	/* Delete all remaining media. */
    324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    325 
    326 	ether_ifdetach(ifp);
    327 	if_detach(ifp);
    328 	age_dma_free(sc);
    329 
    330 	if (sc->sc_irq_handle != NULL) {
    331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    332 		sc->sc_irq_handle = NULL;
    333 	}
    334 	if (sc->sc_mem_size) {
    335 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    336 		sc->sc_mem_size = 0;
    337 	}
    338 	return 0;
    339 }
    340 
    341 /*
    342  *	Read a PHY register on the MII of the L1.
    343  */
    344 static int
    345 age_miibus_readreg(device_t dev, int phy, int reg)
    346 {
    347 	struct age_softc *sc = device_private(dev);
    348 	uint32_t v;
    349 	int i;
    350 
    351 	if (phy != sc->age_phyaddr)
    352 		return 0;
    353 
    354 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    355 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    356 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    357 		DELAY(1);
    358 		v = CSR_READ_4(sc, AGE_MDIO);
    359 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    360 			break;
    361 	}
    362 
    363 	if (i == 0) {
    364 		printf("%s: phy read timeout: phy %d, reg %d\n",
    365 			device_xname(sc->sc_dev), phy, reg);
    366 		return 0;
    367 	}
    368 
    369 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    370 }
    371 
    372 /*
    373  * 	Write a PHY register on the MII of the L1.
    374  */
    375 static void
    376 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    377 {
    378 	struct age_softc *sc = device_private(dev);
    379 	uint32_t v;
    380 	int i;
    381 
    382 	if (phy != sc->age_phyaddr)
    383 		return;
    384 
    385 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    386 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    387 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    388 
    389 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    390 		DELAY(1);
    391 		v = CSR_READ_4(sc, AGE_MDIO);
    392 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    393 			break;
    394 	}
    395 
    396 	if (i == 0) {
    397 		printf("%s: phy write timeout: phy %d, reg %d\n",
    398 		    device_xname(sc->sc_dev), phy, reg);
    399 	}
    400 }
    401 
    402 /*
    403  *	Callback from MII layer when media changes.
    404  */
    405 static void
    406 age_miibus_statchg(device_t dev)
    407 {
    408 	struct age_softc *sc = device_private(dev);
    409 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    410 	struct mii_data *mii;
    411 
    412 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    413 		return;
    414 
    415 	mii = &sc->sc_miibus;
    416 
    417 	sc->age_flags &= ~AGE_FLAG_LINK;
    418 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    419 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    420 		case IFM_10_T:
    421 		case IFM_100_TX:
    422 		case IFM_1000_T:
    423 			sc->age_flags |= AGE_FLAG_LINK;
    424 			break;
    425 		default:
    426 			break;
    427 		}
    428 	}
    429 
    430 	/* Stop Rx/Tx MACs. */
    431 	age_stop_rxmac(sc);
    432 	age_stop_txmac(sc);
    433 
    434 	/* Program MACs with resolved speed/duplex/flow-control. */
    435 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    436 		uint32_t reg;
    437 
    438 		age_mac_config(sc);
    439 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    440 		/* Restart DMA engine and Tx/Rx MAC. */
    441 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    442 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    443 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    444 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    445 	}
    446 }
    447 
    448 /*
    449  *	Get the current interface media status.
    450  */
    451 static void
    452 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    453 {
    454 	struct age_softc *sc = ifp->if_softc;
    455 	struct mii_data *mii = &sc->sc_miibus;
    456 
    457 	mii_pollstat(mii);
    458 	ifmr->ifm_status = mii->mii_media_status;
    459 	ifmr->ifm_active = mii->mii_media_active;
    460 }
    461 
    462 /*
    463  *	Set hardware to newly-selected media.
    464  */
    465 static int
    466 age_mediachange(struct ifnet *ifp)
    467 {
    468 	struct age_softc *sc = ifp->if_softc;
    469 	struct mii_data *mii = &sc->sc_miibus;
    470 	int error;
    471 
    472 	if (mii->mii_instance != 0) {
    473 		struct mii_softc *miisc;
    474 
    475 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    476 			mii_phy_reset(miisc);
    477 	}
    478 	error = mii_mediachg(mii);
    479 
    480 	return error;
    481 }
    482 
    483 static int
    484 age_intr(void *arg)
    485 {
    486         struct age_softc *sc = arg;
    487         struct ifnet *ifp = &sc->sc_ec.ec_if;
    488 	struct cmb *cmb;
    489         uint32_t status;
    490 
    491 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    492 	if (status == 0 || (status & AGE_INTRS) == 0)
    493 		return 0;
    494 
    495 	cmb = sc->age_rdata.age_cmb_block;
    496 	if (cmb == NULL) {
    497 		/* Happens when bringing up the interface
    498 		 * w/o having a carrier. Ack. the interrupt.
    499 		 */
    500 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    501 		return 0;
    502 	}
    503 
    504 	/* Disable interrupts. */
    505 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    506 
    507 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    508 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    509 	status = le32toh(cmb->intr_status);
    510 	if ((status & AGE_INTRS) == 0)
    511 		goto back;
    512 
    513 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    514 	    TPD_CONS_SHIFT;
    515 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    516 	    RRD_PROD_SHIFT;
    517 
    518 	/* Let hardware know CMB was served. */
    519 	cmb->intr_status = 0;
    520 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    521 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    522 	    BUS_DMASYNC_PREWRITE);
    523 
    524 	if (ifp->if_flags & IFF_RUNNING) {
    525 		if (status & INTR_CMB_RX)
    526 			age_rxintr(sc, sc->age_rr_prod);
    527 
    528 		if (status & INTR_CMB_TX)
    529 			age_txintr(sc, sc->age_tpd_cons);
    530 
    531 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    532 			if (status & INTR_DMA_RD_TO_RST)
    533 				printf("%s: DMA read error! -- resetting\n",
    534 				    device_xname(sc->sc_dev));
    535 			if (status & INTR_DMA_WR_TO_RST)
    536 				printf("%s: DMA write error! -- resetting\n",
    537 				    device_xname(sc->sc_dev));
    538 			age_init(ifp);
    539 		}
    540 
    541 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    542 			age_start(ifp);
    543 
    544 		if (status & INTR_SMB)
    545 			age_stats_update(sc);
    546 	}
    547 
    548 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    549 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    550 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    551 	    BUS_DMASYNC_POSTREAD);
    552 
    553 back:
    554 	/* Re-enable interrupts. */
    555 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    556 
    557 	return 1;
    558 }
    559 
    560 static void
    561 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    562 {
    563 	uint32_t ea[2], reg;
    564 	int i, vpdc;
    565 
    566 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    567 	if ((reg & SPI_VPD_ENB) != 0) {
    568 		/* Get VPD stored in TWSI EEPROM. */
    569 		reg &= ~SPI_VPD_ENB;
    570 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    571 	}
    572 
    573 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    574 	    PCI_CAP_VPD, &vpdc, NULL)) {
    575 		/*
    576 		 * PCI VPD capability found, let TWSI reload EEPROM.
    577 		 * This will set Ethernet address of controller.
    578 		 */
    579 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    580 		    TWSI_CTRL_SW_LD_START);
    581 		for (i = 100; i > 0; i++) {
    582 			DELAY(1000);
    583 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    584 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    585 				break;
    586 		}
    587 		if (i == 0)
    588 			printf("%s: reloading EEPROM timeout!\n",
    589 			    device_xname(sc->sc_dev));
    590 	} else {
    591 		if (agedebug)
    592 			printf("%s: PCI VPD capability not found!\n",
    593 			    device_xname(sc->sc_dev));
    594 	}
    595 
    596 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    597 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    598 
    599 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    600 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    601 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    602 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    603 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    604 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    605 }
    606 
    607 static void
    608 age_phy_reset(struct age_softc *sc)
    609 {
    610 	uint16_t reg, pn;
    611 	int i, linkup;
    612 
    613 	/* Reset PHY. */
    614 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    615 	DELAY(2000);
    616 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    617 	DELAY(2000);
    618 
    619 #define ATPHY_DBG_ADDR		0x1D
    620 #define ATPHY_DBG_DATA		0x1E
    621 #define ATPHY_CDTC		0x16
    622 #define PHY_CDTC_ENB		0x0001
    623 #define PHY_CDTC_POFF		8
    624 #define ATPHY_CDTS		0x1C
    625 #define PHY_CDTS_STAT_OK	0x0000
    626 #define PHY_CDTS_STAT_SHORT	0x0100
    627 #define PHY_CDTS_STAT_OPEN	0x0200
    628 #define PHY_CDTS_STAT_INVAL	0x0300
    629 #define PHY_CDTS_STAT_MASK	0x0300
    630 
    631 	/* Check power saving mode. Magic from Linux. */
    632 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    633 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    634 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    635 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    636 		for (i = 200; i > 0; i--) {
    637 			DELAY(1000);
    638 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    639 			    ATPHY_CDTC);
    640 			if ((reg & PHY_CDTC_ENB) == 0)
    641 				break;
    642 		}
    643 		DELAY(1000);
    644 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    645 		    ATPHY_CDTS);
    646 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    647 			linkup++;
    648 			break;
    649 		}
    650 	}
    651 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    652 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    653 	if (linkup == 0) {
    654 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    655 		    ATPHY_DBG_ADDR, 0);
    656 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    657 		    ATPHY_DBG_DATA, 0x124E);
    658 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    659 		    ATPHY_DBG_ADDR, 1);
    660 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    661 		    ATPHY_DBG_DATA);
    662 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    663 		    ATPHY_DBG_DATA, reg | 0x03);
    664 		/* XXX */
    665 		DELAY(1500 * 1000);
    666 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    667 		    ATPHY_DBG_ADDR, 0);
    668 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    669 		    ATPHY_DBG_DATA, 0x024E);
    670 	}
    671 
    672 #undef ATPHY_DBG_ADDR
    673 #undef ATPHY_DBG_DATA
    674 #undef ATPHY_CDTC
    675 #undef PHY_CDTC_ENB
    676 #undef PHY_CDTC_POFF
    677 #undef ATPHY_CDTS
    678 #undef PHY_CDTS_STAT_OK
    679 #undef PHY_CDTS_STAT_SHORT
    680 #undef PHY_CDTS_STAT_OPEN
    681 #undef PHY_CDTS_STAT_INVAL
    682 #undef PHY_CDTS_STAT_MASK
    683 }
    684 
    685 static int
    686 age_dma_alloc(struct age_softc *sc)
    687 {
    688 	struct age_txdesc *txd;
    689 	struct age_rxdesc *rxd;
    690 	int nsegs, error, i;
    691 
    692 	/*
    693 	 * Create DMA stuffs for TX ring
    694 	 */
    695 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    696 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    697 	if (error) {
    698 		sc->age_cdata.age_tx_ring_map = NULL;
    699 		return ENOBUFS;
    700 	}
    701 
    702 	/* Allocate DMA'able memory for TX ring */
    703 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    704 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    705 	    &nsegs, BUS_DMA_WAITOK);
    706 	if (error) {
    707 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    708 		    "error = %i\n", device_xname(sc->sc_dev), error);
    709 		return error;
    710 	}
    711 
    712 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    713 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    714 	    BUS_DMA_NOWAIT);
    715 	if (error)
    716 		return ENOBUFS;
    717 
    718 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    719 
    720 	/*  Load the DMA map for Tx ring. */
    721 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    722 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    723 	if (error) {
    724 		printf("%s: could not load DMA'able memory for Tx ring, "
    725 		    "error = %i\n", device_xname(sc->sc_dev), error);
    726 		bus_dmamem_free(sc->sc_dmat,
    727 		    &sc->age_rdata.age_tx_ring_seg, 1);
    728 		return error;
    729 	}
    730 
    731 	sc->age_rdata.age_tx_ring_paddr =
    732 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    733 
    734 	/*
    735 	 * Create DMA stuffs for RX ring
    736 	 */
    737 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    738 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    739 	if (error) {
    740 		sc->age_cdata.age_rx_ring_map = NULL;
    741 		return ENOBUFS;
    742 	}
    743 
    744 	/* Allocate DMA'able memory for RX ring */
    745 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    746 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    747 	    &nsegs, BUS_DMA_WAITOK);
    748 	if (error) {
    749 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    750 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    751 		return error;
    752 	}
    753 
    754 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    755 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    756 	    BUS_DMA_NOWAIT);
    757 	if (error)
    758 		return ENOBUFS;
    759 
    760 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    761 
    762 	/* Load the DMA map for Rx ring. */
    763 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    764 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    765 	if (error) {
    766 		printf("%s: could not load DMA'able memory for Rx ring, "
    767 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    768 		bus_dmamem_free(sc->sc_dmat,
    769 		    &sc->age_rdata.age_rx_ring_seg, 1);
    770 		return error;
    771 	}
    772 
    773 	sc->age_rdata.age_rx_ring_paddr =
    774 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    775 
    776 	/*
    777 	 * Create DMA stuffs for RX return ring
    778 	 */
    779 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    780 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    781 	if (error) {
    782 		sc->age_cdata.age_rr_ring_map = NULL;
    783 		return ENOBUFS;
    784 	}
    785 
    786 	/* Allocate DMA'able memory for RX return ring */
    787 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    788 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    789 	    &nsegs, BUS_DMA_WAITOK);
    790 	if (error) {
    791 		printf("%s: could not allocate DMA'able memory for Rx "
    792 		    "return ring, error = %i.\n",
    793 		    device_xname(sc->sc_dev), error);
    794 		return error;
    795 	}
    796 
    797 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    798 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    799 	    BUS_DMA_NOWAIT);
    800 	if (error)
    801 		return ENOBUFS;
    802 
    803 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    804 
    805 	/*  Load the DMA map for Rx return ring. */
    806 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    807 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    808 	if (error) {
    809 		printf("%s: could not load DMA'able memory for Rx return ring, "
    810 		    "error = %i\n", device_xname(sc->sc_dev), error);
    811 		bus_dmamem_free(sc->sc_dmat,
    812 		    &sc->age_rdata.age_rr_ring_seg, 1);
    813 		return error;
    814 	}
    815 
    816 	sc->age_rdata.age_rr_ring_paddr =
    817 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    818 
    819 	/*
    820 	 * Create DMA stuffs for CMB block
    821 	 */
    822 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    823 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    824 	    &sc->age_cdata.age_cmb_block_map);
    825 	if (error) {
    826 		sc->age_cdata.age_cmb_block_map = NULL;
    827 		return ENOBUFS;
    828 	}
    829 
    830 	/* Allocate DMA'able memory for CMB block */
    831 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    832 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    833 	    &nsegs, BUS_DMA_WAITOK);
    834 	if (error) {
    835 		printf("%s: could not allocate DMA'able memory for "
    836 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    837 		return error;
    838 	}
    839 
    840 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    841 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    842 	    BUS_DMA_NOWAIT);
    843 	if (error)
    844 		return ENOBUFS;
    845 
    846 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    847 
    848 	/*  Load the DMA map for CMB block. */
    849 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    850 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    851 	    BUS_DMA_WAITOK);
    852 	if (error) {
    853 		printf("%s: could not load DMA'able memory for CMB block, "
    854 		    "error = %i\n", device_xname(sc->sc_dev), error);
    855 		bus_dmamem_free(sc->sc_dmat,
    856 		    &sc->age_rdata.age_cmb_block_seg, 1);
    857 		return error;
    858 	}
    859 
    860 	sc->age_rdata.age_cmb_block_paddr =
    861 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    862 
    863 	/*
    864 	 * Create DMA stuffs for SMB block
    865 	 */
    866 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    867 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    868 	    &sc->age_cdata.age_smb_block_map);
    869 	if (error) {
    870 		sc->age_cdata.age_smb_block_map = NULL;
    871 		return ENOBUFS;
    872 	}
    873 
    874 	/* Allocate DMA'able memory for SMB block */
    875 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    876 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    877 	    &nsegs, BUS_DMA_WAITOK);
    878 	if (error) {
    879 		printf("%s: could not allocate DMA'able memory for "
    880 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    881 		return error;
    882 	}
    883 
    884 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    885 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    886 	    BUS_DMA_NOWAIT);
    887 	if (error)
    888 		return ENOBUFS;
    889 
    890 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    891 
    892 	/*  Load the DMA map for SMB block */
    893 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    894 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    895 	    BUS_DMA_WAITOK);
    896 	if (error) {
    897 		printf("%s: could not load DMA'able memory for SMB block, "
    898 		    "error = %i\n", device_xname(sc->sc_dev), error);
    899 		bus_dmamem_free(sc->sc_dmat,
    900 		    &sc->age_rdata.age_smb_block_seg, 1);
    901 		return error;
    902 	}
    903 
    904 	sc->age_rdata.age_smb_block_paddr =
    905 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    906 
    907 	/* Create DMA maps for Tx buffers. */
    908 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    909 		txd = &sc->age_cdata.age_txdesc[i];
    910 		txd->tx_m = NULL;
    911 		txd->tx_dmamap = NULL;
    912 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    913 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    914 		    &txd->tx_dmamap);
    915 		if (error) {
    916 			txd->tx_dmamap = NULL;
    917 			printf("%s: could not create Tx dmamap, error = %i.\n",
    918 			    device_xname(sc->sc_dev), error);
    919 			return error;
    920 		}
    921 	}
    922 
    923 	/* Create DMA maps for Rx buffers. */
    924 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    925 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    926 	if (error) {
    927 		sc->age_cdata.age_rx_sparemap = NULL;
    928 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    929 		    device_xname(sc->sc_dev), error);
    930 		return error;
    931 	}
    932 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    933 		rxd = &sc->age_cdata.age_rxdesc[i];
    934 		rxd->rx_m = NULL;
    935 		rxd->rx_dmamap = NULL;
    936 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    937 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    938 		if (error) {
    939 			rxd->rx_dmamap = NULL;
    940 			printf("%s: could not create Rx dmamap, error = %i.\n",
    941 			    device_xname(sc->sc_dev), error);
    942 			return error;
    943 		}
    944 	}
    945 
    946 	return 0;
    947 }
    948 
    949 static void
    950 age_dma_free(struct age_softc *sc)
    951 {
    952 	struct age_txdesc *txd;
    953 	struct age_rxdesc *rxd;
    954 	int i;
    955 
    956 	/* Tx buffers */
    957 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    958 		txd = &sc->age_cdata.age_txdesc[i];
    959 		if (txd->tx_dmamap != NULL) {
    960 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    961 			txd->tx_dmamap = NULL;
    962 		}
    963 	}
    964 	/* Rx buffers */
    965 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    966 		rxd = &sc->age_cdata.age_rxdesc[i];
    967 		if (rxd->rx_dmamap != NULL) {
    968 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    969 			rxd->rx_dmamap = NULL;
    970 		}
    971 	}
    972 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    973 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    974 		sc->age_cdata.age_rx_sparemap = NULL;
    975 	}
    976 
    977 	/* Tx ring. */
    978 	if (sc->age_cdata.age_tx_ring_map != NULL)
    979 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    980 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    981 	    sc->age_rdata.age_tx_ring != NULL)
    982 		bus_dmamem_free(sc->sc_dmat,
    983 		    &sc->age_rdata.age_tx_ring_seg, 1);
    984 	sc->age_rdata.age_tx_ring = NULL;
    985 	sc->age_cdata.age_tx_ring_map = NULL;
    986 
    987 	/* Rx ring. */
    988 	if (sc->age_cdata.age_rx_ring_map != NULL)
    989 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    990 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    991 	    sc->age_rdata.age_rx_ring != NULL)
    992 		bus_dmamem_free(sc->sc_dmat,
    993 		    &sc->age_rdata.age_rx_ring_seg, 1);
    994 	sc->age_rdata.age_rx_ring = NULL;
    995 	sc->age_cdata.age_rx_ring_map = NULL;
    996 
    997 	/* Rx return ring. */
    998 	if (sc->age_cdata.age_rr_ring_map != NULL)
    999 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1000 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1001 	    sc->age_rdata.age_rr_ring != NULL)
   1002 		bus_dmamem_free(sc->sc_dmat,
   1003 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1004 	sc->age_rdata.age_rr_ring = NULL;
   1005 	sc->age_cdata.age_rr_ring_map = NULL;
   1006 
   1007 	/* CMB block */
   1008 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1009 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1010 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1011 	    sc->age_rdata.age_cmb_block != NULL)
   1012 		bus_dmamem_free(sc->sc_dmat,
   1013 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1014 	sc->age_rdata.age_cmb_block = NULL;
   1015 	sc->age_cdata.age_cmb_block_map = NULL;
   1016 
   1017 	/* SMB block */
   1018 	if (sc->age_cdata.age_smb_block_map != NULL)
   1019 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1020 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1021 	    sc->age_rdata.age_smb_block != NULL)
   1022 		bus_dmamem_free(sc->sc_dmat,
   1023 		    &sc->age_rdata.age_smb_block_seg, 1);
   1024 	sc->age_rdata.age_smb_block = NULL;
   1025 	sc->age_cdata.age_smb_block_map = NULL;
   1026 }
   1027 
   1028 static void
   1029 age_start(struct ifnet *ifp)
   1030 {
   1031         struct age_softc *sc = ifp->if_softc;
   1032         struct mbuf *m_head;
   1033 	int enq;
   1034 
   1035 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1036 		return;
   1037 
   1038 	enq = 0;
   1039 	for (;;) {
   1040 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1041 		if (m_head == NULL)
   1042 			break;
   1043 
   1044 		/*
   1045 		 * Pack the data into the transmit ring. If we
   1046 		 * don't have room, set the OACTIVE flag and wait
   1047 		 * for the NIC to drain the ring.
   1048 		 */
   1049 		if (age_encap(sc, &m_head)) {
   1050 			if (m_head == NULL)
   1051 				break;
   1052 			IF_PREPEND(&ifp->if_snd, m_head);
   1053 			ifp->if_flags |= IFF_OACTIVE;
   1054 			break;
   1055 		}
   1056 		enq = 1;
   1057 
   1058 		/*
   1059 		 * If there's a BPF listener, bounce a copy of this frame
   1060 		 * to him.
   1061 		 */
   1062 		bpf_mtap(ifp, m_head);
   1063 	}
   1064 
   1065 	if (enq) {
   1066 		/* Update mbox. */
   1067 		AGE_COMMIT_MBOX(sc);
   1068 		/* Set a timeout in case the chip goes out to lunch. */
   1069 		ifp->if_timer = AGE_TX_TIMEOUT;
   1070 	}
   1071 }
   1072 
   1073 static void
   1074 age_watchdog(struct ifnet *ifp)
   1075 {
   1076 	struct age_softc *sc = ifp->if_softc;
   1077 
   1078 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1079 		printf("%s: watchdog timeout (missed link)\n",
   1080 		    device_xname(sc->sc_dev));
   1081 		ifp->if_oerrors++;
   1082 		age_init(ifp);
   1083 		return;
   1084 	}
   1085 
   1086 	if (sc->age_cdata.age_tx_cnt == 0) {
   1087 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1088 		    "-- recovering\n", device_xname(sc->sc_dev));
   1089 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1090 			age_start(ifp);
   1091 		return;
   1092 	}
   1093 
   1094 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1095 	ifp->if_oerrors++;
   1096 	age_init(ifp);
   1097 
   1098 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1099 		age_start(ifp);
   1100 }
   1101 
   1102 static int
   1103 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1104 {
   1105 	struct age_softc *sc = ifp->if_softc;
   1106 	int s, error;
   1107 
   1108 	s = splnet();
   1109 
   1110 	error = ether_ioctl(ifp, cmd, data);
   1111 	if (error == ENETRESET) {
   1112 		if (ifp->if_flags & IFF_RUNNING)
   1113 			age_rxfilter(sc);
   1114 		error = 0;
   1115 	}
   1116 
   1117 	splx(s);
   1118 	return error;
   1119 }
   1120 
   1121 static void
   1122 age_mac_config(struct age_softc *sc)
   1123 {
   1124 	struct mii_data *mii;
   1125 	uint32_t reg;
   1126 
   1127 	mii = &sc->sc_miibus;
   1128 
   1129 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1130 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1131 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1132 	reg &= ~MAC_CFG_SPEED_MASK;
   1133 
   1134 	/* Reprogram MAC with resolved speed/duplex. */
   1135 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1136 	case IFM_10_T:
   1137 	case IFM_100_TX:
   1138 		reg |= MAC_CFG_SPEED_10_100;
   1139 		break;
   1140 	case IFM_1000_T:
   1141 		reg |= MAC_CFG_SPEED_1000;
   1142 		break;
   1143 	}
   1144 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1145 		reg |= MAC_CFG_FULL_DUPLEX;
   1146 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1147 			reg |= MAC_CFG_TX_FC;
   1148 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1149 			reg |= MAC_CFG_RX_FC;
   1150 	}
   1151 
   1152 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1153 }
   1154 
   1155 static bool
   1156 age_resume(device_t dv, const pmf_qual_t *qual)
   1157 {
   1158 	struct age_softc *sc = device_private(dv);
   1159 	uint16_t cmd;
   1160 
   1161 	/*
   1162 	 * Clear INTx emulation disable for hardware that
   1163 	 * is set in resume event. From Linux.
   1164 	 */
   1165 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1166 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1167 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1168 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1169 		    PCI_COMMAND_STATUS_REG, cmd);
   1170 	}
   1171 
   1172 	return true;
   1173 }
   1174 
   1175 static int
   1176 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1177 {
   1178 	struct age_txdesc *txd, *txd_last;
   1179 	struct tx_desc *desc;
   1180 	struct mbuf *m;
   1181 	bus_dmamap_t map;
   1182 	uint32_t cflags, poff, vtag;
   1183 	int error, i, nsegs, prod;
   1184 #if NVLAN > 0
   1185 	struct m_tag *mtag;
   1186 #endif
   1187 
   1188 	m = *m_head;
   1189 	cflags = vtag = 0;
   1190 	poff = 0;
   1191 
   1192 	prod = sc->age_cdata.age_tx_prod;
   1193 	txd = &sc->age_cdata.age_txdesc[prod];
   1194 	txd_last = txd;
   1195 	map = txd->tx_dmamap;
   1196 
   1197 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1198 
   1199 	if (error == EFBIG) {
   1200 		error = 0;
   1201 
   1202 		*m_head = m_pullup(*m_head, MHLEN);
   1203 		if (*m_head == NULL) {
   1204 			printf("%s: can't defrag TX mbuf\n",
   1205 			    device_xname(sc->sc_dev));
   1206 			return ENOBUFS;
   1207 		}
   1208 
   1209 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1210 		  	    BUS_DMA_NOWAIT);
   1211 
   1212 		if (error != 0) {
   1213 			printf("%s: could not load defragged TX mbuf\n",
   1214 			    device_xname(sc->sc_dev));
   1215 			m_freem(*m_head);
   1216 			*m_head = NULL;
   1217 			return error;
   1218 		}
   1219 	} else if (error) {
   1220 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1221 		return error;
   1222 	}
   1223 
   1224 	nsegs = map->dm_nsegs;
   1225 
   1226 	if (nsegs == 0) {
   1227 		m_freem(*m_head);
   1228 		*m_head = NULL;
   1229 		return EIO;
   1230 	}
   1231 
   1232 	/* Check descriptor overrun. */
   1233 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1234 		bus_dmamap_unload(sc->sc_dmat, map);
   1235 		return ENOBUFS;
   1236 	}
   1237 
   1238 	m = *m_head;
   1239 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1240 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1241 		cflags |= AGE_TD_CSUM;
   1242 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1243 			cflags |= AGE_TD_TCPCSUM;
   1244 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1245 			cflags |= AGE_TD_UDPCSUM;
   1246 		/* Set checksum start offset. */
   1247 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1248 	}
   1249 
   1250 #if NVLAN > 0
   1251 	/* Configure VLAN hardware tag insertion. */
   1252 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1253 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1254 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1255 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1256 	}
   1257 #endif
   1258 
   1259 	desc = NULL;
   1260 	for (i = 0; i < nsegs; i++) {
   1261 		desc = &sc->age_rdata.age_tx_ring[prod];
   1262 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1263 		desc->len =
   1264 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1265 		desc->flags = htole32(cflags);
   1266 		sc->age_cdata.age_tx_cnt++;
   1267 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1268 	}
   1269 
   1270 	/* Update producer index. */
   1271 	sc->age_cdata.age_tx_prod = prod;
   1272 
   1273 	/* Set EOP on the last descriptor. */
   1274 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1275 	desc = &sc->age_rdata.age_tx_ring[prod];
   1276 	desc->flags |= htole32(AGE_TD_EOP);
   1277 
   1278 	/* Swap dmamap of the first and the last. */
   1279 	txd = &sc->age_cdata.age_txdesc[prod];
   1280 	map = txd_last->tx_dmamap;
   1281 	txd_last->tx_dmamap = txd->tx_dmamap;
   1282 	txd->tx_dmamap = map;
   1283 	txd->tx_m = m;
   1284 
   1285 	/* Sync descriptors. */
   1286 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1287 	    BUS_DMASYNC_PREWRITE);
   1288 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1289 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1290 
   1291 	return 0;
   1292 }
   1293 
   1294 static void
   1295 age_txintr(struct age_softc *sc, int tpd_cons)
   1296 {
   1297 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1298 	struct age_txdesc *txd;
   1299 	int cons, prog;
   1300 
   1301 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1302 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1303 
   1304 	/*
   1305 	 * Go through our Tx list and free mbufs for those
   1306 	 * frames which have been transmitted.
   1307 	 */
   1308 	cons = sc->age_cdata.age_tx_cons;
   1309 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1310 		if (sc->age_cdata.age_tx_cnt <= 0)
   1311 			break;
   1312 		prog++;
   1313 		ifp->if_flags &= ~IFF_OACTIVE;
   1314 		sc->age_cdata.age_tx_cnt--;
   1315 		txd = &sc->age_cdata.age_txdesc[cons];
   1316 		/*
   1317 		 * Clear Tx descriptors, it's not required but would
   1318 		 * help debugging in case of Tx issues.
   1319 		 */
   1320 		txd->tx_desc->addr = 0;
   1321 		txd->tx_desc->len = 0;
   1322 		txd->tx_desc->flags = 0;
   1323 
   1324 		if (txd->tx_m == NULL)
   1325 			continue;
   1326 		/* Reclaim transmitted mbufs. */
   1327 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1328 		m_freem(txd->tx_m);
   1329 		txd->tx_m = NULL;
   1330 	}
   1331 
   1332 	if (prog > 0) {
   1333 		sc->age_cdata.age_tx_cons = cons;
   1334 
   1335 		/*
   1336 		 * Unarm watchdog timer only when there are no pending
   1337 		 * Tx descriptors in queue.
   1338 		 */
   1339 		if (sc->age_cdata.age_tx_cnt == 0)
   1340 			ifp->if_timer = 0;
   1341 
   1342 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1343 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1344 		    BUS_DMASYNC_PREWRITE);
   1345 	}
   1346 }
   1347 
   1348 /* Receive a frame. */
   1349 static void
   1350 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1351 {
   1352 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1353 	struct age_rxdesc *rxd;
   1354 	struct rx_desc *desc;
   1355 	struct mbuf *mp, *m;
   1356 	uint32_t status, index;
   1357 	int count, nsegs, pktlen;
   1358 	int rx_cons;
   1359 
   1360 	status = le32toh(rxrd->flags);
   1361 	index = le32toh(rxrd->index);
   1362 	rx_cons = AGE_RX_CONS(index);
   1363 	nsegs = AGE_RX_NSEGS(index);
   1364 
   1365 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1366 	if ((status & AGE_RRD_ERROR) != 0 &&
   1367 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1368 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1369 		/*
   1370 		 * We want to pass the following frames to upper
   1371 		 * layer regardless of error status of Rx return
   1372 		 * ring.
   1373 		 *
   1374 		 *  o IP/TCP/UDP checksum is bad.
   1375 		 *  o frame length and protocol specific length
   1376 		 *     does not match.
   1377 		 */
   1378 		sc->age_cdata.age_rx_cons += nsegs;
   1379 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1380 		return;
   1381 	}
   1382 
   1383 	pktlen = 0;
   1384 	for (count = 0; count < nsegs; count++,
   1385 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1386 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1387 		mp = rxd->rx_m;
   1388 		desc = rxd->rx_desc;
   1389 		/* Add a new receive buffer to the ring. */
   1390 		if (age_newbuf(sc, rxd, 0) != 0) {
   1391 			ifp->if_iqdrops++;
   1392 			/* Reuse Rx buffers. */
   1393 			if (sc->age_cdata.age_rxhead != NULL) {
   1394 				m_freem(sc->age_cdata.age_rxhead);
   1395 				AGE_RXCHAIN_RESET(sc);
   1396 			}
   1397 			break;
   1398 		}
   1399 
   1400 		/* The length of the first mbuf is computed last. */
   1401 		if (count != 0) {
   1402 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1403 			pktlen += mp->m_len;
   1404 		}
   1405 
   1406 		/* Chain received mbufs. */
   1407 		if (sc->age_cdata.age_rxhead == NULL) {
   1408 			sc->age_cdata.age_rxhead = mp;
   1409 			sc->age_cdata.age_rxtail = mp;
   1410 		} else {
   1411 			mp->m_flags &= ~M_PKTHDR;
   1412 			sc->age_cdata.age_rxprev_tail =
   1413 			    sc->age_cdata.age_rxtail;
   1414 			sc->age_cdata.age_rxtail->m_next = mp;
   1415 			sc->age_cdata.age_rxtail = mp;
   1416 		}
   1417 
   1418 		if (count == nsegs - 1) {
   1419 			/*
   1420 			 * It seems that L1 controller has no way
   1421 			 * to tell hardware to strip CRC bytes.
   1422 			 */
   1423 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1424 			if (nsegs > 1) {
   1425 				/* Remove the CRC bytes in chained mbufs. */
   1426 				pktlen -= ETHER_CRC_LEN;
   1427 				if (mp->m_len <= ETHER_CRC_LEN) {
   1428 					sc->age_cdata.age_rxtail =
   1429 					    sc->age_cdata.age_rxprev_tail;
   1430 					sc->age_cdata.age_rxtail->m_len -=
   1431 					    (ETHER_CRC_LEN - mp->m_len);
   1432 					sc->age_cdata.age_rxtail->m_next = NULL;
   1433 					m_freem(mp);
   1434 				} else {
   1435 					mp->m_len -= ETHER_CRC_LEN;
   1436 				}
   1437 			}
   1438 
   1439 			m = sc->age_cdata.age_rxhead;
   1440 			m->m_flags |= M_PKTHDR;
   1441 			m->m_pkthdr.rcvif = ifp;
   1442 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1443 			/* Set the first mbuf length. */
   1444 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1445 
   1446 			/*
   1447 			 * Set checksum information.
   1448 			 * It seems that L1 controller can compute partial
   1449 			 * checksum. The partial checksum value can be used
   1450 			 * to accelerate checksum computation for fragmented
   1451 			 * TCP/UDP packets. Upper network stack already
   1452 			 * takes advantage of the partial checksum value in
   1453 			 * IP reassembly stage. But I'm not sure the
   1454 			 * correctness of the partial hardware checksum
   1455 			 * assistance due to lack of data sheet. If it is
   1456 			 * proven to work on L1 I'll enable it.
   1457 			 */
   1458 			if (status & AGE_RRD_IPV4) {
   1459 				if (status & AGE_RRD_IPCSUM_NOK)
   1460 					m->m_pkthdr.csum_flags |=
   1461 					    M_CSUM_IPv4_BAD;
   1462 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1463 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1464 					m->m_pkthdr.csum_flags |=
   1465 					    M_CSUM_TCP_UDP_BAD;
   1466 				}
   1467 				/*
   1468 				 * Don't mark bad checksum for TCP/UDP frames
   1469 				 * as fragmented frames may always have set
   1470 				 * bad checksummed bit of descriptor status.
   1471 				 */
   1472 			}
   1473 #if NVLAN > 0
   1474 			/* Check for VLAN tagged frames. */
   1475 			if (status & AGE_RRD_VLAN) {
   1476 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1477 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1478 					continue);
   1479 			}
   1480 #endif
   1481 
   1482 			bpf_mtap(ifp, m);
   1483 			/* Pass it on. */
   1484 			ether_input(ifp, m);
   1485 
   1486 			/* Reset mbuf chains. */
   1487 			AGE_RXCHAIN_RESET(sc);
   1488 		}
   1489 	}
   1490 
   1491 	if (count != nsegs) {
   1492 		sc->age_cdata.age_rx_cons += nsegs;
   1493 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1494 	} else
   1495 		sc->age_cdata.age_rx_cons = rx_cons;
   1496 }
   1497 
   1498 static void
   1499 age_rxintr(struct age_softc *sc, int rr_prod)
   1500 {
   1501 	struct rx_rdesc *rxrd;
   1502 	int rr_cons, nsegs, pktlen, prog;
   1503 
   1504 	rr_cons = sc->age_cdata.age_rr_cons;
   1505 	if (rr_cons == rr_prod)
   1506 		return;
   1507 
   1508 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1509 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1510 	    BUS_DMASYNC_POSTREAD);
   1511 
   1512 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1513 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1514 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1515 		if (nsegs == 0)
   1516 			break;
   1517 		/*
   1518 		 * Check number of segments against received bytes
   1519 		 * Non-matching value would indicate that hardware
   1520 		 * is still trying to update Rx return descriptors.
   1521 		 * I'm not sure whether this check is really needed.
   1522 		 */
   1523 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1524 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1525 		    (MCLBYTES - ETHER_ALIGN)))
   1526 			break;
   1527 
   1528 		/* Received a frame. */
   1529 		age_rxeof(sc, rxrd);
   1530 
   1531 		/* Clear return ring. */
   1532 		rxrd->index = 0;
   1533 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1534 	}
   1535 
   1536 	if (prog > 0) {
   1537 		/* Update the consumer index. */
   1538 		sc->age_cdata.age_rr_cons = rr_cons;
   1539 
   1540 		/* Sync descriptors. */
   1541 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1542 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1543 		    BUS_DMASYNC_PREWRITE);
   1544 
   1545 		/* Notify hardware availability of new Rx buffers. */
   1546 		AGE_COMMIT_MBOX(sc);
   1547 	}
   1548 }
   1549 
   1550 static void
   1551 age_tick(void *xsc)
   1552 {
   1553 	struct age_softc *sc = xsc;
   1554 	struct mii_data *mii = &sc->sc_miibus;
   1555 	int s;
   1556 
   1557 	s = splnet();
   1558 	mii_tick(mii);
   1559 	splx(s);
   1560 
   1561 	callout_schedule(&sc->sc_tick_ch, hz);
   1562 }
   1563 
   1564 static void
   1565 age_reset(struct age_softc *sc)
   1566 {
   1567 	uint32_t reg;
   1568 	int i;
   1569 
   1570 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1571 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1572 	DELAY(1000);
   1573 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1574 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1575 			break;
   1576 		DELAY(10);
   1577 	}
   1578 
   1579 	if (i == 0)
   1580 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1581 		    reg);
   1582 
   1583 	/* Initialize PCIe module. From Linux. */
   1584 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1585 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1586 }
   1587 
   1588 static int
   1589 age_init(struct ifnet *ifp)
   1590 {
   1591 	struct age_softc *sc = ifp->if_softc;
   1592 	struct mii_data *mii;
   1593 	uint8_t eaddr[ETHER_ADDR_LEN];
   1594 	bus_addr_t paddr;
   1595 	uint32_t reg, fsize;
   1596 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1597 	int error;
   1598 
   1599 	/*
   1600 	 * Cancel any pending I/O.
   1601 	 */
   1602 	age_stop(ifp, 0);
   1603 
   1604 	/*
   1605 	 * Reset the chip to a known state.
   1606 	 */
   1607 	age_reset(sc);
   1608 
   1609 	/* Initialize descriptors. */
   1610 	error = age_init_rx_ring(sc);
   1611         if (error != 0) {
   1612 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1613 		age_stop(ifp, 0);
   1614 		return error;
   1615         }
   1616 	age_init_rr_ring(sc);
   1617 	age_init_tx_ring(sc);
   1618 	age_init_cmb_block(sc);
   1619 	age_init_smb_block(sc);
   1620 
   1621 	/* Reprogram the station address. */
   1622 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1623 	CSR_WRITE_4(sc, AGE_PAR0,
   1624 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1625 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1626 
   1627 	/* Set descriptor base addresses. */
   1628 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1629 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1630 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1631 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1632 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1633 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1634 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1635 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1636 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1637 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1638 	paddr = sc->age_rdata.age_smb_block_paddr;
   1639 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1640 
   1641 	/* Set Rx/Rx return descriptor counter. */
   1642 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1643 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1644 	    DESC_RRD_CNT_MASK) |
   1645 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1646 
   1647 	/* Set Tx descriptor counter. */
   1648 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1649 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1650 
   1651 	/* Tell hardware that we're ready to load descriptors. */
   1652 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1653 
   1654         /*
   1655 	 * Initialize mailbox register.
   1656 	 * Updated producer/consumer index information is exchanged
   1657 	 * through this mailbox register. However Tx producer and
   1658 	 * Rx return consumer/Rx producer are all shared such that
   1659 	 * it's hard to separate code path between Tx and Rx without
   1660 	 * locking. If L1 hardware have a separate mail box register
   1661 	 * for Tx and Rx consumer/producer management we could have
   1662 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1663 	 * been run without any locking.
   1664 	*/
   1665 	AGE_COMMIT_MBOX(sc);
   1666 
   1667 	/* Configure IPG/IFG parameters. */
   1668 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1669 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1670 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1671 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1672 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1673 
   1674 	/* Set parameters for half-duplex media. */
   1675 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1676 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1677 	    HDPX_CFG_LCOL_MASK) |
   1678 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1679 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1680 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1681 	    HDPX_CFG_ABEBT_MASK) |
   1682 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1683 	     HDPX_CFG_JAMIPG_MASK));
   1684 
   1685 	/* Configure interrupt moderation timer. */
   1686 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1687 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1688 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1689 	reg &= ~MASTER_MTIMER_ENB;
   1690 	if (AGE_USECS(sc->age_int_mod) == 0)
   1691 		reg &= ~MASTER_ITIMER_ENB;
   1692 	else
   1693 		reg |= MASTER_ITIMER_ENB;
   1694 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1695 	if (agedebug)
   1696 		printf("%s: interrupt moderation is %d us.\n",
   1697 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1698 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1699 
   1700 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1701 	if (ifp->if_mtu < ETHERMTU)
   1702 		sc->age_max_frame_size = ETHERMTU;
   1703 	else
   1704 		sc->age_max_frame_size = ifp->if_mtu;
   1705 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1706 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1707 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1708 
   1709 	/* Configure jumbo frame. */
   1710 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1711 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1712 	    (((fsize / sizeof(uint64_t)) <<
   1713 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1714 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1715 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1716 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1717 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1718 
   1719 	/* Configure flow-control parameters. From Linux. */
   1720 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1721 		/*
   1722 		 * Magic workaround for old-L1.
   1723 		 * Don't know which hw revision requires this magic.
   1724 		 */
   1725 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1726 		/*
   1727 		 * Another magic workaround for flow-control mode
   1728 		 * change. From Linux.
   1729 		 */
   1730 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1731 	}
   1732 	/*
   1733 	 * TODO
   1734 	 *  Should understand pause parameter relationships between FIFO
   1735 	 *  size and number of Rx descriptors and Rx return descriptors.
   1736 	 *
   1737 	 *  Magic parameters came from Linux.
   1738 	 */
   1739 	switch (sc->age_chip_rev) {
   1740 	case 0x8001:
   1741 	case 0x9001:
   1742 	case 0x9002:
   1743 	case 0x9003:
   1744 		rxf_hi = AGE_RX_RING_CNT / 16;
   1745 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1746 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1747 		rrd_lo = AGE_RR_RING_CNT / 16;
   1748 		break;
   1749 	default:
   1750 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1751 		rxf_lo = reg / 16;
   1752 		if (rxf_lo < 192)
   1753 			rxf_lo = 192;
   1754 		rxf_hi = (reg * 7) / 8;
   1755 		if (rxf_hi < rxf_lo)
   1756 			rxf_hi = rxf_lo + 16;
   1757 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1758 		rrd_lo = reg / 8;
   1759 		rrd_hi = (reg * 7) / 8;
   1760 		if (rrd_lo < 2)
   1761 			rrd_lo = 2;
   1762 		if (rrd_hi < rrd_lo)
   1763 			rrd_hi = rrd_lo + 3;
   1764 		break;
   1765 	}
   1766 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1767 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1768 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1769 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1770 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1771 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1772 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1773 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1774 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1775 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1776 
   1777 	/* Configure RxQ. */
   1778 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1779 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1780 	    RXQ_CFG_RD_BURST_MASK) |
   1781 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1782 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1783 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1784 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1785 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1786 
   1787 	/* Configure TxQ. */
   1788 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1789 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1790 	    TXQ_CFG_TPD_BURST_MASK) |
   1791 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1792 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1793 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1794 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1795 	    TXQ_CFG_ENB);
   1796 
   1797 	/* Configure DMA parameters. */
   1798 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1799 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1800 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1801 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1802 
   1803 	/* Configure CMB DMA write threshold. */
   1804 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1805 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1806 	    CMB_WR_THRESH_RRD_MASK) |
   1807 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1808 	    CMB_WR_THRESH_TPD_MASK));
   1809 
   1810 	/* Set CMB/SMB timer and enable them. */
   1811 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1812 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1813 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1814 
   1815 	/* Request SMB updates for every seconds. */
   1816 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1817 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1818 
   1819 	/*
   1820 	 * Disable all WOL bits as WOL can interfere normal Rx
   1821 	 * operation.
   1822 	 */
   1823 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1824 
   1825         /*
   1826 	 * Configure Tx/Rx MACs.
   1827 	 *  - Auto-padding for short frames.
   1828 	 *  - Enable CRC generation.
   1829 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1830 	 *  of MAC is followed after link establishment.
   1831 	 */
   1832 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1833 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1834 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1835 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1836 	    MAC_CFG_PREAMBLE_MASK));
   1837 
   1838 	/* Set up the receive filter. */
   1839 	age_rxfilter(sc);
   1840 	age_rxvlan(sc);
   1841 
   1842 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1843 	reg |= MAC_CFG_RXCSUM_ENB;
   1844 
   1845 	/* Ack all pending interrupts and clear it. */
   1846 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1847 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1848 
   1849 	/* Finally enable Tx/Rx MAC. */
   1850 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1851 
   1852 	sc->age_flags &= ~AGE_FLAG_LINK;
   1853 
   1854 	/* Switch to the current media. */
   1855 	mii = &sc->sc_miibus;
   1856 	mii_mediachg(mii);
   1857 
   1858 	callout_schedule(&sc->sc_tick_ch, hz);
   1859 
   1860 	ifp->if_flags |= IFF_RUNNING;
   1861 	ifp->if_flags &= ~IFF_OACTIVE;
   1862 
   1863 	return 0;
   1864 }
   1865 
   1866 static void
   1867 age_stop(struct ifnet *ifp, int disable)
   1868 {
   1869 	struct age_softc *sc = ifp->if_softc;
   1870 	struct age_txdesc *txd;
   1871 	struct age_rxdesc *rxd;
   1872 	uint32_t reg;
   1873 	int i;
   1874 
   1875 	callout_stop(&sc->sc_tick_ch);
   1876 
   1877 	/*
   1878 	 * Mark the interface down and cancel the watchdog timer.
   1879 	 */
   1880 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1881 	ifp->if_timer = 0;
   1882 
   1883 	sc->age_flags &= ~AGE_FLAG_LINK;
   1884 
   1885 	mii_down(&sc->sc_miibus);
   1886 
   1887 	/*
   1888 	 * Disable interrupts.
   1889 	 */
   1890 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1891 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1892 
   1893 	/* Stop CMB/SMB updates. */
   1894 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1895 
   1896 	/* Stop Rx/Tx MAC. */
   1897 	age_stop_rxmac(sc);
   1898 	age_stop_txmac(sc);
   1899 
   1900 	/* Stop DMA. */
   1901 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1902 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1903 
   1904 	/* Stop TxQ/RxQ. */
   1905 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1906 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1907 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1908 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1909 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1910 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1911 			break;
   1912 		DELAY(10);
   1913 	}
   1914 	if (i == 0)
   1915 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1916 		    device_xname(sc->sc_dev), reg);
   1917 
   1918 	/* Reclaim Rx buffers that have been processed. */
   1919 	if (sc->age_cdata.age_rxhead != NULL)
   1920 		m_freem(sc->age_cdata.age_rxhead);
   1921 	AGE_RXCHAIN_RESET(sc);
   1922 
   1923 	/*
   1924 	 * Free RX and TX mbufs still in the queues.
   1925 	 */
   1926 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1927 		rxd = &sc->age_cdata.age_rxdesc[i];
   1928 		if (rxd->rx_m != NULL) {
   1929 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1930 			m_freem(rxd->rx_m);
   1931 			rxd->rx_m = NULL;
   1932 		}
   1933 	}
   1934 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1935 		txd = &sc->age_cdata.age_txdesc[i];
   1936 		if (txd->tx_m != NULL) {
   1937 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1938 			m_freem(txd->tx_m);
   1939 			txd->tx_m = NULL;
   1940 		}
   1941 	}
   1942 }
   1943 
   1944 static void
   1945 age_stats_update(struct age_softc *sc)
   1946 {
   1947 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1948 	struct age_stats *stat;
   1949 	struct smb *smb;
   1950 
   1951 	stat = &sc->age_stat;
   1952 
   1953 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1954 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1955 
   1956 	smb = sc->age_rdata.age_smb_block;
   1957 	if (smb->updated == 0)
   1958 		return;
   1959 
   1960 	/* Rx stats. */
   1961 	stat->rx_frames += smb->rx_frames;
   1962 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1963 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1964 	stat->rx_pause_frames += smb->rx_pause_frames;
   1965 	stat->rx_control_frames += smb->rx_control_frames;
   1966 	stat->rx_crcerrs += smb->rx_crcerrs;
   1967 	stat->rx_lenerrs += smb->rx_lenerrs;
   1968 	stat->rx_bytes += smb->rx_bytes;
   1969 	stat->rx_runts += smb->rx_runts;
   1970 	stat->rx_fragments += smb->rx_fragments;
   1971 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1972 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1973 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1974 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1975 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1976 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1977 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1978 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1979 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   1980 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   1981 	stat->rx_alignerrs += smb->rx_alignerrs;
   1982 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   1983 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   1984 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   1985 
   1986 	/* Tx stats. */
   1987 	stat->tx_frames += smb->tx_frames;
   1988 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   1989 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   1990 	stat->tx_pause_frames += smb->tx_pause_frames;
   1991 	stat->tx_excess_defer += smb->tx_excess_defer;
   1992 	stat->tx_control_frames += smb->tx_control_frames;
   1993 	stat->tx_deferred += smb->tx_deferred;
   1994 	stat->tx_bytes += smb->tx_bytes;
   1995 	stat->tx_pkts_64 += smb->tx_pkts_64;
   1996 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   1997 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   1998 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   1999 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2000 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2001 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2002 	stat->tx_single_colls += smb->tx_single_colls;
   2003 	stat->tx_multi_colls += smb->tx_multi_colls;
   2004 	stat->tx_late_colls += smb->tx_late_colls;
   2005 	stat->tx_excess_colls += smb->tx_excess_colls;
   2006 	stat->tx_underrun += smb->tx_underrun;
   2007 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2008 	stat->tx_lenerrs += smb->tx_lenerrs;
   2009 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2010 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2011 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2012 
   2013 	/* Update counters in ifnet. */
   2014 	ifp->if_opackets += smb->tx_frames;
   2015 
   2016 	ifp->if_collisions += smb->tx_single_colls +
   2017 	    smb->tx_multi_colls + smb->tx_late_colls +
   2018 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2019 
   2020 	ifp->if_oerrors += smb->tx_excess_colls +
   2021 	    smb->tx_late_colls + smb->tx_underrun +
   2022 	    smb->tx_pkts_truncated;
   2023 
   2024 	ifp->if_ipackets += smb->rx_frames;
   2025 
   2026 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2027 	    smb->rx_runts + smb->rx_pkts_truncated +
   2028 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2029 	    smb->rx_alignerrs;
   2030 
   2031 	/* Update done, clear. */
   2032 	smb->updated = 0;
   2033 
   2034 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2035 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2036 }
   2037 
   2038 static void
   2039 age_stop_txmac(struct age_softc *sc)
   2040 {
   2041 	uint32_t reg;
   2042 	int i;
   2043 
   2044 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2045 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2046 		reg &= ~MAC_CFG_TX_ENB;
   2047 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2048 	}
   2049 	/* Stop Tx DMA engine. */
   2050 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2051 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2052 		reg &= ~DMA_CFG_RD_ENB;
   2053 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2054 	}
   2055 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2056 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2057 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2058 			break;
   2059 		DELAY(10);
   2060 	}
   2061 	if (i == 0)
   2062 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2063 }
   2064 
   2065 static void
   2066 age_stop_rxmac(struct age_softc *sc)
   2067 {
   2068 	uint32_t reg;
   2069 	int i;
   2070 
   2071 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2072 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2073 		reg &= ~MAC_CFG_RX_ENB;
   2074 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2075 	}
   2076 	/* Stop Rx DMA engine. */
   2077 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2078 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2079 		reg &= ~DMA_CFG_WR_ENB;
   2080 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2081 	}
   2082 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2083 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2084 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2085 			break;
   2086 		DELAY(10);
   2087 	}
   2088 	if (i == 0)
   2089 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2090 }
   2091 
   2092 static void
   2093 age_init_tx_ring(struct age_softc *sc)
   2094 {
   2095 	struct age_ring_data *rd;
   2096 	struct age_txdesc *txd;
   2097 	int i;
   2098 
   2099 	sc->age_cdata.age_tx_prod = 0;
   2100 	sc->age_cdata.age_tx_cons = 0;
   2101 	sc->age_cdata.age_tx_cnt = 0;
   2102 
   2103 	rd = &sc->age_rdata;
   2104 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2105 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2106 		txd = &sc->age_cdata.age_txdesc[i];
   2107 		txd->tx_desc = &rd->age_tx_ring[i];
   2108 		txd->tx_m = NULL;
   2109 	}
   2110 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2111 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2112 }
   2113 
   2114 static int
   2115 age_init_rx_ring(struct age_softc *sc)
   2116 {
   2117 	struct age_ring_data *rd;
   2118 	struct age_rxdesc *rxd;
   2119 	int i;
   2120 
   2121 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2122 	rd = &sc->age_rdata;
   2123 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2124 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2125 		rxd = &sc->age_cdata.age_rxdesc[i];
   2126 		rxd->rx_m = NULL;
   2127 		rxd->rx_desc = &rd->age_rx_ring[i];
   2128 		if (age_newbuf(sc, rxd, 1) != 0)
   2129 			return ENOBUFS;
   2130 	}
   2131 
   2132 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2133 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2134 
   2135 	return 0;
   2136 }
   2137 
   2138 static void
   2139 age_init_rr_ring(struct age_softc *sc)
   2140 {
   2141 	struct age_ring_data *rd;
   2142 
   2143 	sc->age_cdata.age_rr_cons = 0;
   2144 	AGE_RXCHAIN_RESET(sc);
   2145 
   2146 	rd = &sc->age_rdata;
   2147 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2148 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2149 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2150 }
   2151 
   2152 static void
   2153 age_init_cmb_block(struct age_softc *sc)
   2154 {
   2155 	struct age_ring_data *rd;
   2156 
   2157 	rd = &sc->age_rdata;
   2158 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2159 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2160 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2161 }
   2162 
   2163 static void
   2164 age_init_smb_block(struct age_softc *sc)
   2165 {
   2166 	struct age_ring_data *rd;
   2167 
   2168 	rd = &sc->age_rdata;
   2169 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2170 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2171 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2172 }
   2173 
   2174 static int
   2175 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2176 {
   2177 	struct rx_desc *desc;
   2178 	struct mbuf *m;
   2179 	bus_dmamap_t map;
   2180 	int error;
   2181 
   2182 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2183 	if (m == NULL)
   2184 		return ENOBUFS;
   2185 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2186 	if (!(m->m_flags & M_EXT)) {
   2187 		 m_freem(m);
   2188 		 return ENOBUFS;
   2189 	}
   2190 
   2191 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2192 	m_adj(m, ETHER_ALIGN);
   2193 
   2194 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2195 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2196 
   2197 	if (error != 0) {
   2198 		if (!error) {
   2199 			bus_dmamap_unload(sc->sc_dmat,
   2200 			    sc->age_cdata.age_rx_sparemap);
   2201 			error = EFBIG;
   2202 			printf("%s: too many segments?!\n",
   2203 			    device_xname(sc->sc_dev));
   2204 		}
   2205 		m_freem(m);
   2206 
   2207 		if (init)
   2208 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2209 		return error;
   2210 	}
   2211 
   2212 	if (rxd->rx_m != NULL) {
   2213 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2214 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2215 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2216 	}
   2217 	map = rxd->rx_dmamap;
   2218 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2219 	sc->age_cdata.age_rx_sparemap = map;
   2220 	rxd->rx_m = m;
   2221 
   2222 	desc = rxd->rx_desc;
   2223 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2224 	desc->len =
   2225 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2226 	    AGE_RD_LEN_SHIFT);
   2227 
   2228 	return 0;
   2229 }
   2230 
   2231 static void
   2232 age_rxvlan(struct age_softc *sc)
   2233 {
   2234 	uint32_t reg;
   2235 
   2236 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2237 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2238 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2239 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2240 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2241 }
   2242 
   2243 static void
   2244 age_rxfilter(struct age_softc *sc)
   2245 {
   2246 	struct ethercom *ec = &sc->sc_ec;
   2247 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2248 	struct ether_multi *enm;
   2249 	struct ether_multistep step;
   2250 	uint32_t crc;
   2251 	uint32_t mchash[2];
   2252 	uint32_t rxcfg;
   2253 
   2254 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2255 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2256 	ifp->if_flags &= ~IFF_ALLMULTI;
   2257 
   2258 	/*
   2259 	 * Always accept broadcast frames.
   2260 	 */
   2261 	rxcfg |= MAC_CFG_BCAST;
   2262 
   2263 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2264 		ifp->if_flags |= IFF_ALLMULTI;
   2265 		if (ifp->if_flags & IFF_PROMISC)
   2266 			rxcfg |= MAC_CFG_PROMISC;
   2267 		else
   2268 			rxcfg |= MAC_CFG_ALLMULTI;
   2269 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2270 	} else {
   2271 		/* Program new filter. */
   2272 		memset(mchash, 0, sizeof(mchash));
   2273 
   2274 		ETHER_FIRST_MULTI(step, ec, enm);
   2275 		while (enm != NULL) {
   2276 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2277 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2278 			ETHER_NEXT_MULTI(step, enm);
   2279 		}
   2280 	}
   2281 
   2282 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2283 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2284 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2285 }
   2286