if_age.c revision 1.38.2.2 1 /* $NetBSD: if_age.c,v 1.38.2.2 2010/04/21 00:27:40 matt Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.38.2.2 2010/04/21 00:27:40 matt Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_dma_alloc(struct age_softc *);
101 static void age_dma_free(struct age_softc *);
102 static void age_get_macaddr(struct age_softc *, uint8_t[]);
103 static void age_phy_reset(struct age_softc *);
104
105 static int age_encap(struct age_softc *, struct mbuf **);
106 static void age_init_tx_ring(struct age_softc *);
107 static int age_init_rx_ring(struct age_softc *);
108 static void age_init_rr_ring(struct age_softc *);
109 static void age_init_cmb_block(struct age_softc *);
110 static void age_init_smb_block(struct age_softc *);
111 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
112 static void age_mac_config(struct age_softc *);
113 static void age_txintr(struct age_softc *, int);
114 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
115 static void age_rxintr(struct age_softc *, int);
116 static void age_tick(void *);
117 static void age_reset(struct age_softc *);
118 static void age_stop(struct ifnet *, int);
119 static void age_stats_update(struct age_softc *);
120 static void age_stop_txmac(struct age_softc *);
121 static void age_stop_rxmac(struct age_softc *);
122 static void age_rxvlan(struct age_softc *sc);
123 static void age_rxfilter(struct age_softc *);
124
125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
126 age_match, age_attach, age_detach, NULL);
127
128 int agedebug = 0;
129 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
130
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
133
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
136 {
137 struct pci_attach_args *pa = aux;
138
139 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 }
142
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
145 {
146 struct age_softc *sc = device_private(self);
147 struct pci_attach_args *pa = aux;
148 pci_intr_handle_t ih;
149 const char *intrstr;
150 struct ifnet *ifp = &sc->sc_ec.ec_if;
151 pcireg_t memtype;
152 int error = 0;
153
154 aprint_naive("\n");
155 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156
157 sc->sc_dev = self;
158 sc->sc_dmat = pa->pa_dmat;
159 sc->sc_pct = pa->pa_pc;
160 sc->sc_pcitag = pa->pa_tag;
161
162 /*
163 * Allocate IO memory
164 */
165 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 switch (memtype) {
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 break;
171 default:
172 aprint_error_dev(self, "invalid base address register\n");
173 break;
174 }
175
176 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 aprint_error_dev(self, "could not map mem space\n");
179 return;
180 }
181
182 if (pci_intr_map(pa, &ih) != 0) {
183 aprint_error_dev(self, "could not map interrupt\n");
184 goto fail;
185 }
186
187 /*
188 * Allocate IRQ
189 */
190 intrstr = pci_intr_string(sc->sc_pct, ih);
191 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 age_intr, sc);
193 if (sc->sc_irq_handle == NULL) {
194 aprint_error_dev(self, "could not establish interrupt");
195 if (intrstr != NULL)
196 aprint_error(" at %s", intrstr);
197 aprint_error("\n");
198 goto fail;
199 }
200 aprint_normal_dev(self, "%s\n", intrstr);
201
202 /* Set PHY address. */
203 sc->age_phyaddr = AGE_PHY_ADDR;
204
205 /* Reset PHY. */
206 age_phy_reset(sc);
207
208 /* Reset the ethernet controller. */
209 age_reset(sc);
210
211 /* Get PCI and chip id/revision. */
212 sc->age_rev = PCI_REVISION(pa->pa_class);
213 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 MASTER_CHIP_REV_SHIFT;
215
216 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218
219 if (agedebug) {
220 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 }
224
225 /* Set max allowable DMA size. */
226 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228
229 /* Allocate DMA stuffs */
230 error = age_dma_alloc(sc);
231 if (error)
232 goto fail;
233
234 callout_init(&sc->sc_tick_ch, 0);
235 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236
237 /* Load station address. */
238 age_get_macaddr(sc, sc->sc_enaddr);
239
240 aprint_normal_dev(self, "Ethernet address %s\n",
241 ether_sprintf(sc->sc_enaddr));
242
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = age_init;
246 ifp->if_ioctl = age_ioctl;
247 ifp->if_start = age_start;
248 ifp->if_stop = age_stop;
249 ifp->if_watchdog = age_watchdog;
250 ifp->if_baudrate = IF_Gbps(1);
251 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 IFQ_SET_READY(&ifp->if_snd);
253 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254
255 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256
257 #ifdef AGE_CHECKSUM
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
259 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
260 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
261 #endif
262
263 #if NVLAN > 0
264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266
267 /* Set up MII bus. */
268 sc->sc_miibus.mii_ifp = ifp;
269 sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 sc->sc_miibus.mii_statchg = age_miibus_statchg;
272
273 sc->sc_ec.ec_mii = &sc->sc_miibus;
274 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
275 age_mediastatus);
276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 MII_OFFSET_ANY, MIIF_DOPAUSE);
278
279 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
280 aprint_error_dev(self, "no PHY found!\n");
281 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
282 0, NULL);
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
284 } else
285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
286
287 if_attach(ifp);
288 ether_ifattach(ifp, sc->sc_enaddr);
289
290 if (!pmf_device_register(self, NULL, age_resume))
291 aprint_error_dev(self, "couldn't establish power handler\n");
292 else
293 pmf_class_network_register(self, ifp);
294
295 return;
296
297 fail:
298 age_dma_free(sc);
299 if (sc->sc_irq_handle != NULL) {
300 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
301 sc->sc_irq_handle = NULL;
302 }
303 if (sc->sc_mem_size) {
304 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
305 sc->sc_mem_size = 0;
306 }
307 }
308
309 static int
310 age_detach(device_t self, int flags)
311 {
312 struct age_softc *sc = device_private(self);
313 struct ifnet *ifp = &sc->sc_ec.ec_if;
314 int s;
315
316 pmf_device_deregister(self);
317 s = splnet();
318 age_stop(ifp, 0);
319 splx(s);
320
321 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
322
323 /* Delete all remaining media. */
324 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
325
326 ether_ifdetach(ifp);
327 if_detach(ifp);
328 age_dma_free(sc);
329
330 if (sc->sc_irq_handle != NULL) {
331 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
332 sc->sc_irq_handle = NULL;
333 }
334 if (sc->sc_mem_size) {
335 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
336 sc->sc_mem_size = 0;
337 }
338 return 0;
339 }
340
341 /*
342 * Read a PHY register on the MII of the L1.
343 */
344 static int
345 age_miibus_readreg(device_t dev, int phy, int reg)
346 {
347 struct age_softc *sc = device_private(dev);
348 uint32_t v;
349 int i;
350
351 if (phy != sc->age_phyaddr)
352 return 0;
353
354 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
355 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
356 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
357 DELAY(1);
358 v = CSR_READ_4(sc, AGE_MDIO);
359 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
360 break;
361 }
362
363 if (i == 0) {
364 printf("%s: phy read timeout: phy %d, reg %d\n",
365 device_xname(sc->sc_dev), phy, reg);
366 return 0;
367 }
368
369 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
370 }
371
372 /*
373 * Write a PHY register on the MII of the L1.
374 */
375 static void
376 age_miibus_writereg(device_t dev, int phy, int reg, int val)
377 {
378 struct age_softc *sc = device_private(dev);
379 uint32_t v;
380 int i;
381
382 if (phy != sc->age_phyaddr)
383 return;
384
385 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
386 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
387 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
388
389 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
390 DELAY(1);
391 v = CSR_READ_4(sc, AGE_MDIO);
392 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
393 break;
394 }
395
396 if (i == 0) {
397 printf("%s: phy write timeout: phy %d, reg %d\n",
398 device_xname(sc->sc_dev), phy, reg);
399 }
400 }
401
402 /*
403 * Callback from MII layer when media changes.
404 */
405 static void
406 age_miibus_statchg(device_t dev)
407 {
408 struct age_softc *sc = device_private(dev);
409 struct ifnet *ifp = &sc->sc_ec.ec_if;
410 struct mii_data *mii;
411
412 if ((ifp->if_flags & IFF_RUNNING) == 0)
413 return;
414
415 mii = &sc->sc_miibus;
416
417 sc->age_flags &= ~AGE_FLAG_LINK;
418 if ((mii->mii_media_status & IFM_AVALID) != 0) {
419 switch (IFM_SUBTYPE(mii->mii_media_active)) {
420 case IFM_10_T:
421 case IFM_100_TX:
422 case IFM_1000_T:
423 sc->age_flags |= AGE_FLAG_LINK;
424 break;
425 default:
426 break;
427 }
428 }
429
430 /* Stop Rx/Tx MACs. */
431 age_stop_rxmac(sc);
432 age_stop_txmac(sc);
433
434 /* Program MACs with resolved speed/duplex/flow-control. */
435 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
436 uint32_t reg;
437
438 age_mac_config(sc);
439 reg = CSR_READ_4(sc, AGE_MAC_CFG);
440 /* Restart DMA engine and Tx/Rx MAC. */
441 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
442 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
443 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
444 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
445 }
446 }
447
448 /*
449 * Get the current interface media status.
450 */
451 static void
452 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
453 {
454 struct age_softc *sc = ifp->if_softc;
455 struct mii_data *mii = &sc->sc_miibus;
456
457 mii_pollstat(mii);
458 ifmr->ifm_status = mii->mii_media_status;
459 ifmr->ifm_active = mii->mii_media_active;
460 }
461
462 /*
463 * Set hardware to newly-selected media.
464 */
465 static int
466 age_mediachange(struct ifnet *ifp)
467 {
468 struct age_softc *sc = ifp->if_softc;
469 struct mii_data *mii = &sc->sc_miibus;
470 int error;
471
472 if (mii->mii_instance != 0) {
473 struct mii_softc *miisc;
474
475 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
476 mii_phy_reset(miisc);
477 }
478 error = mii_mediachg(mii);
479
480 return error;
481 }
482
483 static int
484 age_intr(void *arg)
485 {
486 struct age_softc *sc = arg;
487 struct ifnet *ifp = &sc->sc_ec.ec_if;
488 struct cmb *cmb;
489 uint32_t status;
490
491 status = CSR_READ_4(sc, AGE_INTR_STATUS);
492 if (status == 0 || (status & AGE_INTRS) == 0)
493 return 0;
494
495 cmb = sc->age_rdata.age_cmb_block;
496 if (cmb == NULL) {
497 /* Happens when bringing up the interface
498 * w/o having a carrier. Ack. the interrupt.
499 */
500 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
501 return 0;
502 }
503
504 /* Disable interrupts. */
505 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
506
507 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
508 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
509 status = le32toh(cmb->intr_status);
510 if ((status & AGE_INTRS) == 0)
511 goto back;
512
513 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
514 TPD_CONS_SHIFT;
515 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
516 RRD_PROD_SHIFT;
517
518 /* Let hardware know CMB was served. */
519 cmb->intr_status = 0;
520 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
521 sc->age_cdata.age_cmb_block_map->dm_mapsize,
522 BUS_DMASYNC_PREWRITE);
523
524 if (ifp->if_flags & IFF_RUNNING) {
525 if (status & INTR_CMB_RX)
526 age_rxintr(sc, sc->age_rr_prod);
527
528 if (status & INTR_CMB_TX)
529 age_txintr(sc, sc->age_tpd_cons);
530
531 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
532 if (status & INTR_DMA_RD_TO_RST)
533 printf("%s: DMA read error! -- resetting\n",
534 device_xname(sc->sc_dev));
535 if (status & INTR_DMA_WR_TO_RST)
536 printf("%s: DMA write error! -- resetting\n",
537 device_xname(sc->sc_dev));
538 age_init(ifp);
539 }
540
541 if (!IFQ_IS_EMPTY(&ifp->if_snd))
542 age_start(ifp);
543
544 if (status & INTR_SMB)
545 age_stats_update(sc);
546 }
547
548 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
549 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
550 sc->age_cdata.age_cmb_block_map->dm_mapsize,
551 BUS_DMASYNC_POSTREAD);
552
553 back:
554 /* Re-enable interrupts. */
555 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
556
557 return 1;
558 }
559
560 static void
561 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
562 {
563 uint32_t ea[2], reg;
564 int i, vpdc;
565
566 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
567 if ((reg & SPI_VPD_ENB) != 0) {
568 /* Get VPD stored in TWSI EEPROM. */
569 reg &= ~SPI_VPD_ENB;
570 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
571 }
572
573 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
574 PCI_CAP_VPD, &vpdc, NULL)) {
575 /*
576 * PCI VPD capability found, let TWSI reload EEPROM.
577 * This will set Ethernet address of controller.
578 */
579 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
580 TWSI_CTRL_SW_LD_START);
581 for (i = 100; i > 0; i++) {
582 DELAY(1000);
583 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
584 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
585 break;
586 }
587 if (i == 0)
588 printf("%s: reloading EEPROM timeout!\n",
589 device_xname(sc->sc_dev));
590 } else {
591 if (agedebug)
592 printf("%s: PCI VPD capability not found!\n",
593 device_xname(sc->sc_dev));
594 }
595
596 ea[0] = CSR_READ_4(sc, AGE_PAR0);
597 ea[1] = CSR_READ_4(sc, AGE_PAR1);
598
599 eaddr[0] = (ea[1] >> 8) & 0xFF;
600 eaddr[1] = (ea[1] >> 0) & 0xFF;
601 eaddr[2] = (ea[0] >> 24) & 0xFF;
602 eaddr[3] = (ea[0] >> 16) & 0xFF;
603 eaddr[4] = (ea[0] >> 8) & 0xFF;
604 eaddr[5] = (ea[0] >> 0) & 0xFF;
605 }
606
607 static void
608 age_phy_reset(struct age_softc *sc)
609 {
610 uint16_t reg, pn;
611 int i, linkup;
612
613 /* Reset PHY. */
614 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
615 DELAY(2000);
616 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
617 DELAY(2000);
618
619 #define ATPHY_DBG_ADDR 0x1D
620 #define ATPHY_DBG_DATA 0x1E
621 #define ATPHY_CDTC 0x16
622 #define PHY_CDTC_ENB 0x0001
623 #define PHY_CDTC_POFF 8
624 #define ATPHY_CDTS 0x1C
625 #define PHY_CDTS_STAT_OK 0x0000
626 #define PHY_CDTS_STAT_SHORT 0x0100
627 #define PHY_CDTS_STAT_OPEN 0x0200
628 #define PHY_CDTS_STAT_INVAL 0x0300
629 #define PHY_CDTS_STAT_MASK 0x0300
630
631 /* Check power saving mode. Magic from Linux. */
632 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
633 for (linkup = 0, pn = 0; pn < 4; pn++) {
634 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
635 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
636 for (i = 200; i > 0; i--) {
637 DELAY(1000);
638 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
639 ATPHY_CDTC);
640 if ((reg & PHY_CDTC_ENB) == 0)
641 break;
642 }
643 DELAY(1000);
644 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
645 ATPHY_CDTS);
646 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
647 linkup++;
648 break;
649 }
650 }
651 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
652 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
653 if (linkup == 0) {
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_ADDR, 0);
656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_DATA, 0x124E);
658 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
659 ATPHY_DBG_ADDR, 1);
660 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
661 ATPHY_DBG_DATA);
662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 ATPHY_DBG_DATA, reg | 0x03);
664 /* XXX */
665 DELAY(1500 * 1000);
666 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
667 ATPHY_DBG_ADDR, 0);
668 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
669 ATPHY_DBG_DATA, 0x024E);
670 }
671
672 #undef ATPHY_DBG_ADDR
673 #undef ATPHY_DBG_DATA
674 #undef ATPHY_CDTC
675 #undef PHY_CDTC_ENB
676 #undef PHY_CDTC_POFF
677 #undef ATPHY_CDTS
678 #undef PHY_CDTS_STAT_OK
679 #undef PHY_CDTS_STAT_SHORT
680 #undef PHY_CDTS_STAT_OPEN
681 #undef PHY_CDTS_STAT_INVAL
682 #undef PHY_CDTS_STAT_MASK
683 }
684
685 static int
686 age_dma_alloc(struct age_softc *sc)
687 {
688 struct age_txdesc *txd;
689 struct age_rxdesc *rxd;
690 int nsegs, error, i;
691
692 /*
693 * Create DMA stuffs for TX ring
694 */
695 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
696 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
697 if (error) {
698 sc->age_cdata.age_tx_ring_map = NULL;
699 return ENOBUFS;
700 }
701
702 /* Allocate DMA'able memory for TX ring */
703 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
704 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
705 &nsegs, BUS_DMA_WAITOK);
706 if (error) {
707 printf("%s: could not allocate DMA'able memory for Tx ring, "
708 "error = %i\n", device_xname(sc->sc_dev), error);
709 return error;
710 }
711
712 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
713 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
714 BUS_DMA_NOWAIT);
715 if (error)
716 return ENOBUFS;
717
718 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
719
720 /* Load the DMA map for Tx ring. */
721 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
722 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
723 if (error) {
724 printf("%s: could not load DMA'able memory for Tx ring, "
725 "error = %i\n", device_xname(sc->sc_dev), error);
726 bus_dmamem_free(sc->sc_dmat,
727 &sc->age_rdata.age_tx_ring_seg, 1);
728 return error;
729 }
730
731 sc->age_rdata.age_tx_ring_paddr =
732 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
733
734 /*
735 * Create DMA stuffs for RX ring
736 */
737 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
738 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
739 if (error) {
740 sc->age_cdata.age_rx_ring_map = NULL;
741 return ENOBUFS;
742 }
743
744 /* Allocate DMA'able memory for RX ring */
745 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
746 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
747 &nsegs, BUS_DMA_WAITOK);
748 if (error) {
749 printf("%s: could not allocate DMA'able memory for Rx ring, "
750 "error = %i.\n", device_xname(sc->sc_dev), error);
751 return error;
752 }
753
754 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
755 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
756 BUS_DMA_NOWAIT);
757 if (error)
758 return ENOBUFS;
759
760 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
761
762 /* Load the DMA map for Rx ring. */
763 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
764 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
765 if (error) {
766 printf("%s: could not load DMA'able memory for Rx ring, "
767 "error = %i.\n", device_xname(sc->sc_dev), error);
768 bus_dmamem_free(sc->sc_dmat,
769 &sc->age_rdata.age_rx_ring_seg, 1);
770 return error;
771 }
772
773 sc->age_rdata.age_rx_ring_paddr =
774 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
775
776 /*
777 * Create DMA stuffs for RX return ring
778 */
779 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
780 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
781 if (error) {
782 sc->age_cdata.age_rr_ring_map = NULL;
783 return ENOBUFS;
784 }
785
786 /* Allocate DMA'able memory for RX return ring */
787 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
788 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
789 &nsegs, BUS_DMA_WAITOK);
790 if (error) {
791 printf("%s: could not allocate DMA'able memory for Rx "
792 "return ring, error = %i.\n",
793 device_xname(sc->sc_dev), error);
794 return error;
795 }
796
797 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
798 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
799 BUS_DMA_NOWAIT);
800 if (error)
801 return ENOBUFS;
802
803 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
804
805 /* Load the DMA map for Rx return ring. */
806 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
807 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
808 if (error) {
809 printf("%s: could not load DMA'able memory for Rx return ring, "
810 "error = %i\n", device_xname(sc->sc_dev), error);
811 bus_dmamem_free(sc->sc_dmat,
812 &sc->age_rdata.age_rr_ring_seg, 1);
813 return error;
814 }
815
816 sc->age_rdata.age_rr_ring_paddr =
817 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
818
819 /*
820 * Create DMA stuffs for CMB block
821 */
822 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
823 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
824 &sc->age_cdata.age_cmb_block_map);
825 if (error) {
826 sc->age_cdata.age_cmb_block_map = NULL;
827 return ENOBUFS;
828 }
829
830 /* Allocate DMA'able memory for CMB block */
831 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
832 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
833 &nsegs, BUS_DMA_WAITOK);
834 if (error) {
835 printf("%s: could not allocate DMA'able memory for "
836 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
837 return error;
838 }
839
840 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
841 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
842 BUS_DMA_NOWAIT);
843 if (error)
844 return ENOBUFS;
845
846 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
847
848 /* Load the DMA map for CMB block. */
849 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
850 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
851 BUS_DMA_WAITOK);
852 if (error) {
853 printf("%s: could not load DMA'able memory for CMB block, "
854 "error = %i\n", device_xname(sc->sc_dev), error);
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->age_rdata.age_cmb_block_seg, 1);
857 return error;
858 }
859
860 sc->age_rdata.age_cmb_block_paddr =
861 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
862
863 /*
864 * Create DMA stuffs for SMB block
865 */
866 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
867 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
868 &sc->age_cdata.age_smb_block_map);
869 if (error) {
870 sc->age_cdata.age_smb_block_map = NULL;
871 return ENOBUFS;
872 }
873
874 /* Allocate DMA'able memory for SMB block */
875 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
876 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
877 &nsegs, BUS_DMA_WAITOK);
878 if (error) {
879 printf("%s: could not allocate DMA'able memory for "
880 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
881 return error;
882 }
883
884 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
885 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
886 BUS_DMA_NOWAIT);
887 if (error)
888 return ENOBUFS;
889
890 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
891
892 /* Load the DMA map for SMB block */
893 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
894 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
895 BUS_DMA_WAITOK);
896 if (error) {
897 printf("%s: could not load DMA'able memory for SMB block, "
898 "error = %i\n", device_xname(sc->sc_dev), error);
899 bus_dmamem_free(sc->sc_dmat,
900 &sc->age_rdata.age_smb_block_seg, 1);
901 return error;
902 }
903
904 sc->age_rdata.age_smb_block_paddr =
905 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
906
907 /* Create DMA maps for Tx buffers. */
908 for (i = 0; i < AGE_TX_RING_CNT; i++) {
909 txd = &sc->age_cdata.age_txdesc[i];
910 txd->tx_m = NULL;
911 txd->tx_dmamap = NULL;
912 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
913 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
914 &txd->tx_dmamap);
915 if (error) {
916 txd->tx_dmamap = NULL;
917 printf("%s: could not create Tx dmamap, error = %i.\n",
918 device_xname(sc->sc_dev), error);
919 return error;
920 }
921 }
922
923 /* Create DMA maps for Rx buffers. */
924 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
925 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
926 if (error) {
927 sc->age_cdata.age_rx_sparemap = NULL;
928 printf("%s: could not create spare Rx dmamap, error = %i.\n",
929 device_xname(sc->sc_dev), error);
930 return error;
931 }
932 for (i = 0; i < AGE_RX_RING_CNT; i++) {
933 rxd = &sc->age_cdata.age_rxdesc[i];
934 rxd->rx_m = NULL;
935 rxd->rx_dmamap = NULL;
936 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
937 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
938 if (error) {
939 rxd->rx_dmamap = NULL;
940 printf("%s: could not create Rx dmamap, error = %i.\n",
941 device_xname(sc->sc_dev), error);
942 return error;
943 }
944 }
945
946 return 0;
947 }
948
949 static void
950 age_dma_free(struct age_softc *sc)
951 {
952 struct age_txdesc *txd;
953 struct age_rxdesc *rxd;
954 int i;
955
956 /* Tx buffers */
957 for (i = 0; i < AGE_TX_RING_CNT; i++) {
958 txd = &sc->age_cdata.age_txdesc[i];
959 if (txd->tx_dmamap != NULL) {
960 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
961 txd->tx_dmamap = NULL;
962 }
963 }
964 /* Rx buffers */
965 for (i = 0; i < AGE_RX_RING_CNT; i++) {
966 rxd = &sc->age_cdata.age_rxdesc[i];
967 if (rxd->rx_dmamap != NULL) {
968 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
969 rxd->rx_dmamap = NULL;
970 }
971 }
972 if (sc->age_cdata.age_rx_sparemap != NULL) {
973 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
974 sc->age_cdata.age_rx_sparemap = NULL;
975 }
976
977 /* Tx ring. */
978 if (sc->age_cdata.age_tx_ring_map != NULL)
979 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
980 if (sc->age_cdata.age_tx_ring_map != NULL &&
981 sc->age_rdata.age_tx_ring != NULL)
982 bus_dmamem_free(sc->sc_dmat,
983 &sc->age_rdata.age_tx_ring_seg, 1);
984 sc->age_rdata.age_tx_ring = NULL;
985 sc->age_cdata.age_tx_ring_map = NULL;
986
987 /* Rx ring. */
988 if (sc->age_cdata.age_rx_ring_map != NULL)
989 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
990 if (sc->age_cdata.age_rx_ring_map != NULL &&
991 sc->age_rdata.age_rx_ring != NULL)
992 bus_dmamem_free(sc->sc_dmat,
993 &sc->age_rdata.age_rx_ring_seg, 1);
994 sc->age_rdata.age_rx_ring = NULL;
995 sc->age_cdata.age_rx_ring_map = NULL;
996
997 /* Rx return ring. */
998 if (sc->age_cdata.age_rr_ring_map != NULL)
999 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1000 if (sc->age_cdata.age_rr_ring_map != NULL &&
1001 sc->age_rdata.age_rr_ring != NULL)
1002 bus_dmamem_free(sc->sc_dmat,
1003 &sc->age_rdata.age_rr_ring_seg, 1);
1004 sc->age_rdata.age_rr_ring = NULL;
1005 sc->age_cdata.age_rr_ring_map = NULL;
1006
1007 /* CMB block */
1008 if (sc->age_cdata.age_cmb_block_map != NULL)
1009 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1010 if (sc->age_cdata.age_cmb_block_map != NULL &&
1011 sc->age_rdata.age_cmb_block != NULL)
1012 bus_dmamem_free(sc->sc_dmat,
1013 &sc->age_rdata.age_cmb_block_seg, 1);
1014 sc->age_rdata.age_cmb_block = NULL;
1015 sc->age_cdata.age_cmb_block_map = NULL;
1016
1017 /* SMB block */
1018 if (sc->age_cdata.age_smb_block_map != NULL)
1019 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1020 if (sc->age_cdata.age_smb_block_map != NULL &&
1021 sc->age_rdata.age_smb_block != NULL)
1022 bus_dmamem_free(sc->sc_dmat,
1023 &sc->age_rdata.age_smb_block_seg, 1);
1024 sc->age_rdata.age_smb_block = NULL;
1025 sc->age_cdata.age_smb_block_map = NULL;
1026 }
1027
1028 static void
1029 age_start(struct ifnet *ifp)
1030 {
1031 struct age_softc *sc = ifp->if_softc;
1032 struct mbuf *m_head;
1033 int enq;
1034
1035 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1036 return;
1037
1038 enq = 0;
1039 for (;;) {
1040 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1041 if (m_head == NULL)
1042 break;
1043
1044 /*
1045 * Pack the data into the transmit ring. If we
1046 * don't have room, set the OACTIVE flag and wait
1047 * for the NIC to drain the ring.
1048 */
1049 if (age_encap(sc, &m_head)) {
1050 if (m_head == NULL)
1051 break;
1052 IF_PREPEND(&ifp->if_snd, m_head);
1053 ifp->if_flags |= IFF_OACTIVE;
1054 break;
1055 }
1056 enq = 1;
1057
1058 #if NBPFILTER > 0
1059 /*
1060 * If there's a BPF listener, bounce a copy of this frame
1061 * to him.
1062 */
1063 if (ifp->if_bpf != NULL)
1064 bpf_mtap(ifp->if_bpf, m_head);
1065 #endif
1066 }
1067
1068 if (enq) {
1069 /* Update mbox. */
1070 AGE_COMMIT_MBOX(sc);
1071 /* Set a timeout in case the chip goes out to lunch. */
1072 ifp->if_timer = AGE_TX_TIMEOUT;
1073 }
1074 }
1075
1076 static void
1077 age_watchdog(struct ifnet *ifp)
1078 {
1079 struct age_softc *sc = ifp->if_softc;
1080
1081 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1082 printf("%s: watchdog timeout (missed link)\n",
1083 device_xname(sc->sc_dev));
1084 ifp->if_oerrors++;
1085 age_init(ifp);
1086 return;
1087 }
1088
1089 if (sc->age_cdata.age_tx_cnt == 0) {
1090 printf("%s: watchdog timeout (missed Tx interrupts) "
1091 "-- recovering\n", device_xname(sc->sc_dev));
1092 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1093 age_start(ifp);
1094 return;
1095 }
1096
1097 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1098 ifp->if_oerrors++;
1099 age_init(ifp);
1100
1101 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1102 age_start(ifp);
1103 }
1104
1105 static int
1106 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1107 {
1108 struct age_softc *sc = ifp->if_softc;
1109 int s, error;
1110
1111 s = splnet();
1112
1113 error = ether_ioctl(ifp, cmd, data);
1114 if (error == ENETRESET) {
1115 if (ifp->if_flags & IFF_RUNNING)
1116 age_rxfilter(sc);
1117 error = 0;
1118 }
1119
1120 splx(s);
1121 return error;
1122 }
1123
1124 static void
1125 age_mac_config(struct age_softc *sc)
1126 {
1127 struct mii_data *mii;
1128 uint32_t reg;
1129
1130 mii = &sc->sc_miibus;
1131
1132 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1133 reg &= ~MAC_CFG_FULL_DUPLEX;
1134 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1135 reg &= ~MAC_CFG_SPEED_MASK;
1136
1137 /* Reprogram MAC with resolved speed/duplex. */
1138 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1139 case IFM_10_T:
1140 case IFM_100_TX:
1141 reg |= MAC_CFG_SPEED_10_100;
1142 break;
1143 case IFM_1000_T:
1144 reg |= MAC_CFG_SPEED_1000;
1145 break;
1146 }
1147 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1148 reg |= MAC_CFG_FULL_DUPLEX;
1149 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1150 reg |= MAC_CFG_TX_FC;
1151 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1152 reg |= MAC_CFG_RX_FC;
1153 }
1154
1155 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1156 }
1157
1158 static bool
1159 age_resume(device_t dv PMF_FN_ARGS)
1160 {
1161 struct age_softc *sc = device_private(dv);
1162 uint16_t cmd;
1163
1164 /*
1165 * Clear INTx emulation disable for hardware that
1166 * is set in resume event. From Linux.
1167 */
1168 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1169 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1170 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1171 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1172 PCI_COMMAND_STATUS_REG, cmd);
1173 }
1174
1175 return true;
1176 }
1177
1178 static int
1179 age_encap(struct age_softc *sc, struct mbuf **m_head)
1180 {
1181 struct age_txdesc *txd, *txd_last;
1182 struct tx_desc *desc;
1183 struct mbuf *m;
1184 bus_dmamap_t map;
1185 uint32_t cflags, poff, vtag;
1186 int error, i, nsegs, prod;
1187 #if NVLAN > 0
1188 struct m_tag *mtag;
1189 #endif
1190
1191 m = *m_head;
1192 cflags = vtag = 0;
1193 poff = 0;
1194
1195 prod = sc->age_cdata.age_tx_prod;
1196 txd = &sc->age_cdata.age_txdesc[prod];
1197 txd_last = txd;
1198 map = txd->tx_dmamap;
1199
1200 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1201
1202 if (error == EFBIG) {
1203 error = 0;
1204
1205 *m_head = m_pullup(*m_head, MHLEN);
1206 if (*m_head == NULL) {
1207 printf("%s: can't defrag TX mbuf\n",
1208 device_xname(sc->sc_dev));
1209 return ENOBUFS;
1210 }
1211
1212 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1213 BUS_DMA_NOWAIT);
1214
1215 if (error != 0) {
1216 printf("%s: could not load defragged TX mbuf\n",
1217 device_xname(sc->sc_dev));
1218 m_freem(*m_head);
1219 *m_head = NULL;
1220 return error;
1221 }
1222 } else if (error) {
1223 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1224 return error;
1225 }
1226
1227 nsegs = map->dm_nsegs;
1228
1229 if (nsegs == 0) {
1230 m_freem(*m_head);
1231 *m_head = NULL;
1232 return EIO;
1233 }
1234
1235 /* Check descriptor overrun. */
1236 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1237 bus_dmamap_unload(sc->sc_dmat, map);
1238 return ENOBUFS;
1239 }
1240
1241 m = *m_head;
1242 /* Configure Tx IP/TCP/UDP checksum offload. */
1243 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1244 cflags |= AGE_TD_CSUM;
1245 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1246 cflags |= AGE_TD_TCPCSUM;
1247 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1248 cflags |= AGE_TD_UDPCSUM;
1249 /* Set checksum start offset. */
1250 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1251 }
1252
1253 #if NVLAN > 0
1254 /* Configure VLAN hardware tag insertion. */
1255 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1256 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1257 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1258 cflags |= AGE_TD_INSERT_VLAN_TAG;
1259 }
1260 #endif
1261
1262 desc = NULL;
1263 for (i = 0; i < nsegs; i++) {
1264 desc = &sc->age_rdata.age_tx_ring[prod];
1265 desc->addr = htole64(map->dm_segs[i].ds_addr);
1266 desc->len =
1267 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1268 desc->flags = htole32(cflags);
1269 sc->age_cdata.age_tx_cnt++;
1270 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1271 }
1272
1273 /* Update producer index. */
1274 sc->age_cdata.age_tx_prod = prod;
1275
1276 /* Set EOP on the last descriptor. */
1277 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1278 desc = &sc->age_rdata.age_tx_ring[prod];
1279 desc->flags |= htole32(AGE_TD_EOP);
1280
1281 /* Swap dmamap of the first and the last. */
1282 txd = &sc->age_cdata.age_txdesc[prod];
1283 map = txd_last->tx_dmamap;
1284 txd_last->tx_dmamap = txd->tx_dmamap;
1285 txd->tx_dmamap = map;
1286 txd->tx_m = m;
1287
1288 /* Sync descriptors. */
1289 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1290 BUS_DMASYNC_PREWRITE);
1291 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1292 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1293
1294 return 0;
1295 }
1296
1297 static void
1298 age_txintr(struct age_softc *sc, int tpd_cons)
1299 {
1300 struct ifnet *ifp = &sc->sc_ec.ec_if;
1301 struct age_txdesc *txd;
1302 int cons, prog;
1303
1304 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1305 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1306
1307 /*
1308 * Go through our Tx list and free mbufs for those
1309 * frames which have been transmitted.
1310 */
1311 cons = sc->age_cdata.age_tx_cons;
1312 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1313 if (sc->age_cdata.age_tx_cnt <= 0)
1314 break;
1315 prog++;
1316 ifp->if_flags &= ~IFF_OACTIVE;
1317 sc->age_cdata.age_tx_cnt--;
1318 txd = &sc->age_cdata.age_txdesc[cons];
1319 /*
1320 * Clear Tx descriptors, it's not required but would
1321 * help debugging in case of Tx issues.
1322 */
1323 txd->tx_desc->addr = 0;
1324 txd->tx_desc->len = 0;
1325 txd->tx_desc->flags = 0;
1326
1327 if (txd->tx_m == NULL)
1328 continue;
1329 /* Reclaim transmitted mbufs. */
1330 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1331 m_freem(txd->tx_m);
1332 txd->tx_m = NULL;
1333 }
1334
1335 if (prog > 0) {
1336 sc->age_cdata.age_tx_cons = cons;
1337
1338 /*
1339 * Unarm watchdog timer only when there are no pending
1340 * Tx descriptors in queue.
1341 */
1342 if (sc->age_cdata.age_tx_cnt == 0)
1343 ifp->if_timer = 0;
1344
1345 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1346 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1347 BUS_DMASYNC_PREWRITE);
1348 }
1349 }
1350
1351 /* Receive a frame. */
1352 static void
1353 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1354 {
1355 struct ifnet *ifp = &sc->sc_ec.ec_if;
1356 struct age_rxdesc *rxd;
1357 struct rx_desc *desc;
1358 struct mbuf *mp, *m;
1359 uint32_t status, index;
1360 int count, nsegs, pktlen;
1361 int rx_cons;
1362
1363 status = le32toh(rxrd->flags);
1364 index = le32toh(rxrd->index);
1365 rx_cons = AGE_RX_CONS(index);
1366 nsegs = AGE_RX_NSEGS(index);
1367
1368 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1369 if ((status & AGE_RRD_ERROR) != 0 &&
1370 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1371 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1372 /*
1373 * We want to pass the following frames to upper
1374 * layer regardless of error status of Rx return
1375 * ring.
1376 *
1377 * o IP/TCP/UDP checksum is bad.
1378 * o frame length and protocol specific length
1379 * does not match.
1380 */
1381 sc->age_cdata.age_rx_cons += nsegs;
1382 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1383 return;
1384 }
1385
1386 pktlen = 0;
1387 for (count = 0; count < nsegs; count++,
1388 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1389 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1390 mp = rxd->rx_m;
1391 desc = rxd->rx_desc;
1392 /* Add a new receive buffer to the ring. */
1393 if (age_newbuf(sc, rxd, 0) != 0) {
1394 ifp->if_iqdrops++;
1395 /* Reuse Rx buffers. */
1396 if (sc->age_cdata.age_rxhead != NULL) {
1397 m_freem(sc->age_cdata.age_rxhead);
1398 AGE_RXCHAIN_RESET(sc);
1399 }
1400 break;
1401 }
1402
1403 /* The length of the first mbuf is computed last. */
1404 if (count != 0) {
1405 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1406 pktlen += mp->m_len;
1407 }
1408
1409 /* Chain received mbufs. */
1410 if (sc->age_cdata.age_rxhead == NULL) {
1411 sc->age_cdata.age_rxhead = mp;
1412 sc->age_cdata.age_rxtail = mp;
1413 } else {
1414 mp->m_flags &= ~M_PKTHDR;
1415 sc->age_cdata.age_rxprev_tail =
1416 sc->age_cdata.age_rxtail;
1417 sc->age_cdata.age_rxtail->m_next = mp;
1418 sc->age_cdata.age_rxtail = mp;
1419 }
1420
1421 if (count == nsegs - 1) {
1422 /*
1423 * It seems that L1 controller has no way
1424 * to tell hardware to strip CRC bytes.
1425 */
1426 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1427 if (nsegs > 1) {
1428 /* Remove the CRC bytes in chained mbufs. */
1429 pktlen -= ETHER_CRC_LEN;
1430 if (mp->m_len <= ETHER_CRC_LEN) {
1431 sc->age_cdata.age_rxtail =
1432 sc->age_cdata.age_rxprev_tail;
1433 sc->age_cdata.age_rxtail->m_len -=
1434 (ETHER_CRC_LEN - mp->m_len);
1435 sc->age_cdata.age_rxtail->m_next = NULL;
1436 m_freem(mp);
1437 } else {
1438 mp->m_len -= ETHER_CRC_LEN;
1439 }
1440 }
1441
1442 m = sc->age_cdata.age_rxhead;
1443 m->m_flags |= M_PKTHDR;
1444 m->m_pkthdr.rcvif = ifp;
1445 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1446 /* Set the first mbuf length. */
1447 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1448
1449 /*
1450 * Set checksum information.
1451 * It seems that L1 controller can compute partial
1452 * checksum. The partial checksum value can be used
1453 * to accelerate checksum computation for fragmented
1454 * TCP/UDP packets. Upper network stack already
1455 * takes advantage of the partial checksum value in
1456 * IP reassembly stage. But I'm not sure the
1457 * correctness of the partial hardware checksum
1458 * assistance due to lack of data sheet. If it is
1459 * proven to work on L1 I'll enable it.
1460 */
1461 if (status & AGE_RRD_IPV4) {
1462 if (status & AGE_RRD_IPCSUM_NOK)
1463 m->m_pkthdr.csum_flags |=
1464 M_CSUM_IPv4_BAD;
1465 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1466 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1467 m->m_pkthdr.csum_flags |=
1468 M_CSUM_TCP_UDP_BAD;
1469 }
1470 /*
1471 * Don't mark bad checksum for TCP/UDP frames
1472 * as fragmented frames may always have set
1473 * bad checksummed bit of descriptor status.
1474 */
1475 }
1476 #if NVLAN > 0
1477 /* Check for VLAN tagged frames. */
1478 if (status & AGE_RRD_VLAN) {
1479 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1480 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1481 continue);
1482 }
1483 #endif
1484
1485 #if NBPFILTER > 0
1486 if (ifp->if_bpf)
1487 bpf_mtap(ifp->if_bpf, m);
1488 #endif
1489 /* Pass it on. */
1490 ether_input(ifp, m);
1491
1492 /* Reset mbuf chains. */
1493 AGE_RXCHAIN_RESET(sc);
1494 }
1495 }
1496
1497 if (count != nsegs) {
1498 sc->age_cdata.age_rx_cons += nsegs;
1499 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1500 } else
1501 sc->age_cdata.age_rx_cons = rx_cons;
1502 }
1503
1504 static void
1505 age_rxintr(struct age_softc *sc, int rr_prod)
1506 {
1507 struct rx_rdesc *rxrd;
1508 int rr_cons, nsegs, pktlen, prog;
1509
1510 rr_cons = sc->age_cdata.age_rr_cons;
1511 if (rr_cons == rr_prod)
1512 return;
1513
1514 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1515 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1516 BUS_DMASYNC_POSTREAD);
1517
1518 for (prog = 0; rr_cons != rr_prod; prog++) {
1519 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1520 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1521 if (nsegs == 0)
1522 break;
1523 /*
1524 * Check number of segments against received bytes
1525 * Non-matching value would indicate that hardware
1526 * is still trying to update Rx return descriptors.
1527 * I'm not sure whether this check is really needed.
1528 */
1529 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1530 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1531 (MCLBYTES - ETHER_ALIGN)))
1532 break;
1533
1534 /* Received a frame. */
1535 age_rxeof(sc, rxrd);
1536
1537 /* Clear return ring. */
1538 rxrd->index = 0;
1539 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1540 }
1541
1542 if (prog > 0) {
1543 /* Update the consumer index. */
1544 sc->age_cdata.age_rr_cons = rr_cons;
1545
1546 /* Sync descriptors. */
1547 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1548 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1549 BUS_DMASYNC_PREWRITE);
1550
1551 /* Notify hardware availability of new Rx buffers. */
1552 AGE_COMMIT_MBOX(sc);
1553 }
1554 }
1555
1556 static void
1557 age_tick(void *xsc)
1558 {
1559 struct age_softc *sc = xsc;
1560 struct mii_data *mii = &sc->sc_miibus;
1561 int s;
1562
1563 s = splnet();
1564 mii_tick(mii);
1565 splx(s);
1566
1567 callout_schedule(&sc->sc_tick_ch, hz);
1568 }
1569
1570 static void
1571 age_reset(struct age_softc *sc)
1572 {
1573 uint32_t reg;
1574 int i;
1575
1576 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1577 CSR_READ_4(sc, AGE_MASTER_CFG);
1578 DELAY(1000);
1579 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1580 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1581 break;
1582 DELAY(10);
1583 }
1584
1585 if (i == 0)
1586 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1587 reg);
1588
1589 /* Initialize PCIe module. From Linux. */
1590 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1591 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1592 }
1593
1594 static int
1595 age_init(struct ifnet *ifp)
1596 {
1597 struct age_softc *sc = ifp->if_softc;
1598 struct mii_data *mii;
1599 uint8_t eaddr[ETHER_ADDR_LEN];
1600 bus_addr_t paddr;
1601 uint32_t reg, fsize;
1602 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1603 int error;
1604
1605 /*
1606 * Cancel any pending I/O.
1607 */
1608 age_stop(ifp, 0);
1609
1610 /*
1611 * Reset the chip to a known state.
1612 */
1613 age_reset(sc);
1614
1615 /* Initialize descriptors. */
1616 error = age_init_rx_ring(sc);
1617 if (error != 0) {
1618 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1619 age_stop(ifp, 0);
1620 return error;
1621 }
1622 age_init_rr_ring(sc);
1623 age_init_tx_ring(sc);
1624 age_init_cmb_block(sc);
1625 age_init_smb_block(sc);
1626
1627 /* Reprogram the station address. */
1628 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1629 CSR_WRITE_4(sc, AGE_PAR0,
1630 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1631 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1632
1633 /* Set descriptor base addresses. */
1634 paddr = sc->age_rdata.age_tx_ring_paddr;
1635 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1636 paddr = sc->age_rdata.age_rx_ring_paddr;
1637 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1638 paddr = sc->age_rdata.age_rr_ring_paddr;
1639 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1640 paddr = sc->age_rdata.age_tx_ring_paddr;
1641 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1642 paddr = sc->age_rdata.age_cmb_block_paddr;
1643 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1644 paddr = sc->age_rdata.age_smb_block_paddr;
1645 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1646
1647 /* Set Rx/Rx return descriptor counter. */
1648 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1649 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1650 DESC_RRD_CNT_MASK) |
1651 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1652
1653 /* Set Tx descriptor counter. */
1654 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1655 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1656
1657 /* Tell hardware that we're ready to load descriptors. */
1658 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1659
1660 /*
1661 * Initialize mailbox register.
1662 * Updated producer/consumer index information is exchanged
1663 * through this mailbox register. However Tx producer and
1664 * Rx return consumer/Rx producer are all shared such that
1665 * it's hard to separate code path between Tx and Rx without
1666 * locking. If L1 hardware have a separate mail box register
1667 * for Tx and Rx consumer/producer management we could have
1668 * indepent Tx/Rx handler which in turn Rx handler could have
1669 * been run without any locking.
1670 */
1671 AGE_COMMIT_MBOX(sc);
1672
1673 /* Configure IPG/IFG parameters. */
1674 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1675 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1676 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1677 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1678 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1679
1680 /* Set parameters for half-duplex media. */
1681 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1682 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1683 HDPX_CFG_LCOL_MASK) |
1684 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1685 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1686 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1687 HDPX_CFG_ABEBT_MASK) |
1688 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1689 HDPX_CFG_JAMIPG_MASK));
1690
1691 /* Configure interrupt moderation timer. */
1692 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1693 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1694 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1695 reg &= ~MASTER_MTIMER_ENB;
1696 if (AGE_USECS(sc->age_int_mod) == 0)
1697 reg &= ~MASTER_ITIMER_ENB;
1698 else
1699 reg |= MASTER_ITIMER_ENB;
1700 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1701 if (agedebug)
1702 printf("%s: interrupt moderation is %d us.\n",
1703 device_xname(sc->sc_dev), sc->age_int_mod);
1704 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1705
1706 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1707 if (ifp->if_mtu < ETHERMTU)
1708 sc->age_max_frame_size = ETHERMTU;
1709 else
1710 sc->age_max_frame_size = ifp->if_mtu;
1711 sc->age_max_frame_size += ETHER_HDR_LEN +
1712 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1713 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1714
1715 /* Configure jumbo frame. */
1716 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1717 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1718 (((fsize / sizeof(uint64_t)) <<
1719 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1720 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1721 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1722 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1723 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1724
1725 /* Configure flow-control parameters. From Linux. */
1726 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1727 /*
1728 * Magic workaround for old-L1.
1729 * Don't know which hw revision requires this magic.
1730 */
1731 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1732 /*
1733 * Another magic workaround for flow-control mode
1734 * change. From Linux.
1735 */
1736 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1737 }
1738 /*
1739 * TODO
1740 * Should understand pause parameter relationships between FIFO
1741 * size and number of Rx descriptors and Rx return descriptors.
1742 *
1743 * Magic parameters came from Linux.
1744 */
1745 switch (sc->age_chip_rev) {
1746 case 0x8001:
1747 case 0x9001:
1748 case 0x9002:
1749 case 0x9003:
1750 rxf_hi = AGE_RX_RING_CNT / 16;
1751 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1752 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1753 rrd_lo = AGE_RR_RING_CNT / 16;
1754 break;
1755 default:
1756 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1757 rxf_lo = reg / 16;
1758 if (rxf_lo < 192)
1759 rxf_lo = 192;
1760 rxf_hi = (reg * 7) / 8;
1761 if (rxf_hi < rxf_lo)
1762 rxf_hi = rxf_lo + 16;
1763 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1764 rrd_lo = reg / 8;
1765 rrd_hi = (reg * 7) / 8;
1766 if (rrd_lo < 2)
1767 rrd_lo = 2;
1768 if (rrd_hi < rrd_lo)
1769 rrd_hi = rrd_lo + 3;
1770 break;
1771 }
1772 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1773 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1774 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1775 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1776 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1777 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1778 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1779 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1780 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1781 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1782
1783 /* Configure RxQ. */
1784 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1785 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1786 RXQ_CFG_RD_BURST_MASK) |
1787 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1788 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1789 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1790 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1791 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1792
1793 /* Configure TxQ. */
1794 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1795 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1796 TXQ_CFG_TPD_BURST_MASK) |
1797 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1798 TXQ_CFG_TX_FIFO_BURST_MASK) |
1799 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1800 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1801 TXQ_CFG_ENB);
1802
1803 /* Configure DMA parameters. */
1804 CSR_WRITE_4(sc, AGE_DMA_CFG,
1805 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1806 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1807 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1808
1809 /* Configure CMB DMA write threshold. */
1810 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1811 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1812 CMB_WR_THRESH_RRD_MASK) |
1813 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1814 CMB_WR_THRESH_TPD_MASK));
1815
1816 /* Set CMB/SMB timer and enable them. */
1817 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1818 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1819 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1820
1821 /* Request SMB updates for every seconds. */
1822 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1823 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1824
1825 /*
1826 * Disable all WOL bits as WOL can interfere normal Rx
1827 * operation.
1828 */
1829 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1830
1831 /*
1832 * Configure Tx/Rx MACs.
1833 * - Auto-padding for short frames.
1834 * - Enable CRC generation.
1835 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1836 * of MAC is followed after link establishment.
1837 */
1838 CSR_WRITE_4(sc, AGE_MAC_CFG,
1839 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1840 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1841 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1842 MAC_CFG_PREAMBLE_MASK));
1843
1844 /* Set up the receive filter. */
1845 age_rxfilter(sc);
1846 age_rxvlan(sc);
1847
1848 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1849 reg |= MAC_CFG_RXCSUM_ENB;
1850
1851 /* Ack all pending interrupts and clear it. */
1852 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1853 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1854
1855 /* Finally enable Tx/Rx MAC. */
1856 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1857
1858 sc->age_flags &= ~AGE_FLAG_LINK;
1859
1860 /* Switch to the current media. */
1861 mii = &sc->sc_miibus;
1862 mii_mediachg(mii);
1863
1864 callout_schedule(&sc->sc_tick_ch, hz);
1865
1866 ifp->if_flags |= IFF_RUNNING;
1867 ifp->if_flags &= ~IFF_OACTIVE;
1868
1869 return 0;
1870 }
1871
1872 static void
1873 age_stop(struct ifnet *ifp, int disable)
1874 {
1875 struct age_softc *sc = ifp->if_softc;
1876 struct age_txdesc *txd;
1877 struct age_rxdesc *rxd;
1878 uint32_t reg;
1879 int i;
1880
1881 callout_stop(&sc->sc_tick_ch);
1882
1883 /*
1884 * Mark the interface down and cancel the watchdog timer.
1885 */
1886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1887 ifp->if_timer = 0;
1888
1889 sc->age_flags &= ~AGE_FLAG_LINK;
1890
1891 mii_down(&sc->sc_miibus);
1892
1893 /*
1894 * Disable interrupts.
1895 */
1896 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1897 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1898
1899 /* Stop CMB/SMB updates. */
1900 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1901
1902 /* Stop Rx/Tx MAC. */
1903 age_stop_rxmac(sc);
1904 age_stop_txmac(sc);
1905
1906 /* Stop DMA. */
1907 CSR_WRITE_4(sc, AGE_DMA_CFG,
1908 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1909
1910 /* Stop TxQ/RxQ. */
1911 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1912 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1913 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1914 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1915 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1916 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1917 break;
1918 DELAY(10);
1919 }
1920 if (i == 0)
1921 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1922 device_xname(sc->sc_dev), reg);
1923
1924 /* Reclaim Rx buffers that have been processed. */
1925 if (sc->age_cdata.age_rxhead != NULL)
1926 m_freem(sc->age_cdata.age_rxhead);
1927 AGE_RXCHAIN_RESET(sc);
1928
1929 /*
1930 * Free RX and TX mbufs still in the queues.
1931 */
1932 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1933 rxd = &sc->age_cdata.age_rxdesc[i];
1934 if (rxd->rx_m != NULL) {
1935 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1936 m_freem(rxd->rx_m);
1937 rxd->rx_m = NULL;
1938 }
1939 }
1940 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1941 txd = &sc->age_cdata.age_txdesc[i];
1942 if (txd->tx_m != NULL) {
1943 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1944 m_freem(txd->tx_m);
1945 txd->tx_m = NULL;
1946 }
1947 }
1948 }
1949
1950 static void
1951 age_stats_update(struct age_softc *sc)
1952 {
1953 struct ifnet *ifp = &sc->sc_ec.ec_if;
1954 struct age_stats *stat;
1955 struct smb *smb;
1956
1957 stat = &sc->age_stat;
1958
1959 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1960 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1961
1962 smb = sc->age_rdata.age_smb_block;
1963 if (smb->updated == 0)
1964 return;
1965
1966 /* Rx stats. */
1967 stat->rx_frames += smb->rx_frames;
1968 stat->rx_bcast_frames += smb->rx_bcast_frames;
1969 stat->rx_mcast_frames += smb->rx_mcast_frames;
1970 stat->rx_pause_frames += smb->rx_pause_frames;
1971 stat->rx_control_frames += smb->rx_control_frames;
1972 stat->rx_crcerrs += smb->rx_crcerrs;
1973 stat->rx_lenerrs += smb->rx_lenerrs;
1974 stat->rx_bytes += smb->rx_bytes;
1975 stat->rx_runts += smb->rx_runts;
1976 stat->rx_fragments += smb->rx_fragments;
1977 stat->rx_pkts_64 += smb->rx_pkts_64;
1978 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1979 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1980 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1981 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1982 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1983 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1984 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1985 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1986 stat->rx_desc_oflows += smb->rx_desc_oflows;
1987 stat->rx_alignerrs += smb->rx_alignerrs;
1988 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1989 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1990 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1991
1992 /* Tx stats. */
1993 stat->tx_frames += smb->tx_frames;
1994 stat->tx_bcast_frames += smb->tx_bcast_frames;
1995 stat->tx_mcast_frames += smb->tx_mcast_frames;
1996 stat->tx_pause_frames += smb->tx_pause_frames;
1997 stat->tx_excess_defer += smb->tx_excess_defer;
1998 stat->tx_control_frames += smb->tx_control_frames;
1999 stat->tx_deferred += smb->tx_deferred;
2000 stat->tx_bytes += smb->tx_bytes;
2001 stat->tx_pkts_64 += smb->tx_pkts_64;
2002 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2003 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2004 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2005 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2006 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2007 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2008 stat->tx_single_colls += smb->tx_single_colls;
2009 stat->tx_multi_colls += smb->tx_multi_colls;
2010 stat->tx_late_colls += smb->tx_late_colls;
2011 stat->tx_excess_colls += smb->tx_excess_colls;
2012 stat->tx_underrun += smb->tx_underrun;
2013 stat->tx_desc_underrun += smb->tx_desc_underrun;
2014 stat->tx_lenerrs += smb->tx_lenerrs;
2015 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2016 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2017 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2018
2019 /* Update counters in ifnet. */
2020 ifp->if_opackets += smb->tx_frames;
2021
2022 ifp->if_collisions += smb->tx_single_colls +
2023 smb->tx_multi_colls + smb->tx_late_colls +
2024 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2025
2026 ifp->if_oerrors += smb->tx_excess_colls +
2027 smb->tx_late_colls + smb->tx_underrun +
2028 smb->tx_pkts_truncated;
2029
2030 ifp->if_ipackets += smb->rx_frames;
2031
2032 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2033 smb->rx_runts + smb->rx_pkts_truncated +
2034 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2035 smb->rx_alignerrs;
2036
2037 /* Update done, clear. */
2038 smb->updated = 0;
2039
2040 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2041 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2042 }
2043
2044 static void
2045 age_stop_txmac(struct age_softc *sc)
2046 {
2047 uint32_t reg;
2048 int i;
2049
2050 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2051 if ((reg & MAC_CFG_TX_ENB) != 0) {
2052 reg &= ~MAC_CFG_TX_ENB;
2053 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2054 }
2055 /* Stop Tx DMA engine. */
2056 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2057 if ((reg & DMA_CFG_RD_ENB) != 0) {
2058 reg &= ~DMA_CFG_RD_ENB;
2059 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2060 }
2061 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2062 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2063 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2064 break;
2065 DELAY(10);
2066 }
2067 if (i == 0)
2068 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2069 }
2070
2071 static void
2072 age_stop_rxmac(struct age_softc *sc)
2073 {
2074 uint32_t reg;
2075 int i;
2076
2077 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2078 if ((reg & MAC_CFG_RX_ENB) != 0) {
2079 reg &= ~MAC_CFG_RX_ENB;
2080 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2081 }
2082 /* Stop Rx DMA engine. */
2083 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2084 if ((reg & DMA_CFG_WR_ENB) != 0) {
2085 reg &= ~DMA_CFG_WR_ENB;
2086 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2087 }
2088 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2089 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2090 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2091 break;
2092 DELAY(10);
2093 }
2094 if (i == 0)
2095 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2096 }
2097
2098 static void
2099 age_init_tx_ring(struct age_softc *sc)
2100 {
2101 struct age_ring_data *rd;
2102 struct age_txdesc *txd;
2103 int i;
2104
2105 sc->age_cdata.age_tx_prod = 0;
2106 sc->age_cdata.age_tx_cons = 0;
2107 sc->age_cdata.age_tx_cnt = 0;
2108
2109 rd = &sc->age_rdata;
2110 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2111 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2112 txd = &sc->age_cdata.age_txdesc[i];
2113 txd->tx_desc = &rd->age_tx_ring[i];
2114 txd->tx_m = NULL;
2115 }
2116 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2117 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2118 }
2119
2120 static int
2121 age_init_rx_ring(struct age_softc *sc)
2122 {
2123 struct age_ring_data *rd;
2124 struct age_rxdesc *rxd;
2125 int i;
2126
2127 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2128 rd = &sc->age_rdata;
2129 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2130 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2131 rxd = &sc->age_cdata.age_rxdesc[i];
2132 rxd->rx_m = NULL;
2133 rxd->rx_desc = &rd->age_rx_ring[i];
2134 if (age_newbuf(sc, rxd, 1) != 0)
2135 return ENOBUFS;
2136 }
2137
2138 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2139 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2140
2141 return 0;
2142 }
2143
2144 static void
2145 age_init_rr_ring(struct age_softc *sc)
2146 {
2147 struct age_ring_data *rd;
2148
2149 sc->age_cdata.age_rr_cons = 0;
2150 AGE_RXCHAIN_RESET(sc);
2151
2152 rd = &sc->age_rdata;
2153 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2154 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2155 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2156 }
2157
2158 static void
2159 age_init_cmb_block(struct age_softc *sc)
2160 {
2161 struct age_ring_data *rd;
2162
2163 rd = &sc->age_rdata;
2164 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2165 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2166 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2167 }
2168
2169 static void
2170 age_init_smb_block(struct age_softc *sc)
2171 {
2172 struct age_ring_data *rd;
2173
2174 rd = &sc->age_rdata;
2175 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2176 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2177 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2178 }
2179
2180 static int
2181 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2182 {
2183 struct rx_desc *desc;
2184 struct mbuf *m;
2185 bus_dmamap_t map;
2186 int error;
2187
2188 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2189 if (m == NULL)
2190 return ENOBUFS;
2191 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2192 if (!(m->m_flags & M_EXT)) {
2193 m_freem(m);
2194 return ENOBUFS;
2195 }
2196
2197 m->m_len = m->m_pkthdr.len = MCLBYTES;
2198 m_adj(m, ETHER_ALIGN);
2199
2200 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2201 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2202
2203 if (error != 0) {
2204 if (!error) {
2205 bus_dmamap_unload(sc->sc_dmat,
2206 sc->age_cdata.age_rx_sparemap);
2207 error = EFBIG;
2208 printf("%s: too many segments?!\n",
2209 device_xname(sc->sc_dev));
2210 }
2211 m_freem(m);
2212
2213 if (init)
2214 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2215 return error;
2216 }
2217
2218 if (rxd->rx_m != NULL) {
2219 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2220 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2221 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2222 }
2223 map = rxd->rx_dmamap;
2224 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2225 sc->age_cdata.age_rx_sparemap = map;
2226 rxd->rx_m = m;
2227
2228 desc = rxd->rx_desc;
2229 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2230 desc->len =
2231 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2232 AGE_RD_LEN_SHIFT);
2233
2234 return 0;
2235 }
2236
2237 static void
2238 age_rxvlan(struct age_softc *sc)
2239 {
2240 uint32_t reg;
2241
2242 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2243 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2244 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2245 reg |= MAC_CFG_VLAN_TAG_STRIP;
2246 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2247 }
2248
2249 static void
2250 age_rxfilter(struct age_softc *sc)
2251 {
2252 struct ethercom *ec = &sc->sc_ec;
2253 struct ifnet *ifp = &sc->sc_ec.ec_if;
2254 struct ether_multi *enm;
2255 struct ether_multistep step;
2256 uint32_t crc;
2257 uint32_t mchash[2];
2258 uint32_t rxcfg;
2259
2260 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2261 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2262 ifp->if_flags &= ~IFF_ALLMULTI;
2263
2264 /*
2265 * Always accept broadcast frames.
2266 */
2267 rxcfg |= MAC_CFG_BCAST;
2268
2269 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2270 ifp->if_flags |= IFF_ALLMULTI;
2271 if (ifp->if_flags & IFF_PROMISC)
2272 rxcfg |= MAC_CFG_PROMISC;
2273 else
2274 rxcfg |= MAC_CFG_ALLMULTI;
2275 mchash[0] = mchash[1] = 0xFFFFFFFF;
2276 } else {
2277 /* Program new filter. */
2278 memset(mchash, 0, sizeof(mchash));
2279
2280 ETHER_FIRST_MULTI(step, ec, enm);
2281 while (enm != NULL) {
2282 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2283 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2284 ETHER_NEXT_MULTI(step, enm);
2285 }
2286 }
2287
2288 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2289 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2290 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2291 }
2292