if_age.c revision 1.40.2.1 1 /* $NetBSD: if_age.c,v 1.40.2.1 2012/10/30 17:21:25 yamt Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.40.2.1 2012/10/30 17:21:25 yamt Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <sys/rnd.h>
69
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76
77 #include <dev/pci/if_agereg.h>
78
79 static int age_match(device_t, cfdata_t, void *);
80 static void age_attach(device_t, device_t, void *);
81 static int age_detach(device_t, int);
82
83 static bool age_resume(device_t, const pmf_qual_t *);
84
85 static int age_miibus_readreg(device_t, int, int);
86 static void age_miibus_writereg(device_t, int, int, int);
87 static void age_miibus_statchg(struct ifnet *);
88
89 static int age_init(struct ifnet *);
90 static int age_ioctl(struct ifnet *, u_long, void *);
91 static void age_start(struct ifnet *);
92 static void age_watchdog(struct ifnet *);
93 static bool age_shutdown(device_t, int);
94 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
95 static int age_mediachange(struct ifnet *);
96
97 static int age_intr(void *);
98 static int age_dma_alloc(struct age_softc *);
99 static void age_dma_free(struct age_softc *);
100 static void age_get_macaddr(struct age_softc *, uint8_t[]);
101 static void age_phy_reset(struct age_softc *);
102
103 static int age_encap(struct age_softc *, struct mbuf **);
104 static void age_init_tx_ring(struct age_softc *);
105 static int age_init_rx_ring(struct age_softc *);
106 static void age_init_rr_ring(struct age_softc *);
107 static void age_init_cmb_block(struct age_softc *);
108 static void age_init_smb_block(struct age_softc *);
109 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
110 static void age_mac_config(struct age_softc *);
111 static void age_txintr(struct age_softc *, int);
112 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
113 static void age_rxintr(struct age_softc *, int);
114 static void age_tick(void *);
115 static void age_reset(struct age_softc *);
116 static void age_stop(struct ifnet *, int);
117 static void age_stats_update(struct age_softc *);
118 static void age_stop_txmac(struct age_softc *);
119 static void age_stop_rxmac(struct age_softc *);
120 static void age_rxvlan(struct age_softc *sc);
121 static void age_rxfilter(struct age_softc *);
122
123 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
124 age_match, age_attach, age_detach, NULL);
125
126 int agedebug = 0;
127 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
128
129 #define ETHER_ALIGN 2
130 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 age_match(device_t dev, cfdata_t match, void *aux)
134 {
135 struct pci_attach_args *pa = aux;
136
137 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 }
140
141 static void
142 age_attach(device_t parent, device_t self, void *aux)
143 {
144 struct age_softc *sc = device_private(self);
145 struct pci_attach_args *pa = aux;
146 pci_intr_handle_t ih;
147 const char *intrstr;
148 struct ifnet *ifp = &sc->sc_ec.ec_if;
149 pcireg_t memtype;
150 int error = 0;
151
152 aprint_naive("\n");
153 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
154
155 sc->sc_dev = self;
156 sc->sc_dmat = pa->pa_dmat;
157 sc->sc_pct = pa->pa_pc;
158 sc->sc_pcitag = pa->pa_tag;
159
160 /*
161 * Allocate IO memory
162 */
163 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
164 switch (memtype) {
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
168 break;
169 default:
170 aprint_error_dev(self, "invalid base address register\n");
171 break;
172 }
173
174 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
175 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
176 aprint_error_dev(self, "could not map mem space\n");
177 return;
178 }
179
180 if (pci_intr_map(pa, &ih) != 0) {
181 aprint_error_dev(self, "could not map interrupt\n");
182 goto fail;
183 }
184
185 /*
186 * Allocate IRQ
187 */
188 intrstr = pci_intr_string(sc->sc_pct, ih);
189 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
190 age_intr, sc);
191 if (sc->sc_irq_handle == NULL) {
192 aprint_error_dev(self, "could not establish interrupt");
193 if (intrstr != NULL)
194 aprint_error(" at %s", intrstr);
195 aprint_error("\n");
196 goto fail;
197 }
198 aprint_normal_dev(self, "%s\n", intrstr);
199
200 /* Set PHY address. */
201 sc->age_phyaddr = AGE_PHY_ADDR;
202
203 /* Reset PHY. */
204 age_phy_reset(sc);
205
206 /* Reset the ethernet controller. */
207 age_reset(sc);
208
209 /* Get PCI and chip id/revision. */
210 sc->age_rev = PCI_REVISION(pa->pa_class);
211 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
212 MASTER_CHIP_REV_SHIFT;
213
214 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
215 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
216
217 if (agedebug) {
218 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
219 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
220 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
221 }
222
223 /* Set max allowable DMA size. */
224 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
225 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
226
227 /* Allocate DMA stuffs */
228 error = age_dma_alloc(sc);
229 if (error)
230 goto fail;
231
232 callout_init(&sc->sc_tick_ch, 0);
233 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
234
235 /* Load station address. */
236 age_get_macaddr(sc, sc->sc_enaddr);
237
238 aprint_normal_dev(self, "Ethernet address %s\n",
239 ether_sprintf(sc->sc_enaddr));
240
241 ifp->if_softc = sc;
242 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
243 ifp->if_init = age_init;
244 ifp->if_ioctl = age_ioctl;
245 ifp->if_start = age_start;
246 ifp->if_stop = age_stop;
247 ifp->if_watchdog = age_watchdog;
248 ifp->if_baudrate = IF_Gbps(1);
249 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
250 IFQ_SET_READY(&ifp->if_snd);
251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
252
253 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
254
255 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
256 IFCAP_CSUM_TCPv4_Rx |
257 IFCAP_CSUM_UDPv4_Rx;
258 #ifdef AGE_CHECKSUM
259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
260 IFCAP_CSUM_TCPv4_Tx |
261 IFCAP_CSUM_UDPv4_Tx;
262 #endif
263
264 #if NVLAN > 0
265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267
268 /* Set up MII bus. */
269 sc->sc_miibus.mii_ifp = ifp;
270 sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 sc->sc_miibus.mii_statchg = age_miibus_statchg;
273
274 sc->sc_ec.ec_mii = &sc->sc_miibus;
275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 age_mediastatus);
277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 MII_OFFSET_ANY, MIIF_DOPAUSE);
279
280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 aprint_error_dev(self, "no PHY found!\n");
282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 0, NULL);
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 } else
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287
288 if_attach(ifp);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
292 pmf_class_network_register(self, ifp);
293 else
294 aprint_error_dev(self, "couldn't establish power handler\n");
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 pmf_device_deregister(self);
318 s = splnet();
319 age_stop(ifp, 0);
320 splx(s);
321
322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323
324 /* Delete all remaining media. */
325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 if (sc->sc_irq_handle != NULL) {
332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 sc->sc_irq_handle = NULL;
334 }
335 if (sc->sc_mem_size) {
336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 sc->sc_mem_size = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Read a PHY register on the MII of the L1.
344 */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 struct age_softc *sc = device_private(dev);
349 uint32_t v;
350 int i;
351
352 if (phy != sc->age_phyaddr)
353 return 0;
354
355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 DELAY(1);
359 v = CSR_READ_4(sc, AGE_MDIO);
360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 break;
362 }
363
364 if (i == 0) {
365 printf("%s: phy read timeout: phy %d, reg %d\n",
366 device_xname(sc->sc_dev), phy, reg);
367 return 0;
368 }
369
370 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372
373 /*
374 * Write a PHY register on the MII of the L1.
375 */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 struct age_softc *sc = device_private(dev);
380 uint32_t v;
381 int i;
382
383 if (phy != sc->age_phyaddr)
384 return;
385
386 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389
390 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 DELAY(1);
392 v = CSR_READ_4(sc, AGE_MDIO);
393 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 break;
395 }
396
397 if (i == 0) {
398 printf("%s: phy write timeout: phy %d, reg %d\n",
399 device_xname(sc->sc_dev), phy, reg);
400 }
401 }
402
403 /*
404 * Callback from MII layer when media changes.
405 */
406 static void
407 age_miibus_statchg(struct ifnet *ifp)
408 {
409 struct age_softc *sc = ifp->if_softc;
410 struct mii_data *mii = &sc->sc_miibus;
411
412 if ((ifp->if_flags & IFF_RUNNING) == 0)
413 return;
414
415 sc->age_flags &= ~AGE_FLAG_LINK;
416 if ((mii->mii_media_status & IFM_AVALID) != 0) {
417 switch (IFM_SUBTYPE(mii->mii_media_active)) {
418 case IFM_10_T:
419 case IFM_100_TX:
420 case IFM_1000_T:
421 sc->age_flags |= AGE_FLAG_LINK;
422 break;
423 default:
424 break;
425 }
426 }
427
428 /* Stop Rx/Tx MACs. */
429 age_stop_rxmac(sc);
430 age_stop_txmac(sc);
431
432 /* Program MACs with resolved speed/duplex/flow-control. */
433 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
434 uint32_t reg;
435
436 age_mac_config(sc);
437 reg = CSR_READ_4(sc, AGE_MAC_CFG);
438 /* Restart DMA engine and Tx/Rx MAC. */
439 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
440 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
441 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
442 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
443 }
444 }
445
446 /*
447 * Get the current interface media status.
448 */
449 static void
450 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
451 {
452 struct age_softc *sc = ifp->if_softc;
453 struct mii_data *mii = &sc->sc_miibus;
454
455 mii_pollstat(mii);
456 ifmr->ifm_status = mii->mii_media_status;
457 ifmr->ifm_active = mii->mii_media_active;
458 }
459
460 /*
461 * Set hardware to newly-selected media.
462 */
463 static int
464 age_mediachange(struct ifnet *ifp)
465 {
466 struct age_softc *sc = ifp->if_softc;
467 struct mii_data *mii = &sc->sc_miibus;
468 int error;
469
470 if (mii->mii_instance != 0) {
471 struct mii_softc *miisc;
472
473 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
474 mii_phy_reset(miisc);
475 }
476 error = mii_mediachg(mii);
477
478 return error;
479 }
480
481 static int
482 age_intr(void *arg)
483 {
484 struct age_softc *sc = arg;
485 struct ifnet *ifp = &sc->sc_ec.ec_if;
486 struct cmb *cmb;
487 uint32_t status;
488
489 status = CSR_READ_4(sc, AGE_INTR_STATUS);
490 if (status == 0 || (status & AGE_INTRS) == 0)
491 return 0;
492
493 cmb = sc->age_rdata.age_cmb_block;
494 if (cmb == NULL) {
495 /* Happens when bringing up the interface
496 * w/o having a carrier. Ack the interrupt.
497 */
498 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
499 return 0;
500 }
501
502 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
503 sc->age_cdata.age_cmb_block_map->dm_mapsize,
504 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
505 status = le32toh(cmb->intr_status);
506 /* ACK/reenable interrupts */
507 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
508 while ((status & AGE_INTRS) != 0) {
509 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
510 TPD_CONS_SHIFT;
511 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
512 RRD_PROD_SHIFT;
513
514 /* Let hardware know CMB was served. */
515 cmb->intr_status = 0;
516 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
517 sc->age_cdata.age_cmb_block_map->dm_mapsize,
518 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519
520 if (ifp->if_flags & IFF_RUNNING) {
521 if (status & INTR_CMB_RX)
522 age_rxintr(sc, sc->age_rr_prod);
523
524 if (status & INTR_CMB_TX)
525 age_txintr(sc, sc->age_tpd_cons);
526
527 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
528 if (status & INTR_DMA_RD_TO_RST)
529 printf("%s: DMA read error! -- "
530 "resetting\n",
531 device_xname(sc->sc_dev));
532 if (status & INTR_DMA_WR_TO_RST)
533 printf("%s: DMA write error! -- "
534 "resetting\n",
535 device_xname(sc->sc_dev));
536 age_init(ifp);
537 }
538
539 age_start(ifp);
540
541 if (status & INTR_SMB)
542 age_stats_update(sc);
543 }
544 /* check if more interrupts did came in */
545 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
546 sc->age_cdata.age_cmb_block_map->dm_mapsize,
547 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
548 status = le32toh(cmb->intr_status);
549 }
550
551 return 1;
552 }
553
554 static void
555 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
556 {
557 uint32_t ea[2], reg;
558 int i, vpdc;
559
560 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
561 if ((reg & SPI_VPD_ENB) != 0) {
562 /* Get VPD stored in TWSI EEPROM. */
563 reg &= ~SPI_VPD_ENB;
564 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
565 }
566
567 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
568 PCI_CAP_VPD, &vpdc, NULL)) {
569 /*
570 * PCI VPD capability found, let TWSI reload EEPROM.
571 * This will set Ethernet address of controller.
572 */
573 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
574 TWSI_CTRL_SW_LD_START);
575 for (i = 100; i > 0; i++) {
576 DELAY(1000);
577 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
578 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
579 break;
580 }
581 if (i == 0)
582 printf("%s: reloading EEPROM timeout!\n",
583 device_xname(sc->sc_dev));
584 } else {
585 if (agedebug)
586 printf("%s: PCI VPD capability not found!\n",
587 device_xname(sc->sc_dev));
588 }
589
590 ea[0] = CSR_READ_4(sc, AGE_PAR0);
591 ea[1] = CSR_READ_4(sc, AGE_PAR1);
592
593 eaddr[0] = (ea[1] >> 8) & 0xFF;
594 eaddr[1] = (ea[1] >> 0) & 0xFF;
595 eaddr[2] = (ea[0] >> 24) & 0xFF;
596 eaddr[3] = (ea[0] >> 16) & 0xFF;
597 eaddr[4] = (ea[0] >> 8) & 0xFF;
598 eaddr[5] = (ea[0] >> 0) & 0xFF;
599 }
600
601 static void
602 age_phy_reset(struct age_softc *sc)
603 {
604 uint16_t reg, pn;
605 int i, linkup;
606
607 /* Reset PHY. */
608 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
609 DELAY(2000);
610 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
611 DELAY(2000);
612
613 #define ATPHY_DBG_ADDR 0x1D
614 #define ATPHY_DBG_DATA 0x1E
615 #define ATPHY_CDTC 0x16
616 #define PHY_CDTC_ENB 0x0001
617 #define PHY_CDTC_POFF 8
618 #define ATPHY_CDTS 0x1C
619 #define PHY_CDTS_STAT_OK 0x0000
620 #define PHY_CDTS_STAT_SHORT 0x0100
621 #define PHY_CDTS_STAT_OPEN 0x0200
622 #define PHY_CDTS_STAT_INVAL 0x0300
623 #define PHY_CDTS_STAT_MASK 0x0300
624
625 /* Check power saving mode. Magic from Linux. */
626 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
627 for (linkup = 0, pn = 0; pn < 4; pn++) {
628 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
629 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
630 for (i = 200; i > 0; i--) {
631 DELAY(1000);
632 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
633 ATPHY_CDTC);
634 if ((reg & PHY_CDTC_ENB) == 0)
635 break;
636 }
637 DELAY(1000);
638 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
639 ATPHY_CDTS);
640 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
641 linkup++;
642 break;
643 }
644 }
645 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
646 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
647 if (linkup == 0) {
648 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
649 ATPHY_DBG_ADDR, 0);
650 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
651 ATPHY_DBG_DATA, 0x124E);
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
653 ATPHY_DBG_ADDR, 1);
654 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_DATA);
656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_DATA, reg | 0x03);
658 /* XXX */
659 DELAY(1500 * 1000);
660 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
661 ATPHY_DBG_ADDR, 0);
662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 ATPHY_DBG_DATA, 0x024E);
664 }
665
666 #undef ATPHY_DBG_ADDR
667 #undef ATPHY_DBG_DATA
668 #undef ATPHY_CDTC
669 #undef PHY_CDTC_ENB
670 #undef PHY_CDTC_POFF
671 #undef ATPHY_CDTS
672 #undef PHY_CDTS_STAT_OK
673 #undef PHY_CDTS_STAT_SHORT
674 #undef PHY_CDTS_STAT_OPEN
675 #undef PHY_CDTS_STAT_INVAL
676 #undef PHY_CDTS_STAT_MASK
677 }
678
679 static int
680 age_dma_alloc(struct age_softc *sc)
681 {
682 struct age_txdesc *txd;
683 struct age_rxdesc *rxd;
684 int nsegs, error, i;
685
686 /*
687 * Create DMA stuffs for TX ring
688 */
689 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
690 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
691 if (error) {
692 sc->age_cdata.age_tx_ring_map = NULL;
693 return ENOBUFS;
694 }
695
696 /* Allocate DMA'able memory for TX ring */
697 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
698 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
699 &nsegs, BUS_DMA_NOWAIT);
700 if (error) {
701 printf("%s: could not allocate DMA'able memory for Tx ring, "
702 "error = %i\n", device_xname(sc->sc_dev), error);
703 return error;
704 }
705
706 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
707 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
708 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
709 if (error)
710 return ENOBUFS;
711
712 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
713
714 /* Load the DMA map for Tx ring. */
715 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
716 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
717 if (error) {
718 printf("%s: could not load DMA'able memory for Tx ring, "
719 "error = %i\n", device_xname(sc->sc_dev), error);
720 bus_dmamem_free(sc->sc_dmat,
721 &sc->age_rdata.age_tx_ring_seg, 1);
722 return error;
723 }
724
725 sc->age_rdata.age_tx_ring_paddr =
726 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
727
728 /*
729 * Create DMA stuffs for RX ring
730 */
731 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
732 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
733 if (error) {
734 sc->age_cdata.age_rx_ring_map = NULL;
735 return ENOBUFS;
736 }
737
738 /* Allocate DMA'able memory for RX ring */
739 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
740 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
741 &nsegs, BUS_DMA_NOWAIT);
742 if (error) {
743 printf("%s: could not allocate DMA'able memory for Rx ring, "
744 "error = %i.\n", device_xname(sc->sc_dev), error);
745 return error;
746 }
747
748 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
749 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
750 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
751 if (error)
752 return ENOBUFS;
753
754 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
755
756 /* Load the DMA map for Rx ring. */
757 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
758 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
759 if (error) {
760 printf("%s: could not load DMA'able memory for Rx ring, "
761 "error = %i.\n", device_xname(sc->sc_dev), error);
762 bus_dmamem_free(sc->sc_dmat,
763 &sc->age_rdata.age_rx_ring_seg, 1);
764 return error;
765 }
766
767 sc->age_rdata.age_rx_ring_paddr =
768 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
769
770 /*
771 * Create DMA stuffs for RX return ring
772 */
773 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
774 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
775 if (error) {
776 sc->age_cdata.age_rr_ring_map = NULL;
777 return ENOBUFS;
778 }
779
780 /* Allocate DMA'able memory for RX return ring */
781 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
782 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
783 &nsegs, BUS_DMA_NOWAIT);
784 if (error) {
785 printf("%s: could not allocate DMA'able memory for Rx "
786 "return ring, error = %i.\n",
787 device_xname(sc->sc_dev), error);
788 return error;
789 }
790
791 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
792 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
793 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
794 if (error)
795 return ENOBUFS;
796
797 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
798
799 /* Load the DMA map for Rx return ring. */
800 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
801 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
802 if (error) {
803 printf("%s: could not load DMA'able memory for Rx return ring, "
804 "error = %i\n", device_xname(sc->sc_dev), error);
805 bus_dmamem_free(sc->sc_dmat,
806 &sc->age_rdata.age_rr_ring_seg, 1);
807 return error;
808 }
809
810 sc->age_rdata.age_rr_ring_paddr =
811 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
812
813 /*
814 * Create DMA stuffs for CMB block
815 */
816 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
817 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
818 &sc->age_cdata.age_cmb_block_map);
819 if (error) {
820 sc->age_cdata.age_cmb_block_map = NULL;
821 return ENOBUFS;
822 }
823
824 /* Allocate DMA'able memory for CMB block */
825 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
826 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
827 &nsegs, BUS_DMA_NOWAIT);
828 if (error) {
829 printf("%s: could not allocate DMA'able memory for "
830 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
831 return error;
832 }
833
834 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
835 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
836 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
837 if (error)
838 return ENOBUFS;
839
840 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
841
842 /* Load the DMA map for CMB block. */
843 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
844 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
845 BUS_DMA_NOWAIT);
846 if (error) {
847 printf("%s: could not load DMA'able memory for CMB block, "
848 "error = %i\n", device_xname(sc->sc_dev), error);
849 bus_dmamem_free(sc->sc_dmat,
850 &sc->age_rdata.age_cmb_block_seg, 1);
851 return error;
852 }
853
854 sc->age_rdata.age_cmb_block_paddr =
855 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
856
857 /*
858 * Create DMA stuffs for SMB block
859 */
860 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
861 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
862 &sc->age_cdata.age_smb_block_map);
863 if (error) {
864 sc->age_cdata.age_smb_block_map = NULL;
865 return ENOBUFS;
866 }
867
868 /* Allocate DMA'able memory for SMB block */
869 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
870 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
871 &nsegs, BUS_DMA_NOWAIT);
872 if (error) {
873 printf("%s: could not allocate DMA'able memory for "
874 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
875 return error;
876 }
877
878 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
879 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
880 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
881 if (error)
882 return ENOBUFS;
883
884 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
885
886 /* Load the DMA map for SMB block */
887 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
888 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
889 BUS_DMA_NOWAIT);
890 if (error) {
891 printf("%s: could not load DMA'able memory for SMB block, "
892 "error = %i\n", device_xname(sc->sc_dev), error);
893 bus_dmamem_free(sc->sc_dmat,
894 &sc->age_rdata.age_smb_block_seg, 1);
895 return error;
896 }
897
898 sc->age_rdata.age_smb_block_paddr =
899 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
900
901 /* Create DMA maps for Tx buffers. */
902 for (i = 0; i < AGE_TX_RING_CNT; i++) {
903 txd = &sc->age_cdata.age_txdesc[i];
904 txd->tx_m = NULL;
905 txd->tx_dmamap = NULL;
906 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
907 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
908 &txd->tx_dmamap);
909 if (error) {
910 txd->tx_dmamap = NULL;
911 printf("%s: could not create Tx dmamap, error = %i.\n",
912 device_xname(sc->sc_dev), error);
913 return error;
914 }
915 }
916
917 /* Create DMA maps for Rx buffers. */
918 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
919 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
920 if (error) {
921 sc->age_cdata.age_rx_sparemap = NULL;
922 printf("%s: could not create spare Rx dmamap, error = %i.\n",
923 device_xname(sc->sc_dev), error);
924 return error;
925 }
926 for (i = 0; i < AGE_RX_RING_CNT; i++) {
927 rxd = &sc->age_cdata.age_rxdesc[i];
928 rxd->rx_m = NULL;
929 rxd->rx_dmamap = NULL;
930 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
931 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
932 if (error) {
933 rxd->rx_dmamap = NULL;
934 printf("%s: could not create Rx dmamap, error = %i.\n",
935 device_xname(sc->sc_dev), error);
936 return error;
937 }
938 }
939
940 return 0;
941 }
942
943 static void
944 age_dma_free(struct age_softc *sc)
945 {
946 struct age_txdesc *txd;
947 struct age_rxdesc *rxd;
948 int i;
949
950 /* Tx buffers */
951 for (i = 0; i < AGE_TX_RING_CNT; i++) {
952 txd = &sc->age_cdata.age_txdesc[i];
953 if (txd->tx_dmamap != NULL) {
954 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
955 txd->tx_dmamap = NULL;
956 }
957 }
958 /* Rx buffers */
959 for (i = 0; i < AGE_RX_RING_CNT; i++) {
960 rxd = &sc->age_cdata.age_rxdesc[i];
961 if (rxd->rx_dmamap != NULL) {
962 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
963 rxd->rx_dmamap = NULL;
964 }
965 }
966 if (sc->age_cdata.age_rx_sparemap != NULL) {
967 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
968 sc->age_cdata.age_rx_sparemap = NULL;
969 }
970
971 /* Tx ring. */
972 if (sc->age_cdata.age_tx_ring_map != NULL)
973 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
974 if (sc->age_cdata.age_tx_ring_map != NULL &&
975 sc->age_rdata.age_tx_ring != NULL)
976 bus_dmamem_free(sc->sc_dmat,
977 &sc->age_rdata.age_tx_ring_seg, 1);
978 sc->age_rdata.age_tx_ring = NULL;
979 sc->age_cdata.age_tx_ring_map = NULL;
980
981 /* Rx ring. */
982 if (sc->age_cdata.age_rx_ring_map != NULL)
983 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
984 if (sc->age_cdata.age_rx_ring_map != NULL &&
985 sc->age_rdata.age_rx_ring != NULL)
986 bus_dmamem_free(sc->sc_dmat,
987 &sc->age_rdata.age_rx_ring_seg, 1);
988 sc->age_rdata.age_rx_ring = NULL;
989 sc->age_cdata.age_rx_ring_map = NULL;
990
991 /* Rx return ring. */
992 if (sc->age_cdata.age_rr_ring_map != NULL)
993 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
994 if (sc->age_cdata.age_rr_ring_map != NULL &&
995 sc->age_rdata.age_rr_ring != NULL)
996 bus_dmamem_free(sc->sc_dmat,
997 &sc->age_rdata.age_rr_ring_seg, 1);
998 sc->age_rdata.age_rr_ring = NULL;
999 sc->age_cdata.age_rr_ring_map = NULL;
1000
1001 /* CMB block */
1002 if (sc->age_cdata.age_cmb_block_map != NULL)
1003 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1004 if (sc->age_cdata.age_cmb_block_map != NULL &&
1005 sc->age_rdata.age_cmb_block != NULL)
1006 bus_dmamem_free(sc->sc_dmat,
1007 &sc->age_rdata.age_cmb_block_seg, 1);
1008 sc->age_rdata.age_cmb_block = NULL;
1009 sc->age_cdata.age_cmb_block_map = NULL;
1010
1011 /* SMB block */
1012 if (sc->age_cdata.age_smb_block_map != NULL)
1013 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1014 if (sc->age_cdata.age_smb_block_map != NULL &&
1015 sc->age_rdata.age_smb_block != NULL)
1016 bus_dmamem_free(sc->sc_dmat,
1017 &sc->age_rdata.age_smb_block_seg, 1);
1018 sc->age_rdata.age_smb_block = NULL;
1019 sc->age_cdata.age_smb_block_map = NULL;
1020 }
1021
1022 static void
1023 age_start(struct ifnet *ifp)
1024 {
1025 struct age_softc *sc = ifp->if_softc;
1026 struct mbuf *m_head;
1027 int enq;
1028
1029 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1030 return;
1031 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1032 return;
1033 if (IFQ_IS_EMPTY(&ifp->if_snd))
1034 return;
1035
1036 enq = 0;
1037 for (;;) {
1038 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1039 if (m_head == NULL)
1040 break;
1041
1042 /*
1043 * Pack the data into the transmit ring. If we
1044 * don't have room, set the OACTIVE flag and wait
1045 * for the NIC to drain the ring.
1046 */
1047 if (age_encap(sc, &m_head)) {
1048 if (m_head == NULL)
1049 break;
1050 IF_PREPEND(&ifp->if_snd, m_head);
1051 ifp->if_flags |= IFF_OACTIVE;
1052 break;
1053 }
1054 enq = 1;
1055
1056 /*
1057 * If there's a BPF listener, bounce a copy of this frame
1058 * to him.
1059 */
1060 bpf_mtap(ifp, m_head);
1061 }
1062
1063 if (enq) {
1064 /* Update mbox. */
1065 AGE_COMMIT_MBOX(sc);
1066 /* Set a timeout in case the chip goes out to lunch. */
1067 ifp->if_timer = AGE_TX_TIMEOUT;
1068 }
1069 }
1070
1071 static void
1072 age_watchdog(struct ifnet *ifp)
1073 {
1074 struct age_softc *sc = ifp->if_softc;
1075
1076 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1077 printf("%s: watchdog timeout (missed link)\n",
1078 device_xname(sc->sc_dev));
1079 ifp->if_oerrors++;
1080 age_init(ifp);
1081 return;
1082 }
1083
1084 if (sc->age_cdata.age_tx_cnt == 0) {
1085 printf("%s: watchdog timeout (missed Tx interrupts) "
1086 "-- recovering\n", device_xname(sc->sc_dev));
1087 age_start(ifp);
1088 return;
1089 }
1090
1091 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1092 ifp->if_oerrors++;
1093 age_init(ifp);
1094 age_start(ifp);
1095 }
1096
1097 static bool
1098 age_shutdown(device_t self, int howto)
1099 {
1100 struct age_softc *sc;
1101 struct ifnet *ifp;
1102
1103 sc = device_private(self);
1104 ifp = &sc->sc_ec.ec_if;
1105 age_stop(ifp, 1);
1106
1107 return true;
1108 }
1109
1110
1111 static int
1112 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 struct age_softc *sc = ifp->if_softc;
1115 int s, error;
1116
1117 s = splnet();
1118
1119 error = ether_ioctl(ifp, cmd, data);
1120 if (error == ENETRESET) {
1121 if (ifp->if_flags & IFF_RUNNING)
1122 age_rxfilter(sc);
1123 error = 0;
1124 }
1125
1126 splx(s);
1127 return error;
1128 }
1129
1130 static void
1131 age_mac_config(struct age_softc *sc)
1132 {
1133 struct mii_data *mii;
1134 uint32_t reg;
1135
1136 mii = &sc->sc_miibus;
1137
1138 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1139 reg &= ~MAC_CFG_FULL_DUPLEX;
1140 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1141 reg &= ~MAC_CFG_SPEED_MASK;
1142
1143 /* Reprogram MAC with resolved speed/duplex. */
1144 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1145 case IFM_10_T:
1146 case IFM_100_TX:
1147 reg |= MAC_CFG_SPEED_10_100;
1148 break;
1149 case IFM_1000_T:
1150 reg |= MAC_CFG_SPEED_1000;
1151 break;
1152 }
1153 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1154 reg |= MAC_CFG_FULL_DUPLEX;
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1156 reg |= MAC_CFG_TX_FC;
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1158 reg |= MAC_CFG_RX_FC;
1159 }
1160
1161 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1162 }
1163
1164 static bool
1165 age_resume(device_t dv, const pmf_qual_t *qual)
1166 {
1167 struct age_softc *sc = device_private(dv);
1168 uint16_t cmd;
1169
1170 /*
1171 * Clear INTx emulation disable for hardware that
1172 * is set in resume event. From Linux.
1173 */
1174 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1175 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1176 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1177 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1178 PCI_COMMAND_STATUS_REG, cmd);
1179 }
1180
1181 return true;
1182 }
1183
1184 static int
1185 age_encap(struct age_softc *sc, struct mbuf **m_head)
1186 {
1187 struct age_txdesc *txd, *txd_last;
1188 struct tx_desc *desc;
1189 struct mbuf *m;
1190 bus_dmamap_t map;
1191 uint32_t cflags, poff, vtag;
1192 int error, i, nsegs, prod;
1193 #if NVLAN > 0
1194 struct m_tag *mtag;
1195 #endif
1196
1197 m = *m_head;
1198 cflags = vtag = 0;
1199 poff = 0;
1200
1201 prod = sc->age_cdata.age_tx_prod;
1202 txd = &sc->age_cdata.age_txdesc[prod];
1203 txd_last = txd;
1204 map = txd->tx_dmamap;
1205
1206 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1207
1208 if (error == EFBIG) {
1209 error = 0;
1210
1211 *m_head = m_pullup(*m_head, MHLEN);
1212 if (*m_head == NULL) {
1213 printf("%s: can't defrag TX mbuf\n",
1214 device_xname(sc->sc_dev));
1215 return ENOBUFS;
1216 }
1217
1218 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1219 BUS_DMA_NOWAIT);
1220
1221 if (error != 0) {
1222 printf("%s: could not load defragged TX mbuf\n",
1223 device_xname(sc->sc_dev));
1224 m_freem(*m_head);
1225 *m_head = NULL;
1226 return error;
1227 }
1228 } else if (error) {
1229 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1230 return error;
1231 }
1232
1233 nsegs = map->dm_nsegs;
1234
1235 if (nsegs == 0) {
1236 m_freem(*m_head);
1237 *m_head = NULL;
1238 return EIO;
1239 }
1240
1241 /* Check descriptor overrun. */
1242 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1243 bus_dmamap_unload(sc->sc_dmat, map);
1244 return ENOBUFS;
1245 }
1246 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1247 BUS_DMASYNC_PREWRITE);
1248
1249 m = *m_head;
1250 /* Configure Tx IP/TCP/UDP checksum offload. */
1251 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1252 cflags |= AGE_TD_CSUM;
1253 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1254 cflags |= AGE_TD_TCPCSUM;
1255 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1256 cflags |= AGE_TD_UDPCSUM;
1257 /* Set checksum start offset. */
1258 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1259 }
1260
1261 #if NVLAN > 0
1262 /* Configure VLAN hardware tag insertion. */
1263 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1264 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1265 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1266 cflags |= AGE_TD_INSERT_VLAN_TAG;
1267 }
1268 #endif
1269
1270 desc = NULL;
1271 KASSERT(nsegs > 0);
1272 for (i = 0; ; i++) {
1273 desc = &sc->age_rdata.age_tx_ring[prod];
1274 desc->addr = htole64(map->dm_segs[i].ds_addr);
1275 desc->len =
1276 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1277 desc->flags = htole32(cflags);
1278 sc->age_cdata.age_tx_cnt++;
1279 if (i == (nsegs - 1))
1280 break;
1281
1282 /* sync this descriptor and go to the next one */
1283 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1284 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1285 BUS_DMASYNC_PREWRITE);
1286 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1287 }
1288
1289 /* Set EOP on the last descriptor and sync it. */
1290 desc->flags |= htole32(AGE_TD_EOP);
1291 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1292 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1293 BUS_DMASYNC_PREWRITE);
1294
1295 if (nsegs > 1) {
1296 /* Swap dmamap of the first and the last. */
1297 txd = &sc->age_cdata.age_txdesc[prod];
1298 map = txd_last->tx_dmamap;
1299 txd_last->tx_dmamap = txd->tx_dmamap;
1300 txd->tx_dmamap = map;
1301 txd->tx_m = m;
1302 KASSERT(txd_last->tx_m == NULL);
1303 } else {
1304 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1305 txd_last->tx_m = m;
1306 }
1307
1308 /* Update producer index. */
1309 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1310 sc->age_cdata.age_tx_prod = prod;
1311
1312 return 0;
1313 }
1314
1315 static void
1316 age_txintr(struct age_softc *sc, int tpd_cons)
1317 {
1318 struct ifnet *ifp = &sc->sc_ec.ec_if;
1319 struct age_txdesc *txd;
1320 int cons, prog;
1321
1322
1323 if (sc->age_cdata.age_tx_cnt <= 0) {
1324 if (ifp->if_timer != 0)
1325 printf("timer running without packets\n");
1326 if (sc->age_cdata.age_tx_cnt)
1327 printf("age_tx_cnt corrupted\n");
1328 }
1329
1330 /*
1331 * Go through our Tx list and free mbufs for those
1332 * frames which have been transmitted.
1333 */
1334 cons = sc->age_cdata.age_tx_cons;
1335 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1336 if (sc->age_cdata.age_tx_cnt <= 0)
1337 break;
1338 prog++;
1339 ifp->if_flags &= ~IFF_OACTIVE;
1340 sc->age_cdata.age_tx_cnt--;
1341 txd = &sc->age_cdata.age_txdesc[cons];
1342 /*
1343 * Clear Tx descriptors, it's not required but would
1344 * help debugging in case of Tx issues.
1345 */
1346 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1347 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1348 BUS_DMASYNC_POSTWRITE);
1349 txd->tx_desc->addr = 0;
1350 txd->tx_desc->len = 0;
1351 txd->tx_desc->flags = 0;
1352
1353 if (txd->tx_m == NULL)
1354 continue;
1355 /* Reclaim transmitted mbufs. */
1356 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1357 m_freem(txd->tx_m);
1358 txd->tx_m = NULL;
1359 }
1360
1361 if (prog > 0) {
1362 sc->age_cdata.age_tx_cons = cons;
1363
1364 /*
1365 * Unarm watchdog timer only when there are no pending
1366 * Tx descriptors in queue.
1367 */
1368 if (sc->age_cdata.age_tx_cnt == 0)
1369 ifp->if_timer = 0;
1370 }
1371 }
1372
1373 /* Receive a frame. */
1374 static void
1375 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1376 {
1377 struct ifnet *ifp = &sc->sc_ec.ec_if;
1378 struct age_rxdesc *rxd;
1379 struct rx_desc *desc;
1380 struct mbuf *mp, *m;
1381 uint32_t status, index;
1382 int count, nsegs, pktlen;
1383 int rx_cons;
1384
1385 status = le32toh(rxrd->flags);
1386 index = le32toh(rxrd->index);
1387 rx_cons = AGE_RX_CONS(index);
1388 nsegs = AGE_RX_NSEGS(index);
1389
1390 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1391 if ((status & AGE_RRD_ERROR) != 0 &&
1392 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1393 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1394 /*
1395 * We want to pass the following frames to upper
1396 * layer regardless of error status of Rx return
1397 * ring.
1398 *
1399 * o IP/TCP/UDP checksum is bad.
1400 * o frame length and protocol specific length
1401 * does not match.
1402 */
1403 sc->age_cdata.age_rx_cons += nsegs;
1404 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1405 return;
1406 }
1407
1408 pktlen = 0;
1409 for (count = 0; count < nsegs; count++,
1410 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1411 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1412 mp = rxd->rx_m;
1413 desc = rxd->rx_desc;
1414 /* Add a new receive buffer to the ring. */
1415 if (age_newbuf(sc, rxd, 0) != 0) {
1416 ifp->if_iqdrops++;
1417 /* Reuse Rx buffers. */
1418 if (sc->age_cdata.age_rxhead != NULL) {
1419 m_freem(sc->age_cdata.age_rxhead);
1420 AGE_RXCHAIN_RESET(sc);
1421 }
1422 break;
1423 }
1424
1425 /* The length of the first mbuf is computed last. */
1426 if (count != 0) {
1427 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1428 pktlen += mp->m_len;
1429 }
1430
1431 /* Chain received mbufs. */
1432 if (sc->age_cdata.age_rxhead == NULL) {
1433 sc->age_cdata.age_rxhead = mp;
1434 sc->age_cdata.age_rxtail = mp;
1435 } else {
1436 mp->m_flags &= ~M_PKTHDR;
1437 sc->age_cdata.age_rxprev_tail =
1438 sc->age_cdata.age_rxtail;
1439 sc->age_cdata.age_rxtail->m_next = mp;
1440 sc->age_cdata.age_rxtail = mp;
1441 }
1442
1443 if (count == nsegs - 1) {
1444 /*
1445 * It seems that L1 controller has no way
1446 * to tell hardware to strip CRC bytes.
1447 */
1448 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1449 if (nsegs > 1) {
1450 /* Remove the CRC bytes in chained mbufs. */
1451 pktlen -= ETHER_CRC_LEN;
1452 if (mp->m_len <= ETHER_CRC_LEN) {
1453 sc->age_cdata.age_rxtail =
1454 sc->age_cdata.age_rxprev_tail;
1455 sc->age_cdata.age_rxtail->m_len -=
1456 (ETHER_CRC_LEN - mp->m_len);
1457 sc->age_cdata.age_rxtail->m_next = NULL;
1458 m_freem(mp);
1459 } else {
1460 mp->m_len -= ETHER_CRC_LEN;
1461 }
1462 }
1463
1464 m = sc->age_cdata.age_rxhead;
1465 m->m_flags |= M_PKTHDR;
1466 m->m_pkthdr.rcvif = ifp;
1467 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1468 /* Set the first mbuf length. */
1469 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1470
1471 /*
1472 * Set checksum information.
1473 * It seems that L1 controller can compute partial
1474 * checksum. The partial checksum value can be used
1475 * to accelerate checksum computation for fragmented
1476 * TCP/UDP packets. Upper network stack already
1477 * takes advantage of the partial checksum value in
1478 * IP reassembly stage. But I'm not sure the
1479 * correctness of the partial hardware checksum
1480 * assistance due to lack of data sheet. If it is
1481 * proven to work on L1 I'll enable it.
1482 */
1483 if (status & AGE_RRD_IPV4) {
1484 if (status & AGE_RRD_IPCSUM_NOK)
1485 m->m_pkthdr.csum_flags |=
1486 M_CSUM_IPv4_BAD;
1487 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1488 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1489 m->m_pkthdr.csum_flags |=
1490 M_CSUM_TCP_UDP_BAD;
1491 }
1492 /*
1493 * Don't mark bad checksum for TCP/UDP frames
1494 * as fragmented frames may always have set
1495 * bad checksummed bit of descriptor status.
1496 */
1497 }
1498 #if NVLAN > 0
1499 /* Check for VLAN tagged frames. */
1500 if (status & AGE_RRD_VLAN) {
1501 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1502 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1503 continue);
1504 }
1505 #endif
1506
1507 bpf_mtap(ifp, m);
1508 /* Pass it on. */
1509 ether_input(ifp, m);
1510
1511 /* Reset mbuf chains. */
1512 AGE_RXCHAIN_RESET(sc);
1513 }
1514 }
1515
1516 if (count != nsegs) {
1517 sc->age_cdata.age_rx_cons += nsegs;
1518 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1519 } else
1520 sc->age_cdata.age_rx_cons = rx_cons;
1521 }
1522
1523 static void
1524 age_rxintr(struct age_softc *sc, int rr_prod)
1525 {
1526 struct rx_rdesc *rxrd;
1527 int rr_cons, nsegs, pktlen, prog;
1528
1529 rr_cons = sc->age_cdata.age_rr_cons;
1530 if (rr_cons == rr_prod)
1531 return;
1532
1533 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1534 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1535 BUS_DMASYNC_POSTREAD);
1536
1537 for (prog = 0; rr_cons != rr_prod; prog++) {
1538 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1539 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1540 if (nsegs == 0)
1541 break;
1542 /*
1543 * Check number of segments against received bytes
1544 * Non-matching value would indicate that hardware
1545 * is still trying to update Rx return descriptors.
1546 * I'm not sure whether this check is really needed.
1547 */
1548 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1549 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1550 (MCLBYTES - ETHER_ALIGN)))
1551 break;
1552
1553 /* Received a frame. */
1554 age_rxeof(sc, rxrd);
1555
1556 /* Clear return ring. */
1557 rxrd->index = 0;
1558 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1559 }
1560
1561 if (prog > 0) {
1562 /* Update the consumer index. */
1563 sc->age_cdata.age_rr_cons = rr_cons;
1564
1565 /* Sync descriptors. */
1566 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1567 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1568 BUS_DMASYNC_PREWRITE);
1569
1570 /* Notify hardware availability of new Rx buffers. */
1571 AGE_COMMIT_MBOX(sc);
1572 }
1573 }
1574
1575 static void
1576 age_tick(void *xsc)
1577 {
1578 struct age_softc *sc = xsc;
1579 struct mii_data *mii = &sc->sc_miibus;
1580 int s;
1581
1582 s = splnet();
1583 mii_tick(mii);
1584 splx(s);
1585
1586 callout_schedule(&sc->sc_tick_ch, hz);
1587 }
1588
1589 static void
1590 age_reset(struct age_softc *sc)
1591 {
1592 uint32_t reg;
1593 int i;
1594
1595 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1596 CSR_READ_4(sc, AGE_MASTER_CFG);
1597 DELAY(1000);
1598 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1599 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1600 break;
1601 DELAY(10);
1602 }
1603
1604 if (i == 0)
1605 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 reg);
1607
1608 /* Initialize PCIe module. From Linux. */
1609 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1610 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1611 }
1612
1613 static int
1614 age_init(struct ifnet *ifp)
1615 {
1616 struct age_softc *sc = ifp->if_softc;
1617 struct mii_data *mii;
1618 uint8_t eaddr[ETHER_ADDR_LEN];
1619 bus_addr_t paddr;
1620 uint32_t reg, fsize;
1621 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1622 int error;
1623
1624 /*
1625 * Cancel any pending I/O.
1626 */
1627 age_stop(ifp, 0);
1628
1629 /*
1630 * Reset the chip to a known state.
1631 */
1632 age_reset(sc);
1633
1634 /* Initialize descriptors. */
1635 error = age_init_rx_ring(sc);
1636 if (error != 0) {
1637 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1638 age_stop(ifp, 0);
1639 return error;
1640 }
1641 age_init_rr_ring(sc);
1642 age_init_tx_ring(sc);
1643 age_init_cmb_block(sc);
1644 age_init_smb_block(sc);
1645
1646 /* Reprogram the station address. */
1647 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1648 CSR_WRITE_4(sc, AGE_PAR0,
1649 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1650 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1651
1652 /* Set descriptor base addresses. */
1653 paddr = sc->age_rdata.age_tx_ring_paddr;
1654 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1655 paddr = sc->age_rdata.age_rx_ring_paddr;
1656 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1657 paddr = sc->age_rdata.age_rr_ring_paddr;
1658 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1659 paddr = sc->age_rdata.age_tx_ring_paddr;
1660 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 paddr = sc->age_rdata.age_cmb_block_paddr;
1662 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1663 paddr = sc->age_rdata.age_smb_block_paddr;
1664 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1665
1666 /* Set Rx/Rx return descriptor counter. */
1667 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1668 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1669 DESC_RRD_CNT_MASK) |
1670 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1671
1672 /* Set Tx descriptor counter. */
1673 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1674 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1675
1676 /* Tell hardware that we're ready to load descriptors. */
1677 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1678
1679 /*
1680 * Initialize mailbox register.
1681 * Updated producer/consumer index information is exchanged
1682 * through this mailbox register. However Tx producer and
1683 * Rx return consumer/Rx producer are all shared such that
1684 * it's hard to separate code path between Tx and Rx without
1685 * locking. If L1 hardware have a separate mail box register
1686 * for Tx and Rx consumer/producer management we could have
1687 * indepent Tx/Rx handler which in turn Rx handler could have
1688 * been run without any locking.
1689 */
1690 AGE_COMMIT_MBOX(sc);
1691
1692 /* Configure IPG/IFG parameters. */
1693 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1694 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1695 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1696 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1697 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1698
1699 /* Set parameters for half-duplex media. */
1700 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1701 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1702 HDPX_CFG_LCOL_MASK) |
1703 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1704 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1705 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1706 HDPX_CFG_ABEBT_MASK) |
1707 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1708 HDPX_CFG_JAMIPG_MASK));
1709
1710 /* Configure interrupt moderation timer. */
1711 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1712 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1713 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1714 reg &= ~MASTER_MTIMER_ENB;
1715 if (AGE_USECS(sc->age_int_mod) == 0)
1716 reg &= ~MASTER_ITIMER_ENB;
1717 else
1718 reg |= MASTER_ITIMER_ENB;
1719 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1720 if (agedebug)
1721 printf("%s: interrupt moderation is %d us.\n",
1722 device_xname(sc->sc_dev), sc->age_int_mod);
1723 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1724
1725 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1726 if (ifp->if_mtu < ETHERMTU)
1727 sc->age_max_frame_size = ETHERMTU;
1728 else
1729 sc->age_max_frame_size = ifp->if_mtu;
1730 sc->age_max_frame_size += ETHER_HDR_LEN +
1731 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1732 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1733
1734 /* Configure jumbo frame. */
1735 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1736 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1737 (((fsize / sizeof(uint64_t)) <<
1738 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1739 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1740 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1741 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1742 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1743
1744 /* Configure flow-control parameters. From Linux. */
1745 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1746 /*
1747 * Magic workaround for old-L1.
1748 * Don't know which hw revision requires this magic.
1749 */
1750 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1751 /*
1752 * Another magic workaround for flow-control mode
1753 * change. From Linux.
1754 */
1755 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1756 }
1757 /*
1758 * TODO
1759 * Should understand pause parameter relationships between FIFO
1760 * size and number of Rx descriptors and Rx return descriptors.
1761 *
1762 * Magic parameters came from Linux.
1763 */
1764 switch (sc->age_chip_rev) {
1765 case 0x8001:
1766 case 0x9001:
1767 case 0x9002:
1768 case 0x9003:
1769 rxf_hi = AGE_RX_RING_CNT / 16;
1770 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1771 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1772 rrd_lo = AGE_RR_RING_CNT / 16;
1773 break;
1774 default:
1775 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1776 rxf_lo = reg / 16;
1777 if (rxf_lo < 192)
1778 rxf_lo = 192;
1779 rxf_hi = (reg * 7) / 8;
1780 if (rxf_hi < rxf_lo)
1781 rxf_hi = rxf_lo + 16;
1782 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1783 rrd_lo = reg / 8;
1784 rrd_hi = (reg * 7) / 8;
1785 if (rrd_lo < 2)
1786 rrd_lo = 2;
1787 if (rrd_hi < rrd_lo)
1788 rrd_hi = rrd_lo + 3;
1789 break;
1790 }
1791 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1792 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1793 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1794 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1795 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1796 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1797 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1798 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1799 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1800 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1801
1802 /* Configure RxQ. */
1803 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1804 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1805 RXQ_CFG_RD_BURST_MASK) |
1806 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1807 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1808 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1809 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1810 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1811
1812 /* Configure TxQ. */
1813 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1814 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1815 TXQ_CFG_TPD_BURST_MASK) |
1816 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1817 TXQ_CFG_TX_FIFO_BURST_MASK) |
1818 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1819 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1820 TXQ_CFG_ENB);
1821
1822 /* Configure DMA parameters. */
1823 CSR_WRITE_4(sc, AGE_DMA_CFG,
1824 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1825 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1826 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1827
1828 /* Configure CMB DMA write threshold. */
1829 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1830 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1831 CMB_WR_THRESH_RRD_MASK) |
1832 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1833 CMB_WR_THRESH_TPD_MASK));
1834
1835 /* Set CMB/SMB timer and enable them. */
1836 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1837 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1838 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1839
1840 /* Request SMB updates for every seconds. */
1841 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1842 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1843
1844 /*
1845 * Disable all WOL bits as WOL can interfere normal Rx
1846 * operation.
1847 */
1848 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1849
1850 /*
1851 * Configure Tx/Rx MACs.
1852 * - Auto-padding for short frames.
1853 * - Enable CRC generation.
1854 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1855 * of MAC is followed after link establishment.
1856 */
1857 CSR_WRITE_4(sc, AGE_MAC_CFG,
1858 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1859 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1860 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1861 MAC_CFG_PREAMBLE_MASK));
1862
1863 /* Set up the receive filter. */
1864 age_rxfilter(sc);
1865 age_rxvlan(sc);
1866
1867 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1868 reg |= MAC_CFG_RXCSUM_ENB;
1869
1870 /* Ack all pending interrupts and clear it. */
1871 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1872 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1873
1874 /* Finally enable Tx/Rx MAC. */
1875 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1876
1877 sc->age_flags &= ~AGE_FLAG_LINK;
1878
1879 /* Switch to the current media. */
1880 mii = &sc->sc_miibus;
1881 mii_mediachg(mii);
1882
1883 callout_schedule(&sc->sc_tick_ch, hz);
1884
1885 ifp->if_flags |= IFF_RUNNING;
1886 ifp->if_flags &= ~IFF_OACTIVE;
1887
1888 return 0;
1889 }
1890
1891 static void
1892 age_stop(struct ifnet *ifp, int disable)
1893 {
1894 struct age_softc *sc = ifp->if_softc;
1895 struct age_txdesc *txd;
1896 struct age_rxdesc *rxd;
1897 uint32_t reg;
1898 int i;
1899
1900 callout_stop(&sc->sc_tick_ch);
1901
1902 /*
1903 * Mark the interface down and cancel the watchdog timer.
1904 */
1905 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1906 ifp->if_timer = 0;
1907
1908 sc->age_flags &= ~AGE_FLAG_LINK;
1909
1910 mii_down(&sc->sc_miibus);
1911
1912 /*
1913 * Disable interrupts.
1914 */
1915 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1916 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1917
1918 /* Stop CMB/SMB updates. */
1919 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1920
1921 /* Stop Rx/Tx MAC. */
1922 age_stop_rxmac(sc);
1923 age_stop_txmac(sc);
1924
1925 /* Stop DMA. */
1926 CSR_WRITE_4(sc, AGE_DMA_CFG,
1927 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1928
1929 /* Stop TxQ/RxQ. */
1930 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1931 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1932 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1933 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1934 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1935 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1936 break;
1937 DELAY(10);
1938 }
1939 if (i == 0)
1940 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1941 device_xname(sc->sc_dev), reg);
1942
1943 /* Reclaim Rx buffers that have been processed. */
1944 if (sc->age_cdata.age_rxhead != NULL)
1945 m_freem(sc->age_cdata.age_rxhead);
1946 AGE_RXCHAIN_RESET(sc);
1947
1948 /*
1949 * Free RX and TX mbufs still in the queues.
1950 */
1951 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1952 rxd = &sc->age_cdata.age_rxdesc[i];
1953 if (rxd->rx_m != NULL) {
1954 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1955 m_freem(rxd->rx_m);
1956 rxd->rx_m = NULL;
1957 }
1958 }
1959 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1960 txd = &sc->age_cdata.age_txdesc[i];
1961 if (txd->tx_m != NULL) {
1962 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1963 m_freem(txd->tx_m);
1964 txd->tx_m = NULL;
1965 }
1966 }
1967 }
1968
1969 static void
1970 age_stats_update(struct age_softc *sc)
1971 {
1972 struct ifnet *ifp = &sc->sc_ec.ec_if;
1973 struct age_stats *stat;
1974 struct smb *smb;
1975
1976 stat = &sc->age_stat;
1977
1978 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1979 sc->age_cdata.age_smb_block_map->dm_mapsize,
1980 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1981
1982 smb = sc->age_rdata.age_smb_block;
1983 if (smb->updated == 0)
1984 return;
1985
1986 /* Rx stats. */
1987 stat->rx_frames += smb->rx_frames;
1988 stat->rx_bcast_frames += smb->rx_bcast_frames;
1989 stat->rx_mcast_frames += smb->rx_mcast_frames;
1990 stat->rx_pause_frames += smb->rx_pause_frames;
1991 stat->rx_control_frames += smb->rx_control_frames;
1992 stat->rx_crcerrs += smb->rx_crcerrs;
1993 stat->rx_lenerrs += smb->rx_lenerrs;
1994 stat->rx_bytes += smb->rx_bytes;
1995 stat->rx_runts += smb->rx_runts;
1996 stat->rx_fragments += smb->rx_fragments;
1997 stat->rx_pkts_64 += smb->rx_pkts_64;
1998 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1999 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2000 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2001 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2002 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2003 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2004 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2005 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2006 stat->rx_desc_oflows += smb->rx_desc_oflows;
2007 stat->rx_alignerrs += smb->rx_alignerrs;
2008 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2009 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2010 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2011
2012 /* Tx stats. */
2013 stat->tx_frames += smb->tx_frames;
2014 stat->tx_bcast_frames += smb->tx_bcast_frames;
2015 stat->tx_mcast_frames += smb->tx_mcast_frames;
2016 stat->tx_pause_frames += smb->tx_pause_frames;
2017 stat->tx_excess_defer += smb->tx_excess_defer;
2018 stat->tx_control_frames += smb->tx_control_frames;
2019 stat->tx_deferred += smb->tx_deferred;
2020 stat->tx_bytes += smb->tx_bytes;
2021 stat->tx_pkts_64 += smb->tx_pkts_64;
2022 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2023 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2024 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2025 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2026 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2027 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2028 stat->tx_single_colls += smb->tx_single_colls;
2029 stat->tx_multi_colls += smb->tx_multi_colls;
2030 stat->tx_late_colls += smb->tx_late_colls;
2031 stat->tx_excess_colls += smb->tx_excess_colls;
2032 stat->tx_underrun += smb->tx_underrun;
2033 stat->tx_desc_underrun += smb->tx_desc_underrun;
2034 stat->tx_lenerrs += smb->tx_lenerrs;
2035 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2036 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2037 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2038
2039 /* Update counters in ifnet. */
2040 ifp->if_opackets += smb->tx_frames;
2041
2042 ifp->if_collisions += smb->tx_single_colls +
2043 smb->tx_multi_colls + smb->tx_late_colls +
2044 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2045
2046 ifp->if_oerrors += smb->tx_excess_colls +
2047 smb->tx_late_colls + smb->tx_underrun +
2048 smb->tx_pkts_truncated;
2049
2050 ifp->if_ipackets += smb->rx_frames;
2051
2052 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2053 smb->rx_runts + smb->rx_pkts_truncated +
2054 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2055 smb->rx_alignerrs;
2056
2057 /* Update done, clear. */
2058 smb->updated = 0;
2059
2060 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2061 sc->age_cdata.age_smb_block_map->dm_mapsize,
2062 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2063 }
2064
2065 static void
2066 age_stop_txmac(struct age_softc *sc)
2067 {
2068 uint32_t reg;
2069 int i;
2070
2071 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2072 if ((reg & MAC_CFG_TX_ENB) != 0) {
2073 reg &= ~MAC_CFG_TX_ENB;
2074 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2075 }
2076 /* Stop Tx DMA engine. */
2077 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2078 if ((reg & DMA_CFG_RD_ENB) != 0) {
2079 reg &= ~DMA_CFG_RD_ENB;
2080 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2081 }
2082 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2083 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2084 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2085 break;
2086 DELAY(10);
2087 }
2088 if (i == 0)
2089 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2090 }
2091
2092 static void
2093 age_stop_rxmac(struct age_softc *sc)
2094 {
2095 uint32_t reg;
2096 int i;
2097
2098 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 if ((reg & MAC_CFG_RX_ENB) != 0) {
2100 reg &= ~MAC_CFG_RX_ENB;
2101 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 }
2103 /* Stop Rx DMA engine. */
2104 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 if ((reg & DMA_CFG_WR_ENB) != 0) {
2106 reg &= ~DMA_CFG_WR_ENB;
2107 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 }
2109 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2112 break;
2113 DELAY(10);
2114 }
2115 if (i == 0)
2116 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2117 }
2118
2119 static void
2120 age_init_tx_ring(struct age_softc *sc)
2121 {
2122 struct age_ring_data *rd;
2123 struct age_txdesc *txd;
2124 int i;
2125
2126 sc->age_cdata.age_tx_prod = 0;
2127 sc->age_cdata.age_tx_cons = 0;
2128 sc->age_cdata.age_tx_cnt = 0;
2129
2130 rd = &sc->age_rdata;
2131 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2132 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2133 txd = &sc->age_cdata.age_txdesc[i];
2134 txd->tx_desc = &rd->age_tx_ring[i];
2135 txd->tx_m = NULL;
2136 }
2137 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2138 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 }
2140
2141 static int
2142 age_init_rx_ring(struct age_softc *sc)
2143 {
2144 struct age_ring_data *rd;
2145 struct age_rxdesc *rxd;
2146 int i;
2147
2148 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2149 rd = &sc->age_rdata;
2150 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2151 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2152 rxd = &sc->age_cdata.age_rxdesc[i];
2153 rxd->rx_m = NULL;
2154 rxd->rx_desc = &rd->age_rx_ring[i];
2155 if (age_newbuf(sc, rxd, 1) != 0)
2156 return ENOBUFS;
2157 }
2158
2159 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2160 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161
2162 return 0;
2163 }
2164
2165 static void
2166 age_init_rr_ring(struct age_softc *sc)
2167 {
2168 struct age_ring_data *rd;
2169
2170 sc->age_cdata.age_rr_cons = 0;
2171 AGE_RXCHAIN_RESET(sc);
2172
2173 rd = &sc->age_rdata;
2174 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2175 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2176 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2177 }
2178
2179 static void
2180 age_init_cmb_block(struct age_softc *sc)
2181 {
2182 struct age_ring_data *rd;
2183
2184 rd = &sc->age_rdata;
2185 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2186 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2187 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2188 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2189 }
2190
2191 static void
2192 age_init_smb_block(struct age_softc *sc)
2193 {
2194 struct age_ring_data *rd;
2195
2196 rd = &sc->age_rdata;
2197 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2198 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2199 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2200 }
2201
2202 static int
2203 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2204 {
2205 struct rx_desc *desc;
2206 struct mbuf *m;
2207 bus_dmamap_t map;
2208 int error;
2209
2210 MGETHDR(m, M_DONTWAIT, MT_DATA);
2211 if (m == NULL)
2212 return ENOBUFS;
2213 MCLGET(m, M_DONTWAIT);
2214 if (!(m->m_flags & M_EXT)) {
2215 m_freem(m);
2216 return ENOBUFS;
2217 }
2218
2219 m->m_len = m->m_pkthdr.len = MCLBYTES;
2220 m_adj(m, ETHER_ALIGN);
2221
2222 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2223 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2224
2225 if (error != 0) {
2226 if (!error) {
2227 bus_dmamap_unload(sc->sc_dmat,
2228 sc->age_cdata.age_rx_sparemap);
2229 error = EFBIG;
2230 printf("%s: too many segments?!\n",
2231 device_xname(sc->sc_dev));
2232 }
2233 m_freem(m);
2234
2235 if (init)
2236 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2237 return error;
2238 }
2239
2240 if (rxd->rx_m != NULL) {
2241 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2242 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2243 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2244 }
2245 map = rxd->rx_dmamap;
2246 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2247 sc->age_cdata.age_rx_sparemap = map;
2248 rxd->rx_m = m;
2249
2250 desc = rxd->rx_desc;
2251 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2252 desc->len =
2253 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2254 AGE_RD_LEN_SHIFT);
2255
2256 return 0;
2257 }
2258
2259 static void
2260 age_rxvlan(struct age_softc *sc)
2261 {
2262 uint32_t reg;
2263
2264 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2265 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2266 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2267 reg |= MAC_CFG_VLAN_TAG_STRIP;
2268 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2269 }
2270
2271 static void
2272 age_rxfilter(struct age_softc *sc)
2273 {
2274 struct ethercom *ec = &sc->sc_ec;
2275 struct ifnet *ifp = &sc->sc_ec.ec_if;
2276 struct ether_multi *enm;
2277 struct ether_multistep step;
2278 uint32_t crc;
2279 uint32_t mchash[2];
2280 uint32_t rxcfg;
2281
2282 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2283 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2284 ifp->if_flags &= ~IFF_ALLMULTI;
2285
2286 /*
2287 * Always accept broadcast frames.
2288 */
2289 rxcfg |= MAC_CFG_BCAST;
2290
2291 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2292 ifp->if_flags |= IFF_ALLMULTI;
2293 if (ifp->if_flags & IFF_PROMISC)
2294 rxcfg |= MAC_CFG_PROMISC;
2295 else
2296 rxcfg |= MAC_CFG_ALLMULTI;
2297 mchash[0] = mchash[1] = 0xFFFFFFFF;
2298 } else {
2299 /* Program new filter. */
2300 memset(mchash, 0, sizeof(mchash));
2301
2302 ETHER_FIRST_MULTI(step, ec, enm);
2303 while (enm != NULL) {
2304 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2305 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 ETHER_NEXT_MULTI(step, enm);
2307 }
2308 }
2309
2310 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2311 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2312 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2313 }
2314