if_age.c revision 1.44 1 /* $NetBSD: if_age.c,v 1.44 2014/03/29 19:28:24 christos Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.44 2014/03/29 19:28:24 christos Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <sys/rnd.h>
69
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76
77 #include <dev/pci/if_agereg.h>
78
79 static int age_match(device_t, cfdata_t, void *);
80 static void age_attach(device_t, device_t, void *);
81 static int age_detach(device_t, int);
82
83 static bool age_resume(device_t, const pmf_qual_t *);
84
85 static int age_miibus_readreg(device_t, int, int);
86 static void age_miibus_writereg(device_t, int, int, int);
87 static void age_miibus_statchg(struct ifnet *);
88
89 static int age_init(struct ifnet *);
90 static int age_ioctl(struct ifnet *, u_long, void *);
91 static void age_start(struct ifnet *);
92 static void age_watchdog(struct ifnet *);
93 static bool age_shutdown(device_t, int);
94 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
95 static int age_mediachange(struct ifnet *);
96
97 static int age_intr(void *);
98 static int age_dma_alloc(struct age_softc *);
99 static void age_dma_free(struct age_softc *);
100 static void age_get_macaddr(struct age_softc *, uint8_t[]);
101 static void age_phy_reset(struct age_softc *);
102
103 static int age_encap(struct age_softc *, struct mbuf **);
104 static void age_init_tx_ring(struct age_softc *);
105 static int age_init_rx_ring(struct age_softc *);
106 static void age_init_rr_ring(struct age_softc *);
107 static void age_init_cmb_block(struct age_softc *);
108 static void age_init_smb_block(struct age_softc *);
109 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
110 static void age_mac_config(struct age_softc *);
111 static void age_txintr(struct age_softc *, int);
112 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
113 static void age_rxintr(struct age_softc *, int);
114 static void age_tick(void *);
115 static void age_reset(struct age_softc *);
116 static void age_stop(struct ifnet *, int);
117 static void age_stats_update(struct age_softc *);
118 static void age_stop_txmac(struct age_softc *);
119 static void age_stop_rxmac(struct age_softc *);
120 static void age_rxvlan(struct age_softc *sc);
121 static void age_rxfilter(struct age_softc *);
122
123 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
124 age_match, age_attach, age_detach, NULL);
125
126 int agedebug = 0;
127 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
128
129 #define ETHER_ALIGN 2
130 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 age_match(device_t dev, cfdata_t match, void *aux)
134 {
135 struct pci_attach_args *pa = aux;
136
137 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 }
140
141 static void
142 age_attach(device_t parent, device_t self, void *aux)
143 {
144 struct age_softc *sc = device_private(self);
145 struct pci_attach_args *pa = aux;
146 pci_intr_handle_t ih;
147 const char *intrstr;
148 struct ifnet *ifp = &sc->sc_ec.ec_if;
149 pcireg_t memtype;
150 int error = 0;
151 char intrbuf[PCI_INTRSTR_LEN];
152
153 aprint_naive("\n");
154 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
155
156 sc->sc_dev = self;
157 sc->sc_dmat = pa->pa_dmat;
158 sc->sc_pct = pa->pa_pc;
159 sc->sc_pcitag = pa->pa_tag;
160
161 /*
162 * Allocate IO memory
163 */
164 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
165 switch (memtype) {
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
169 break;
170 default:
171 aprint_error_dev(self, "invalid base address register\n");
172 break;
173 }
174
175 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
176 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
177 aprint_error_dev(self, "could not map mem space\n");
178 return;
179 }
180
181 if (pci_intr_map(pa, &ih) != 0) {
182 aprint_error_dev(self, "could not map interrupt\n");
183 goto fail;
184 }
185
186 /*
187 * Allocate IRQ
188 */
189 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
190 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
191 age_intr, sc);
192 if (sc->sc_irq_handle == NULL) {
193 aprint_error_dev(self, "could not establish interrupt");
194 if (intrstr != NULL)
195 aprint_error(" at %s", intrstr);
196 aprint_error("\n");
197 goto fail;
198 }
199 aprint_normal_dev(self, "%s\n", intrstr);
200
201 /* Set PHY address. */
202 sc->age_phyaddr = AGE_PHY_ADDR;
203
204 /* Reset PHY. */
205 age_phy_reset(sc);
206
207 /* Reset the ethernet controller. */
208 age_reset(sc);
209
210 /* Get PCI and chip id/revision. */
211 sc->age_rev = PCI_REVISION(pa->pa_class);
212 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
213 MASTER_CHIP_REV_SHIFT;
214
215 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
216 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
217
218 if (agedebug) {
219 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
220 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
221 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
222 }
223
224 /* Set max allowable DMA size. */
225 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
226 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
227
228 /* Allocate DMA stuffs */
229 error = age_dma_alloc(sc);
230 if (error)
231 goto fail;
232
233 callout_init(&sc->sc_tick_ch, 0);
234 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
235
236 /* Load station address. */
237 age_get_macaddr(sc, sc->sc_enaddr);
238
239 aprint_normal_dev(self, "Ethernet address %s\n",
240 ether_sprintf(sc->sc_enaddr));
241
242 ifp->if_softc = sc;
243 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
244 ifp->if_init = age_init;
245 ifp->if_ioctl = age_ioctl;
246 ifp->if_start = age_start;
247 ifp->if_stop = age_stop;
248 ifp->if_watchdog = age_watchdog;
249 ifp->if_baudrate = IF_Gbps(1);
250 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
251 IFQ_SET_READY(&ifp->if_snd);
252 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
253
254 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
255
256 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
257 IFCAP_CSUM_TCPv4_Rx |
258 IFCAP_CSUM_UDPv4_Rx;
259 #ifdef AGE_CHECKSUM
260 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
261 IFCAP_CSUM_TCPv4_Tx |
262 IFCAP_CSUM_UDPv4_Tx;
263 #endif
264
265 #if NVLAN > 0
266 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
267 #endif
268
269 /* Set up MII bus. */
270 sc->sc_miibus.mii_ifp = ifp;
271 sc->sc_miibus.mii_readreg = age_miibus_readreg;
272 sc->sc_miibus.mii_writereg = age_miibus_writereg;
273 sc->sc_miibus.mii_statchg = age_miibus_statchg;
274
275 sc->sc_ec.ec_mii = &sc->sc_miibus;
276 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
277 age_mediastatus);
278 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
279 MII_OFFSET_ANY, MIIF_DOPAUSE);
280
281 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
282 aprint_error_dev(self, "no PHY found!\n");
283 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
284 0, NULL);
285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
286 } else
287 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
288
289 if_attach(ifp);
290 ether_ifattach(ifp, sc->sc_enaddr);
291
292 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
293 pmf_class_network_register(self, ifp);
294 else
295 aprint_error_dev(self, "couldn't establish power handler\n");
296
297 return;
298
299 fail:
300 age_dma_free(sc);
301 if (sc->sc_irq_handle != NULL) {
302 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
303 sc->sc_irq_handle = NULL;
304 }
305 if (sc->sc_mem_size) {
306 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
307 sc->sc_mem_size = 0;
308 }
309 }
310
311 static int
312 age_detach(device_t self, int flags)
313 {
314 struct age_softc *sc = device_private(self);
315 struct ifnet *ifp = &sc->sc_ec.ec_if;
316 int s;
317
318 pmf_device_deregister(self);
319 s = splnet();
320 age_stop(ifp, 0);
321 splx(s);
322
323 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
324
325 /* Delete all remaining media. */
326 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
327
328 ether_ifdetach(ifp);
329 if_detach(ifp);
330 age_dma_free(sc);
331
332 if (sc->sc_irq_handle != NULL) {
333 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
334 sc->sc_irq_handle = NULL;
335 }
336 if (sc->sc_mem_size) {
337 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
338 sc->sc_mem_size = 0;
339 }
340 return 0;
341 }
342
343 /*
344 * Read a PHY register on the MII of the L1.
345 */
346 static int
347 age_miibus_readreg(device_t dev, int phy, int reg)
348 {
349 struct age_softc *sc = device_private(dev);
350 uint32_t v;
351 int i;
352
353 if (phy != sc->age_phyaddr)
354 return 0;
355
356 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
357 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
358 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
359 DELAY(1);
360 v = CSR_READ_4(sc, AGE_MDIO);
361 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
362 break;
363 }
364
365 if (i == 0) {
366 printf("%s: phy read timeout: phy %d, reg %d\n",
367 device_xname(sc->sc_dev), phy, reg);
368 return 0;
369 }
370
371 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
372 }
373
374 /*
375 * Write a PHY register on the MII of the L1.
376 */
377 static void
378 age_miibus_writereg(device_t dev, int phy, int reg, int val)
379 {
380 struct age_softc *sc = device_private(dev);
381 uint32_t v;
382 int i;
383
384 if (phy != sc->age_phyaddr)
385 return;
386
387 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
388 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
389 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
390
391 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
392 DELAY(1);
393 v = CSR_READ_4(sc, AGE_MDIO);
394 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
395 break;
396 }
397
398 if (i == 0) {
399 printf("%s: phy write timeout: phy %d, reg %d\n",
400 device_xname(sc->sc_dev), phy, reg);
401 }
402 }
403
404 /*
405 * Callback from MII layer when media changes.
406 */
407 static void
408 age_miibus_statchg(struct ifnet *ifp)
409 {
410 struct age_softc *sc = ifp->if_softc;
411 struct mii_data *mii = &sc->sc_miibus;
412
413 if ((ifp->if_flags & IFF_RUNNING) == 0)
414 return;
415
416 sc->age_flags &= ~AGE_FLAG_LINK;
417 if ((mii->mii_media_status & IFM_AVALID) != 0) {
418 switch (IFM_SUBTYPE(mii->mii_media_active)) {
419 case IFM_10_T:
420 case IFM_100_TX:
421 case IFM_1000_T:
422 sc->age_flags |= AGE_FLAG_LINK;
423 break;
424 default:
425 break;
426 }
427 }
428
429 /* Stop Rx/Tx MACs. */
430 age_stop_rxmac(sc);
431 age_stop_txmac(sc);
432
433 /* Program MACs with resolved speed/duplex/flow-control. */
434 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
435 uint32_t reg;
436
437 age_mac_config(sc);
438 reg = CSR_READ_4(sc, AGE_MAC_CFG);
439 /* Restart DMA engine and Tx/Rx MAC. */
440 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
441 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
442 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
443 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
444 }
445 }
446
447 /*
448 * Get the current interface media status.
449 */
450 static void
451 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
452 {
453 struct age_softc *sc = ifp->if_softc;
454 struct mii_data *mii = &sc->sc_miibus;
455
456 mii_pollstat(mii);
457 ifmr->ifm_status = mii->mii_media_status;
458 ifmr->ifm_active = mii->mii_media_active;
459 }
460
461 /*
462 * Set hardware to newly-selected media.
463 */
464 static int
465 age_mediachange(struct ifnet *ifp)
466 {
467 struct age_softc *sc = ifp->if_softc;
468 struct mii_data *mii = &sc->sc_miibus;
469 int error;
470
471 if (mii->mii_instance != 0) {
472 struct mii_softc *miisc;
473
474 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
475 mii_phy_reset(miisc);
476 }
477 error = mii_mediachg(mii);
478
479 return error;
480 }
481
482 static int
483 age_intr(void *arg)
484 {
485 struct age_softc *sc = arg;
486 struct ifnet *ifp = &sc->sc_ec.ec_if;
487 struct cmb *cmb;
488 uint32_t status;
489
490 status = CSR_READ_4(sc, AGE_INTR_STATUS);
491 if (status == 0 || (status & AGE_INTRS) == 0)
492 return 0;
493
494 cmb = sc->age_rdata.age_cmb_block;
495 if (cmb == NULL) {
496 /* Happens when bringing up the interface
497 * w/o having a carrier. Ack the interrupt.
498 */
499 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
500 return 0;
501 }
502
503 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
504 sc->age_cdata.age_cmb_block_map->dm_mapsize,
505 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 status = le32toh(cmb->intr_status);
507 /* ACK/reenable interrupts */
508 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
509 while ((status & AGE_INTRS) != 0) {
510 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
511 TPD_CONS_SHIFT;
512 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
513 RRD_PROD_SHIFT;
514
515 /* Let hardware know CMB was served. */
516 cmb->intr_status = 0;
517 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
518 sc->age_cdata.age_cmb_block_map->dm_mapsize,
519 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
520
521 if (ifp->if_flags & IFF_RUNNING) {
522 if (status & INTR_CMB_RX)
523 age_rxintr(sc, sc->age_rr_prod);
524
525 if (status & INTR_CMB_TX)
526 age_txintr(sc, sc->age_tpd_cons);
527
528 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
529 if (status & INTR_DMA_RD_TO_RST)
530 printf("%s: DMA read error! -- "
531 "resetting\n",
532 device_xname(sc->sc_dev));
533 if (status & INTR_DMA_WR_TO_RST)
534 printf("%s: DMA write error! -- "
535 "resetting\n",
536 device_xname(sc->sc_dev));
537 age_init(ifp);
538 }
539
540 age_start(ifp);
541
542 if (status & INTR_SMB)
543 age_stats_update(sc);
544 }
545 /* check if more interrupts did came in */
546 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
547 sc->age_cdata.age_cmb_block_map->dm_mapsize,
548 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
549 status = le32toh(cmb->intr_status);
550 }
551
552 return 1;
553 }
554
555 static void
556 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
557 {
558 uint32_t ea[2], reg;
559 int i, vpdc;
560
561 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
562 if ((reg & SPI_VPD_ENB) != 0) {
563 /* Get VPD stored in TWSI EEPROM. */
564 reg &= ~SPI_VPD_ENB;
565 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
566 }
567
568 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
569 PCI_CAP_VPD, &vpdc, NULL)) {
570 /*
571 * PCI VPD capability found, let TWSI reload EEPROM.
572 * This will set Ethernet address of controller.
573 */
574 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
575 TWSI_CTRL_SW_LD_START);
576 for (i = 100; i > 0; i++) {
577 DELAY(1000);
578 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
579 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
580 break;
581 }
582 if (i == 0)
583 printf("%s: reloading EEPROM timeout!\n",
584 device_xname(sc->sc_dev));
585 } else {
586 if (agedebug)
587 printf("%s: PCI VPD capability not found!\n",
588 device_xname(sc->sc_dev));
589 }
590
591 ea[0] = CSR_READ_4(sc, AGE_PAR0);
592 ea[1] = CSR_READ_4(sc, AGE_PAR1);
593
594 eaddr[0] = (ea[1] >> 8) & 0xFF;
595 eaddr[1] = (ea[1] >> 0) & 0xFF;
596 eaddr[2] = (ea[0] >> 24) & 0xFF;
597 eaddr[3] = (ea[0] >> 16) & 0xFF;
598 eaddr[4] = (ea[0] >> 8) & 0xFF;
599 eaddr[5] = (ea[0] >> 0) & 0xFF;
600 }
601
602 static void
603 age_phy_reset(struct age_softc *sc)
604 {
605 uint16_t reg, pn;
606 int i, linkup;
607
608 /* Reset PHY. */
609 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
610 DELAY(2000);
611 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
612 DELAY(2000);
613
614 #define ATPHY_DBG_ADDR 0x1D
615 #define ATPHY_DBG_DATA 0x1E
616 #define ATPHY_CDTC 0x16
617 #define PHY_CDTC_ENB 0x0001
618 #define PHY_CDTC_POFF 8
619 #define ATPHY_CDTS 0x1C
620 #define PHY_CDTS_STAT_OK 0x0000
621 #define PHY_CDTS_STAT_SHORT 0x0100
622 #define PHY_CDTS_STAT_OPEN 0x0200
623 #define PHY_CDTS_STAT_INVAL 0x0300
624 #define PHY_CDTS_STAT_MASK 0x0300
625
626 /* Check power saving mode. Magic from Linux. */
627 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
628 for (linkup = 0, pn = 0; pn < 4; pn++) {
629 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
630 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
631 for (i = 200; i > 0; i--) {
632 DELAY(1000);
633 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
634 ATPHY_CDTC);
635 if ((reg & PHY_CDTC_ENB) == 0)
636 break;
637 }
638 DELAY(1000);
639 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
640 ATPHY_CDTS);
641 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
642 linkup++;
643 break;
644 }
645 }
646 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
647 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
648 if (linkup == 0) {
649 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
650 ATPHY_DBG_ADDR, 0);
651 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
652 ATPHY_DBG_DATA, 0x124E);
653 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
654 ATPHY_DBG_ADDR, 1);
655 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
656 ATPHY_DBG_DATA);
657 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 ATPHY_DBG_DATA, reg | 0x03);
659 /* XXX */
660 DELAY(1500 * 1000);
661 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 ATPHY_DBG_ADDR, 0);
663 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
664 ATPHY_DBG_DATA, 0x024E);
665 }
666
667 #undef ATPHY_DBG_ADDR
668 #undef ATPHY_DBG_DATA
669 #undef ATPHY_CDTC
670 #undef PHY_CDTC_ENB
671 #undef PHY_CDTC_POFF
672 #undef ATPHY_CDTS
673 #undef PHY_CDTS_STAT_OK
674 #undef PHY_CDTS_STAT_SHORT
675 #undef PHY_CDTS_STAT_OPEN
676 #undef PHY_CDTS_STAT_INVAL
677 #undef PHY_CDTS_STAT_MASK
678 }
679
680 static int
681 age_dma_alloc(struct age_softc *sc)
682 {
683 struct age_txdesc *txd;
684 struct age_rxdesc *rxd;
685 int nsegs, error, i;
686
687 /*
688 * Create DMA stuffs for TX ring
689 */
690 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
691 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
692 if (error) {
693 sc->age_cdata.age_tx_ring_map = NULL;
694 return ENOBUFS;
695 }
696
697 /* Allocate DMA'able memory for TX ring */
698 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
699 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
700 &nsegs, BUS_DMA_NOWAIT);
701 if (error) {
702 printf("%s: could not allocate DMA'able memory for Tx ring, "
703 "error = %i\n", device_xname(sc->sc_dev), error);
704 return error;
705 }
706
707 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
708 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
709 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
710 if (error)
711 return ENOBUFS;
712
713 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
714
715 /* Load the DMA map for Tx ring. */
716 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
717 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
718 if (error) {
719 printf("%s: could not load DMA'able memory for Tx ring, "
720 "error = %i\n", device_xname(sc->sc_dev), error);
721 bus_dmamem_free(sc->sc_dmat,
722 &sc->age_rdata.age_tx_ring_seg, 1);
723 return error;
724 }
725
726 sc->age_rdata.age_tx_ring_paddr =
727 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
728
729 /*
730 * Create DMA stuffs for RX ring
731 */
732 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
733 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
734 if (error) {
735 sc->age_cdata.age_rx_ring_map = NULL;
736 return ENOBUFS;
737 }
738
739 /* Allocate DMA'able memory for RX ring */
740 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
741 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
742 &nsegs, BUS_DMA_NOWAIT);
743 if (error) {
744 printf("%s: could not allocate DMA'able memory for Rx ring, "
745 "error = %i.\n", device_xname(sc->sc_dev), error);
746 return error;
747 }
748
749 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
750 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
751 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
752 if (error)
753 return ENOBUFS;
754
755 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
756
757 /* Load the DMA map for Rx ring. */
758 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
759 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
760 if (error) {
761 printf("%s: could not load DMA'able memory for Rx ring, "
762 "error = %i.\n", device_xname(sc->sc_dev), error);
763 bus_dmamem_free(sc->sc_dmat,
764 &sc->age_rdata.age_rx_ring_seg, 1);
765 return error;
766 }
767
768 sc->age_rdata.age_rx_ring_paddr =
769 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
770
771 /*
772 * Create DMA stuffs for RX return ring
773 */
774 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
775 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
776 if (error) {
777 sc->age_cdata.age_rr_ring_map = NULL;
778 return ENOBUFS;
779 }
780
781 /* Allocate DMA'able memory for RX return ring */
782 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
783 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
784 &nsegs, BUS_DMA_NOWAIT);
785 if (error) {
786 printf("%s: could not allocate DMA'able memory for Rx "
787 "return ring, error = %i.\n",
788 device_xname(sc->sc_dev), error);
789 return error;
790 }
791
792 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
793 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
794 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
795 if (error)
796 return ENOBUFS;
797
798 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
799
800 /* Load the DMA map for Rx return ring. */
801 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
802 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
803 if (error) {
804 printf("%s: could not load DMA'able memory for Rx return ring, "
805 "error = %i\n", device_xname(sc->sc_dev), error);
806 bus_dmamem_free(sc->sc_dmat,
807 &sc->age_rdata.age_rr_ring_seg, 1);
808 return error;
809 }
810
811 sc->age_rdata.age_rr_ring_paddr =
812 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
813
814 /*
815 * Create DMA stuffs for CMB block
816 */
817 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
818 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
819 &sc->age_cdata.age_cmb_block_map);
820 if (error) {
821 sc->age_cdata.age_cmb_block_map = NULL;
822 return ENOBUFS;
823 }
824
825 /* Allocate DMA'able memory for CMB block */
826 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
827 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
828 &nsegs, BUS_DMA_NOWAIT);
829 if (error) {
830 printf("%s: could not allocate DMA'able memory for "
831 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
832 return error;
833 }
834
835 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
836 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
837 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
838 if (error)
839 return ENOBUFS;
840
841 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
842
843 /* Load the DMA map for CMB block. */
844 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
845 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
846 BUS_DMA_NOWAIT);
847 if (error) {
848 printf("%s: could not load DMA'able memory for CMB block, "
849 "error = %i\n", device_xname(sc->sc_dev), error);
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->age_rdata.age_cmb_block_seg, 1);
852 return error;
853 }
854
855 sc->age_rdata.age_cmb_block_paddr =
856 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
857
858 /*
859 * Create DMA stuffs for SMB block
860 */
861 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
862 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
863 &sc->age_cdata.age_smb_block_map);
864 if (error) {
865 sc->age_cdata.age_smb_block_map = NULL;
866 return ENOBUFS;
867 }
868
869 /* Allocate DMA'able memory for SMB block */
870 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
871 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
872 &nsegs, BUS_DMA_NOWAIT);
873 if (error) {
874 printf("%s: could not allocate DMA'able memory for "
875 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
876 return error;
877 }
878
879 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
880 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
881 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
882 if (error)
883 return ENOBUFS;
884
885 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
886
887 /* Load the DMA map for SMB block */
888 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
889 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
890 BUS_DMA_NOWAIT);
891 if (error) {
892 printf("%s: could not load DMA'able memory for SMB block, "
893 "error = %i\n", device_xname(sc->sc_dev), error);
894 bus_dmamem_free(sc->sc_dmat,
895 &sc->age_rdata.age_smb_block_seg, 1);
896 return error;
897 }
898
899 sc->age_rdata.age_smb_block_paddr =
900 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
901
902 /* Create DMA maps for Tx buffers. */
903 for (i = 0; i < AGE_TX_RING_CNT; i++) {
904 txd = &sc->age_cdata.age_txdesc[i];
905 txd->tx_m = NULL;
906 txd->tx_dmamap = NULL;
907 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
908 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
909 &txd->tx_dmamap);
910 if (error) {
911 txd->tx_dmamap = NULL;
912 printf("%s: could not create Tx dmamap, error = %i.\n",
913 device_xname(sc->sc_dev), error);
914 return error;
915 }
916 }
917
918 /* Create DMA maps for Rx buffers. */
919 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
920 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
921 if (error) {
922 sc->age_cdata.age_rx_sparemap = NULL;
923 printf("%s: could not create spare Rx dmamap, error = %i.\n",
924 device_xname(sc->sc_dev), error);
925 return error;
926 }
927 for (i = 0; i < AGE_RX_RING_CNT; i++) {
928 rxd = &sc->age_cdata.age_rxdesc[i];
929 rxd->rx_m = NULL;
930 rxd->rx_dmamap = NULL;
931 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
932 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
933 if (error) {
934 rxd->rx_dmamap = NULL;
935 printf("%s: could not create Rx dmamap, error = %i.\n",
936 device_xname(sc->sc_dev), error);
937 return error;
938 }
939 }
940
941 return 0;
942 }
943
944 static void
945 age_dma_free(struct age_softc *sc)
946 {
947 struct age_txdesc *txd;
948 struct age_rxdesc *rxd;
949 int i;
950
951 /* Tx buffers */
952 for (i = 0; i < AGE_TX_RING_CNT; i++) {
953 txd = &sc->age_cdata.age_txdesc[i];
954 if (txd->tx_dmamap != NULL) {
955 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
956 txd->tx_dmamap = NULL;
957 }
958 }
959 /* Rx buffers */
960 for (i = 0; i < AGE_RX_RING_CNT; i++) {
961 rxd = &sc->age_cdata.age_rxdesc[i];
962 if (rxd->rx_dmamap != NULL) {
963 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
964 rxd->rx_dmamap = NULL;
965 }
966 }
967 if (sc->age_cdata.age_rx_sparemap != NULL) {
968 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
969 sc->age_cdata.age_rx_sparemap = NULL;
970 }
971
972 /* Tx ring. */
973 if (sc->age_cdata.age_tx_ring_map != NULL)
974 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
975 if (sc->age_cdata.age_tx_ring_map != NULL &&
976 sc->age_rdata.age_tx_ring != NULL)
977 bus_dmamem_free(sc->sc_dmat,
978 &sc->age_rdata.age_tx_ring_seg, 1);
979 sc->age_rdata.age_tx_ring = NULL;
980 sc->age_cdata.age_tx_ring_map = NULL;
981
982 /* Rx ring. */
983 if (sc->age_cdata.age_rx_ring_map != NULL)
984 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
985 if (sc->age_cdata.age_rx_ring_map != NULL &&
986 sc->age_rdata.age_rx_ring != NULL)
987 bus_dmamem_free(sc->sc_dmat,
988 &sc->age_rdata.age_rx_ring_seg, 1);
989 sc->age_rdata.age_rx_ring = NULL;
990 sc->age_cdata.age_rx_ring_map = NULL;
991
992 /* Rx return ring. */
993 if (sc->age_cdata.age_rr_ring_map != NULL)
994 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
995 if (sc->age_cdata.age_rr_ring_map != NULL &&
996 sc->age_rdata.age_rr_ring != NULL)
997 bus_dmamem_free(sc->sc_dmat,
998 &sc->age_rdata.age_rr_ring_seg, 1);
999 sc->age_rdata.age_rr_ring = NULL;
1000 sc->age_cdata.age_rr_ring_map = NULL;
1001
1002 /* CMB block */
1003 if (sc->age_cdata.age_cmb_block_map != NULL)
1004 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1005 if (sc->age_cdata.age_cmb_block_map != NULL &&
1006 sc->age_rdata.age_cmb_block != NULL)
1007 bus_dmamem_free(sc->sc_dmat,
1008 &sc->age_rdata.age_cmb_block_seg, 1);
1009 sc->age_rdata.age_cmb_block = NULL;
1010 sc->age_cdata.age_cmb_block_map = NULL;
1011
1012 /* SMB block */
1013 if (sc->age_cdata.age_smb_block_map != NULL)
1014 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1015 if (sc->age_cdata.age_smb_block_map != NULL &&
1016 sc->age_rdata.age_smb_block != NULL)
1017 bus_dmamem_free(sc->sc_dmat,
1018 &sc->age_rdata.age_smb_block_seg, 1);
1019 sc->age_rdata.age_smb_block = NULL;
1020 sc->age_cdata.age_smb_block_map = NULL;
1021 }
1022
1023 static void
1024 age_start(struct ifnet *ifp)
1025 {
1026 struct age_softc *sc = ifp->if_softc;
1027 struct mbuf *m_head;
1028 int enq;
1029
1030 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1031 return;
1032 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1033 return;
1034 if (IFQ_IS_EMPTY(&ifp->if_snd))
1035 return;
1036
1037 enq = 0;
1038 for (;;) {
1039 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1040 if (m_head == NULL)
1041 break;
1042
1043 /*
1044 * Pack the data into the transmit ring. If we
1045 * don't have room, set the OACTIVE flag and wait
1046 * for the NIC to drain the ring.
1047 */
1048 if (age_encap(sc, &m_head)) {
1049 if (m_head == NULL)
1050 break;
1051 IF_PREPEND(&ifp->if_snd, m_head);
1052 ifp->if_flags |= IFF_OACTIVE;
1053 break;
1054 }
1055 enq = 1;
1056
1057 /*
1058 * If there's a BPF listener, bounce a copy of this frame
1059 * to him.
1060 */
1061 bpf_mtap(ifp, m_head);
1062 }
1063
1064 if (enq) {
1065 /* Update mbox. */
1066 AGE_COMMIT_MBOX(sc);
1067 /* Set a timeout in case the chip goes out to lunch. */
1068 ifp->if_timer = AGE_TX_TIMEOUT;
1069 }
1070 }
1071
1072 static void
1073 age_watchdog(struct ifnet *ifp)
1074 {
1075 struct age_softc *sc = ifp->if_softc;
1076
1077 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1078 printf("%s: watchdog timeout (missed link)\n",
1079 device_xname(sc->sc_dev));
1080 ifp->if_oerrors++;
1081 age_init(ifp);
1082 return;
1083 }
1084
1085 if (sc->age_cdata.age_tx_cnt == 0) {
1086 printf("%s: watchdog timeout (missed Tx interrupts) "
1087 "-- recovering\n", device_xname(sc->sc_dev));
1088 age_start(ifp);
1089 return;
1090 }
1091
1092 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1093 ifp->if_oerrors++;
1094 age_init(ifp);
1095 age_start(ifp);
1096 }
1097
1098 static bool
1099 age_shutdown(device_t self, int howto)
1100 {
1101 struct age_softc *sc;
1102 struct ifnet *ifp;
1103
1104 sc = device_private(self);
1105 ifp = &sc->sc_ec.ec_if;
1106 age_stop(ifp, 1);
1107
1108 return true;
1109 }
1110
1111
1112 static int
1113 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 struct age_softc *sc = ifp->if_softc;
1116 int s, error;
1117
1118 s = splnet();
1119
1120 error = ether_ioctl(ifp, cmd, data);
1121 if (error == ENETRESET) {
1122 if (ifp->if_flags & IFF_RUNNING)
1123 age_rxfilter(sc);
1124 error = 0;
1125 }
1126
1127 splx(s);
1128 return error;
1129 }
1130
1131 static void
1132 age_mac_config(struct age_softc *sc)
1133 {
1134 struct mii_data *mii;
1135 uint32_t reg;
1136
1137 mii = &sc->sc_miibus;
1138
1139 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1140 reg &= ~MAC_CFG_FULL_DUPLEX;
1141 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1142 reg &= ~MAC_CFG_SPEED_MASK;
1143
1144 /* Reprogram MAC with resolved speed/duplex. */
1145 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1146 case IFM_10_T:
1147 case IFM_100_TX:
1148 reg |= MAC_CFG_SPEED_10_100;
1149 break;
1150 case IFM_1000_T:
1151 reg |= MAC_CFG_SPEED_1000;
1152 break;
1153 }
1154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1155 reg |= MAC_CFG_FULL_DUPLEX;
1156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1157 reg |= MAC_CFG_TX_FC;
1158 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1159 reg |= MAC_CFG_RX_FC;
1160 }
1161
1162 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1163 }
1164
1165 static bool
1166 age_resume(device_t dv, const pmf_qual_t *qual)
1167 {
1168 struct age_softc *sc = device_private(dv);
1169 uint16_t cmd;
1170
1171 /*
1172 * Clear INTx emulation disable for hardware that
1173 * is set in resume event. From Linux.
1174 */
1175 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1176 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1177 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1178 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1179 PCI_COMMAND_STATUS_REG, cmd);
1180 }
1181
1182 return true;
1183 }
1184
1185 static int
1186 age_encap(struct age_softc *sc, struct mbuf **m_head)
1187 {
1188 struct age_txdesc *txd, *txd_last;
1189 struct tx_desc *desc;
1190 struct mbuf *m;
1191 bus_dmamap_t map;
1192 uint32_t cflags, poff, vtag;
1193 int error, i, nsegs, prod;
1194 #if NVLAN > 0
1195 struct m_tag *mtag;
1196 #endif
1197
1198 m = *m_head;
1199 cflags = vtag = 0;
1200 poff = 0;
1201
1202 prod = sc->age_cdata.age_tx_prod;
1203 txd = &sc->age_cdata.age_txdesc[prod];
1204 txd_last = txd;
1205 map = txd->tx_dmamap;
1206
1207 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1208
1209 if (error == EFBIG) {
1210 error = 0;
1211
1212 *m_head = m_pullup(*m_head, MHLEN);
1213 if (*m_head == NULL) {
1214 printf("%s: can't defrag TX mbuf\n",
1215 device_xname(sc->sc_dev));
1216 return ENOBUFS;
1217 }
1218
1219 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1220 BUS_DMA_NOWAIT);
1221
1222 if (error != 0) {
1223 printf("%s: could not load defragged TX mbuf\n",
1224 device_xname(sc->sc_dev));
1225 m_freem(*m_head);
1226 *m_head = NULL;
1227 return error;
1228 }
1229 } else if (error) {
1230 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1231 return error;
1232 }
1233
1234 nsegs = map->dm_nsegs;
1235
1236 if (nsegs == 0) {
1237 m_freem(*m_head);
1238 *m_head = NULL;
1239 return EIO;
1240 }
1241
1242 /* Check descriptor overrun. */
1243 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1244 bus_dmamap_unload(sc->sc_dmat, map);
1245 return ENOBUFS;
1246 }
1247 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1248 BUS_DMASYNC_PREWRITE);
1249
1250 m = *m_head;
1251 /* Configure Tx IP/TCP/UDP checksum offload. */
1252 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1253 cflags |= AGE_TD_CSUM;
1254 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1255 cflags |= AGE_TD_TCPCSUM;
1256 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1257 cflags |= AGE_TD_UDPCSUM;
1258 /* Set checksum start offset. */
1259 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1260 }
1261
1262 #if NVLAN > 0
1263 /* Configure VLAN hardware tag insertion. */
1264 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1265 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1266 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1267 cflags |= AGE_TD_INSERT_VLAN_TAG;
1268 }
1269 #endif
1270
1271 desc = NULL;
1272 KASSERT(nsegs > 0);
1273 for (i = 0; ; i++) {
1274 desc = &sc->age_rdata.age_tx_ring[prod];
1275 desc->addr = htole64(map->dm_segs[i].ds_addr);
1276 desc->len =
1277 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1278 desc->flags = htole32(cflags);
1279 sc->age_cdata.age_tx_cnt++;
1280 if (i == (nsegs - 1))
1281 break;
1282
1283 /* sync this descriptor and go to the next one */
1284 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1285 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1286 BUS_DMASYNC_PREWRITE);
1287 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 }
1289
1290 /* Set EOP on the last descriptor and sync it. */
1291 desc->flags |= htole32(AGE_TD_EOP);
1292 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1293 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1294 BUS_DMASYNC_PREWRITE);
1295
1296 if (nsegs > 1) {
1297 /* Swap dmamap of the first and the last. */
1298 txd = &sc->age_cdata.age_txdesc[prod];
1299 map = txd_last->tx_dmamap;
1300 txd_last->tx_dmamap = txd->tx_dmamap;
1301 txd->tx_dmamap = map;
1302 txd->tx_m = m;
1303 KASSERT(txd_last->tx_m == NULL);
1304 } else {
1305 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1306 txd_last->tx_m = m;
1307 }
1308
1309 /* Update producer index. */
1310 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1311 sc->age_cdata.age_tx_prod = prod;
1312
1313 return 0;
1314 }
1315
1316 static void
1317 age_txintr(struct age_softc *sc, int tpd_cons)
1318 {
1319 struct ifnet *ifp = &sc->sc_ec.ec_if;
1320 struct age_txdesc *txd;
1321 int cons, prog;
1322
1323
1324 if (sc->age_cdata.age_tx_cnt <= 0) {
1325 if (ifp->if_timer != 0)
1326 printf("timer running without packets\n");
1327 if (sc->age_cdata.age_tx_cnt)
1328 printf("age_tx_cnt corrupted\n");
1329 }
1330
1331 /*
1332 * Go through our Tx list and free mbufs for those
1333 * frames which have been transmitted.
1334 */
1335 cons = sc->age_cdata.age_tx_cons;
1336 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1337 if (sc->age_cdata.age_tx_cnt <= 0)
1338 break;
1339 prog++;
1340 ifp->if_flags &= ~IFF_OACTIVE;
1341 sc->age_cdata.age_tx_cnt--;
1342 txd = &sc->age_cdata.age_txdesc[cons];
1343 /*
1344 * Clear Tx descriptors, it's not required but would
1345 * help debugging in case of Tx issues.
1346 */
1347 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1348 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1349 BUS_DMASYNC_POSTWRITE);
1350 txd->tx_desc->addr = 0;
1351 txd->tx_desc->len = 0;
1352 txd->tx_desc->flags = 0;
1353
1354 if (txd->tx_m == NULL)
1355 continue;
1356 /* Reclaim transmitted mbufs. */
1357 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1358 m_freem(txd->tx_m);
1359 txd->tx_m = NULL;
1360 }
1361
1362 if (prog > 0) {
1363 sc->age_cdata.age_tx_cons = cons;
1364
1365 /*
1366 * Unarm watchdog timer only when there are no pending
1367 * Tx descriptors in queue.
1368 */
1369 if (sc->age_cdata.age_tx_cnt == 0)
1370 ifp->if_timer = 0;
1371 }
1372 }
1373
1374 /* Receive a frame. */
1375 static void
1376 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1377 {
1378 struct ifnet *ifp = &sc->sc_ec.ec_if;
1379 struct age_rxdesc *rxd;
1380 struct rx_desc *desc;
1381 struct mbuf *mp, *m;
1382 uint32_t status, index;
1383 int count, nsegs, pktlen;
1384 int rx_cons;
1385
1386 status = le32toh(rxrd->flags);
1387 index = le32toh(rxrd->index);
1388 rx_cons = AGE_RX_CONS(index);
1389 nsegs = AGE_RX_NSEGS(index);
1390
1391 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1392 if ((status & AGE_RRD_ERROR) != 0 &&
1393 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1394 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1395 /*
1396 * We want to pass the following frames to upper
1397 * layer regardless of error status of Rx return
1398 * ring.
1399 *
1400 * o IP/TCP/UDP checksum is bad.
1401 * o frame length and protocol specific length
1402 * does not match.
1403 */
1404 sc->age_cdata.age_rx_cons += nsegs;
1405 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1406 return;
1407 }
1408
1409 pktlen = 0;
1410 for (count = 0; count < nsegs; count++,
1411 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1412 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1413 mp = rxd->rx_m;
1414 desc = rxd->rx_desc;
1415 /* Add a new receive buffer to the ring. */
1416 if (age_newbuf(sc, rxd, 0) != 0) {
1417 ifp->if_iqdrops++;
1418 /* Reuse Rx buffers. */
1419 if (sc->age_cdata.age_rxhead != NULL) {
1420 m_freem(sc->age_cdata.age_rxhead);
1421 AGE_RXCHAIN_RESET(sc);
1422 }
1423 break;
1424 }
1425
1426 /* The length of the first mbuf is computed last. */
1427 if (count != 0) {
1428 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1429 pktlen += mp->m_len;
1430 }
1431
1432 /* Chain received mbufs. */
1433 if (sc->age_cdata.age_rxhead == NULL) {
1434 sc->age_cdata.age_rxhead = mp;
1435 sc->age_cdata.age_rxtail = mp;
1436 } else {
1437 mp->m_flags &= ~M_PKTHDR;
1438 sc->age_cdata.age_rxprev_tail =
1439 sc->age_cdata.age_rxtail;
1440 sc->age_cdata.age_rxtail->m_next = mp;
1441 sc->age_cdata.age_rxtail = mp;
1442 }
1443
1444 if (count == nsegs - 1) {
1445 /*
1446 * It seems that L1 controller has no way
1447 * to tell hardware to strip CRC bytes.
1448 */
1449 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1450 if (nsegs > 1) {
1451 /* Remove the CRC bytes in chained mbufs. */
1452 pktlen -= ETHER_CRC_LEN;
1453 if (mp->m_len <= ETHER_CRC_LEN) {
1454 sc->age_cdata.age_rxtail =
1455 sc->age_cdata.age_rxprev_tail;
1456 sc->age_cdata.age_rxtail->m_len -=
1457 (ETHER_CRC_LEN - mp->m_len);
1458 sc->age_cdata.age_rxtail->m_next = NULL;
1459 m_freem(mp);
1460 } else {
1461 mp->m_len -= ETHER_CRC_LEN;
1462 }
1463 }
1464
1465 m = sc->age_cdata.age_rxhead;
1466 m->m_flags |= M_PKTHDR;
1467 m->m_pkthdr.rcvif = ifp;
1468 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1469 /* Set the first mbuf length. */
1470 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1471
1472 /*
1473 * Set checksum information.
1474 * It seems that L1 controller can compute partial
1475 * checksum. The partial checksum value can be used
1476 * to accelerate checksum computation for fragmented
1477 * TCP/UDP packets. Upper network stack already
1478 * takes advantage of the partial checksum value in
1479 * IP reassembly stage. But I'm not sure the
1480 * correctness of the partial hardware checksum
1481 * assistance due to lack of data sheet. If it is
1482 * proven to work on L1 I'll enable it.
1483 */
1484 if (status & AGE_RRD_IPV4) {
1485 if (status & AGE_RRD_IPCSUM_NOK)
1486 m->m_pkthdr.csum_flags |=
1487 M_CSUM_IPv4_BAD;
1488 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1489 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1490 m->m_pkthdr.csum_flags |=
1491 M_CSUM_TCP_UDP_BAD;
1492 }
1493 /*
1494 * Don't mark bad checksum for TCP/UDP frames
1495 * as fragmented frames may always have set
1496 * bad checksummed bit of descriptor status.
1497 */
1498 }
1499 #if NVLAN > 0
1500 /* Check for VLAN tagged frames. */
1501 if (status & AGE_RRD_VLAN) {
1502 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1503 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1504 continue);
1505 }
1506 #endif
1507
1508 bpf_mtap(ifp, m);
1509 /* Pass it on. */
1510 (*ifp->if_input)(ifp, m);
1511
1512 /* Reset mbuf chains. */
1513 AGE_RXCHAIN_RESET(sc);
1514 }
1515 }
1516
1517 if (count != nsegs) {
1518 sc->age_cdata.age_rx_cons += nsegs;
1519 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1520 } else
1521 sc->age_cdata.age_rx_cons = rx_cons;
1522 }
1523
1524 static void
1525 age_rxintr(struct age_softc *sc, int rr_prod)
1526 {
1527 struct rx_rdesc *rxrd;
1528 int rr_cons, nsegs, pktlen, prog;
1529
1530 rr_cons = sc->age_cdata.age_rr_cons;
1531 if (rr_cons == rr_prod)
1532 return;
1533
1534 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1535 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1536 BUS_DMASYNC_POSTREAD);
1537
1538 for (prog = 0; rr_cons != rr_prod; prog++) {
1539 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1540 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1541 if (nsegs == 0)
1542 break;
1543 /*
1544 * Check number of segments against received bytes
1545 * Non-matching value would indicate that hardware
1546 * is still trying to update Rx return descriptors.
1547 * I'm not sure whether this check is really needed.
1548 */
1549 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1550 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1551 (MCLBYTES - ETHER_ALIGN)))
1552 break;
1553
1554 /* Received a frame. */
1555 age_rxeof(sc, rxrd);
1556
1557 /* Clear return ring. */
1558 rxrd->index = 0;
1559 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1560 }
1561
1562 if (prog > 0) {
1563 /* Update the consumer index. */
1564 sc->age_cdata.age_rr_cons = rr_cons;
1565
1566 /* Sync descriptors. */
1567 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1568 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1569 BUS_DMASYNC_PREWRITE);
1570
1571 /* Notify hardware availability of new Rx buffers. */
1572 AGE_COMMIT_MBOX(sc);
1573 }
1574 }
1575
1576 static void
1577 age_tick(void *xsc)
1578 {
1579 struct age_softc *sc = xsc;
1580 struct mii_data *mii = &sc->sc_miibus;
1581 int s;
1582
1583 s = splnet();
1584 mii_tick(mii);
1585 splx(s);
1586
1587 callout_schedule(&sc->sc_tick_ch, hz);
1588 }
1589
1590 static void
1591 age_reset(struct age_softc *sc)
1592 {
1593 uint32_t reg;
1594 int i;
1595
1596 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1597 CSR_READ_4(sc, AGE_MASTER_CFG);
1598 DELAY(1000);
1599 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1600 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1601 break;
1602 DELAY(10);
1603 }
1604
1605 if (i == 0)
1606 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1607 reg);
1608
1609 /* Initialize PCIe module. From Linux. */
1610 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1611 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1612 }
1613
1614 static int
1615 age_init(struct ifnet *ifp)
1616 {
1617 struct age_softc *sc = ifp->if_softc;
1618 struct mii_data *mii;
1619 uint8_t eaddr[ETHER_ADDR_LEN];
1620 bus_addr_t paddr;
1621 uint32_t reg, fsize;
1622 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1623 int error;
1624
1625 /*
1626 * Cancel any pending I/O.
1627 */
1628 age_stop(ifp, 0);
1629
1630 /*
1631 * Reset the chip to a known state.
1632 */
1633 age_reset(sc);
1634
1635 /* Initialize descriptors. */
1636 error = age_init_rx_ring(sc);
1637 if (error != 0) {
1638 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1639 age_stop(ifp, 0);
1640 return error;
1641 }
1642 age_init_rr_ring(sc);
1643 age_init_tx_ring(sc);
1644 age_init_cmb_block(sc);
1645 age_init_smb_block(sc);
1646
1647 /* Reprogram the station address. */
1648 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1649 CSR_WRITE_4(sc, AGE_PAR0,
1650 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1651 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1652
1653 /* Set descriptor base addresses. */
1654 paddr = sc->age_rdata.age_tx_ring_paddr;
1655 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1656 paddr = sc->age_rdata.age_rx_ring_paddr;
1657 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1658 paddr = sc->age_rdata.age_rr_ring_paddr;
1659 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1660 paddr = sc->age_rdata.age_tx_ring_paddr;
1661 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1662 paddr = sc->age_rdata.age_cmb_block_paddr;
1663 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1664 paddr = sc->age_rdata.age_smb_block_paddr;
1665 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1666
1667 /* Set Rx/Rx return descriptor counter. */
1668 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1669 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1670 DESC_RRD_CNT_MASK) |
1671 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1672
1673 /* Set Tx descriptor counter. */
1674 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1675 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1676
1677 /* Tell hardware that we're ready to load descriptors. */
1678 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1679
1680 /*
1681 * Initialize mailbox register.
1682 * Updated producer/consumer index information is exchanged
1683 * through this mailbox register. However Tx producer and
1684 * Rx return consumer/Rx producer are all shared such that
1685 * it's hard to separate code path between Tx and Rx without
1686 * locking. If L1 hardware have a separate mail box register
1687 * for Tx and Rx consumer/producer management we could have
1688 * indepent Tx/Rx handler which in turn Rx handler could have
1689 * been run without any locking.
1690 */
1691 AGE_COMMIT_MBOX(sc);
1692
1693 /* Configure IPG/IFG parameters. */
1694 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1695 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1696 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1697 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1698 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1699
1700 /* Set parameters for half-duplex media. */
1701 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1702 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1703 HDPX_CFG_LCOL_MASK) |
1704 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1705 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1706 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1707 HDPX_CFG_ABEBT_MASK) |
1708 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1709 HDPX_CFG_JAMIPG_MASK));
1710
1711 /* Configure interrupt moderation timer. */
1712 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1713 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1714 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1715 reg &= ~MASTER_MTIMER_ENB;
1716 if (AGE_USECS(sc->age_int_mod) == 0)
1717 reg &= ~MASTER_ITIMER_ENB;
1718 else
1719 reg |= MASTER_ITIMER_ENB;
1720 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1721 if (agedebug)
1722 printf("%s: interrupt moderation is %d us.\n",
1723 device_xname(sc->sc_dev), sc->age_int_mod);
1724 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1725
1726 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1727 if (ifp->if_mtu < ETHERMTU)
1728 sc->age_max_frame_size = ETHERMTU;
1729 else
1730 sc->age_max_frame_size = ifp->if_mtu;
1731 sc->age_max_frame_size += ETHER_HDR_LEN +
1732 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1733 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1734
1735 /* Configure jumbo frame. */
1736 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1737 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1738 (((fsize / sizeof(uint64_t)) <<
1739 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1740 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1741 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1742 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1743 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1744
1745 /* Configure flow-control parameters. From Linux. */
1746 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1747 /*
1748 * Magic workaround for old-L1.
1749 * Don't know which hw revision requires this magic.
1750 */
1751 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1752 /*
1753 * Another magic workaround for flow-control mode
1754 * change. From Linux.
1755 */
1756 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1757 }
1758 /*
1759 * TODO
1760 * Should understand pause parameter relationships between FIFO
1761 * size and number of Rx descriptors and Rx return descriptors.
1762 *
1763 * Magic parameters came from Linux.
1764 */
1765 switch (sc->age_chip_rev) {
1766 case 0x8001:
1767 case 0x9001:
1768 case 0x9002:
1769 case 0x9003:
1770 rxf_hi = AGE_RX_RING_CNT / 16;
1771 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1772 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1773 rrd_lo = AGE_RR_RING_CNT / 16;
1774 break;
1775 default:
1776 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1777 rxf_lo = reg / 16;
1778 if (rxf_lo < 192)
1779 rxf_lo = 192;
1780 rxf_hi = (reg * 7) / 8;
1781 if (rxf_hi < rxf_lo)
1782 rxf_hi = rxf_lo + 16;
1783 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1784 rrd_lo = reg / 8;
1785 rrd_hi = (reg * 7) / 8;
1786 if (rrd_lo < 2)
1787 rrd_lo = 2;
1788 if (rrd_hi < rrd_lo)
1789 rrd_hi = rrd_lo + 3;
1790 break;
1791 }
1792 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1793 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1794 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1795 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1796 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1797 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1798 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1799 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1800 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1801 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1802
1803 /* Configure RxQ. */
1804 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1805 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1806 RXQ_CFG_RD_BURST_MASK) |
1807 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1808 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1809 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1810 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1811 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1812
1813 /* Configure TxQ. */
1814 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1815 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1816 TXQ_CFG_TPD_BURST_MASK) |
1817 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1818 TXQ_CFG_TX_FIFO_BURST_MASK) |
1819 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1820 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1821 TXQ_CFG_ENB);
1822
1823 /* Configure DMA parameters. */
1824 CSR_WRITE_4(sc, AGE_DMA_CFG,
1825 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1826 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1827 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1828
1829 /* Configure CMB DMA write threshold. */
1830 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1831 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1832 CMB_WR_THRESH_RRD_MASK) |
1833 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1834 CMB_WR_THRESH_TPD_MASK));
1835
1836 /* Set CMB/SMB timer and enable them. */
1837 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1838 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1839 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1840
1841 /* Request SMB updates for every seconds. */
1842 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1843 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1844
1845 /*
1846 * Disable all WOL bits as WOL can interfere normal Rx
1847 * operation.
1848 */
1849 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1850
1851 /*
1852 * Configure Tx/Rx MACs.
1853 * - Auto-padding for short frames.
1854 * - Enable CRC generation.
1855 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1856 * of MAC is followed after link establishment.
1857 */
1858 CSR_WRITE_4(sc, AGE_MAC_CFG,
1859 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1860 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1861 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1862 MAC_CFG_PREAMBLE_MASK));
1863
1864 /* Set up the receive filter. */
1865 age_rxfilter(sc);
1866 age_rxvlan(sc);
1867
1868 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1869 reg |= MAC_CFG_RXCSUM_ENB;
1870
1871 /* Ack all pending interrupts and clear it. */
1872 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1873 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1874
1875 /* Finally enable Tx/Rx MAC. */
1876 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1877
1878 sc->age_flags &= ~AGE_FLAG_LINK;
1879
1880 /* Switch to the current media. */
1881 mii = &sc->sc_miibus;
1882 mii_mediachg(mii);
1883
1884 callout_schedule(&sc->sc_tick_ch, hz);
1885
1886 ifp->if_flags |= IFF_RUNNING;
1887 ifp->if_flags &= ~IFF_OACTIVE;
1888
1889 return 0;
1890 }
1891
1892 static void
1893 age_stop(struct ifnet *ifp, int disable)
1894 {
1895 struct age_softc *sc = ifp->if_softc;
1896 struct age_txdesc *txd;
1897 struct age_rxdesc *rxd;
1898 uint32_t reg;
1899 int i;
1900
1901 callout_stop(&sc->sc_tick_ch);
1902
1903 /*
1904 * Mark the interface down and cancel the watchdog timer.
1905 */
1906 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 ifp->if_timer = 0;
1908
1909 sc->age_flags &= ~AGE_FLAG_LINK;
1910
1911 mii_down(&sc->sc_miibus);
1912
1913 /*
1914 * Disable interrupts.
1915 */
1916 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1917 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1918
1919 /* Stop CMB/SMB updates. */
1920 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1921
1922 /* Stop Rx/Tx MAC. */
1923 age_stop_rxmac(sc);
1924 age_stop_txmac(sc);
1925
1926 /* Stop DMA. */
1927 CSR_WRITE_4(sc, AGE_DMA_CFG,
1928 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1929
1930 /* Stop TxQ/RxQ. */
1931 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1932 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1933 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1934 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1935 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1936 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1937 break;
1938 DELAY(10);
1939 }
1940 if (i == 0)
1941 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1942 device_xname(sc->sc_dev), reg);
1943
1944 /* Reclaim Rx buffers that have been processed. */
1945 if (sc->age_cdata.age_rxhead != NULL)
1946 m_freem(sc->age_cdata.age_rxhead);
1947 AGE_RXCHAIN_RESET(sc);
1948
1949 /*
1950 * Free RX and TX mbufs still in the queues.
1951 */
1952 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1953 rxd = &sc->age_cdata.age_rxdesc[i];
1954 if (rxd->rx_m != NULL) {
1955 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1956 m_freem(rxd->rx_m);
1957 rxd->rx_m = NULL;
1958 }
1959 }
1960 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1961 txd = &sc->age_cdata.age_txdesc[i];
1962 if (txd->tx_m != NULL) {
1963 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1964 m_freem(txd->tx_m);
1965 txd->tx_m = NULL;
1966 }
1967 }
1968 }
1969
1970 static void
1971 age_stats_update(struct age_softc *sc)
1972 {
1973 struct ifnet *ifp = &sc->sc_ec.ec_if;
1974 struct age_stats *stat;
1975 struct smb *smb;
1976
1977 stat = &sc->age_stat;
1978
1979 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1980 sc->age_cdata.age_smb_block_map->dm_mapsize,
1981 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1982
1983 smb = sc->age_rdata.age_smb_block;
1984 if (smb->updated == 0)
1985 return;
1986
1987 /* Rx stats. */
1988 stat->rx_frames += smb->rx_frames;
1989 stat->rx_bcast_frames += smb->rx_bcast_frames;
1990 stat->rx_mcast_frames += smb->rx_mcast_frames;
1991 stat->rx_pause_frames += smb->rx_pause_frames;
1992 stat->rx_control_frames += smb->rx_control_frames;
1993 stat->rx_crcerrs += smb->rx_crcerrs;
1994 stat->rx_lenerrs += smb->rx_lenerrs;
1995 stat->rx_bytes += smb->rx_bytes;
1996 stat->rx_runts += smb->rx_runts;
1997 stat->rx_fragments += smb->rx_fragments;
1998 stat->rx_pkts_64 += smb->rx_pkts_64;
1999 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2000 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2001 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2002 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2003 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2004 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2005 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2006 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2007 stat->rx_desc_oflows += smb->rx_desc_oflows;
2008 stat->rx_alignerrs += smb->rx_alignerrs;
2009 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2010 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2011 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2012
2013 /* Tx stats. */
2014 stat->tx_frames += smb->tx_frames;
2015 stat->tx_bcast_frames += smb->tx_bcast_frames;
2016 stat->tx_mcast_frames += smb->tx_mcast_frames;
2017 stat->tx_pause_frames += smb->tx_pause_frames;
2018 stat->tx_excess_defer += smb->tx_excess_defer;
2019 stat->tx_control_frames += smb->tx_control_frames;
2020 stat->tx_deferred += smb->tx_deferred;
2021 stat->tx_bytes += smb->tx_bytes;
2022 stat->tx_pkts_64 += smb->tx_pkts_64;
2023 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2024 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2025 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2026 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2027 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2028 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2029 stat->tx_single_colls += smb->tx_single_colls;
2030 stat->tx_multi_colls += smb->tx_multi_colls;
2031 stat->tx_late_colls += smb->tx_late_colls;
2032 stat->tx_excess_colls += smb->tx_excess_colls;
2033 stat->tx_underrun += smb->tx_underrun;
2034 stat->tx_desc_underrun += smb->tx_desc_underrun;
2035 stat->tx_lenerrs += smb->tx_lenerrs;
2036 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2037 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2038 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2039
2040 /* Update counters in ifnet. */
2041 ifp->if_opackets += smb->tx_frames;
2042
2043 ifp->if_collisions += smb->tx_single_colls +
2044 smb->tx_multi_colls + smb->tx_late_colls +
2045 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2046
2047 ifp->if_oerrors += smb->tx_excess_colls +
2048 smb->tx_late_colls + smb->tx_underrun +
2049 smb->tx_pkts_truncated;
2050
2051 ifp->if_ipackets += smb->rx_frames;
2052
2053 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2054 smb->rx_runts + smb->rx_pkts_truncated +
2055 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2056 smb->rx_alignerrs;
2057
2058 /* Update done, clear. */
2059 smb->updated = 0;
2060
2061 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2062 sc->age_cdata.age_smb_block_map->dm_mapsize,
2063 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2064 }
2065
2066 static void
2067 age_stop_txmac(struct age_softc *sc)
2068 {
2069 uint32_t reg;
2070 int i;
2071
2072 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2073 if ((reg & MAC_CFG_TX_ENB) != 0) {
2074 reg &= ~MAC_CFG_TX_ENB;
2075 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2076 }
2077 /* Stop Tx DMA engine. */
2078 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2079 if ((reg & DMA_CFG_RD_ENB) != 0) {
2080 reg &= ~DMA_CFG_RD_ENB;
2081 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2082 }
2083 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2084 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2085 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2086 break;
2087 DELAY(10);
2088 }
2089 if (i == 0)
2090 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2091 }
2092
2093 static void
2094 age_stop_rxmac(struct age_softc *sc)
2095 {
2096 uint32_t reg;
2097 int i;
2098
2099 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2100 if ((reg & MAC_CFG_RX_ENB) != 0) {
2101 reg &= ~MAC_CFG_RX_ENB;
2102 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2103 }
2104 /* Stop Rx DMA engine. */
2105 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2106 if ((reg & DMA_CFG_WR_ENB) != 0) {
2107 reg &= ~DMA_CFG_WR_ENB;
2108 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2109 }
2110 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2111 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2112 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2113 break;
2114 DELAY(10);
2115 }
2116 if (i == 0)
2117 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2118 }
2119
2120 static void
2121 age_init_tx_ring(struct age_softc *sc)
2122 {
2123 struct age_ring_data *rd;
2124 struct age_txdesc *txd;
2125 int i;
2126
2127 sc->age_cdata.age_tx_prod = 0;
2128 sc->age_cdata.age_tx_cons = 0;
2129 sc->age_cdata.age_tx_cnt = 0;
2130
2131 rd = &sc->age_rdata;
2132 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2133 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2134 txd = &sc->age_cdata.age_txdesc[i];
2135 txd->tx_desc = &rd->age_tx_ring[i];
2136 txd->tx_m = NULL;
2137 }
2138 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2139 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2140 }
2141
2142 static int
2143 age_init_rx_ring(struct age_softc *sc)
2144 {
2145 struct age_ring_data *rd;
2146 struct age_rxdesc *rxd;
2147 int i;
2148
2149 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2150 rd = &sc->age_rdata;
2151 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2152 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2153 rxd = &sc->age_cdata.age_rxdesc[i];
2154 rxd->rx_m = NULL;
2155 rxd->rx_desc = &rd->age_rx_ring[i];
2156 if (age_newbuf(sc, rxd, 1) != 0)
2157 return ENOBUFS;
2158 }
2159
2160 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2161 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2162
2163 return 0;
2164 }
2165
2166 static void
2167 age_init_rr_ring(struct age_softc *sc)
2168 {
2169 struct age_ring_data *rd;
2170
2171 sc->age_cdata.age_rr_cons = 0;
2172 AGE_RXCHAIN_RESET(sc);
2173
2174 rd = &sc->age_rdata;
2175 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2176 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2177 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2178 }
2179
2180 static void
2181 age_init_cmb_block(struct age_softc *sc)
2182 {
2183 struct age_ring_data *rd;
2184
2185 rd = &sc->age_rdata;
2186 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2187 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2188 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2189 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2190 }
2191
2192 static void
2193 age_init_smb_block(struct age_softc *sc)
2194 {
2195 struct age_ring_data *rd;
2196
2197 rd = &sc->age_rdata;
2198 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2199 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2200 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2201 }
2202
2203 static int
2204 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2205 {
2206 struct rx_desc *desc;
2207 struct mbuf *m;
2208 bus_dmamap_t map;
2209 int error;
2210
2211 MGETHDR(m, M_DONTWAIT, MT_DATA);
2212 if (m == NULL)
2213 return ENOBUFS;
2214 MCLGET(m, M_DONTWAIT);
2215 if (!(m->m_flags & M_EXT)) {
2216 m_freem(m);
2217 return ENOBUFS;
2218 }
2219
2220 m->m_len = m->m_pkthdr.len = MCLBYTES;
2221 m_adj(m, ETHER_ALIGN);
2222
2223 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2224 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2225
2226 if (error != 0) {
2227 if (!error) {
2228 bus_dmamap_unload(sc->sc_dmat,
2229 sc->age_cdata.age_rx_sparemap);
2230 error = EFBIG;
2231 printf("%s: too many segments?!\n",
2232 device_xname(sc->sc_dev));
2233 }
2234 m_freem(m);
2235
2236 if (init)
2237 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2238 return error;
2239 }
2240
2241 if (rxd->rx_m != NULL) {
2242 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2243 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2244 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2245 }
2246 map = rxd->rx_dmamap;
2247 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2248 sc->age_cdata.age_rx_sparemap = map;
2249 rxd->rx_m = m;
2250
2251 desc = rxd->rx_desc;
2252 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2253 desc->len =
2254 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2255 AGE_RD_LEN_SHIFT);
2256
2257 return 0;
2258 }
2259
2260 static void
2261 age_rxvlan(struct age_softc *sc)
2262 {
2263 uint32_t reg;
2264
2265 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2266 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2267 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2268 reg |= MAC_CFG_VLAN_TAG_STRIP;
2269 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2270 }
2271
2272 static void
2273 age_rxfilter(struct age_softc *sc)
2274 {
2275 struct ethercom *ec = &sc->sc_ec;
2276 struct ifnet *ifp = &sc->sc_ec.ec_if;
2277 struct ether_multi *enm;
2278 struct ether_multistep step;
2279 uint32_t crc;
2280 uint32_t mchash[2];
2281 uint32_t rxcfg;
2282
2283 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2284 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2285 ifp->if_flags &= ~IFF_ALLMULTI;
2286
2287 /*
2288 * Always accept broadcast frames.
2289 */
2290 rxcfg |= MAC_CFG_BCAST;
2291
2292 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2293 ifp->if_flags |= IFF_ALLMULTI;
2294 if (ifp->if_flags & IFF_PROMISC)
2295 rxcfg |= MAC_CFG_PROMISC;
2296 else
2297 rxcfg |= MAC_CFG_ALLMULTI;
2298 mchash[0] = mchash[1] = 0xFFFFFFFF;
2299 } else {
2300 /* Program new filter. */
2301 memset(mchash, 0, sizeof(mchash));
2302
2303 ETHER_FIRST_MULTI(step, ec, enm);
2304 while (enm != NULL) {
2305 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2306 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2307 ETHER_NEXT_MULTI(step, enm);
2308 }
2309 }
2310
2311 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2312 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2313 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2314 }
2315