Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.5
      1 /*	$NetBSD: if_age.c,v 1.5 2009/01/16 23:58:05 cegger Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.5 2009/01/16 23:58:05 cegger Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_suspend(device_t PMF_FN_PROTO);
     87 static bool	age_resume(device_t PMF_FN_PROTO);
     88 
     89 static int	age_miibus_readreg(device_t, int, int);
     90 static void	age_miibus_writereg(device_t, int, int, int);
     91 static void	age_miibus_statchg(device_t);
     92 
     93 static int	age_init(struct ifnet *);
     94 static int	age_ioctl(struct ifnet *, u_long, void *);
     95 static void	age_start(struct ifnet *);
     96 static void	age_watchdog(struct ifnet *);
     97 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     98 static int	age_mediachange(struct ifnet *);
     99 
    100 static int	age_intr(void *);
    101 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    102 static int	age_dma_alloc(struct age_softc *);
    103 static void	age_dma_free(struct age_softc *);
    104 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    105 static void	age_phy_reset(struct age_softc *);
    106 
    107 static int	age_encap(struct age_softc *, struct mbuf **);
    108 static void	age_init_tx_ring(struct age_softc *);
    109 static int	age_init_rx_ring(struct age_softc *);
    110 static void	age_init_rr_ring(struct age_softc *);
    111 static void	age_init_cmb_block(struct age_softc *);
    112 static void	age_init_smb_block(struct age_softc *);
    113 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    114 static void	age_mac_config(struct age_softc *);
    115 static void	age_txintr(struct age_softc *, int);
    116 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    117 static void	age_rxintr(struct age_softc *, int);
    118 static void	age_tick(void *);
    119 static void	age_reset(struct age_softc *);
    120 static void	age_stop(struct age_softc *);
    121 static void	age_stats_update(struct age_softc *);
    122 static void	age_stop_txmac(struct age_softc *);
    123 static void	age_stop_rxmac(struct age_softc *);
    124 static void	age_rxvlan(struct age_softc *sc);
    125 static void	age_rxfilter(struct age_softc *);
    126 
    127 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    128     age_match, age_attach, age_detach, NULL);
    129 
    130 int agedebug = 0;
    131 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    132 
    133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134 
    135 static int
    136 age_match(device_t dev, cfdata_t match, void *aux)
    137 {
    138 	struct pci_attach_args *pa = aux;
    139 
    140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142 }
    143 
    144 static void
    145 age_attach(device_t parent, device_t self, void *aux)
    146 {
    147 	struct age_softc *sc = device_private(self);
    148 	struct pci_attach_args *pa = aux;
    149 	pci_intr_handle_t ih;
    150 	const char *intrstr;
    151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152 	pcireg_t memtype;
    153 	int error = 0;
    154 
    155 	aprint_naive("\n");
    156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157 
    158 	sc->sc_dev = self;
    159 	sc->sc_dmat = pa->pa_dmat;
    160 	sc->sc_pct = pa->pa_pc;
    161 	sc->sc_pcitag = pa->pa_tag;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172         default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		return;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc);
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		return;
    200 	}
    201 	aprint_normal_dev(self, "%s", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_watchdog = age_watchdog;
    250 	ifp->if_baudrate = IF_Gbps(1);
    251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    252 	IFQ_SET_READY(&ifp->if_snd);
    253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    254 
    255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    256 
    257 #ifdef AGE_CHECKSUM
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    259 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    260 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    261 #endif
    262 
    263 #if NVLAN > 0
    264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    265 #endif
    266 
    267 	/* Set up MII bus. */
    268 	sc->sc_miibus.mii_ifp = ifp;
    269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    272 
    273 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    274 	    age_mediastatus);
    275 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    276 	   MII_OFFSET_ANY, 0);
    277 
    278 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    279 		aprint_error_dev(self, "no PHY found!\n");
    280 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    281 		    0, NULL);
    282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    283 	} else
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    285 
    286 	if_attach(ifp);
    287 	ether_ifattach(ifp, sc->sc_enaddr);
    288 
    289 	if (!pmf_device_register(self, age_suspend, age_resume))
    290 		aprint_error_dev(self, "couldn't establish power handler\n");
    291 	else
    292 		pmf_class_network_register(self, ifp);
    293 
    294 	return;
    295 fail:
    296 	age_detach(sc->sc_dev, 0);
    297 }
    298 
    299 static int
    300 age_detach(device_t self, int flags)
    301 {
    302 	struct age_softc *sc = device_private(self);
    303 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    304 	int s;
    305 
    306 	s = splnet();
    307 	age_stop(sc);
    308 	splx(s);
    309 
    310 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    311 
    312 	/* Delete all remaining media. */
    313 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    314 
    315 	ether_ifdetach(ifp);
    316 	if_detach(ifp);
    317 	age_dma_free(sc);
    318 
    319 	if (sc->sc_irq_handle != NULL) {
    320 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    321 		sc->sc_irq_handle = NULL;
    322 	}
    323 
    324 	return (0);
    325 }
    326 
    327 /*
    328  *	Read a PHY register on the MII of the L1.
    329  */
    330 static int
    331 age_miibus_readreg(struct device *dev, int phy, int reg)
    332 {
    333 	struct age_softc *sc = device_private(dev);
    334 	uint32_t v;
    335 	int i;
    336 
    337 	if (phy != sc->age_phyaddr)
    338 		return (0);
    339 
    340 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    341 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    342 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    343 		DELAY(1);
    344 		v = CSR_READ_4(sc, AGE_MDIO);
    345 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    346 			break;
    347 	}
    348 
    349 	if (i == 0) {
    350 		printf("%s: phy read timeout: phy %d, reg %d\n",
    351 			device_xname(sc->sc_dev), phy, reg);
    352 		return (0);
    353 	}
    354 
    355 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    356 }
    357 
    358 /*
    359  * 	Write a PHY register on the MII of the L1.
    360  */
    361 static void
    362 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
    363 {
    364 	struct age_softc *sc = device_private(dev);
    365 	uint32_t v;
    366 	int i;
    367 
    368 	if (phy != sc->age_phyaddr)
    369 		return;
    370 
    371 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    372 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    373 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    374 
    375 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    376 		DELAY(1);
    377 		v = CSR_READ_4(sc, AGE_MDIO);
    378 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    379 			break;
    380 	}
    381 
    382 	if (i == 0) {
    383 		printf("%s: phy write timeout: phy %d, reg %d\n",
    384 		    device_xname(sc->sc_dev), phy, reg);
    385 	}
    386 }
    387 
    388 /*
    389  *	Callback from MII layer when media changes.
    390  */
    391 static void
    392 age_miibus_statchg(device_t dev)
    393 {
    394 	struct age_softc *sc = device_private(dev);
    395 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    396 	struct mii_data *mii;
    397 
    398 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    399 		return;
    400 
    401 	mii = &sc->sc_miibus;
    402 
    403 	sc->age_flags &= ~AGE_FLAG_LINK;
    404 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    405 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    406 		case IFM_10_T:
    407 		case IFM_100_TX:
    408 		case IFM_1000_T:
    409 			sc->age_flags |= AGE_FLAG_LINK;
    410 			break;
    411 		default:
    412 			break;
    413 		}
    414 	}
    415 
    416 	/* Stop Rx/Tx MACs. */
    417 	age_stop_rxmac(sc);
    418 	age_stop_txmac(sc);
    419 
    420 	/* Program MACs with resolved speed/duplex/flow-control. */
    421 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    422 		uint32_t reg;
    423 
    424 		age_mac_config(sc);
    425 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    426 		/* Restart DMA engine and Tx/Rx MAC. */
    427 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    428 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    429 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    430 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    431 	}
    432 }
    433 
    434 /*
    435  *	Get the current interface media status.
    436  */
    437 static void
    438 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    439 {
    440 	struct age_softc *sc = ifp->if_softc;
    441 	struct mii_data *mii = &sc->sc_miibus;
    442 
    443 	mii_pollstat(mii);
    444 	ifmr->ifm_status = mii->mii_media_status;
    445 	ifmr->ifm_active = mii->mii_media_active;
    446 }
    447 
    448 /*
    449  *	Set hardware to newly-selected media.
    450  */
    451 static int
    452 age_mediachange(struct ifnet *ifp)
    453 {
    454 	struct age_softc *sc = ifp->if_softc;
    455 	struct mii_data *mii = &sc->sc_miibus;
    456 	int error;
    457 
    458 	if (mii->mii_instance != 0) {
    459 		struct mii_softc *miisc;
    460 
    461 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    462 			mii_phy_reset(miisc);
    463 	}
    464 	error = mii_mediachg(mii);
    465 
    466 	return (error);
    467 }
    468 
    469 static int
    470 age_intr(void *arg)
    471 {
    472         struct age_softc *sc = arg;
    473         struct ifnet *ifp = &sc->sc_ec.ec_if;
    474 	struct cmb *cmb;
    475         uint32_t status;
    476 
    477 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    478 	if (status == 0 || (status & AGE_INTRS) == 0)
    479 		return (0);
    480 
    481 	/* Disable interrupts. */
    482 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    483 
    484 	cmb = sc->age_rdata.age_cmb_block;
    485 
    486 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    487 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    488 	status = le32toh(cmb->intr_status);
    489 	if ((status & AGE_INTRS) == 0)
    490 		goto back;
    491 
    492 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    493 	    TPD_CONS_SHIFT;
    494 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    495 	    RRD_PROD_SHIFT;
    496 
    497 	/* Let hardware know CMB was served. */
    498 	cmb->intr_status = 0;
    499 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    500 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    501 	    BUS_DMASYNC_PREWRITE);
    502 
    503 	if (ifp->if_flags & IFF_RUNNING) {
    504 		if (status & INTR_CMB_RX)
    505 			age_rxintr(sc, sc->age_rr_prod);
    506 
    507 		if (status & INTR_CMB_TX)
    508 			age_txintr(sc, sc->age_tpd_cons);
    509 
    510 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    511 			if (status & INTR_DMA_RD_TO_RST)
    512 				printf("%s: DMA read error! -- resetting\n",
    513 				    device_xname(sc->sc_dev));
    514 			if (status & INTR_DMA_WR_TO_RST)
    515 				printf("%s: DMA write error! -- resetting\n",
    516 				    device_xname(sc->sc_dev));
    517 			age_init(ifp);
    518 		}
    519 
    520 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    521 			age_start(ifp);
    522 
    523 		if (status & INTR_SMB)
    524 			age_stats_update(sc);
    525 	}
    526 
    527 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    528 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    529 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    530 	    BUS_DMASYNC_POSTREAD);
    531 
    532 back:
    533 	/* Re-enable interrupts. */
    534 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    535 
    536 	return (1);
    537 }
    538 
    539 static int
    540 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    541     uint32_t *word)
    542 {
    543 	int i;
    544 	pcireg_t rv;
    545 
    546 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    547 	    offset << PCI_VPD_ADDRESS_SHIFT);
    548 	for (i = AGE_TIMEOUT; i > 0; i--) {
    549 		DELAY(10);
    550 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    551 		    PCI_VPD_ADDRESS(vpdc));
    552 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    553 			break;
    554 	}
    555 	if (i == 0) {
    556 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    557 		*word = 0;
    558 		return ETIMEDOUT;
    559 	}
    560 
    561 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    562 	return 0;
    563 }
    564 
    565 static void
    566 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    567 {
    568 	uint32_t ea[2], off, reg, word;
    569 	int vpd_error, match, vpdc;
    570 
    571 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    572 	if ((reg & SPI_VPD_ENB) != 0) {
    573 		/* Get VPD stored in TWSI EEPROM. */
    574 		reg &= ~SPI_VPD_ENB;
    575 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    576 	}
    577 
    578 	vpd_error = 0;
    579 	ea[0] = ea[1] = 0;
    580 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    581 	    PCI_CAP_VPD, &vpdc, NULL))) {
    582 		/*
    583 		 * PCI VPD capability exists, but it seems that it's
    584 		 * not in the standard form as stated in PCI VPD
    585 		 * specification such that driver could not use
    586 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    587 		 * Search VPD data starting at address 0x0100. The data
    588 		 * should be used as initializers to set AGE_PAR0,
    589 		 * AGE_PAR1 register including other PCI configuration
    590 		 * registers.
    591 		 */
    592 		word = 0;
    593 		match = 0;
    594 		reg = 0;
    595 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    596 		    off += sizeof(uint32_t)) {
    597 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    598 			if (vpd_error != 0)
    599 				break;
    600 			if (match != 0) {
    601 				switch (reg) {
    602 				case AGE_PAR0:
    603 					ea[0] = word;
    604 					break;
    605 				case AGE_PAR1:
    606 					ea[1] = word;
    607 					break;
    608 				default:
    609 					break;
    610 				}
    611 				match = 0;
    612 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    613 				match = 1;
    614 				reg = word >> 16;
    615 			} else
    616 				break;
    617 		}
    618 		if (off >= AGE_VPD_REG_CONF_END)
    619 			vpd_error = ENOENT;
    620 		if (vpd_error == 0) {
    621 			/*
    622 			 * Don't blindly trust ethernet address obtained
    623 			 * from VPD. Check whether ethernet address is
    624 			 * valid one. Otherwise fall-back to reading
    625 			 * PAR register.
    626 			 */
    627 			ea[1] &= 0xFFFF;
    628 			if ((ea[0] == 0 && ea[1] == 0) ||
    629 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    630 				if (agedebug)
    631 					printf("%s: invalid ethernet address "
    632 				    	    "returned from VPD.\n",
    633 				    	    device_xname(sc->sc_dev));
    634 				vpd_error = EINVAL;
    635 			}
    636 		}
    637 		if (vpd_error != 0 && (agedebug))
    638 			printf("%s: VPD access failure!\n",
    639 			    device_xname(sc->sc_dev));
    640 	} else {
    641 		if (agedebug)
    642 			printf("%s: PCI VPD capability not found!\n",
    643 			    device_xname(sc->sc_dev));
    644 	}
    645 
    646 	/*
    647 	 * It seems that L1 also provides a way to extract ethernet
    648 	 * address via SPI flash interface. Because SPI flash memory
    649 	 * device of different vendors vary in their instruction
    650 	 * codes for read ID instruction, it's very hard to get
    651 	 * instructions codes without detailed information for the
    652 	 * flash memory device used on ethernet controller. To simplify
    653 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    654 	 * address which is supposed to be set by hardware during
    655 	 * power on reset.
    656 	 */
    657 	if (vpd_error != 0) {
    658 		/*
    659 		 * VPD is mapped to SPI flash memory or BIOS set it.
    660 		 */
    661 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    662 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    663 	}
    664 
    665 	ea[1] &= 0xFFFF;
    666 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    667 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    668 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    669 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    670 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    671 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    672 }
    673 
    674 static void
    675 age_phy_reset(struct age_softc *sc)
    676 {
    677 	/* Reset PHY. */
    678 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    679 	DELAY(1000);
    680 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    681 	DELAY(1000);
    682 }
    683 
    684 static int
    685 age_dma_alloc(struct age_softc *sc)
    686 {
    687 	struct age_txdesc *txd;
    688 	struct age_rxdesc *rxd;
    689 	int nsegs, error, i;
    690 
    691 	/*
    692 	 * Create DMA stuffs for TX ring
    693 	 */
    694 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    695 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    696 	if (error)
    697 		return (ENOBUFS);
    698 
    699 	/* Allocate DMA'able memory for TX ring */
    700 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    701 	    PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    702 	    &nsegs, BUS_DMA_WAITOK);
    703 	if (error) {
    704 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    705 		    device_xname(sc->sc_dev));
    706 		return error;
    707 	}
    708 
    709 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    710 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    711 	    BUS_DMA_NOWAIT);
    712 	if (error)
    713 		return (ENOBUFS);
    714 
    715 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    716 
    717 	/*  Load the DMA map for Tx ring. */
    718 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    719 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    720 	if (error) {
    721 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    722 		    device_xname(sc->sc_dev));
    723 		bus_dmamem_free(sc->sc_dmat,
    724 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
    725 		return error;
    726 	}
    727 
    728 	sc->age_rdata.age_tx_ring_paddr =
    729 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    730 
    731 	/*
    732 	 * Create DMA stuffs for RX ring
    733 	 */
    734 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    735 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    736 	if (error)
    737 		return (ENOBUFS);
    738 
    739 	/* Allocate DMA'able memory for RX ring */
    740 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    741 	    PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    742 	    &nsegs, BUS_DMA_WAITOK);
    743 	if (error) {
    744 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
    745 		    device_xname(sc->sc_dev));
    746 		return error;
    747 	}
    748 
    749 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    750 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    751 	    BUS_DMA_NOWAIT);
    752 	if (error)
    753 		return (ENOBUFS);
    754 
    755 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    756 
    757 	/* Load the DMA map for Rx ring. */
    758 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    759 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    760 	if (error) {
    761 		printf("%s: could not load DMA'able memory for Rx ring.\n",
    762 		    device_xname(sc->sc_dev));
    763 		bus_dmamem_free(sc->sc_dmat,
    764 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    765 		return error;
    766 	}
    767 
    768 	sc->age_rdata.age_rx_ring_paddr =
    769 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    770 
    771 	/*
    772 	 * Create DMA stuffs for RX return ring
    773 	 */
    774 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    775 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    776 	if (error)
    777 		return (ENOBUFS);
    778 
    779 	/* Allocate DMA'able memory for RX return ring */
    780 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    781 	    PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    782 	    &nsegs, BUS_DMA_WAITOK);
    783 	if (error) {
    784 		printf("%s: could not allocate DMA'able memory for Rx "
    785 		    "return ring.\n", device_xname(sc->sc_dev));
    786 		return error;
    787 	}
    788 
    789 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    790 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    791 	    BUS_DMA_NOWAIT);
    792 	if (error)
    793 		return (ENOBUFS);
    794 
    795 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    796 
    797 	/*  Load the DMA map for Rx return ring. */
    798 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    799 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    800 	if (error) {
    801 		printf("%s: could not load DMA'able memory for Rx return ring."
    802 		    "\n", device_xname(sc->sc_dev));
    803 		bus_dmamem_free(sc->sc_dmat,
    804 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
    805 		return error;
    806 	}
    807 
    808 	sc->age_rdata.age_rr_ring_paddr =
    809 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    810 
    811 	/*
    812 	 * Create DMA stuffs for CMB block
    813 	 */
    814 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    815 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    816 	    &sc->age_cdata.age_cmb_block_map);
    817 	if (error)
    818 		return (ENOBUFS);
    819 
    820 	/* Allocate DMA'able memory for CMB block */
    821 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    822 	    PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    823 	    &nsegs, BUS_DMA_WAITOK);
    824 	if (error) {
    825 		printf("%s: could not allocate DMA'able memory for "
    826 		    "CMB block\n", device_xname(sc->sc_dev));
    827 		return error;
    828 	}
    829 
    830 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    831 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    832 	    BUS_DMA_NOWAIT);
    833 	if (error)
    834 		return (ENOBUFS);
    835 
    836 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    837 
    838 	/*  Load the DMA map for CMB block. */
    839 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    840 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    841 	    BUS_DMA_WAITOK);
    842 	if (error) {
    843 		printf("%s: could not load DMA'able memory for CMB block\n",
    844 		    device_xname(sc->sc_dev));
    845 		bus_dmamem_free(sc->sc_dmat,
    846 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
    847 		return error;
    848 	}
    849 
    850 	sc->age_rdata.age_cmb_block_paddr =
    851 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    852 
    853 	/*
    854 	 * Create DMA stuffs for SMB block
    855 	 */
    856 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    857 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    858 	    &sc->age_cdata.age_smb_block_map);
    859 	if (error)
    860 		return (ENOBUFS);
    861 
    862 	/* Allocate DMA'able memory for SMB block */
    863 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    864 	    PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
    865 	    &nsegs, BUS_DMA_WAITOK);
    866 	if (error) {
    867 		printf("%s: could not allocate DMA'able memory for "
    868 		    "SMB block\n", device_xname(sc->sc_dev));
    869 		return error;
    870 	}
    871 
    872 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    873 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    874 	    BUS_DMA_NOWAIT);
    875 	if (error)
    876 		return (ENOBUFS);
    877 
    878 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    879 
    880 	/*  Load the DMA map for SMB block */
    881 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    882 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    883 	    BUS_DMA_WAITOK);
    884 	if (error) {
    885 		printf("%s: could not load DMA'able memory for SMB block\n",
    886 		    device_xname(sc->sc_dev));
    887 		bus_dmamem_free(sc->sc_dmat,
    888 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
    889 		return error;
    890 	}
    891 
    892 	sc->age_rdata.age_smb_block_paddr =
    893 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    894 
    895 	/* Create DMA maps for Tx buffers. */
    896 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    897 		txd = &sc->age_cdata.age_txdesc[i];
    898 		txd->tx_m = NULL;
    899 		txd->tx_dmamap = NULL;
    900 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    901 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    902 		    &txd->tx_dmamap);
    903 		if (error) {
    904 			printf("%s: could not create Tx dmamap.\n",
    905 			    device_xname(sc->sc_dev));
    906 			return error;
    907 		}
    908 	}
    909 
    910 	/* Create DMA maps for Rx buffers. */
    911 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    912 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    913 	if (error) {
    914 		printf("%s: could not create spare Rx dmamap.\n",
    915 		    device_xname(sc->sc_dev));
    916 		return error;
    917 	}
    918 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    919 		rxd = &sc->age_cdata.age_rxdesc[i];
    920 		rxd->rx_m = NULL;
    921 		rxd->rx_dmamap = NULL;
    922 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    923 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    924 		if (error) {
    925 			printf("%s: could not create Rx dmamap.\n",
    926 			    device_xname(sc->sc_dev));
    927 			return error;
    928 		}
    929 	}
    930 
    931 	return (0);
    932 }
    933 
    934 static void
    935 age_dma_free(struct age_softc *sc)
    936 {
    937 	struct age_txdesc *txd;
    938 	struct age_rxdesc *rxd;
    939 	int i;
    940 
    941 	/* Tx buffers */
    942 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    943 		txd = &sc->age_cdata.age_txdesc[i];
    944 		if (txd->tx_dmamap != NULL) {
    945 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    946 			txd->tx_dmamap = NULL;
    947 		}
    948 	}
    949 	/* Rx buffers */
    950 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    951 		rxd = &sc->age_cdata.age_rxdesc[i];
    952 		if (rxd->rx_dmamap != NULL) {
    953 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    954 			rxd->rx_dmamap = NULL;
    955 		}
    956 	}
    957 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    958 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    959 		sc->age_cdata.age_rx_sparemap = NULL;
    960 	}
    961 
    962 	/* Tx ring. */
    963 	if (sc->age_cdata.age_tx_ring_map != NULL)
    964 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    965 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    966 	    sc->age_rdata.age_tx_ring != NULL)
    967 		bus_dmamem_free(sc->sc_dmat,
    968 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
    969 	sc->age_rdata.age_tx_ring = NULL;
    970 	sc->age_cdata.age_tx_ring_map = NULL;
    971 
    972 	/* Rx ring. */
    973 	if (sc->age_cdata.age_rx_ring_map != NULL)
    974 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    975 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    976 	    sc->age_rdata.age_rx_ring != NULL)
    977 		bus_dmamem_free(sc->sc_dmat,
    978 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    979 	sc->age_rdata.age_rx_ring = NULL;
    980 	sc->age_cdata.age_rx_ring_map = NULL;
    981 
    982 	/* Rx return ring. */
    983 	if (sc->age_cdata.age_rr_ring_map != NULL)
    984 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    985 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    986 	    sc->age_rdata.age_rr_ring != NULL)
    987 		bus_dmamem_free(sc->sc_dmat,
    988 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
    989 	sc->age_rdata.age_rr_ring = NULL;
    990 	sc->age_cdata.age_rr_ring_map = NULL;
    991 
    992 	/* CMB block */
    993 	if (sc->age_cdata.age_cmb_block_map != NULL)
    994 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
    995 	if (sc->age_cdata.age_cmb_block_map != NULL &&
    996 	    sc->age_rdata.age_cmb_block != NULL)
    997 		bus_dmamem_free(sc->sc_dmat,
    998 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
    999 	sc->age_rdata.age_cmb_block = NULL;
   1000 	sc->age_cdata.age_cmb_block_map = NULL;
   1001 
   1002 	/* SMB block */
   1003 	if (sc->age_cdata.age_smb_block_map != NULL)
   1004 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1005 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1006 	    sc->age_rdata.age_smb_block != NULL)
   1007 		bus_dmamem_free(sc->sc_dmat,
   1008 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
   1009 }
   1010 
   1011 static void
   1012 age_start(struct ifnet *ifp)
   1013 {
   1014         struct age_softc *sc = ifp->if_softc;
   1015         struct mbuf *m_head;
   1016 	int enq;
   1017 
   1018 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1019 		return;
   1020 
   1021 	enq = 0;
   1022 	for (;;) {
   1023 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1024 		if (m_head == NULL)
   1025 			break;
   1026 
   1027 		/*
   1028 		 * Pack the data into the transmit ring. If we
   1029 		 * don't have room, set the OACTIVE flag and wait
   1030 		 * for the NIC to drain the ring.
   1031 		 */
   1032 		if (age_encap(sc, &m_head)) {
   1033 			if (m_head == NULL)
   1034 				break;
   1035 			ifp->if_flags |= IFF_OACTIVE;
   1036 			break;
   1037 		}
   1038 		enq = 1;
   1039 
   1040 #if NBPFILTER > 0
   1041 		/*
   1042 		 * If there's a BPF listener, bounce a copy of this frame
   1043 		 * to him.
   1044 		 */
   1045 		if (ifp->if_bpf != NULL)
   1046 			bpf_mtap(ifp->if_bpf, m_head);
   1047 #endif
   1048 	}
   1049 
   1050 	if (enq) {
   1051 		/* Update mbox. */
   1052 		AGE_COMMIT_MBOX(sc);
   1053 		/* Set a timeout in case the chip goes out to lunch. */
   1054 		ifp->if_timer = AGE_TX_TIMEOUT;
   1055 	}
   1056 }
   1057 
   1058 static void
   1059 age_watchdog(struct ifnet *ifp)
   1060 {
   1061 	struct age_softc *sc = ifp->if_softc;
   1062 
   1063 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1064 		printf("%s: watchdog timeout (missed link)\n",
   1065 		    device_xname(sc->sc_dev));
   1066 		ifp->if_oerrors++;
   1067 		age_init(ifp);
   1068 		return;
   1069 	}
   1070 
   1071 	if (sc->age_cdata.age_tx_cnt == 0) {
   1072 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1073 		    "-- recovering\n", device_xname(sc->sc_dev));
   1074 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1075 			age_start(ifp);
   1076 		return;
   1077 	}
   1078 
   1079 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1080 	ifp->if_oerrors++;
   1081 	age_init(ifp);
   1082 
   1083 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1084 		age_start(ifp);
   1085 }
   1086 
   1087 static int
   1088 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1089 {
   1090 	struct age_softc *sc = ifp->if_softc;
   1091 	struct mii_data *mii = &sc->sc_miibus;
   1092 	struct ifreq *ifr = (struct ifreq *)data;
   1093 	int s, error = 0;
   1094 
   1095 	s = splnet();
   1096 
   1097 	switch (cmd) {
   1098 	case SIOCSIFADDR:
   1099 		ifp->if_flags |= IFF_UP;
   1100 		if (!(ifp->if_flags & IFF_RUNNING))
   1101 			 age_init(ifp);
   1102 #ifdef INET
   1103 		if (ifa->ifa_addr->sa_family == AF_INET)
   1104 			arp_ifinit(&sc->sc_ec, ifa);
   1105 #endif
   1106 		break;
   1107 
   1108 	case SIOCSIFFLAGS:
   1109 		error = ifioctl_common(ifp, cmd, data);
   1110 		if (error)
   1111 			break;
   1112 		if (ifp->if_flags & IFF_UP) {
   1113 			if (ifp->if_flags & IFF_RUNNING)
   1114 				age_rxfilter(sc);
   1115 			else
   1116 				age_init(ifp);
   1117 		} else {
   1118 			if (ifp->if_flags & IFF_RUNNING)
   1119 				age_stop(sc);
   1120 		}
   1121 		sc->age_if_flags = ifp->if_flags;
   1122 		break;
   1123 
   1124 	case SIOCADDMULTI:
   1125 	case SIOCDELMULTI:
   1126 		error = ether_ioctl(ifp, cmd, data);
   1127 		break;
   1128 
   1129 	case SIOCSIFMEDIA:
   1130 	case SIOCGIFMEDIA:
   1131 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
   1132 		break;
   1133 	default:
   1134 		error = ether_ioctl(ifp, cmd, data);
   1135 		break;
   1136 	}
   1137 
   1138 	if (error == ENETRESET) {
   1139 		if (ifp->if_flags & IFF_RUNNING)
   1140 			age_rxfilter(sc);
   1141 		error = 0;
   1142 	}
   1143 
   1144 	splx(s);
   1145 	return (error);
   1146 }
   1147 
   1148 static void
   1149 age_mac_config(struct age_softc *sc)
   1150 {
   1151 	struct mii_data *mii;
   1152 	uint32_t reg;
   1153 
   1154 	mii = &sc->sc_miibus;
   1155 
   1156 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1157 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1158 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1159 	reg &= ~MAC_CFG_SPEED_MASK;
   1160 
   1161 	/* Reprogram MAC with resolved speed/duplex. */
   1162 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1163 	case IFM_10_T:
   1164 	case IFM_100_TX:
   1165 		reg |= MAC_CFG_SPEED_10_100;
   1166 		break;
   1167 	case IFM_1000_T:
   1168 		reg |= MAC_CFG_SPEED_1000;
   1169 		break;
   1170 	}
   1171 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1172 		reg |= MAC_CFG_FULL_DUPLEX;
   1173 #ifdef notyet
   1174 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1175 			reg |= MAC_CFG_TX_FC;
   1176 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1177 			reg |= MAC_CFG_RX_FC;
   1178 #endif
   1179 	}
   1180 
   1181 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1182 }
   1183 
   1184 static bool
   1185 age_suspend(device_t dv PMF_FN_ARGS)
   1186 {
   1187 	struct age_softc *sc = device_private(dv);
   1188 	uint16_t pmstat;
   1189 
   1190 	/* XXXcegger Do we have Wake-On-LAN ? */
   1191 
   1192 	/* Request PME. */
   1193 	pmstat = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   1194 	    PCI_PMCSR);
   1195 	pmstat &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
   1196 	pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1197 	    PCI_PMCSR, pmstat);
   1198 
   1199 	return true;
   1200 }
   1201 
   1202 static bool
   1203 age_resume(device_t dv PMF_FN_ARGS)
   1204 {
   1205 	struct age_softc *sc = device_private(dv);
   1206 	uint16_t cmd;
   1207 
   1208 	/*
   1209 	 * Clear INTx emulation disable for hardware that
   1210 	 * is set in resume event. From Linux.
   1211 	 */
   1212 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1213 	if ((cmd & 0x0400) != 0) {
   1214 		cmd &= ~0x0400;
   1215 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1216 		    PCI_COMMAND_STATUS_REG, cmd);
   1217 	}
   1218 
   1219 	return true;
   1220 }
   1221 
   1222 static int
   1223 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1224 {
   1225 	struct age_txdesc *txd, *txd_last;
   1226 	struct tx_desc *desc;
   1227 	struct mbuf *m;
   1228 	bus_dmamap_t map;
   1229 	uint32_t cflags, poff, vtag;
   1230 	int error, i, nsegs, prod;
   1231 	struct m_tag *mtag;
   1232 
   1233 	m = *m_head;
   1234 	cflags = vtag = 0;
   1235 	poff = 0;
   1236 
   1237 	prod = sc->age_cdata.age_tx_prod;
   1238 	txd = &sc->age_cdata.age_txdesc[prod];
   1239 	txd_last = txd;
   1240 	map = txd->tx_dmamap;
   1241 
   1242 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1243 
   1244 	if (error != 0) {
   1245 		bus_dmamap_unload(sc->sc_dmat, map);
   1246 		error = EFBIG;
   1247 	}
   1248 	if (error == EFBIG) {
   1249 		error = 0;
   1250 
   1251 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1252 		if (m == NULL) {
   1253 			printf("%s: can't defrag TX mbuf\n",
   1254 			    device_xname(sc->sc_dev));
   1255 			m_freem(*m_head);
   1256 			*m_head = NULL;
   1257 			return (ENOBUFS);
   1258 		}
   1259 
   1260 		MCLGET(m, M_DONTWAIT);
   1261 		if (!(m->m_flags & M_EXT)) {
   1262 			m_freem(m);
   1263 			*m_head = NULL;
   1264 			return (ENOBUFS);
   1265 		}
   1266 		m->m_len = m->m_pkthdr.len;
   1267 		*m_head = m;
   1268 
   1269 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1270 		  	    BUS_DMA_NOWAIT);
   1271 
   1272 		if (error != 0) {
   1273 			printf("%s: could not load defragged TX mbuf\n",
   1274 			    device_xname(sc->sc_dev));
   1275 			if (!error) {
   1276 				bus_dmamap_unload(sc->sc_dmat, map);
   1277 				error = EFBIG;
   1278 			}
   1279 			m_freem(*m_head);
   1280 			*m_head = NULL;
   1281 			return (error);
   1282 		}
   1283 	} else if (error) {
   1284 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1285 		return (error);
   1286 	}
   1287 
   1288 	nsegs = map->dm_nsegs;
   1289 
   1290 	if (nsegs == 0) {
   1291 		m_freem(*m_head);
   1292 		*m_head = NULL;
   1293 		return (EIO);
   1294 	}
   1295 
   1296 	/* Check descriptor overrun. */
   1297 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1298 		bus_dmamap_unload(sc->sc_dmat, map);
   1299 		return (ENOBUFS);
   1300 	}
   1301 
   1302 	m = *m_head;
   1303 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1304 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1305 		cflags |= AGE_TD_CSUM;
   1306 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1307 			cflags |= AGE_TD_TCPCSUM;
   1308 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1309 			cflags |= AGE_TD_UDPCSUM;
   1310 		/* Set checksum start offset. */
   1311 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1312 	}
   1313 
   1314 #if NVLAN > 0
   1315 	/* Configure VLAN hardware tag insertion. */
   1316 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1317 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1318 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1319 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1320 	}
   1321 #endif
   1322 
   1323 	desc = NULL;
   1324 	for (i = 0; i < nsegs; i++) {
   1325 		desc = &sc->age_rdata.age_tx_ring[prod];
   1326 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1327 		desc->len =
   1328 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1329 		desc->flags = htole32(cflags);
   1330 		sc->age_cdata.age_tx_cnt++;
   1331 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1332 	}
   1333 
   1334 	/* Update producer index. */
   1335 	sc->age_cdata.age_tx_prod = prod;
   1336 
   1337 	/* Set EOP on the last descriptor. */
   1338 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1339 	desc = &sc->age_rdata.age_tx_ring[prod];
   1340 	desc->flags |= htole32(AGE_TD_EOP);
   1341 
   1342 	/* Swap dmamap of the first and the last. */
   1343 	txd = &sc->age_cdata.age_txdesc[prod];
   1344 	map = txd_last->tx_dmamap;
   1345 	txd_last->tx_dmamap = txd->tx_dmamap;
   1346 	txd->tx_dmamap = map;
   1347 	txd->tx_m = m;
   1348 
   1349 	/* Sync descriptors. */
   1350 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1351 	    BUS_DMASYNC_PREWRITE);
   1352 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1353 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1354 
   1355 	return (0);
   1356 }
   1357 
   1358 static void
   1359 age_txintr(struct age_softc *sc, int tpd_cons)
   1360 {
   1361 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1362 	struct age_txdesc *txd;
   1363 	int cons, prog;
   1364 
   1365 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1366 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1367 
   1368 	/*
   1369 	 * Go through our Tx list and free mbufs for those
   1370 	 * frames which have been transmitted.
   1371 	 */
   1372 	cons = sc->age_cdata.age_tx_cons;
   1373 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1374 		if (sc->age_cdata.age_tx_cnt <= 0)
   1375 			break;
   1376 		prog++;
   1377 		ifp->if_flags &= ~IFF_OACTIVE;
   1378 		sc->age_cdata.age_tx_cnt--;
   1379 		txd = &sc->age_cdata.age_txdesc[cons];
   1380 		/*
   1381 		 * Clear Tx descriptors, it's not required but would
   1382 		 * help debugging in case of Tx issues.
   1383 		 */
   1384 		txd->tx_desc->addr = 0;
   1385 		txd->tx_desc->len = 0;
   1386 		txd->tx_desc->flags = 0;
   1387 
   1388 		if (txd->tx_m == NULL)
   1389 			continue;
   1390 		/* Reclaim transmitted mbufs. */
   1391 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1392 		m_freem(txd->tx_m);
   1393 		txd->tx_m = NULL;
   1394 	}
   1395 
   1396 	if (prog > 0) {
   1397 		sc->age_cdata.age_tx_cons = cons;
   1398 
   1399 		/*
   1400 		 * Unarm watchdog timer only when there are no pending
   1401 		 * Tx descriptors in queue.
   1402 		 */
   1403 		if (sc->age_cdata.age_tx_cnt == 0)
   1404 			ifp->if_timer = 0;
   1405 
   1406 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1407 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1408 		    BUS_DMASYNC_PREWRITE);
   1409 	}
   1410 }
   1411 
   1412 /* Receive a frame. */
   1413 static void
   1414 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1415 {
   1416 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1417 	struct age_rxdesc *rxd;
   1418 	struct rx_desc *desc;
   1419 	struct mbuf *mp, *m;
   1420 	uint32_t status, index, vtag;
   1421 	int count, nsegs, pktlen;
   1422 	int rx_cons;
   1423 
   1424 	status = le32toh(rxrd->flags);
   1425 	index = le32toh(rxrd->index);
   1426 	rx_cons = AGE_RX_CONS(index);
   1427 	nsegs = AGE_RX_NSEGS(index);
   1428 
   1429 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1430 	if ((status & AGE_RRD_ERROR) != 0 &&
   1431 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1432 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1433 		/*
   1434 		 * We want to pass the following frames to upper
   1435 		 * layer regardless of error status of Rx return
   1436 		 * ring.
   1437 		 *
   1438 		 *  o IP/TCP/UDP checksum is bad.
   1439 		 *  o frame length and protocol specific length
   1440 		 *     does not match.
   1441 		 */
   1442 		sc->age_cdata.age_rx_cons += nsegs;
   1443 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1444 		return;
   1445 	}
   1446 
   1447 	pktlen = 0;
   1448 	for (count = 0; count < nsegs; count++,
   1449 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1450 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1451 		mp = rxd->rx_m;
   1452 		desc = rxd->rx_desc;
   1453 		/* Add a new receive buffer to the ring. */
   1454 		if (age_newbuf(sc, rxd, 0) != 0) {
   1455 			ifp->if_iqdrops++;
   1456 			/* Reuse Rx buffers. */
   1457 			if (sc->age_cdata.age_rxhead != NULL) {
   1458 				m_freem(sc->age_cdata.age_rxhead);
   1459 				AGE_RXCHAIN_RESET(sc);
   1460 			}
   1461 			break;
   1462 		}
   1463 
   1464 		/* The length of the first mbuf is computed last. */
   1465 		if (count != 0) {
   1466 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1467 			pktlen += mp->m_len;
   1468 		}
   1469 
   1470 		/* Chain received mbufs. */
   1471 		if (sc->age_cdata.age_rxhead == NULL) {
   1472 			sc->age_cdata.age_rxhead = mp;
   1473 			sc->age_cdata.age_rxtail = mp;
   1474 		} else {
   1475 			mp->m_flags &= ~M_PKTHDR;
   1476 			sc->age_cdata.age_rxprev_tail =
   1477 			    sc->age_cdata.age_rxtail;
   1478 			sc->age_cdata.age_rxtail->m_next = mp;
   1479 			sc->age_cdata.age_rxtail = mp;
   1480 		}
   1481 
   1482 		if (count == nsegs - 1) {
   1483 			/*
   1484 			 * It seems that L1 controller has no way
   1485 			 * to tell hardware to strip CRC bytes.
   1486 			 */
   1487 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1488 			if (nsegs > 1) {
   1489 				/* Remove the CRC bytes in chained mbufs. */
   1490 				pktlen -= ETHER_CRC_LEN;
   1491 				if (mp->m_len <= ETHER_CRC_LEN) {
   1492 					sc->age_cdata.age_rxtail =
   1493 					    sc->age_cdata.age_rxprev_tail;
   1494 					sc->age_cdata.age_rxtail->m_len -=
   1495 					    (ETHER_CRC_LEN - mp->m_len);
   1496 					sc->age_cdata.age_rxtail->m_next = NULL;
   1497 					m_freem(mp);
   1498 				} else {
   1499 					mp->m_len -= ETHER_CRC_LEN;
   1500 				}
   1501 			}
   1502 
   1503 			m = sc->age_cdata.age_rxhead;
   1504 			m->m_flags |= M_PKTHDR;
   1505 			m->m_pkthdr.rcvif = ifp;
   1506 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1507 			/* Set the first mbuf length. */
   1508 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1509 
   1510 			/*
   1511 			 * Set checksum information.
   1512 			 * It seems that L1 controller can compute partial
   1513 			 * checksum. The partial checksum value can be used
   1514 			 * to accelerate checksum computation for fragmented
   1515 			 * TCP/UDP packets. Upper network stack already
   1516 			 * takes advantage of the partial checksum value in
   1517 			 * IP reassembly stage. But I'm not sure the
   1518 			 * correctness of the partial hardware checksum
   1519 			 * assistance due to lack of data sheet. If it is
   1520 			 * proven to work on L1 I'll enable it.
   1521 			 */
   1522 			if (status & AGE_RRD_IPV4) {
   1523 				if (!(status & AGE_RRD_IPCSUM_NOK))
   1524 					m->m_pkthdr.csum_flags |=
   1525 					    M_CSUM_IPv4_BAD;
   1526 				if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1527 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
   1528 					m->m_pkthdr.csum_flags |=
   1529 					    M_CSUM_TCP_UDP_BAD;
   1530 				}
   1531 				/*
   1532 				 * Don't mark bad checksum for TCP/UDP frames
   1533 				 * as fragmented frames may always have set
   1534 				 * bad checksummed bit of descriptor status.
   1535 				 */
   1536 			}
   1537 #if NVLAN > 0
   1538 			/* Check for VLAN tagged frames. */
   1539 			if (status & AGE_RRD_VLAN) {
   1540 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1541 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1542 					continue);
   1543 			}
   1544 #endif
   1545 
   1546 #if NBPFILTER > 0
   1547 			if (ifp->if_bpf)
   1548 				bpf_mtap(ifp->if_bpf, m);
   1549 #endif
   1550 			/* Pass it on. */
   1551 			ether_input(ifp, m);
   1552 
   1553 			/* Reset mbuf chains. */
   1554 			AGE_RXCHAIN_RESET(sc);
   1555 		}
   1556 	}
   1557 
   1558 	if (count != nsegs) {
   1559 		sc->age_cdata.age_rx_cons += nsegs;
   1560 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1561 	} else
   1562 		sc->age_cdata.age_rx_cons = rx_cons;
   1563 }
   1564 
   1565 static void
   1566 age_rxintr(struct age_softc *sc, int rr_prod)
   1567 {
   1568 	struct rx_rdesc *rxrd;
   1569 	int rr_cons, nsegs, pktlen, prog;
   1570 
   1571 	rr_cons = sc->age_cdata.age_rr_cons;
   1572 	if (rr_cons == rr_prod)
   1573 		return;
   1574 
   1575 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1576 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1577 	    BUS_DMASYNC_POSTREAD);
   1578 
   1579 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1580 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1581 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1582 		if (nsegs == 0)
   1583 			break;
   1584 		/*
   1585 		 * Check number of segments against received bytes
   1586 		 * Non-matching value would indicate that hardware
   1587 		 * is still trying to update Rx return descriptors.
   1588 		 * I'm not sure whether this check is really needed.
   1589 		 */
   1590 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1591 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
   1592 		    (MCLBYTES - ETHER_HDR_LEN)))
   1593 			break;
   1594 
   1595 		/* Received a frame. */
   1596 		age_rxeof(sc, rxrd);
   1597 
   1598 		/* Clear return ring. */
   1599 		rxrd->index = 0;
   1600 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1601 	}
   1602 
   1603 	if (prog > 0) {
   1604 		/* Update the consumer index. */
   1605 		sc->age_cdata.age_rr_cons = rr_cons;
   1606 
   1607 		/* Sync descriptors. */
   1608 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1609 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1610 		    BUS_DMASYNC_PREWRITE);
   1611 
   1612 		/* Notify hardware availability of new Rx buffers. */
   1613 		AGE_COMMIT_MBOX(sc);
   1614 	}
   1615 }
   1616 
   1617 static void
   1618 age_tick(void *xsc)
   1619 {
   1620 	struct age_softc *sc = xsc;
   1621 	struct mii_data *mii = &sc->sc_miibus;
   1622 	int s;
   1623 
   1624 	s = splnet();
   1625 	mii_tick(mii);
   1626 	splx(s);
   1627 
   1628 	callout_schedule(&sc->sc_tick_ch, hz);
   1629 }
   1630 
   1631 static void
   1632 age_reset(struct age_softc *sc)
   1633 {
   1634 	uint32_t reg;
   1635 	int i;
   1636 
   1637 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1638 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1639 		DELAY(1);
   1640 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1641 			break;
   1642 	}
   1643 	if (i == 0)
   1644 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1645 
   1646 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1647 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1648 			break;
   1649 		DELAY(10);
   1650 	}
   1651 
   1652 	if (i == 0)
   1653 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1654 		    reg);
   1655 
   1656 	/* Initialize PCIe module. From Linux. */
   1657 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1658 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1659 }
   1660 
   1661 static int
   1662 age_init(struct ifnet *ifp)
   1663 {
   1664 	struct age_softc *sc = ifp->if_softc;
   1665 	struct mii_data *mii;
   1666 	uint8_t eaddr[ETHER_ADDR_LEN];
   1667 	bus_addr_t paddr;
   1668 	uint32_t reg, fsize;
   1669 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1670 	int error;
   1671 
   1672 	/*
   1673 	 * Cancel any pending I/O.
   1674 	 */
   1675 	age_stop(sc);
   1676 
   1677 	/*
   1678 	 * Reset the chip to a known state.
   1679 	 */
   1680 	age_reset(sc);
   1681 
   1682 	/* Initialize descriptors. */
   1683 	error = age_init_rx_ring(sc);
   1684         if (error != 0) {
   1685 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1686                 age_stop(sc);
   1687 		return (error);
   1688         }
   1689 	age_init_rr_ring(sc);
   1690 	age_init_tx_ring(sc);
   1691 	age_init_cmb_block(sc);
   1692 	age_init_smb_block(sc);
   1693 
   1694 	/* Reprogram the station address. */
   1695 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1696 	CSR_WRITE_4(sc, AGE_PAR0,
   1697 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1698 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1699 
   1700 	/* Set descriptor base addresses. */
   1701 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1702 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1703 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1704 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1705 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1706 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1707 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1708 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1709 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1710 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1711 	paddr = sc->age_rdata.age_smb_block_paddr;
   1712 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1713 
   1714 	/* Set Rx/Rx return descriptor counter. */
   1715 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1716 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1717 	    DESC_RRD_CNT_MASK) |
   1718 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1719 
   1720 	/* Set Tx descriptor counter. */
   1721 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1722 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1723 
   1724 	/* Tell hardware that we're ready to load descriptors. */
   1725 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1726 
   1727         /*
   1728 	 * Initialize mailbox register.
   1729 	 * Updated producer/consumer index information is exchanged
   1730 	 * through this mailbox register. However Tx producer and
   1731 	 * Rx return consumer/Rx producer are all shared such that
   1732 	 * it's hard to separate code path between Tx and Rx without
   1733 	 * locking. If L1 hardware have a separate mail box register
   1734 	 * for Tx and Rx consumer/producer management we could have
   1735 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1736 	 * been run without any locking.
   1737 	*/
   1738 	AGE_COMMIT_MBOX(sc);
   1739 
   1740 	/* Configure IPG/IFG parameters. */
   1741 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1742 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1743 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1744 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1745 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1746 
   1747 	/* Set parameters for half-duplex media. */
   1748 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1749 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1750 	    HDPX_CFG_LCOL_MASK) |
   1751 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1752 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1753 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1754 	    HDPX_CFG_ABEBT_MASK) |
   1755 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1756 	     HDPX_CFG_JAMIPG_MASK));
   1757 
   1758 	/* Configure interrupt moderation timer. */
   1759 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1760 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1761 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1762 	reg &= ~MASTER_MTIMER_ENB;
   1763 	if (AGE_USECS(sc->age_int_mod) == 0)
   1764 		reg &= ~MASTER_ITIMER_ENB;
   1765 	else
   1766 		reg |= MASTER_ITIMER_ENB;
   1767 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1768 	if (agedebug)
   1769 		printf("%s: interrupt moderation is %d us.\n",
   1770 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1771 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1772 
   1773 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1774 	if (ifp->if_mtu < ETHERMTU)
   1775 		sc->age_max_frame_size = ETHERMTU;
   1776 	else
   1777 		sc->age_max_frame_size = ifp->if_mtu;
   1778 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1779 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1780 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1781 
   1782 	/* Configure jumbo frame. */
   1783 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1784 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1785 	    (((fsize / sizeof(uint64_t)) <<
   1786 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1787 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1788 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1789 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1790 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1791 
   1792 	/* Configure flow-control parameters. From Linux. */
   1793 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1794 		/*
   1795 		 * Magic workaround for old-L1.
   1796 		 * Don't know which hw revision requires this magic.
   1797 		 */
   1798 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1799 		/*
   1800 		 * Another magic workaround for flow-control mode
   1801 		 * change. From Linux.
   1802 		 */
   1803 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1804 	}
   1805 	/*
   1806 	 * TODO
   1807 	 *  Should understand pause parameter relationships between FIFO
   1808 	 *  size and number of Rx descriptors and Rx return descriptors.
   1809 	 *
   1810 	 *  Magic parameters came from Linux.
   1811 	 */
   1812 	switch (sc->age_chip_rev) {
   1813 	case 0x8001:
   1814 	case 0x9001:
   1815 	case 0x9002:
   1816 	case 0x9003:
   1817 		rxf_hi = AGE_RX_RING_CNT / 16;
   1818 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1819 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1820 		rrd_lo = AGE_RR_RING_CNT / 16;
   1821 		break;
   1822 	default:
   1823 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1824 		rxf_lo = reg / 16;
   1825 		if (rxf_lo < 192)
   1826 			rxf_lo = 192;
   1827 		rxf_hi = (reg * 7) / 8;
   1828 		if (rxf_hi < rxf_lo)
   1829 			rxf_hi = rxf_lo + 16;
   1830 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1831 		rrd_lo = reg / 8;
   1832 		rrd_hi = (reg * 7) / 8;
   1833 		if (rrd_lo < 2)
   1834 			rrd_lo = 2;
   1835 		if (rrd_hi < rrd_lo)
   1836 			rrd_hi = rrd_lo + 3;
   1837 		break;
   1838 	}
   1839 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1840 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1841 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1842 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1843 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1844 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1845 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1846 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1847 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1848 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1849 
   1850 	/* Configure RxQ. */
   1851 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1852 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1853 	    RXQ_CFG_RD_BURST_MASK) |
   1854 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1855 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1856 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1857 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1858 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1859 
   1860 	/* Configure TxQ. */
   1861 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1862 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1863 	    TXQ_CFG_TPD_BURST_MASK) |
   1864 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1865 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1866 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1867 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1868 	    TXQ_CFG_ENB);
   1869 
   1870 	/* Configure DMA parameters. */
   1871 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1872 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1873 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1874 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1875 
   1876 	/* Configure CMB DMA write threshold. */
   1877 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1878 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1879 	    CMB_WR_THRESH_RRD_MASK) |
   1880 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1881 	    CMB_WR_THRESH_TPD_MASK));
   1882 
   1883 	/* Set CMB/SMB timer and enable them. */
   1884 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1885 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1886 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1887 
   1888 	/* Request SMB updates for every seconds. */
   1889 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1890 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1891 
   1892 	/*
   1893 	 * Disable all WOL bits as WOL can interfere normal Rx
   1894 	 * operation.
   1895 	 */
   1896 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1897 
   1898         /*
   1899 	 * Configure Tx/Rx MACs.
   1900 	 *  - Auto-padding for short frames.
   1901 	 *  - Enable CRC generation.
   1902 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1903 	 *  of MAC is followed after link establishment.
   1904 	 */
   1905 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1906 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1907 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1908 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1909 	    MAC_CFG_PREAMBLE_MASK));
   1910 
   1911 	/* Set up the receive filter. */
   1912 	age_rxfilter(sc);
   1913 	age_rxvlan(sc);
   1914 
   1915 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1916 	reg |= MAC_CFG_RXCSUM_ENB;
   1917 
   1918 	/* Ack all pending interrupts and clear it. */
   1919 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1920 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1921 
   1922 	/* Finally enable Tx/Rx MAC. */
   1923 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1924 
   1925 	sc->age_flags &= ~AGE_FLAG_LINK;
   1926 
   1927 	/* Switch to the current media. */
   1928 	mii = &sc->sc_miibus;
   1929 	mii_mediachg(mii);
   1930 
   1931 	callout_schedule(&sc->sc_tick_ch, hz);
   1932 
   1933 	ifp->if_flags |= IFF_RUNNING;
   1934 	ifp->if_flags &= ~IFF_OACTIVE;
   1935 
   1936 	return (0);
   1937 }
   1938 
   1939 static void
   1940 age_stop(struct age_softc *sc)
   1941 {
   1942 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1943 	struct age_txdesc *txd;
   1944 	struct age_rxdesc *rxd;
   1945 	uint32_t reg;
   1946 	int i;
   1947 
   1948 	callout_stop(&sc->sc_tick_ch);
   1949 
   1950 	/*
   1951 	 * Mark the interface down and cancel the watchdog timer.
   1952 	 */
   1953 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1954 	ifp->if_timer = 0;
   1955 
   1956 	sc->age_flags &= ~AGE_FLAG_LINK;
   1957 
   1958 	/*
   1959 	 * Disable interrupts.
   1960 	 */
   1961 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1962 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1963 
   1964 	/* Stop CMB/SMB updates. */
   1965 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1966 
   1967 	/* Stop Rx/Tx MAC. */
   1968 	age_stop_rxmac(sc);
   1969 	age_stop_txmac(sc);
   1970 
   1971 	/* Stop DMA. */
   1972 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1973 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1974 
   1975 	/* Stop TxQ/RxQ. */
   1976 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1977 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1978 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1979 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1980 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1981 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1982 			break;
   1983 		DELAY(10);
   1984 	}
   1985 	if (i == 0)
   1986 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1987 		    device_xname(sc->sc_dev), reg);
   1988 
   1989 	/* Reclaim Rx buffers that have been processed. */
   1990 	if (sc->age_cdata.age_rxhead != NULL)
   1991 		m_freem(sc->age_cdata.age_rxhead);
   1992 	AGE_RXCHAIN_RESET(sc);
   1993 
   1994 	/*
   1995 	 * Free RX and TX mbufs still in the queues.
   1996 	 */
   1997 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1998 		rxd = &sc->age_cdata.age_rxdesc[i];
   1999 		if (rxd->rx_m != NULL) {
   2000 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2001 			m_freem(rxd->rx_m);
   2002 			rxd->rx_m = NULL;
   2003 		}
   2004 	}
   2005 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2006 		txd = &sc->age_cdata.age_txdesc[i];
   2007 		if (txd->tx_m != NULL) {
   2008 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   2009 			m_freem(txd->tx_m);
   2010 			txd->tx_m = NULL;
   2011 		}
   2012 	}
   2013 }
   2014 
   2015 static void
   2016 age_stats_update(struct age_softc *sc)
   2017 {
   2018 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2019 	struct age_stats *stat;
   2020 	struct smb *smb;
   2021 
   2022 	stat = &sc->age_stat;
   2023 
   2024 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2025 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2026 
   2027 	smb = sc->age_rdata.age_smb_block;
   2028 	if (smb->updated == 0)
   2029 		return;
   2030 
   2031 	/* Rx stats. */
   2032 	stat->rx_frames += smb->rx_frames;
   2033 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   2034 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   2035 	stat->rx_pause_frames += smb->rx_pause_frames;
   2036 	stat->rx_control_frames += smb->rx_control_frames;
   2037 	stat->rx_crcerrs += smb->rx_crcerrs;
   2038 	stat->rx_lenerrs += smb->rx_lenerrs;
   2039 	stat->rx_bytes += smb->rx_bytes;
   2040 	stat->rx_runts += smb->rx_runts;
   2041 	stat->rx_fragments += smb->rx_fragments;
   2042 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2043 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2044 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2045 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2046 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2047 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2048 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2049 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2050 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2051 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2052 	stat->rx_alignerrs += smb->rx_alignerrs;
   2053 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2054 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2055 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2056 
   2057 	/* Tx stats. */
   2058 	stat->tx_frames += smb->tx_frames;
   2059 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2060 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2061 	stat->tx_pause_frames += smb->tx_pause_frames;
   2062 	stat->tx_excess_defer += smb->tx_excess_defer;
   2063 	stat->tx_control_frames += smb->tx_control_frames;
   2064 	stat->tx_deferred += smb->tx_deferred;
   2065 	stat->tx_bytes += smb->tx_bytes;
   2066 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2067 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2068 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2069 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2070 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2071 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2072 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2073 	stat->tx_single_colls += smb->tx_single_colls;
   2074 	stat->tx_multi_colls += smb->tx_multi_colls;
   2075 	stat->tx_late_colls += smb->tx_late_colls;
   2076 	stat->tx_excess_colls += smb->tx_excess_colls;
   2077 	stat->tx_underrun += smb->tx_underrun;
   2078 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2079 	stat->tx_lenerrs += smb->tx_lenerrs;
   2080 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2081 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2082 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2083 
   2084 	/* Update counters in ifnet. */
   2085 	ifp->if_opackets += smb->tx_frames;
   2086 
   2087 	ifp->if_collisions += smb->tx_single_colls +
   2088 	    smb->tx_multi_colls + smb->tx_late_colls +
   2089 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2090 
   2091 	ifp->if_oerrors += smb->tx_excess_colls +
   2092 	    smb->tx_late_colls + smb->tx_underrun +
   2093 	    smb->tx_pkts_truncated;
   2094 
   2095 	ifp->if_ipackets += smb->rx_frames;
   2096 
   2097 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2098 	    smb->rx_runts + smb->rx_pkts_truncated +
   2099 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2100 	    smb->rx_alignerrs;
   2101 
   2102 	/* Update done, clear. */
   2103 	smb->updated = 0;
   2104 
   2105 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2106 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2107 }
   2108 
   2109 static void
   2110 age_stop_txmac(struct age_softc *sc)
   2111 {
   2112 	uint32_t reg;
   2113 	int i;
   2114 
   2115 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2116 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2117 		reg &= ~MAC_CFG_TX_ENB;
   2118 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2119 	}
   2120 	/* Stop Tx DMA engine. */
   2121 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2122 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2123 		reg &= ~DMA_CFG_RD_ENB;
   2124 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2125 	}
   2126 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2127 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2128 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2129 			break;
   2130 		DELAY(10);
   2131 	}
   2132 	if (i == 0)
   2133 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2134 }
   2135 
   2136 static void
   2137 age_stop_rxmac(struct age_softc *sc)
   2138 {
   2139 	uint32_t reg;
   2140 	int i;
   2141 
   2142 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2143 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2144 		reg &= ~MAC_CFG_RX_ENB;
   2145 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2146 	}
   2147 	/* Stop Rx DMA engine. */
   2148 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2149 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2150 		reg &= ~DMA_CFG_WR_ENB;
   2151 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2152 	}
   2153 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2154 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2155 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2156 			break;
   2157 		DELAY(10);
   2158 	}
   2159 	if (i == 0)
   2160 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2161 }
   2162 
   2163 static void
   2164 age_init_tx_ring(struct age_softc *sc)
   2165 {
   2166 	struct age_ring_data *rd;
   2167 	struct age_txdesc *txd;
   2168 	int i;
   2169 
   2170 	sc->age_cdata.age_tx_prod = 0;
   2171 	sc->age_cdata.age_tx_cons = 0;
   2172 	sc->age_cdata.age_tx_cnt = 0;
   2173 
   2174 	rd = &sc->age_rdata;
   2175 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2176 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2177 		txd = &sc->age_cdata.age_txdesc[i];
   2178 		txd->tx_desc = &rd->age_tx_ring[i];
   2179 		txd->tx_m = NULL;
   2180 	}
   2181 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2182 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2183 }
   2184 
   2185 static int
   2186 age_init_rx_ring(struct age_softc *sc)
   2187 {
   2188 	struct age_ring_data *rd;
   2189 	struct age_rxdesc *rxd;
   2190 	int i;
   2191 
   2192 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2193 	rd = &sc->age_rdata;
   2194 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2195 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2196 		rxd = &sc->age_cdata.age_rxdesc[i];
   2197 		rxd->rx_m = NULL;
   2198 		rxd->rx_desc = &rd->age_rx_ring[i];
   2199 		if (age_newbuf(sc, rxd, 1) != 0)
   2200 			return (ENOBUFS);
   2201 	}
   2202 
   2203 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2204 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2205 
   2206 	return (0);
   2207 }
   2208 
   2209 static void
   2210 age_init_rr_ring(struct age_softc *sc)
   2211 {
   2212 	struct age_ring_data *rd;
   2213 
   2214 	sc->age_cdata.age_rr_cons = 0;
   2215 	AGE_RXCHAIN_RESET(sc);
   2216 
   2217 	rd = &sc->age_rdata;
   2218 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2219 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2220 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2221 }
   2222 
   2223 static void
   2224 age_init_cmb_block(struct age_softc *sc)
   2225 {
   2226 	struct age_ring_data *rd;
   2227 
   2228 	rd = &sc->age_rdata;
   2229 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2230 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2231 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2232 }
   2233 
   2234 static void
   2235 age_init_smb_block(struct age_softc *sc)
   2236 {
   2237 	struct age_ring_data *rd;
   2238 
   2239 	rd = &sc->age_rdata;
   2240 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2241 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2242 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2243 }
   2244 
   2245 static int
   2246 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2247 {
   2248 	struct rx_desc *desc;
   2249 	struct mbuf *m;
   2250 	bus_dmamap_t map;
   2251 	int error;
   2252 
   2253 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2254 	if (m == NULL)
   2255 		return (ENOBUFS);
   2256 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2257 	if (!(m->m_flags & M_EXT)) {
   2258 		 m_freem(m);
   2259 		 return (ENOBUFS);
   2260 	}
   2261 
   2262 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2263 	m_adj(m, PAGE_SIZE);
   2264 
   2265 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2266 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2267 
   2268 	if (error != 0) {
   2269 		if (!error) {
   2270 			bus_dmamap_unload(sc->sc_dmat,
   2271 			    sc->age_cdata.age_rx_sparemap);
   2272 			error = EFBIG;
   2273 			printf("%s: too many segments?!\n",
   2274 			    device_xname(sc->sc_dev));
   2275 		}
   2276 		m_freem(m);
   2277 
   2278 		if (init)
   2279 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2280 		return (error);
   2281 	}
   2282 
   2283 	if (rxd->rx_m != NULL) {
   2284 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2285 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2286 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2287 	}
   2288 	map = rxd->rx_dmamap;
   2289 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2290 	sc->age_cdata.age_rx_sparemap = map;
   2291 	rxd->rx_m = m;
   2292 
   2293 	desc = rxd->rx_desc;
   2294 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2295 	desc->len =
   2296 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2297 	    AGE_RD_LEN_SHIFT);
   2298 
   2299 	return (0);
   2300 }
   2301 
   2302 static void
   2303 age_rxvlan(struct age_softc *sc)
   2304 {
   2305 	uint32_t reg;
   2306 
   2307 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2308 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2309 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2310 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2311 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2312 }
   2313 
   2314 static void
   2315 age_rxfilter(struct age_softc *sc)
   2316 {
   2317 	struct ethercom *ec = &sc->sc_ec;
   2318 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2319 	struct ether_multi *enm;
   2320 	struct ether_multistep step;
   2321 	uint32_t crc;
   2322 	uint32_t mchash[2];
   2323 	uint32_t rxcfg;
   2324 
   2325 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2326 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2327 
   2328 	if (ifp->if_flags & IFF_BROADCAST)
   2329 		rxcfg |= MAC_CFG_BCAST;
   2330 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
   2331 		if (ifp->if_flags & IFF_PROMISC)
   2332 			rxcfg |= MAC_CFG_PROMISC;
   2333 		if (ifp->if_flags & IFF_ALLMULTI)
   2334 			rxcfg |= MAC_CFG_ALLMULTI;
   2335 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
   2336 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
   2337 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2338 		return;
   2339 	}
   2340 
   2341 	/* Program new filter. */
   2342 	memset(mchash, 0, sizeof(mchash));
   2343 
   2344 	ETHER_FIRST_MULTI(step, ec, enm);
   2345 	while (enm != NULL) {
   2346 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
   2347 		    enm->enm_addrlo), ETHER_ADDR_LEN);
   2348 
   2349 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2350 		ETHER_NEXT_MULTI(step, enm);
   2351 	}
   2352 
   2353 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2354 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2355 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2356 }
   2357