Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.51.2.4
      1 /*	$NetBSD: if_age.c,v 1.51.2.4 2019/01/26 22:00:07 pgoyette Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.51.2.4 2019/01/26 22:00:07 pgoyette Exp $");
     35 
     36 #include "vlan.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/proc.h>
     40 #include <sys/endian.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/queue.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/callout.h>
     49 #include <sys/socket.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 
     56 #ifdef INET
     57 #include <netinet/in.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/in_var.h>
     60 #include <netinet/ip.h>
     61 #endif
     62 
     63 #include <net/if_types.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net/bpf.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 
     71 #include <dev/pci/pcireg.h>
     72 #include <dev/pci/pcivar.h>
     73 #include <dev/pci/pcidevs.h>
     74 
     75 #include <dev/pci/if_agereg.h>
     76 
     77 static int	age_match(device_t, cfdata_t, void *);
     78 static void	age_attach(device_t, device_t, void *);
     79 static int	age_detach(device_t, int);
     80 
     81 static bool	age_resume(device_t, const pmf_qual_t *);
     82 
     83 static int	age_miibus_readreg(device_t, int, int, uint16_t *);
     84 static int	age_miibus_writereg(device_t, int, int, uint16_t);
     85 static void	age_miibus_statchg(struct ifnet *);
     86 
     87 static int	age_init(struct ifnet *);
     88 static int	age_ioctl(struct ifnet *, u_long, void *);
     89 static void	age_start(struct ifnet *);
     90 static void	age_watchdog(struct ifnet *);
     91 static bool	age_shutdown(device_t, int);
     92 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     93 static int	age_mediachange(struct ifnet *);
     94 
     95 static int	age_intr(void *);
     96 static int	age_dma_alloc(struct age_softc *);
     97 static void	age_dma_free(struct age_softc *);
     98 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
     99 static void	age_phy_reset(struct age_softc *);
    100 
    101 static int	age_encap(struct age_softc *, struct mbuf **);
    102 static void	age_init_tx_ring(struct age_softc *);
    103 static int	age_init_rx_ring(struct age_softc *);
    104 static void	age_init_rr_ring(struct age_softc *);
    105 static void	age_init_cmb_block(struct age_softc *);
    106 static void	age_init_smb_block(struct age_softc *);
    107 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    108 static void	age_mac_config(struct age_softc *);
    109 static void	age_txintr(struct age_softc *, int);
    110 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    111 static void	age_rxintr(struct age_softc *, int);
    112 static void	age_tick(void *);
    113 static void	age_reset(struct age_softc *);
    114 static void	age_stop(struct ifnet *, int);
    115 static void	age_stats_update(struct age_softc *);
    116 static void	age_stop_txmac(struct age_softc *);
    117 static void	age_stop_rxmac(struct age_softc *);
    118 static void	age_rxvlan(struct age_softc *sc);
    119 static void	age_rxfilter(struct age_softc *);
    120 
    121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    122     age_match, age_attach, age_detach, NULL);
    123 
    124 int agedebug = 0;
    125 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    126 
    127 #define ETHER_ALIGN 2
    128 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    129 
    130 static int
    131 age_match(device_t dev, cfdata_t match, void *aux)
    132 {
    133 	struct pci_attach_args *pa = aux;
    134 
    135 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    136 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    137 }
    138 
    139 static void
    140 age_attach(device_t parent, device_t self, void *aux)
    141 {
    142 	struct age_softc *sc = device_private(self);
    143 	struct pci_attach_args *pa = aux;
    144 	pci_intr_handle_t ih;
    145 	const char *intrstr;
    146 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    147 	pcireg_t memtype;
    148 	int error = 0;
    149 	char intrbuf[PCI_INTRSTR_LEN];
    150 
    151 	aprint_naive("\n");
    152 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    153 
    154 	sc->sc_dev = self;
    155 	sc->sc_dmat = pa->pa_dmat;
    156 	sc->sc_pct = pa->pa_pc;
    157 	sc->sc_pcitag = pa->pa_tag;
    158 
    159 	/*
    160 	 * Allocate IO memory
    161 	 */
    162 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    163 	switch (memtype) {
    164         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    167 		break;
    168         default:
    169 		aprint_error_dev(self, "invalid base address register\n");
    170 		break;
    171 	}
    172 
    173 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    174 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    175 		aprint_error_dev(self, "could not map mem space\n");
    176 		return;
    177 	}
    178 
    179 	if (pci_intr_map(pa, &ih) != 0) {
    180 		aprint_error_dev(self, "could not map interrupt\n");
    181 		goto fail;
    182 	}
    183 
    184 	/*
    185 	 * Allocate IRQ
    186 	 */
    187 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    188 	sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
    189 	    age_intr, sc, device_xname(self));
    190 	if (sc->sc_irq_handle == NULL) {
    191 		aprint_error_dev(self, "could not establish interrupt");
    192 		if (intrstr != NULL)
    193 			aprint_error(" at %s", intrstr);
    194 		aprint_error("\n");
    195 		goto fail;
    196 	}
    197 	aprint_normal_dev(self, "%s\n", intrstr);
    198 
    199 	/* Set PHY address. */
    200 	sc->age_phyaddr = AGE_PHY_ADDR;
    201 
    202 	/* Reset PHY. */
    203 	age_phy_reset(sc);
    204 
    205 	/* Reset the ethernet controller. */
    206 	age_reset(sc);
    207 
    208 	/* Get PCI and chip id/revision. */
    209 	sc->age_rev = PCI_REVISION(pa->pa_class);
    210 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    211 	    MASTER_CHIP_REV_SHIFT;
    212 
    213 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    214 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    215 
    216 	if (agedebug) {
    217 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    218 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    219 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    220 	}
    221 
    222 	/* Set max allowable DMA size. */
    223 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    224 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    225 
    226 	/* Allocate DMA stuffs */
    227 	error = age_dma_alloc(sc);
    228 	if (error)
    229 		goto fail;
    230 
    231 	callout_init(&sc->sc_tick_ch, 0);
    232 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    233 
    234 	/* Load station address. */
    235 	age_get_macaddr(sc, sc->sc_enaddr);
    236 
    237 	aprint_normal_dev(self, "Ethernet address %s\n",
    238 	    ether_sprintf(sc->sc_enaddr));
    239 
    240 	ifp->if_softc = sc;
    241 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    242 	ifp->if_init = age_init;
    243 	ifp->if_ioctl = age_ioctl;
    244 	ifp->if_start = age_start;
    245 	ifp->if_stop = age_stop;
    246 	ifp->if_watchdog = age_watchdog;
    247 	ifp->if_baudrate = IF_Gbps(1);
    248 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    251 
    252 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    253 
    254 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    255 				IFCAP_CSUM_TCPv4_Rx |
    256 				IFCAP_CSUM_UDPv4_Rx;
    257 #ifdef AGE_CHECKSUM
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    259 				IFCAP_CSUM_TCPv4_Tx |
    260 				IFCAP_CSUM_UDPv4_Tx;
    261 #endif
    262 
    263 #if NVLAN > 0
    264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    265 #endif
    266 
    267 	/* Set up MII bus. */
    268 	sc->sc_miibus.mii_ifp = ifp;
    269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    272 
    273 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    275 	    age_mediastatus);
    276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    277 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    278 
    279 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    280 		aprint_error_dev(self, "no PHY found!\n");
    281 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    282 		    0, NULL);
    283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    284 	} else
    285 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    286 
    287 	if_attach(ifp);
    288 	if_deferred_start_init(ifp, NULL);
    289 	ether_ifattach(ifp, sc->sc_enaddr);
    290 
    291 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
    292 		pmf_class_network_register(self, ifp);
    293 	else
    294 		aprint_error_dev(self, "couldn't establish power handler\n");
    295 
    296 	return;
    297 
    298 fail:
    299 	age_dma_free(sc);
    300 	if (sc->sc_irq_handle != NULL) {
    301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302 		sc->sc_irq_handle = NULL;
    303 	}
    304 	if (sc->sc_mem_size) {
    305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306 		sc->sc_mem_size = 0;
    307 	}
    308 }
    309 
    310 static int
    311 age_detach(device_t self, int flags)
    312 {
    313 	struct age_softc *sc = device_private(self);
    314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315 	int s;
    316 
    317 	pmf_device_deregister(self);
    318 	s = splnet();
    319 	age_stop(ifp, 0);
    320 	splx(s);
    321 
    322 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    323 
    324 	/* Delete all remaining media. */
    325 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    326 
    327 	ether_ifdetach(ifp);
    328 	if_detach(ifp);
    329 	age_dma_free(sc);
    330 
    331 	if (sc->sc_irq_handle != NULL) {
    332 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    333 		sc->sc_irq_handle = NULL;
    334 	}
    335 	if (sc->sc_mem_size) {
    336 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    337 		sc->sc_mem_size = 0;
    338 	}
    339 	return 0;
    340 }
    341 
    342 /*
    343  *	Read a PHY register on the MII of the L1.
    344  */
    345 static int
    346 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    347 {
    348 	struct age_softc *sc = device_private(dev);
    349 	uint32_t v;
    350 	int i;
    351 
    352 	if (phy != sc->age_phyaddr)
    353 		return -1;
    354 
    355 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    356 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    357 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    358 		DELAY(1);
    359 		v = CSR_READ_4(sc, AGE_MDIO);
    360 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    361 			break;
    362 	}
    363 
    364 	if (i == 0) {
    365 		printf("%s: phy read timeout: phy %d, reg %d\n",
    366 			device_xname(sc->sc_dev), phy, reg);
    367 		return ETIMEDOUT;
    368 	}
    369 
    370 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
    371 	return 0;
    372 }
    373 
    374 /*
    375  * 	Write a PHY register on the MII of the L1.
    376  */
    377 static int
    378 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    379 {
    380 	struct age_softc *sc = device_private(dev);
    381 	uint32_t v;
    382 	int i;
    383 
    384 	if (phy != sc->age_phyaddr)
    385 		return -1;
    386 
    387 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    388 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    389 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    390 
    391 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    392 		DELAY(1);
    393 		v = CSR_READ_4(sc, AGE_MDIO);
    394 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    395 			break;
    396 	}
    397 
    398 	if (i == 0) {
    399 		printf("%s: phy write timeout: phy %d, reg %d\n",
    400 		    device_xname(sc->sc_dev), phy, reg);
    401 		return ETIMEDOUT;
    402 	}
    403 
    404 	return 0;
    405 }
    406 
    407 /*
    408  *	Callback from MII layer when media changes.
    409  */
    410 static void
    411 age_miibus_statchg(struct ifnet *ifp)
    412 {
    413 	struct age_softc *sc = ifp->if_softc;
    414 	struct mii_data *mii = &sc->sc_miibus;
    415 
    416 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    417 		return;
    418 
    419 	sc->age_flags &= ~AGE_FLAG_LINK;
    420 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    421 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    422 		case IFM_10_T:
    423 		case IFM_100_TX:
    424 		case IFM_1000_T:
    425 			sc->age_flags |= AGE_FLAG_LINK;
    426 			break;
    427 		default:
    428 			break;
    429 		}
    430 	}
    431 
    432 	/* Stop Rx/Tx MACs. */
    433 	age_stop_rxmac(sc);
    434 	age_stop_txmac(sc);
    435 
    436 	/* Program MACs with resolved speed/duplex/flow-control. */
    437 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    438 		uint32_t reg;
    439 
    440 		age_mac_config(sc);
    441 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    442 		/* Restart DMA engine and Tx/Rx MAC. */
    443 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    444 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    445 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    446 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    447 	}
    448 }
    449 
    450 /*
    451  *	Get the current interface media status.
    452  */
    453 static void
    454 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    455 {
    456 	struct age_softc *sc = ifp->if_softc;
    457 	struct mii_data *mii = &sc->sc_miibus;
    458 
    459 	mii_pollstat(mii);
    460 	ifmr->ifm_status = mii->mii_media_status;
    461 	ifmr->ifm_active = mii->mii_media_active;
    462 }
    463 
    464 /*
    465  *	Set hardware to newly-selected media.
    466  */
    467 static int
    468 age_mediachange(struct ifnet *ifp)
    469 {
    470 	struct age_softc *sc = ifp->if_softc;
    471 	struct mii_data *mii = &sc->sc_miibus;
    472 	int error;
    473 
    474 	if (mii->mii_instance != 0) {
    475 		struct mii_softc *miisc;
    476 
    477 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    478 			mii_phy_reset(miisc);
    479 	}
    480 	error = mii_mediachg(mii);
    481 
    482 	return error;
    483 }
    484 
    485 static int
    486 age_intr(void *arg)
    487 {
    488         struct age_softc *sc = arg;
    489         struct ifnet *ifp = &sc->sc_ec.ec_if;
    490 	struct cmb *cmb;
    491         uint32_t status;
    492 
    493 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    494 	if (status == 0 || (status & AGE_INTRS) == 0)
    495 		return 0;
    496 
    497 	cmb = sc->age_rdata.age_cmb_block;
    498 	if (cmb == NULL) {
    499 		/* Happens when bringing up the interface
    500 		 * w/o having a carrier. Ack the interrupt.
    501 		 */
    502 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    503 		return 0;
    504 	}
    505 
    506 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    507 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    508 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    509 	status = le32toh(cmb->intr_status);
    510 	/* ACK/reenable interrupts */
    511 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    512 	while ((status & AGE_INTRS) != 0) {
    513 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    514 		    TPD_CONS_SHIFT;
    515 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    516 		    RRD_PROD_SHIFT;
    517 
    518 		/* Let hardware know CMB was served. */
    519 		cmb->intr_status = 0;
    520 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    521 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    522 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    523 
    524 		if (ifp->if_flags & IFF_RUNNING) {
    525 			if (status & INTR_CMB_RX)
    526 				age_rxintr(sc, sc->age_rr_prod);
    527 
    528 			if (status & INTR_CMB_TX)
    529 				age_txintr(sc, sc->age_tpd_cons);
    530 
    531 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    532 				if (status & INTR_DMA_RD_TO_RST)
    533 					printf("%s: DMA read error! -- "
    534 					    "resetting\n",
    535 					    device_xname(sc->sc_dev));
    536 				if (status & INTR_DMA_WR_TO_RST)
    537 					printf("%s: DMA write error! -- "
    538 					    "resetting\n",
    539 					    device_xname(sc->sc_dev));
    540 				age_init(ifp);
    541 			}
    542 
    543 			if_schedule_deferred_start(ifp);
    544 
    545 			if (status & INTR_SMB)
    546 				age_stats_update(sc);
    547 		}
    548 		/* check if more interrupts did came in */
    549 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    550 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    551 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    552 		status = le32toh(cmb->intr_status);
    553 	}
    554 
    555 	return 1;
    556 }
    557 
    558 static void
    559 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    560 {
    561 	uint32_t ea[2], reg;
    562 	int i, vpdc;
    563 
    564 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    565 	if ((reg & SPI_VPD_ENB) != 0) {
    566 		/* Get VPD stored in TWSI EEPROM. */
    567 		reg &= ~SPI_VPD_ENB;
    568 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    569 	}
    570 
    571 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    572 	    PCI_CAP_VPD, &vpdc, NULL)) {
    573 		/*
    574 		 * PCI VPD capability found, let TWSI reload EEPROM.
    575 		 * This will set Ethernet address of controller.
    576 		 */
    577 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    578 		    TWSI_CTRL_SW_LD_START);
    579 		for (i = 100; i > 0; i++) {
    580 			DELAY(1000);
    581 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    582 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    583 				break;
    584 		}
    585 		if (i == 0)
    586 			printf("%s: reloading EEPROM timeout!\n",
    587 			    device_xname(sc->sc_dev));
    588 	} else {
    589 		if (agedebug)
    590 			printf("%s: PCI VPD capability not found!\n",
    591 			    device_xname(sc->sc_dev));
    592 	}
    593 
    594 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    595 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    596 
    597 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    598 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    599 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    600 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    601 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    602 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    603 }
    604 
    605 static void
    606 age_phy_reset(struct age_softc *sc)
    607 {
    608 	uint16_t reg, pn;
    609 	int i, linkup;
    610 
    611 	/* Reset PHY. */
    612 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    613 	DELAY(2000);
    614 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    615 	DELAY(2000);
    616 
    617 #define ATPHY_DBG_ADDR		0x1D
    618 #define ATPHY_DBG_DATA		0x1E
    619 #define ATPHY_CDTC		0x16
    620 #define PHY_CDTC_ENB		0x0001
    621 #define PHY_CDTC_POFF		8
    622 #define ATPHY_CDTS		0x1C
    623 #define PHY_CDTS_STAT_OK	0x0000
    624 #define PHY_CDTS_STAT_SHORT	0x0100
    625 #define PHY_CDTS_STAT_OPEN	0x0200
    626 #define PHY_CDTS_STAT_INVAL	0x0300
    627 #define PHY_CDTS_STAT_MASK	0x0300
    628 
    629 	/* Check power saving mode. Magic from Linux. */
    630 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    631 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    632 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    633 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    634 		for (i = 200; i > 0; i--) {
    635 			DELAY(1000);
    636 			age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    637 			    ATPHY_CDTC, &reg);
    638 			if ((reg & PHY_CDTC_ENB) == 0)
    639 				break;
    640 		}
    641 		DELAY(1000);
    642 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    643 		    ATPHY_CDTS, &reg);
    644 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    645 			linkup++;
    646 			break;
    647 		}
    648 	}
    649 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    650 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    651 	if (linkup == 0) {
    652 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    653 		    ATPHY_DBG_ADDR, 0);
    654 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    655 		    ATPHY_DBG_DATA, 0x124E);
    656 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    657 		    ATPHY_DBG_ADDR, 1);
    658 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    659 		    ATPHY_DBG_DATA, &reg);
    660 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    661 		    ATPHY_DBG_DATA, reg | 0x03);
    662 		/* XXX */
    663 		DELAY(1500 * 1000);
    664 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    665 		    ATPHY_DBG_ADDR, 0);
    666 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    667 		    ATPHY_DBG_DATA, 0x024E);
    668 	}
    669 
    670 #undef ATPHY_DBG_ADDR
    671 #undef ATPHY_DBG_DATA
    672 #undef ATPHY_CDTC
    673 #undef PHY_CDTC_ENB
    674 #undef PHY_CDTC_POFF
    675 #undef ATPHY_CDTS
    676 #undef PHY_CDTS_STAT_OK
    677 #undef PHY_CDTS_STAT_SHORT
    678 #undef PHY_CDTS_STAT_OPEN
    679 #undef PHY_CDTS_STAT_INVAL
    680 #undef PHY_CDTS_STAT_MASK
    681 }
    682 
    683 static int
    684 age_dma_alloc(struct age_softc *sc)
    685 {
    686 	struct age_txdesc *txd;
    687 	struct age_rxdesc *rxd;
    688 	int nsegs, error, i;
    689 
    690 	/*
    691 	 * Create DMA stuffs for TX ring
    692 	 */
    693 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    694 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    695 	if (error) {
    696 		sc->age_cdata.age_tx_ring_map = NULL;
    697 		return ENOBUFS;
    698 	}
    699 
    700 	/* Allocate DMA'able memory for TX ring */
    701 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    702 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    703 	    &nsegs, BUS_DMA_NOWAIT);
    704 	if (error) {
    705 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    706 		    "error = %i\n", device_xname(sc->sc_dev), error);
    707 		return error;
    708 	}
    709 
    710 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    711 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    712 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    713 	if (error)
    714 		return ENOBUFS;
    715 
    716 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    717 
    718 	/*  Load the DMA map for Tx ring. */
    719 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    720 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    721 	if (error) {
    722 		printf("%s: could not load DMA'able memory for Tx ring, "
    723 		    "error = %i\n", device_xname(sc->sc_dev), error);
    724 		bus_dmamem_free(sc->sc_dmat,
    725 		    &sc->age_rdata.age_tx_ring_seg, 1);
    726 		return error;
    727 	}
    728 
    729 	sc->age_rdata.age_tx_ring_paddr =
    730 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    731 
    732 	/*
    733 	 * Create DMA stuffs for RX ring
    734 	 */
    735 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    736 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    737 	if (error) {
    738 		sc->age_cdata.age_rx_ring_map = NULL;
    739 		return ENOBUFS;
    740 	}
    741 
    742 	/* Allocate DMA'able memory for RX ring */
    743 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    744 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    745 	    &nsegs, BUS_DMA_NOWAIT);
    746 	if (error) {
    747 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    748 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    749 		return error;
    750 	}
    751 
    752 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    753 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    754 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    755 	if (error)
    756 		return ENOBUFS;
    757 
    758 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    759 
    760 	/* Load the DMA map for Rx ring. */
    761 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    762 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    763 	if (error) {
    764 		printf("%s: could not load DMA'able memory for Rx ring, "
    765 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    766 		bus_dmamem_free(sc->sc_dmat,
    767 		    &sc->age_rdata.age_rx_ring_seg, 1);
    768 		return error;
    769 	}
    770 
    771 	sc->age_rdata.age_rx_ring_paddr =
    772 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    773 
    774 	/*
    775 	 * Create DMA stuffs for RX return ring
    776 	 */
    777 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    778 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    779 	if (error) {
    780 		sc->age_cdata.age_rr_ring_map = NULL;
    781 		return ENOBUFS;
    782 	}
    783 
    784 	/* Allocate DMA'able memory for RX return ring */
    785 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    786 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    787 	    &nsegs, BUS_DMA_NOWAIT);
    788 	if (error) {
    789 		printf("%s: could not allocate DMA'able memory for Rx "
    790 		    "return ring, error = %i.\n",
    791 		    device_xname(sc->sc_dev), error);
    792 		return error;
    793 	}
    794 
    795 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    796 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    797 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    798 	if (error)
    799 		return ENOBUFS;
    800 
    801 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    802 
    803 	/*  Load the DMA map for Rx return ring. */
    804 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    805 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
    806 	if (error) {
    807 		printf("%s: could not load DMA'able memory for Rx return ring, "
    808 		    "error = %i\n", device_xname(sc->sc_dev), error);
    809 		bus_dmamem_free(sc->sc_dmat,
    810 		    &sc->age_rdata.age_rr_ring_seg, 1);
    811 		return error;
    812 	}
    813 
    814 	sc->age_rdata.age_rr_ring_paddr =
    815 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    816 
    817 	/*
    818 	 * Create DMA stuffs for CMB block
    819 	 */
    820 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    821 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    822 	    &sc->age_cdata.age_cmb_block_map);
    823 	if (error) {
    824 		sc->age_cdata.age_cmb_block_map = NULL;
    825 		return ENOBUFS;
    826 	}
    827 
    828 	/* Allocate DMA'able memory for CMB block */
    829 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    830 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    831 	    &nsegs, BUS_DMA_NOWAIT);
    832 	if (error) {
    833 		printf("%s: could not allocate DMA'able memory for "
    834 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    835 		return error;
    836 	}
    837 
    838 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    839 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    840 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    841 	if (error)
    842 		return ENOBUFS;
    843 
    844 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    845 
    846 	/*  Load the DMA map for CMB block. */
    847 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    848 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    849 	    BUS_DMA_NOWAIT);
    850 	if (error) {
    851 		printf("%s: could not load DMA'able memory for CMB block, "
    852 		    "error = %i\n", device_xname(sc->sc_dev), error);
    853 		bus_dmamem_free(sc->sc_dmat,
    854 		    &sc->age_rdata.age_cmb_block_seg, 1);
    855 		return error;
    856 	}
    857 
    858 	sc->age_rdata.age_cmb_block_paddr =
    859 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    860 
    861 	/*
    862 	 * Create DMA stuffs for SMB block
    863 	 */
    864 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    865 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    866 	    &sc->age_cdata.age_smb_block_map);
    867 	if (error) {
    868 		sc->age_cdata.age_smb_block_map = NULL;
    869 		return ENOBUFS;
    870 	}
    871 
    872 	/* Allocate DMA'able memory for SMB block */
    873 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    874 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    875 	    &nsegs, BUS_DMA_NOWAIT);
    876 	if (error) {
    877 		printf("%s: could not allocate DMA'able memory for "
    878 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    879 		return error;
    880 	}
    881 
    882 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    883 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    884 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    885 	if (error)
    886 		return ENOBUFS;
    887 
    888 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    889 
    890 	/*  Load the DMA map for SMB block */
    891 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    892 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    893 	    BUS_DMA_NOWAIT);
    894 	if (error) {
    895 		printf("%s: could not load DMA'able memory for SMB block, "
    896 		    "error = %i\n", device_xname(sc->sc_dev), error);
    897 		bus_dmamem_free(sc->sc_dmat,
    898 		    &sc->age_rdata.age_smb_block_seg, 1);
    899 		return error;
    900 	}
    901 
    902 	sc->age_rdata.age_smb_block_paddr =
    903 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    904 
    905 	/* Create DMA maps for Tx buffers. */
    906 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    907 		txd = &sc->age_cdata.age_txdesc[i];
    908 		txd->tx_m = NULL;
    909 		txd->tx_dmamap = NULL;
    910 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    911 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    912 		    &txd->tx_dmamap);
    913 		if (error) {
    914 			txd->tx_dmamap = NULL;
    915 			printf("%s: could not create Tx dmamap, error = %i.\n",
    916 			    device_xname(sc->sc_dev), error);
    917 			return error;
    918 		}
    919 	}
    920 
    921 	/* Create DMA maps for Rx buffers. */
    922 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    923 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    924 	if (error) {
    925 		sc->age_cdata.age_rx_sparemap = NULL;
    926 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    927 		    device_xname(sc->sc_dev), error);
    928 		return error;
    929 	}
    930 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    931 		rxd = &sc->age_cdata.age_rxdesc[i];
    932 		rxd->rx_m = NULL;
    933 		rxd->rx_dmamap = NULL;
    934 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    935 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    936 		if (error) {
    937 			rxd->rx_dmamap = NULL;
    938 			printf("%s: could not create Rx dmamap, error = %i.\n",
    939 			    device_xname(sc->sc_dev), error);
    940 			return error;
    941 		}
    942 	}
    943 
    944 	return 0;
    945 }
    946 
    947 static void
    948 age_dma_free(struct age_softc *sc)
    949 {
    950 	struct age_txdesc *txd;
    951 	struct age_rxdesc *rxd;
    952 	int i;
    953 
    954 	/* Tx buffers */
    955 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    956 		txd = &sc->age_cdata.age_txdesc[i];
    957 		if (txd->tx_dmamap != NULL) {
    958 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    959 			txd->tx_dmamap = NULL;
    960 		}
    961 	}
    962 	/* Rx buffers */
    963 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    964 		rxd = &sc->age_cdata.age_rxdesc[i];
    965 		if (rxd->rx_dmamap != NULL) {
    966 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    967 			rxd->rx_dmamap = NULL;
    968 		}
    969 	}
    970 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    971 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    972 		sc->age_cdata.age_rx_sparemap = NULL;
    973 	}
    974 
    975 	/* Tx ring. */
    976 	if (sc->age_cdata.age_tx_ring_map != NULL)
    977 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    978 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    979 	    sc->age_rdata.age_tx_ring != NULL)
    980 		bus_dmamem_free(sc->sc_dmat,
    981 		    &sc->age_rdata.age_tx_ring_seg, 1);
    982 	sc->age_rdata.age_tx_ring = NULL;
    983 	sc->age_cdata.age_tx_ring_map = NULL;
    984 
    985 	/* Rx ring. */
    986 	if (sc->age_cdata.age_rx_ring_map != NULL)
    987 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    988 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    989 	    sc->age_rdata.age_rx_ring != NULL)
    990 		bus_dmamem_free(sc->sc_dmat,
    991 		    &sc->age_rdata.age_rx_ring_seg, 1);
    992 	sc->age_rdata.age_rx_ring = NULL;
    993 	sc->age_cdata.age_rx_ring_map = NULL;
    994 
    995 	/* Rx return ring. */
    996 	if (sc->age_cdata.age_rr_ring_map != NULL)
    997 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    998 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    999 	    sc->age_rdata.age_rr_ring != NULL)
   1000 		bus_dmamem_free(sc->sc_dmat,
   1001 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1002 	sc->age_rdata.age_rr_ring = NULL;
   1003 	sc->age_cdata.age_rr_ring_map = NULL;
   1004 
   1005 	/* CMB block */
   1006 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1007 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1008 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1009 	    sc->age_rdata.age_cmb_block != NULL)
   1010 		bus_dmamem_free(sc->sc_dmat,
   1011 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1012 	sc->age_rdata.age_cmb_block = NULL;
   1013 	sc->age_cdata.age_cmb_block_map = NULL;
   1014 
   1015 	/* SMB block */
   1016 	if (sc->age_cdata.age_smb_block_map != NULL)
   1017 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1018 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1019 	    sc->age_rdata.age_smb_block != NULL)
   1020 		bus_dmamem_free(sc->sc_dmat,
   1021 		    &sc->age_rdata.age_smb_block_seg, 1);
   1022 	sc->age_rdata.age_smb_block = NULL;
   1023 	sc->age_cdata.age_smb_block_map = NULL;
   1024 }
   1025 
   1026 static void
   1027 age_start(struct ifnet *ifp)
   1028 {
   1029         struct age_softc *sc = ifp->if_softc;
   1030         struct mbuf *m_head;
   1031 	int enq;
   1032 
   1033 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1034 		return;
   1035 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
   1036 		return;
   1037 	if (IFQ_IS_EMPTY(&ifp->if_snd))
   1038 		return;
   1039 
   1040 	enq = 0;
   1041 	for (;;) {
   1042 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1043 		if (m_head == NULL)
   1044 			break;
   1045 
   1046 		/*
   1047 		 * Pack the data into the transmit ring. If we
   1048 		 * don't have room, set the OACTIVE flag and wait
   1049 		 * for the NIC to drain the ring.
   1050 		 */
   1051 		if (age_encap(sc, &m_head)) {
   1052 			if (m_head == NULL)
   1053 				break;
   1054 			IF_PREPEND(&ifp->if_snd, m_head);
   1055 			ifp->if_flags |= IFF_OACTIVE;
   1056 			break;
   1057 		}
   1058 		enq = 1;
   1059 
   1060 		/*
   1061 		 * If there's a BPF listener, bounce a copy of this frame
   1062 		 * to him.
   1063 		 */
   1064 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1065 	}
   1066 
   1067 	if (enq) {
   1068 		/* Update mbox. */
   1069 		AGE_COMMIT_MBOX(sc);
   1070 		/* Set a timeout in case the chip goes out to lunch. */
   1071 		ifp->if_timer = AGE_TX_TIMEOUT;
   1072 	}
   1073 }
   1074 
   1075 static void
   1076 age_watchdog(struct ifnet *ifp)
   1077 {
   1078 	struct age_softc *sc = ifp->if_softc;
   1079 
   1080 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1081 		printf("%s: watchdog timeout (missed link)\n",
   1082 		    device_xname(sc->sc_dev));
   1083 		ifp->if_oerrors++;
   1084 		age_init(ifp);
   1085 		return;
   1086 	}
   1087 
   1088 	if (sc->age_cdata.age_tx_cnt == 0) {
   1089 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1090 		    "-- recovering\n", device_xname(sc->sc_dev));
   1091 		age_start(ifp);
   1092 		return;
   1093 	}
   1094 
   1095 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1096 	ifp->if_oerrors++;
   1097 	age_init(ifp);
   1098 	age_start(ifp);
   1099 }
   1100 
   1101 static bool
   1102 age_shutdown(device_t self, int howto)
   1103 {
   1104 	struct age_softc *sc;
   1105 	struct ifnet *ifp;
   1106 
   1107 	sc = device_private(self);
   1108 	ifp = &sc->sc_ec.ec_if;
   1109 	age_stop(ifp, 1);
   1110 
   1111 	return true;
   1112 }
   1113 
   1114 
   1115 static int
   1116 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1117 {
   1118 	struct age_softc *sc = ifp->if_softc;
   1119 	int s, error;
   1120 
   1121 	s = splnet();
   1122 
   1123 	error = ether_ioctl(ifp, cmd, data);
   1124 	if (error == ENETRESET) {
   1125 		if (ifp->if_flags & IFF_RUNNING)
   1126 			age_rxfilter(sc);
   1127 		error = 0;
   1128 	}
   1129 
   1130 	splx(s);
   1131 	return error;
   1132 }
   1133 
   1134 static void
   1135 age_mac_config(struct age_softc *sc)
   1136 {
   1137 	struct mii_data *mii;
   1138 	uint32_t reg;
   1139 
   1140 	mii = &sc->sc_miibus;
   1141 
   1142 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1143 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1144 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1145 	reg &= ~MAC_CFG_SPEED_MASK;
   1146 
   1147 	/* Reprogram MAC with resolved speed/duplex. */
   1148 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1149 	case IFM_10_T:
   1150 	case IFM_100_TX:
   1151 		reg |= MAC_CFG_SPEED_10_100;
   1152 		break;
   1153 	case IFM_1000_T:
   1154 		reg |= MAC_CFG_SPEED_1000;
   1155 		break;
   1156 	}
   1157 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1158 		reg |= MAC_CFG_FULL_DUPLEX;
   1159 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1160 			reg |= MAC_CFG_TX_FC;
   1161 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1162 			reg |= MAC_CFG_RX_FC;
   1163 	}
   1164 
   1165 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1166 }
   1167 
   1168 static bool
   1169 age_resume(device_t dv, const pmf_qual_t *qual)
   1170 {
   1171 	struct age_softc *sc = device_private(dv);
   1172 	uint16_t cmd;
   1173 
   1174 	/*
   1175 	 * Clear INTx emulation disable for hardware that
   1176 	 * is set in resume event. From Linux.
   1177 	 */
   1178 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1179 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1180 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1181 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1182 		    PCI_COMMAND_STATUS_REG, cmd);
   1183 	}
   1184 
   1185 	return true;
   1186 }
   1187 
   1188 static int
   1189 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1190 {
   1191 	struct age_txdesc *txd, *txd_last;
   1192 	struct tx_desc *desc;
   1193 	struct mbuf *m;
   1194 	bus_dmamap_t map;
   1195 	uint32_t cflags, poff, vtag;
   1196 	int error, i, nsegs, prod;
   1197 
   1198 	m = *m_head;
   1199 	cflags = vtag = 0;
   1200 	poff = 0;
   1201 
   1202 	prod = sc->age_cdata.age_tx_prod;
   1203 	txd = &sc->age_cdata.age_txdesc[prod];
   1204 	txd_last = txd;
   1205 	map = txd->tx_dmamap;
   1206 
   1207 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1208 
   1209 	if (error == EFBIG) {
   1210 		error = 0;
   1211 
   1212 		*m_head = m_pullup(*m_head, MHLEN);
   1213 		if (*m_head == NULL) {
   1214 			printf("%s: can't defrag TX mbuf\n",
   1215 			    device_xname(sc->sc_dev));
   1216 			return ENOBUFS;
   1217 		}
   1218 
   1219 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1220 		  	    BUS_DMA_NOWAIT);
   1221 
   1222 		if (error != 0) {
   1223 			printf("%s: could not load defragged TX mbuf\n",
   1224 			    device_xname(sc->sc_dev));
   1225 			m_freem(*m_head);
   1226 			*m_head = NULL;
   1227 			return error;
   1228 		}
   1229 	} else if (error) {
   1230 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1231 		return error;
   1232 	}
   1233 
   1234 	nsegs = map->dm_nsegs;
   1235 
   1236 	if (nsegs == 0) {
   1237 		m_freem(*m_head);
   1238 		*m_head = NULL;
   1239 		return EIO;
   1240 	}
   1241 
   1242 	/* Check descriptor overrun. */
   1243 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1244 		bus_dmamap_unload(sc->sc_dmat, map);
   1245 		return ENOBUFS;
   1246 	}
   1247 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1248 	    BUS_DMASYNC_PREWRITE);
   1249 
   1250 	m = *m_head;
   1251 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1252 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1253 		cflags |= AGE_TD_CSUM;
   1254 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1255 			cflags |= AGE_TD_TCPCSUM;
   1256 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1257 			cflags |= AGE_TD_UDPCSUM;
   1258 		/* Set checksum start offset. */
   1259 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1260 	}
   1261 
   1262 #if NVLAN > 0
   1263 	/* Configure VLAN hardware tag insertion. */
   1264 	if (vlan_has_tag(m)) {
   1265 		vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
   1266 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1267 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1268 	}
   1269 #endif
   1270 
   1271 	desc = NULL;
   1272 	KASSERT(nsegs > 0);
   1273 	for (i = 0; ; i++) {
   1274 		desc = &sc->age_rdata.age_tx_ring[prod];
   1275 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1276 		desc->len =
   1277 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1278 		desc->flags = htole32(cflags);
   1279 		sc->age_cdata.age_tx_cnt++;
   1280 		if (i == (nsegs - 1))
   1281 			break;
   1282 
   1283 		/* sync this descriptor and go to the next one */
   1284 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1285 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1286 		    BUS_DMASYNC_PREWRITE);
   1287 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1288 	}
   1289 
   1290 	/* Set EOP on the last descriptor and sync it. */
   1291 	desc->flags |= htole32(AGE_TD_EOP);
   1292 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1293 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1294 	    BUS_DMASYNC_PREWRITE);
   1295 
   1296 	if (nsegs > 1) {
   1297 		/* Swap dmamap of the first and the last. */
   1298 		txd = &sc->age_cdata.age_txdesc[prod];
   1299 		map = txd_last->tx_dmamap;
   1300 		txd_last->tx_dmamap = txd->tx_dmamap;
   1301 		txd->tx_dmamap = map;
   1302 		txd->tx_m = m;
   1303 		KASSERT(txd_last->tx_m == NULL);
   1304 	} else {
   1305 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
   1306 		txd_last->tx_m = m;
   1307 	}
   1308 
   1309 	/* Update producer index. */
   1310 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1311 	sc->age_cdata.age_tx_prod = prod;
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 static void
   1317 age_txintr(struct age_softc *sc, int tpd_cons)
   1318 {
   1319 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1320 	struct age_txdesc *txd;
   1321 	int cons, prog;
   1322 
   1323 
   1324 	if (sc->age_cdata.age_tx_cnt <= 0) {
   1325 		if (ifp->if_timer != 0)
   1326 			printf("timer running without packets\n");
   1327 		if (sc->age_cdata.age_tx_cnt)
   1328 			printf("age_tx_cnt corrupted\n");
   1329 	}
   1330 
   1331 	/*
   1332 	 * Go through our Tx list and free mbufs for those
   1333 	 * frames which have been transmitted.
   1334 	 */
   1335 	cons = sc->age_cdata.age_tx_cons;
   1336 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1337 		if (sc->age_cdata.age_tx_cnt <= 0)
   1338 			break;
   1339 		prog++;
   1340 		ifp->if_flags &= ~IFF_OACTIVE;
   1341 		sc->age_cdata.age_tx_cnt--;
   1342 		txd = &sc->age_cdata.age_txdesc[cons];
   1343 		/*
   1344 		 * Clear Tx descriptors, it's not required but would
   1345 		 * help debugging in case of Tx issues.
   1346 		 */
   1347 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1348 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1349 		    BUS_DMASYNC_POSTWRITE);
   1350 		txd->tx_desc->addr = 0;
   1351 		txd->tx_desc->len = 0;
   1352 		txd->tx_desc->flags = 0;
   1353 
   1354 		if (txd->tx_m == NULL)
   1355 			continue;
   1356 		/* Reclaim transmitted mbufs. */
   1357 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1358 		m_freem(txd->tx_m);
   1359 		txd->tx_m = NULL;
   1360 	}
   1361 
   1362 	if (prog > 0) {
   1363 		sc->age_cdata.age_tx_cons = cons;
   1364 
   1365 		/*
   1366 		 * Unarm watchdog timer only when there are no pending
   1367 		 * Tx descriptors in queue.
   1368 		 */
   1369 		if (sc->age_cdata.age_tx_cnt == 0)
   1370 			ifp->if_timer = 0;
   1371 	}
   1372 }
   1373 
   1374 /* Receive a frame. */
   1375 static void
   1376 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1377 {
   1378 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1379 	struct age_rxdesc *rxd;
   1380 	struct rx_desc *desc;
   1381 	struct mbuf *mp, *m;
   1382 	uint32_t status, index;
   1383 	int count, nsegs, pktlen;
   1384 	int rx_cons;
   1385 
   1386 	status = le32toh(rxrd->flags);
   1387 	index = le32toh(rxrd->index);
   1388 	rx_cons = AGE_RX_CONS(index);
   1389 	nsegs = AGE_RX_NSEGS(index);
   1390 
   1391 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1392 	if ((status & AGE_RRD_ERROR) != 0 &&
   1393 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1394 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1395 		/*
   1396 		 * We want to pass the following frames to upper
   1397 		 * layer regardless of error status of Rx return
   1398 		 * ring.
   1399 		 *
   1400 		 *  o IP/TCP/UDP checksum is bad.
   1401 		 *  o frame length and protocol specific length
   1402 		 *     does not match.
   1403 		 */
   1404 		sc->age_cdata.age_rx_cons += nsegs;
   1405 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1406 		return;
   1407 	}
   1408 
   1409 	pktlen = 0;
   1410 	for (count = 0; count < nsegs; count++,
   1411 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1412 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1413 		mp = rxd->rx_m;
   1414 		desc = rxd->rx_desc;
   1415 		/* Add a new receive buffer to the ring. */
   1416 		if (age_newbuf(sc, rxd, 0) != 0) {
   1417 			ifp->if_iqdrops++;
   1418 			/* Reuse Rx buffers. */
   1419 			if (sc->age_cdata.age_rxhead != NULL) {
   1420 				m_freem(sc->age_cdata.age_rxhead);
   1421 				AGE_RXCHAIN_RESET(sc);
   1422 			}
   1423 			break;
   1424 		}
   1425 
   1426 		/* The length of the first mbuf is computed last. */
   1427 		if (count != 0) {
   1428 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1429 			pktlen += mp->m_len;
   1430 		}
   1431 
   1432 		/* Chain received mbufs. */
   1433 		if (sc->age_cdata.age_rxhead == NULL) {
   1434 			sc->age_cdata.age_rxhead = mp;
   1435 			sc->age_cdata.age_rxtail = mp;
   1436 		} else {
   1437 			m_remove_pkthdr(mp);
   1438 			sc->age_cdata.age_rxprev_tail =
   1439 			    sc->age_cdata.age_rxtail;
   1440 			sc->age_cdata.age_rxtail->m_next = mp;
   1441 			sc->age_cdata.age_rxtail = mp;
   1442 		}
   1443 
   1444 		if (count == nsegs - 1) {
   1445 			/*
   1446 			 * It seems that L1 controller has no way
   1447 			 * to tell hardware to strip CRC bytes.
   1448 			 */
   1449 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1450 			if (nsegs > 1) {
   1451 				/* Remove the CRC bytes in chained mbufs. */
   1452 				pktlen -= ETHER_CRC_LEN;
   1453 				if (mp->m_len <= ETHER_CRC_LEN) {
   1454 					sc->age_cdata.age_rxtail =
   1455 					    sc->age_cdata.age_rxprev_tail;
   1456 					sc->age_cdata.age_rxtail->m_len -=
   1457 					    (ETHER_CRC_LEN - mp->m_len);
   1458 					sc->age_cdata.age_rxtail->m_next = NULL;
   1459 					m_freem(mp);
   1460 				} else {
   1461 					mp->m_len -= ETHER_CRC_LEN;
   1462 				}
   1463 			}
   1464 
   1465 			m = sc->age_cdata.age_rxhead;
   1466 			KASSERT(m->m_flags & M_PKTHDR);
   1467 			m_set_rcvif(m, ifp);
   1468 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1469 			/* Set the first mbuf length. */
   1470 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1471 
   1472 			/*
   1473 			 * Set checksum information.
   1474 			 * It seems that L1 controller can compute partial
   1475 			 * checksum. The partial checksum value can be used
   1476 			 * to accelerate checksum computation for fragmented
   1477 			 * TCP/UDP packets. Upper network stack already
   1478 			 * takes advantage of the partial checksum value in
   1479 			 * IP reassembly stage. But I'm not sure the
   1480 			 * correctness of the partial hardware checksum
   1481 			 * assistance due to lack of data sheet. If it is
   1482 			 * proven to work on L1 I'll enable it.
   1483 			 */
   1484 			if (status & AGE_RRD_IPV4) {
   1485 				if (status & AGE_RRD_IPCSUM_NOK)
   1486 					m->m_pkthdr.csum_flags |=
   1487 					    M_CSUM_IPv4_BAD;
   1488 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1489 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1490 					m->m_pkthdr.csum_flags |=
   1491 					    M_CSUM_TCP_UDP_BAD;
   1492 				}
   1493 				/*
   1494 				 * Don't mark bad checksum for TCP/UDP frames
   1495 				 * as fragmented frames may always have set
   1496 				 * bad checksummed bit of descriptor status.
   1497 				 */
   1498 			}
   1499 #if NVLAN > 0
   1500 			/* Check for VLAN tagged frames. */
   1501 			if (status & AGE_RRD_VLAN) {
   1502 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1503 				vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
   1504 			}
   1505 #endif
   1506 
   1507 			/* Pass it on. */
   1508 			if_percpuq_enqueue(ifp->if_percpuq, m);
   1509 
   1510 			/* Reset mbuf chains. */
   1511 			AGE_RXCHAIN_RESET(sc);
   1512 		}
   1513 	}
   1514 
   1515 	if (count != nsegs) {
   1516 		sc->age_cdata.age_rx_cons += nsegs;
   1517 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1518 	} else
   1519 		sc->age_cdata.age_rx_cons = rx_cons;
   1520 }
   1521 
   1522 static void
   1523 age_rxintr(struct age_softc *sc, int rr_prod)
   1524 {
   1525 	struct rx_rdesc *rxrd;
   1526 	int rr_cons, nsegs, pktlen, prog;
   1527 
   1528 	rr_cons = sc->age_cdata.age_rr_cons;
   1529 	if (rr_cons == rr_prod)
   1530 		return;
   1531 
   1532 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1533 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1534 	    BUS_DMASYNC_POSTREAD);
   1535 
   1536 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1537 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1538 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1539 		if (nsegs == 0)
   1540 			break;
   1541 		/*
   1542 		 * Check number of segments against received bytes
   1543 		 * Non-matching value would indicate that hardware
   1544 		 * is still trying to update Rx return descriptors.
   1545 		 * I'm not sure whether this check is really needed.
   1546 		 */
   1547 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1548 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1549 		    (MCLBYTES - ETHER_ALIGN)))
   1550 			break;
   1551 
   1552 		/* Received a frame. */
   1553 		age_rxeof(sc, rxrd);
   1554 
   1555 		/* Clear return ring. */
   1556 		rxrd->index = 0;
   1557 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1558 	}
   1559 
   1560 	if (prog > 0) {
   1561 		/* Update the consumer index. */
   1562 		sc->age_cdata.age_rr_cons = rr_cons;
   1563 
   1564 		/* Sync descriptors. */
   1565 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1566 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1567 		    BUS_DMASYNC_PREWRITE);
   1568 
   1569 		/* Notify hardware availability of new Rx buffers. */
   1570 		AGE_COMMIT_MBOX(sc);
   1571 	}
   1572 }
   1573 
   1574 static void
   1575 age_tick(void *xsc)
   1576 {
   1577 	struct age_softc *sc = xsc;
   1578 	struct mii_data *mii = &sc->sc_miibus;
   1579 	int s;
   1580 
   1581 	s = splnet();
   1582 	mii_tick(mii);
   1583 	splx(s);
   1584 
   1585 	callout_schedule(&sc->sc_tick_ch, hz);
   1586 }
   1587 
   1588 static void
   1589 age_reset(struct age_softc *sc)
   1590 {
   1591 	uint32_t reg;
   1592 	int i;
   1593 
   1594 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1595 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1596 	DELAY(1000);
   1597 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1598 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1599 			break;
   1600 		DELAY(10);
   1601 	}
   1602 
   1603 	if (i == 0)
   1604 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1605 		    reg);
   1606 
   1607 	/* Initialize PCIe module. From Linux. */
   1608 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1609 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1610 }
   1611 
   1612 static int
   1613 age_init(struct ifnet *ifp)
   1614 {
   1615 	struct age_softc *sc = ifp->if_softc;
   1616 	struct mii_data *mii;
   1617 	uint8_t eaddr[ETHER_ADDR_LEN];
   1618 	bus_addr_t paddr;
   1619 	uint32_t reg, fsize;
   1620 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1621 	int error;
   1622 
   1623 	/*
   1624 	 * Cancel any pending I/O.
   1625 	 */
   1626 	age_stop(ifp, 0);
   1627 
   1628 	/*
   1629 	 * Reset the chip to a known state.
   1630 	 */
   1631 	age_reset(sc);
   1632 
   1633 	/* Initialize descriptors. */
   1634 	error = age_init_rx_ring(sc);
   1635         if (error != 0) {
   1636 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1637 		age_stop(ifp, 0);
   1638 		return error;
   1639         }
   1640 	age_init_rr_ring(sc);
   1641 	age_init_tx_ring(sc);
   1642 	age_init_cmb_block(sc);
   1643 	age_init_smb_block(sc);
   1644 
   1645 	/* Reprogram the station address. */
   1646 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1647 	CSR_WRITE_4(sc, AGE_PAR0,
   1648 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1649 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1650 
   1651 	/* Set descriptor base addresses. */
   1652 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1653 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1654 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1655 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1656 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1657 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1658 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1659 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1660 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1661 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1662 	paddr = sc->age_rdata.age_smb_block_paddr;
   1663 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1664 
   1665 	/* Set Rx/Rx return descriptor counter. */
   1666 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1667 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1668 	    DESC_RRD_CNT_MASK) |
   1669 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1670 
   1671 	/* Set Tx descriptor counter. */
   1672 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1673 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1674 
   1675 	/* Tell hardware that we're ready to load descriptors. */
   1676 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1677 
   1678         /*
   1679 	 * Initialize mailbox register.
   1680 	 * Updated producer/consumer index information is exchanged
   1681 	 * through this mailbox register. However Tx producer and
   1682 	 * Rx return consumer/Rx producer are all shared such that
   1683 	 * it's hard to separate code path between Tx and Rx without
   1684 	 * locking. If L1 hardware have a separate mail box register
   1685 	 * for Tx and Rx consumer/producer management we could have
   1686 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1687 	 * been run without any locking.
   1688 	*/
   1689 	AGE_COMMIT_MBOX(sc);
   1690 
   1691 	/* Configure IPG/IFG parameters. */
   1692 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1693 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1694 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1695 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1696 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1697 
   1698 	/* Set parameters for half-duplex media. */
   1699 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1700 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1701 	    HDPX_CFG_LCOL_MASK) |
   1702 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1703 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1704 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1705 	    HDPX_CFG_ABEBT_MASK) |
   1706 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1707 	     HDPX_CFG_JAMIPG_MASK));
   1708 
   1709 	/* Configure interrupt moderation timer. */
   1710 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1711 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1712 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1713 	reg &= ~MASTER_MTIMER_ENB;
   1714 	if (AGE_USECS(sc->age_int_mod) == 0)
   1715 		reg &= ~MASTER_ITIMER_ENB;
   1716 	else
   1717 		reg |= MASTER_ITIMER_ENB;
   1718 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1719 	if (agedebug)
   1720 		printf("%s: interrupt moderation is %d us.\n",
   1721 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1722 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1723 
   1724 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1725 	if (ifp->if_mtu < ETHERMTU)
   1726 		sc->age_max_frame_size = ETHERMTU;
   1727 	else
   1728 		sc->age_max_frame_size = ifp->if_mtu;
   1729 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1730 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1731 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1732 
   1733 	/* Configure jumbo frame. */
   1734 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1735 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1736 	    (((fsize / sizeof(uint64_t)) <<
   1737 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1738 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1739 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1740 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1741 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1742 
   1743 	/* Configure flow-control parameters. From Linux. */
   1744 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1745 		/*
   1746 		 * Magic workaround for old-L1.
   1747 		 * Don't know which hw revision requires this magic.
   1748 		 */
   1749 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1750 		/*
   1751 		 * Another magic workaround for flow-control mode
   1752 		 * change. From Linux.
   1753 		 */
   1754 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1755 	}
   1756 	/*
   1757 	 * TODO
   1758 	 *  Should understand pause parameter relationships between FIFO
   1759 	 *  size and number of Rx descriptors and Rx return descriptors.
   1760 	 *
   1761 	 *  Magic parameters came from Linux.
   1762 	 */
   1763 	switch (sc->age_chip_rev) {
   1764 	case 0x8001:
   1765 	case 0x9001:
   1766 	case 0x9002:
   1767 	case 0x9003:
   1768 		rxf_hi = AGE_RX_RING_CNT / 16;
   1769 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1770 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1771 		rrd_lo = AGE_RR_RING_CNT / 16;
   1772 		break;
   1773 	default:
   1774 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1775 		rxf_lo = reg / 16;
   1776 		if (rxf_lo < 192)
   1777 			rxf_lo = 192;
   1778 		rxf_hi = (reg * 7) / 8;
   1779 		if (rxf_hi < rxf_lo)
   1780 			rxf_hi = rxf_lo + 16;
   1781 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1782 		rrd_lo = reg / 8;
   1783 		rrd_hi = (reg * 7) / 8;
   1784 		if (rrd_lo < 2)
   1785 			rrd_lo = 2;
   1786 		if (rrd_hi < rrd_lo)
   1787 			rrd_hi = rrd_lo + 3;
   1788 		break;
   1789 	}
   1790 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1791 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1792 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1793 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1794 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1795 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1796 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1797 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1798 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1799 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1800 
   1801 	/* Configure RxQ. */
   1802 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1803 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1804 	    RXQ_CFG_RD_BURST_MASK) |
   1805 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1806 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1807 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1808 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1809 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1810 
   1811 	/* Configure TxQ. */
   1812 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1813 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1814 	    TXQ_CFG_TPD_BURST_MASK) |
   1815 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1816 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1817 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1818 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1819 	    TXQ_CFG_ENB);
   1820 
   1821 	/* Configure DMA parameters. */
   1822 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1823 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1824 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1825 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1826 
   1827 	/* Configure CMB DMA write threshold. */
   1828 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1829 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1830 	    CMB_WR_THRESH_RRD_MASK) |
   1831 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1832 	    CMB_WR_THRESH_TPD_MASK));
   1833 
   1834 	/* Set CMB/SMB timer and enable them. */
   1835 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1836 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1837 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1838 
   1839 	/* Request SMB updates for every seconds. */
   1840 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1841 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1842 
   1843 	/*
   1844 	 * Disable all WOL bits as WOL can interfere normal Rx
   1845 	 * operation.
   1846 	 */
   1847 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1848 
   1849         /*
   1850 	 * Configure Tx/Rx MACs.
   1851 	 *  - Auto-padding for short frames.
   1852 	 *  - Enable CRC generation.
   1853 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1854 	 *  of MAC is followed after link establishment.
   1855 	 */
   1856 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1857 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1858 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1859 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1860 	    MAC_CFG_PREAMBLE_MASK));
   1861 
   1862 	/* Set up the receive filter. */
   1863 	age_rxfilter(sc);
   1864 	age_rxvlan(sc);
   1865 
   1866 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1867 	reg |= MAC_CFG_RXCSUM_ENB;
   1868 
   1869 	/* Ack all pending interrupts and clear it. */
   1870 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1871 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1872 
   1873 	/* Finally enable Tx/Rx MAC. */
   1874 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1875 
   1876 	sc->age_flags &= ~AGE_FLAG_LINK;
   1877 
   1878 	/* Switch to the current media. */
   1879 	mii = &sc->sc_miibus;
   1880 	mii_mediachg(mii);
   1881 
   1882 	callout_schedule(&sc->sc_tick_ch, hz);
   1883 
   1884 	ifp->if_flags |= IFF_RUNNING;
   1885 	ifp->if_flags &= ~IFF_OACTIVE;
   1886 
   1887 	return 0;
   1888 }
   1889 
   1890 static void
   1891 age_stop(struct ifnet *ifp, int disable)
   1892 {
   1893 	struct age_softc *sc = ifp->if_softc;
   1894 	struct age_txdesc *txd;
   1895 	struct age_rxdesc *rxd;
   1896 	uint32_t reg;
   1897 	int i;
   1898 
   1899 	callout_stop(&sc->sc_tick_ch);
   1900 
   1901 	/*
   1902 	 * Mark the interface down and cancel the watchdog timer.
   1903 	 */
   1904 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1905 	ifp->if_timer = 0;
   1906 
   1907 	sc->age_flags &= ~AGE_FLAG_LINK;
   1908 
   1909 	mii_down(&sc->sc_miibus);
   1910 
   1911 	/*
   1912 	 * Disable interrupts.
   1913 	 */
   1914 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1915 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1916 
   1917 	/* Stop CMB/SMB updates. */
   1918 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1919 
   1920 	/* Stop Rx/Tx MAC. */
   1921 	age_stop_rxmac(sc);
   1922 	age_stop_txmac(sc);
   1923 
   1924 	/* Stop DMA. */
   1925 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1926 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1927 
   1928 	/* Stop TxQ/RxQ. */
   1929 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1930 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1931 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1932 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1933 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1934 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1935 			break;
   1936 		DELAY(10);
   1937 	}
   1938 	if (i == 0)
   1939 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1940 		    device_xname(sc->sc_dev), reg);
   1941 
   1942 	/* Reclaim Rx buffers that have been processed. */
   1943 	if (sc->age_cdata.age_rxhead != NULL)
   1944 		m_freem(sc->age_cdata.age_rxhead);
   1945 	AGE_RXCHAIN_RESET(sc);
   1946 
   1947 	/*
   1948 	 * Free RX and TX mbufs still in the queues.
   1949 	 */
   1950 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1951 		rxd = &sc->age_cdata.age_rxdesc[i];
   1952 		if (rxd->rx_m != NULL) {
   1953 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1954 			m_freem(rxd->rx_m);
   1955 			rxd->rx_m = NULL;
   1956 		}
   1957 	}
   1958 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1959 		txd = &sc->age_cdata.age_txdesc[i];
   1960 		if (txd->tx_m != NULL) {
   1961 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1962 			m_freem(txd->tx_m);
   1963 			txd->tx_m = NULL;
   1964 		}
   1965 	}
   1966 }
   1967 
   1968 static void
   1969 age_stats_update(struct age_softc *sc)
   1970 {
   1971 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1972 	struct age_stats *stat;
   1973 	struct smb *smb;
   1974 
   1975 	stat = &sc->age_stat;
   1976 
   1977 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1978 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   1979 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1980 
   1981 	smb = sc->age_rdata.age_smb_block;
   1982 	if (smb->updated == 0)
   1983 		return;
   1984 
   1985 	/* Rx stats. */
   1986 	stat->rx_frames += smb->rx_frames;
   1987 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1988 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1989 	stat->rx_pause_frames += smb->rx_pause_frames;
   1990 	stat->rx_control_frames += smb->rx_control_frames;
   1991 	stat->rx_crcerrs += smb->rx_crcerrs;
   1992 	stat->rx_lenerrs += smb->rx_lenerrs;
   1993 	stat->rx_bytes += smb->rx_bytes;
   1994 	stat->rx_runts += smb->rx_runts;
   1995 	stat->rx_fragments += smb->rx_fragments;
   1996 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1997 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1998 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1999 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2000 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2001 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2002 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2003 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2004 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2005 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2006 	stat->rx_alignerrs += smb->rx_alignerrs;
   2007 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2008 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2009 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2010 
   2011 	/* Tx stats. */
   2012 	stat->tx_frames += smb->tx_frames;
   2013 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2014 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2015 	stat->tx_pause_frames += smb->tx_pause_frames;
   2016 	stat->tx_excess_defer += smb->tx_excess_defer;
   2017 	stat->tx_control_frames += smb->tx_control_frames;
   2018 	stat->tx_deferred += smb->tx_deferred;
   2019 	stat->tx_bytes += smb->tx_bytes;
   2020 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2021 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2022 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2023 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2024 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2025 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2026 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2027 	stat->tx_single_colls += smb->tx_single_colls;
   2028 	stat->tx_multi_colls += smb->tx_multi_colls;
   2029 	stat->tx_late_colls += smb->tx_late_colls;
   2030 	stat->tx_excess_colls += smb->tx_excess_colls;
   2031 	stat->tx_underrun += smb->tx_underrun;
   2032 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2033 	stat->tx_lenerrs += smb->tx_lenerrs;
   2034 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2035 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2036 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2037 
   2038 	/* Update counters in ifnet. */
   2039 	ifp->if_opackets += smb->tx_frames;
   2040 
   2041 	ifp->if_collisions += smb->tx_single_colls +
   2042 	    smb->tx_multi_colls + smb->tx_late_colls +
   2043 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2044 
   2045 	ifp->if_oerrors += smb->tx_excess_colls +
   2046 	    smb->tx_late_colls + smb->tx_underrun +
   2047 	    smb->tx_pkts_truncated;
   2048 
   2049 	ifp->if_ipackets += smb->rx_frames;
   2050 
   2051 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2052 	    smb->rx_runts + smb->rx_pkts_truncated +
   2053 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2054 	    smb->rx_alignerrs;
   2055 
   2056 	/* Update done, clear. */
   2057 	smb->updated = 0;
   2058 
   2059 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2060 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   2061 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2062 }
   2063 
   2064 static void
   2065 age_stop_txmac(struct age_softc *sc)
   2066 {
   2067 	uint32_t reg;
   2068 	int i;
   2069 
   2070 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2071 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2072 		reg &= ~MAC_CFG_TX_ENB;
   2073 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2074 	}
   2075 	/* Stop Tx DMA engine. */
   2076 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2077 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2078 		reg &= ~DMA_CFG_RD_ENB;
   2079 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2080 	}
   2081 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2082 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2083 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2084 			break;
   2085 		DELAY(10);
   2086 	}
   2087 	if (i == 0)
   2088 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2089 }
   2090 
   2091 static void
   2092 age_stop_rxmac(struct age_softc *sc)
   2093 {
   2094 	uint32_t reg;
   2095 	int i;
   2096 
   2097 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2098 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2099 		reg &= ~MAC_CFG_RX_ENB;
   2100 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2101 	}
   2102 	/* Stop Rx DMA engine. */
   2103 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2104 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2105 		reg &= ~DMA_CFG_WR_ENB;
   2106 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2107 	}
   2108 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2109 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2110 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2111 			break;
   2112 		DELAY(10);
   2113 	}
   2114 	if (i == 0)
   2115 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2116 }
   2117 
   2118 static void
   2119 age_init_tx_ring(struct age_softc *sc)
   2120 {
   2121 	struct age_ring_data *rd;
   2122 	struct age_txdesc *txd;
   2123 	int i;
   2124 
   2125 	sc->age_cdata.age_tx_prod = 0;
   2126 	sc->age_cdata.age_tx_cons = 0;
   2127 	sc->age_cdata.age_tx_cnt = 0;
   2128 
   2129 	rd = &sc->age_rdata;
   2130 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2131 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2132 		txd = &sc->age_cdata.age_txdesc[i];
   2133 		txd->tx_desc = &rd->age_tx_ring[i];
   2134 		txd->tx_m = NULL;
   2135 	}
   2136 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2137 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2138 }
   2139 
   2140 static int
   2141 age_init_rx_ring(struct age_softc *sc)
   2142 {
   2143 	struct age_ring_data *rd;
   2144 	struct age_rxdesc *rxd;
   2145 	int i;
   2146 
   2147 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2148 	rd = &sc->age_rdata;
   2149 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2150 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2151 		rxd = &sc->age_cdata.age_rxdesc[i];
   2152 		rxd->rx_m = NULL;
   2153 		rxd->rx_desc = &rd->age_rx_ring[i];
   2154 		if (age_newbuf(sc, rxd, 1) != 0)
   2155 			return ENOBUFS;
   2156 	}
   2157 
   2158 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2159 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2160 
   2161 	return 0;
   2162 }
   2163 
   2164 static void
   2165 age_init_rr_ring(struct age_softc *sc)
   2166 {
   2167 	struct age_ring_data *rd;
   2168 
   2169 	sc->age_cdata.age_rr_cons = 0;
   2170 	AGE_RXCHAIN_RESET(sc);
   2171 
   2172 	rd = &sc->age_rdata;
   2173 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2174 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2175 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2176 }
   2177 
   2178 static void
   2179 age_init_cmb_block(struct age_softc *sc)
   2180 {
   2181 	struct age_ring_data *rd;
   2182 
   2183 	rd = &sc->age_rdata;
   2184 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2185 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2186 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
   2187 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2188 }
   2189 
   2190 static void
   2191 age_init_smb_block(struct age_softc *sc)
   2192 {
   2193 	struct age_ring_data *rd;
   2194 
   2195 	rd = &sc->age_rdata;
   2196 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2197 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2198 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2199 }
   2200 
   2201 static int
   2202 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2203 {
   2204 	struct rx_desc *desc;
   2205 	struct mbuf *m;
   2206 	bus_dmamap_t map;
   2207 	int error;
   2208 
   2209 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2210 	if (m == NULL)
   2211 		return ENOBUFS;
   2212 	MCLGET(m, M_DONTWAIT);
   2213 	if (!(m->m_flags & M_EXT)) {
   2214 		 m_freem(m);
   2215 		 return ENOBUFS;
   2216 	}
   2217 
   2218 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2219 	m_adj(m, ETHER_ALIGN);
   2220 
   2221 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2222 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2223 
   2224 	if (error != 0) {
   2225 		m_freem(m);
   2226 
   2227 		if (init)
   2228 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2229 		return error;
   2230 	}
   2231 
   2232 	if (rxd->rx_m != NULL) {
   2233 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2234 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2235 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2236 	}
   2237 	map = rxd->rx_dmamap;
   2238 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2239 	sc->age_cdata.age_rx_sparemap = map;
   2240 	rxd->rx_m = m;
   2241 
   2242 	desc = rxd->rx_desc;
   2243 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2244 	desc->len =
   2245 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2246 	    AGE_RD_LEN_SHIFT);
   2247 
   2248 	return 0;
   2249 }
   2250 
   2251 static void
   2252 age_rxvlan(struct age_softc *sc)
   2253 {
   2254 	uint32_t reg;
   2255 
   2256 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2257 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2258 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2259 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2260 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2261 }
   2262 
   2263 static void
   2264 age_rxfilter(struct age_softc *sc)
   2265 {
   2266 	struct ethercom *ec = &sc->sc_ec;
   2267 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2268 	struct ether_multi *enm;
   2269 	struct ether_multistep step;
   2270 	uint32_t crc;
   2271 	uint32_t mchash[2];
   2272 	uint32_t rxcfg;
   2273 
   2274 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2275 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2276 	ifp->if_flags &= ~IFF_ALLMULTI;
   2277 
   2278 	/*
   2279 	 * Always accept broadcast frames.
   2280 	 */
   2281 	rxcfg |= MAC_CFG_BCAST;
   2282 
   2283 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2284 		ifp->if_flags |= IFF_ALLMULTI;
   2285 		if (ifp->if_flags & IFF_PROMISC)
   2286 			rxcfg |= MAC_CFG_PROMISC;
   2287 		else
   2288 			rxcfg |= MAC_CFG_ALLMULTI;
   2289 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2290 	} else {
   2291 		/* Program new filter. */
   2292 		memset(mchash, 0, sizeof(mchash));
   2293 
   2294 		ETHER_FIRST_MULTI(step, ec, enm);
   2295 		while (enm != NULL) {
   2296 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2297 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2298 			ETHER_NEXT_MULTI(step, enm);
   2299 		}
   2300 	}
   2301 
   2302 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2303 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2304 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2305 }
   2306