if_age.c revision 1.51.2.4 1 /* $NetBSD: if_age.c,v 1.51.2.4 2019/01/26 22:00:07 pgoyette Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.51.2.4 2019/01/26 22:00:07 pgoyette Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/if_agereg.h>
76
77 static int age_match(device_t, cfdata_t, void *);
78 static void age_attach(device_t, device_t, void *);
79 static int age_detach(device_t, int);
80
81 static bool age_resume(device_t, const pmf_qual_t *);
82
83 static int age_miibus_readreg(device_t, int, int, uint16_t *);
84 static int age_miibus_writereg(device_t, int, int, uint16_t);
85 static void age_miibus_statchg(struct ifnet *);
86
87 static int age_init(struct ifnet *);
88 static int age_ioctl(struct ifnet *, u_long, void *);
89 static void age_start(struct ifnet *);
90 static void age_watchdog(struct ifnet *);
91 static bool age_shutdown(device_t, int);
92 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int age_mediachange(struct ifnet *);
94
95 static int age_intr(void *);
96 static int age_dma_alloc(struct age_softc *);
97 static void age_dma_free(struct age_softc *);
98 static void age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void age_phy_reset(struct age_softc *);
100
101 static int age_encap(struct age_softc *, struct mbuf **);
102 static void age_init_tx_ring(struct age_softc *);
103 static int age_init_rx_ring(struct age_softc *);
104 static void age_init_rr_ring(struct age_softc *);
105 static void age_init_cmb_block(struct age_softc *);
106 static void age_init_smb_block(struct age_softc *);
107 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void age_mac_config(struct age_softc *);
109 static void age_txintr(struct age_softc *, int);
110 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void age_rxintr(struct age_softc *, int);
112 static void age_tick(void *);
113 static void age_reset(struct age_softc *);
114 static void age_stop(struct ifnet *, int);
115 static void age_stats_update(struct age_softc *);
116 static void age_stop_txmac(struct age_softc *);
117 static void age_stop_rxmac(struct age_softc *);
118 static void age_rxvlan(struct age_softc *sc);
119 static void age_rxfilter(struct age_softc *);
120
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122 age_match, age_attach, age_detach, NULL);
123
124 int agedebug = 0;
125 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
126
127 #define ETHER_ALIGN 2
128 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
129
130 static int
131 age_match(device_t dev, cfdata_t match, void *aux)
132 {
133 struct pci_attach_args *pa = aux;
134
135 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
136 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
137 }
138
139 static void
140 age_attach(device_t parent, device_t self, void *aux)
141 {
142 struct age_softc *sc = device_private(self);
143 struct pci_attach_args *pa = aux;
144 pci_intr_handle_t ih;
145 const char *intrstr;
146 struct ifnet *ifp = &sc->sc_ec.ec_if;
147 pcireg_t memtype;
148 int error = 0;
149 char intrbuf[PCI_INTRSTR_LEN];
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_dmat = pa->pa_dmat;
156 sc->sc_pct = pa->pa_pc;
157 sc->sc_pcitag = pa->pa_tag;
158
159 /*
160 * Allocate IO memory
161 */
162 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
163 switch (memtype) {
164 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
167 break;
168 default:
169 aprint_error_dev(self, "invalid base address register\n");
170 break;
171 }
172
173 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
174 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
175 aprint_error_dev(self, "could not map mem space\n");
176 return;
177 }
178
179 if (pci_intr_map(pa, &ih) != 0) {
180 aprint_error_dev(self, "could not map interrupt\n");
181 goto fail;
182 }
183
184 /*
185 * Allocate IRQ
186 */
187 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
188 sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
189 age_intr, sc, device_xname(self));
190 if (sc->sc_irq_handle == NULL) {
191 aprint_error_dev(self, "could not establish interrupt");
192 if (intrstr != NULL)
193 aprint_error(" at %s", intrstr);
194 aprint_error("\n");
195 goto fail;
196 }
197 aprint_normal_dev(self, "%s\n", intrstr);
198
199 /* Set PHY address. */
200 sc->age_phyaddr = AGE_PHY_ADDR;
201
202 /* Reset PHY. */
203 age_phy_reset(sc);
204
205 /* Reset the ethernet controller. */
206 age_reset(sc);
207
208 /* Get PCI and chip id/revision. */
209 sc->age_rev = PCI_REVISION(pa->pa_class);
210 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
211 MASTER_CHIP_REV_SHIFT;
212
213 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
214 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
215
216 if (agedebug) {
217 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
218 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
219 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
220 }
221
222 /* Set max allowable DMA size. */
223 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
224 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
225
226 /* Allocate DMA stuffs */
227 error = age_dma_alloc(sc);
228 if (error)
229 goto fail;
230
231 callout_init(&sc->sc_tick_ch, 0);
232 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
233
234 /* Load station address. */
235 age_get_macaddr(sc, sc->sc_enaddr);
236
237 aprint_normal_dev(self, "Ethernet address %s\n",
238 ether_sprintf(sc->sc_enaddr));
239
240 ifp->if_softc = sc;
241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
242 ifp->if_init = age_init;
243 ifp->if_ioctl = age_ioctl;
244 ifp->if_start = age_start;
245 ifp->if_stop = age_stop;
246 ifp->if_watchdog = age_watchdog;
247 ifp->if_baudrate = IF_Gbps(1);
248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 IFQ_SET_READY(&ifp->if_snd);
250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251
252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253
254 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
255 IFCAP_CSUM_TCPv4_Rx |
256 IFCAP_CSUM_UDPv4_Rx;
257 #ifdef AGE_CHECKSUM
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
259 IFCAP_CSUM_TCPv4_Tx |
260 IFCAP_CSUM_UDPv4_Tx;
261 #endif
262
263 #if NVLAN > 0
264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266
267 /* Set up MII bus. */
268 sc->sc_miibus.mii_ifp = ifp;
269 sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 sc->sc_miibus.mii_statchg = age_miibus_statchg;
272
273 sc->sc_ec.ec_mii = &sc->sc_miibus;
274 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
275 age_mediastatus);
276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 MII_OFFSET_ANY, MIIF_DOPAUSE);
278
279 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
280 aprint_error_dev(self, "no PHY found!\n");
281 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
282 0, NULL);
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
284 } else
285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
286
287 if_attach(ifp);
288 if_deferred_start_init(ifp, NULL);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
292 pmf_class_network_register(self, ifp);
293 else
294 aprint_error_dev(self, "couldn't establish power handler\n");
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 pmf_device_deregister(self);
318 s = splnet();
319 age_stop(ifp, 0);
320 splx(s);
321
322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323
324 /* Delete all remaining media. */
325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 if (sc->sc_irq_handle != NULL) {
332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 sc->sc_irq_handle = NULL;
334 }
335 if (sc->sc_mem_size) {
336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 sc->sc_mem_size = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Read a PHY register on the MII of the L1.
344 */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
347 {
348 struct age_softc *sc = device_private(dev);
349 uint32_t v;
350 int i;
351
352 if (phy != sc->age_phyaddr)
353 return -1;
354
355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 DELAY(1);
359 v = CSR_READ_4(sc, AGE_MDIO);
360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 break;
362 }
363
364 if (i == 0) {
365 printf("%s: phy read timeout: phy %d, reg %d\n",
366 device_xname(sc->sc_dev), phy, reg);
367 return ETIMEDOUT;
368 }
369
370 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
371 return 0;
372 }
373
374 /*
375 * Write a PHY register on the MII of the L1.
376 */
377 static int
378 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
379 {
380 struct age_softc *sc = device_private(dev);
381 uint32_t v;
382 int i;
383
384 if (phy != sc->age_phyaddr)
385 return -1;
386
387 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
388 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
389 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
390
391 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
392 DELAY(1);
393 v = CSR_READ_4(sc, AGE_MDIO);
394 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
395 break;
396 }
397
398 if (i == 0) {
399 printf("%s: phy write timeout: phy %d, reg %d\n",
400 device_xname(sc->sc_dev), phy, reg);
401 return ETIMEDOUT;
402 }
403
404 return 0;
405 }
406
407 /*
408 * Callback from MII layer when media changes.
409 */
410 static void
411 age_miibus_statchg(struct ifnet *ifp)
412 {
413 struct age_softc *sc = ifp->if_softc;
414 struct mii_data *mii = &sc->sc_miibus;
415
416 if ((ifp->if_flags & IFF_RUNNING) == 0)
417 return;
418
419 sc->age_flags &= ~AGE_FLAG_LINK;
420 if ((mii->mii_media_status & IFM_AVALID) != 0) {
421 switch (IFM_SUBTYPE(mii->mii_media_active)) {
422 case IFM_10_T:
423 case IFM_100_TX:
424 case IFM_1000_T:
425 sc->age_flags |= AGE_FLAG_LINK;
426 break;
427 default:
428 break;
429 }
430 }
431
432 /* Stop Rx/Tx MACs. */
433 age_stop_rxmac(sc);
434 age_stop_txmac(sc);
435
436 /* Program MACs with resolved speed/duplex/flow-control. */
437 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
438 uint32_t reg;
439
440 age_mac_config(sc);
441 reg = CSR_READ_4(sc, AGE_MAC_CFG);
442 /* Restart DMA engine and Tx/Rx MAC. */
443 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
444 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
445 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
446 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
447 }
448 }
449
450 /*
451 * Get the current interface media status.
452 */
453 static void
454 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
455 {
456 struct age_softc *sc = ifp->if_softc;
457 struct mii_data *mii = &sc->sc_miibus;
458
459 mii_pollstat(mii);
460 ifmr->ifm_status = mii->mii_media_status;
461 ifmr->ifm_active = mii->mii_media_active;
462 }
463
464 /*
465 * Set hardware to newly-selected media.
466 */
467 static int
468 age_mediachange(struct ifnet *ifp)
469 {
470 struct age_softc *sc = ifp->if_softc;
471 struct mii_data *mii = &sc->sc_miibus;
472 int error;
473
474 if (mii->mii_instance != 0) {
475 struct mii_softc *miisc;
476
477 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
478 mii_phy_reset(miisc);
479 }
480 error = mii_mediachg(mii);
481
482 return error;
483 }
484
485 static int
486 age_intr(void *arg)
487 {
488 struct age_softc *sc = arg;
489 struct ifnet *ifp = &sc->sc_ec.ec_if;
490 struct cmb *cmb;
491 uint32_t status;
492
493 status = CSR_READ_4(sc, AGE_INTR_STATUS);
494 if (status == 0 || (status & AGE_INTRS) == 0)
495 return 0;
496
497 cmb = sc->age_rdata.age_cmb_block;
498 if (cmb == NULL) {
499 /* Happens when bringing up the interface
500 * w/o having a carrier. Ack the interrupt.
501 */
502 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
503 return 0;
504 }
505
506 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
507 sc->age_cdata.age_cmb_block_map->dm_mapsize,
508 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
509 status = le32toh(cmb->intr_status);
510 /* ACK/reenable interrupts */
511 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
512 while ((status & AGE_INTRS) != 0) {
513 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
514 TPD_CONS_SHIFT;
515 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
516 RRD_PROD_SHIFT;
517
518 /* Let hardware know CMB was served. */
519 cmb->intr_status = 0;
520 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
521 sc->age_cdata.age_cmb_block_map->dm_mapsize,
522 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
523
524 if (ifp->if_flags & IFF_RUNNING) {
525 if (status & INTR_CMB_RX)
526 age_rxintr(sc, sc->age_rr_prod);
527
528 if (status & INTR_CMB_TX)
529 age_txintr(sc, sc->age_tpd_cons);
530
531 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
532 if (status & INTR_DMA_RD_TO_RST)
533 printf("%s: DMA read error! -- "
534 "resetting\n",
535 device_xname(sc->sc_dev));
536 if (status & INTR_DMA_WR_TO_RST)
537 printf("%s: DMA write error! -- "
538 "resetting\n",
539 device_xname(sc->sc_dev));
540 age_init(ifp);
541 }
542
543 if_schedule_deferred_start(ifp);
544
545 if (status & INTR_SMB)
546 age_stats_update(sc);
547 }
548 /* check if more interrupts did came in */
549 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
550 sc->age_cdata.age_cmb_block_map->dm_mapsize,
551 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
552 status = le32toh(cmb->intr_status);
553 }
554
555 return 1;
556 }
557
558 static void
559 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
560 {
561 uint32_t ea[2], reg;
562 int i, vpdc;
563
564 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
565 if ((reg & SPI_VPD_ENB) != 0) {
566 /* Get VPD stored in TWSI EEPROM. */
567 reg &= ~SPI_VPD_ENB;
568 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
569 }
570
571 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
572 PCI_CAP_VPD, &vpdc, NULL)) {
573 /*
574 * PCI VPD capability found, let TWSI reload EEPROM.
575 * This will set Ethernet address of controller.
576 */
577 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
578 TWSI_CTRL_SW_LD_START);
579 for (i = 100; i > 0; i++) {
580 DELAY(1000);
581 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
582 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
583 break;
584 }
585 if (i == 0)
586 printf("%s: reloading EEPROM timeout!\n",
587 device_xname(sc->sc_dev));
588 } else {
589 if (agedebug)
590 printf("%s: PCI VPD capability not found!\n",
591 device_xname(sc->sc_dev));
592 }
593
594 ea[0] = CSR_READ_4(sc, AGE_PAR0);
595 ea[1] = CSR_READ_4(sc, AGE_PAR1);
596
597 eaddr[0] = (ea[1] >> 8) & 0xFF;
598 eaddr[1] = (ea[1] >> 0) & 0xFF;
599 eaddr[2] = (ea[0] >> 24) & 0xFF;
600 eaddr[3] = (ea[0] >> 16) & 0xFF;
601 eaddr[4] = (ea[0] >> 8) & 0xFF;
602 eaddr[5] = (ea[0] >> 0) & 0xFF;
603 }
604
605 static void
606 age_phy_reset(struct age_softc *sc)
607 {
608 uint16_t reg, pn;
609 int i, linkup;
610
611 /* Reset PHY. */
612 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
613 DELAY(2000);
614 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
615 DELAY(2000);
616
617 #define ATPHY_DBG_ADDR 0x1D
618 #define ATPHY_DBG_DATA 0x1E
619 #define ATPHY_CDTC 0x16
620 #define PHY_CDTC_ENB 0x0001
621 #define PHY_CDTC_POFF 8
622 #define ATPHY_CDTS 0x1C
623 #define PHY_CDTS_STAT_OK 0x0000
624 #define PHY_CDTS_STAT_SHORT 0x0100
625 #define PHY_CDTS_STAT_OPEN 0x0200
626 #define PHY_CDTS_STAT_INVAL 0x0300
627 #define PHY_CDTS_STAT_MASK 0x0300
628
629 /* Check power saving mode. Magic from Linux. */
630 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
631 for (linkup = 0, pn = 0; pn < 4; pn++) {
632 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
633 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
634 for (i = 200; i > 0; i--) {
635 DELAY(1000);
636 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
637 ATPHY_CDTC, ®);
638 if ((reg & PHY_CDTC_ENB) == 0)
639 break;
640 }
641 DELAY(1000);
642 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
643 ATPHY_CDTS, ®);
644 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
645 linkup++;
646 break;
647 }
648 }
649 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
650 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
651 if (linkup == 0) {
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
653 ATPHY_DBG_ADDR, 0);
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_DATA, 0x124E);
656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_ADDR, 1);
658 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
659 ATPHY_DBG_DATA, ®);
660 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
661 ATPHY_DBG_DATA, reg | 0x03);
662 /* XXX */
663 DELAY(1500 * 1000);
664 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
665 ATPHY_DBG_ADDR, 0);
666 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
667 ATPHY_DBG_DATA, 0x024E);
668 }
669
670 #undef ATPHY_DBG_ADDR
671 #undef ATPHY_DBG_DATA
672 #undef ATPHY_CDTC
673 #undef PHY_CDTC_ENB
674 #undef PHY_CDTC_POFF
675 #undef ATPHY_CDTS
676 #undef PHY_CDTS_STAT_OK
677 #undef PHY_CDTS_STAT_SHORT
678 #undef PHY_CDTS_STAT_OPEN
679 #undef PHY_CDTS_STAT_INVAL
680 #undef PHY_CDTS_STAT_MASK
681 }
682
683 static int
684 age_dma_alloc(struct age_softc *sc)
685 {
686 struct age_txdesc *txd;
687 struct age_rxdesc *rxd;
688 int nsegs, error, i;
689
690 /*
691 * Create DMA stuffs for TX ring
692 */
693 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
694 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
695 if (error) {
696 sc->age_cdata.age_tx_ring_map = NULL;
697 return ENOBUFS;
698 }
699
700 /* Allocate DMA'able memory for TX ring */
701 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
702 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
703 &nsegs, BUS_DMA_NOWAIT);
704 if (error) {
705 printf("%s: could not allocate DMA'able memory for Tx ring, "
706 "error = %i\n", device_xname(sc->sc_dev), error);
707 return error;
708 }
709
710 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
711 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
712 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
713 if (error)
714 return ENOBUFS;
715
716 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
717
718 /* Load the DMA map for Tx ring. */
719 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
720 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
721 if (error) {
722 printf("%s: could not load DMA'able memory for Tx ring, "
723 "error = %i\n", device_xname(sc->sc_dev), error);
724 bus_dmamem_free(sc->sc_dmat,
725 &sc->age_rdata.age_tx_ring_seg, 1);
726 return error;
727 }
728
729 sc->age_rdata.age_tx_ring_paddr =
730 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
731
732 /*
733 * Create DMA stuffs for RX ring
734 */
735 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
736 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
737 if (error) {
738 sc->age_cdata.age_rx_ring_map = NULL;
739 return ENOBUFS;
740 }
741
742 /* Allocate DMA'able memory for RX ring */
743 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
744 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
745 &nsegs, BUS_DMA_NOWAIT);
746 if (error) {
747 printf("%s: could not allocate DMA'able memory for Rx ring, "
748 "error = %i.\n", device_xname(sc->sc_dev), error);
749 return error;
750 }
751
752 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
753 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
754 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
755 if (error)
756 return ENOBUFS;
757
758 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
759
760 /* Load the DMA map for Rx ring. */
761 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
762 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
763 if (error) {
764 printf("%s: could not load DMA'able memory for Rx ring, "
765 "error = %i.\n", device_xname(sc->sc_dev), error);
766 bus_dmamem_free(sc->sc_dmat,
767 &sc->age_rdata.age_rx_ring_seg, 1);
768 return error;
769 }
770
771 sc->age_rdata.age_rx_ring_paddr =
772 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
773
774 /*
775 * Create DMA stuffs for RX return ring
776 */
777 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
778 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
779 if (error) {
780 sc->age_cdata.age_rr_ring_map = NULL;
781 return ENOBUFS;
782 }
783
784 /* Allocate DMA'able memory for RX return ring */
785 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
786 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
787 &nsegs, BUS_DMA_NOWAIT);
788 if (error) {
789 printf("%s: could not allocate DMA'able memory for Rx "
790 "return ring, error = %i.\n",
791 device_xname(sc->sc_dev), error);
792 return error;
793 }
794
795 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
796 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
797 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
798 if (error)
799 return ENOBUFS;
800
801 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
802
803 /* Load the DMA map for Rx return ring. */
804 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
805 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
806 if (error) {
807 printf("%s: could not load DMA'able memory for Rx return ring, "
808 "error = %i\n", device_xname(sc->sc_dev), error);
809 bus_dmamem_free(sc->sc_dmat,
810 &sc->age_rdata.age_rr_ring_seg, 1);
811 return error;
812 }
813
814 sc->age_rdata.age_rr_ring_paddr =
815 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
816
817 /*
818 * Create DMA stuffs for CMB block
819 */
820 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
821 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
822 &sc->age_cdata.age_cmb_block_map);
823 if (error) {
824 sc->age_cdata.age_cmb_block_map = NULL;
825 return ENOBUFS;
826 }
827
828 /* Allocate DMA'able memory for CMB block */
829 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
830 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
831 &nsegs, BUS_DMA_NOWAIT);
832 if (error) {
833 printf("%s: could not allocate DMA'able memory for "
834 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
835 return error;
836 }
837
838 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
839 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
840 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
841 if (error)
842 return ENOBUFS;
843
844 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
845
846 /* Load the DMA map for CMB block. */
847 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
848 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
849 BUS_DMA_NOWAIT);
850 if (error) {
851 printf("%s: could not load DMA'able memory for CMB block, "
852 "error = %i\n", device_xname(sc->sc_dev), error);
853 bus_dmamem_free(sc->sc_dmat,
854 &sc->age_rdata.age_cmb_block_seg, 1);
855 return error;
856 }
857
858 sc->age_rdata.age_cmb_block_paddr =
859 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
860
861 /*
862 * Create DMA stuffs for SMB block
863 */
864 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
865 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
866 &sc->age_cdata.age_smb_block_map);
867 if (error) {
868 sc->age_cdata.age_smb_block_map = NULL;
869 return ENOBUFS;
870 }
871
872 /* Allocate DMA'able memory for SMB block */
873 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
874 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
875 &nsegs, BUS_DMA_NOWAIT);
876 if (error) {
877 printf("%s: could not allocate DMA'able memory for "
878 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
879 return error;
880 }
881
882 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
883 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
884 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
885 if (error)
886 return ENOBUFS;
887
888 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
889
890 /* Load the DMA map for SMB block */
891 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
892 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
893 BUS_DMA_NOWAIT);
894 if (error) {
895 printf("%s: could not load DMA'able memory for SMB block, "
896 "error = %i\n", device_xname(sc->sc_dev), error);
897 bus_dmamem_free(sc->sc_dmat,
898 &sc->age_rdata.age_smb_block_seg, 1);
899 return error;
900 }
901
902 sc->age_rdata.age_smb_block_paddr =
903 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
904
905 /* Create DMA maps for Tx buffers. */
906 for (i = 0; i < AGE_TX_RING_CNT; i++) {
907 txd = &sc->age_cdata.age_txdesc[i];
908 txd->tx_m = NULL;
909 txd->tx_dmamap = NULL;
910 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
911 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
912 &txd->tx_dmamap);
913 if (error) {
914 txd->tx_dmamap = NULL;
915 printf("%s: could not create Tx dmamap, error = %i.\n",
916 device_xname(sc->sc_dev), error);
917 return error;
918 }
919 }
920
921 /* Create DMA maps for Rx buffers. */
922 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
923 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
924 if (error) {
925 sc->age_cdata.age_rx_sparemap = NULL;
926 printf("%s: could not create spare Rx dmamap, error = %i.\n",
927 device_xname(sc->sc_dev), error);
928 return error;
929 }
930 for (i = 0; i < AGE_RX_RING_CNT; i++) {
931 rxd = &sc->age_cdata.age_rxdesc[i];
932 rxd->rx_m = NULL;
933 rxd->rx_dmamap = NULL;
934 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
935 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
936 if (error) {
937 rxd->rx_dmamap = NULL;
938 printf("%s: could not create Rx dmamap, error = %i.\n",
939 device_xname(sc->sc_dev), error);
940 return error;
941 }
942 }
943
944 return 0;
945 }
946
947 static void
948 age_dma_free(struct age_softc *sc)
949 {
950 struct age_txdesc *txd;
951 struct age_rxdesc *rxd;
952 int i;
953
954 /* Tx buffers */
955 for (i = 0; i < AGE_TX_RING_CNT; i++) {
956 txd = &sc->age_cdata.age_txdesc[i];
957 if (txd->tx_dmamap != NULL) {
958 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
959 txd->tx_dmamap = NULL;
960 }
961 }
962 /* Rx buffers */
963 for (i = 0; i < AGE_RX_RING_CNT; i++) {
964 rxd = &sc->age_cdata.age_rxdesc[i];
965 if (rxd->rx_dmamap != NULL) {
966 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
967 rxd->rx_dmamap = NULL;
968 }
969 }
970 if (sc->age_cdata.age_rx_sparemap != NULL) {
971 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
972 sc->age_cdata.age_rx_sparemap = NULL;
973 }
974
975 /* Tx ring. */
976 if (sc->age_cdata.age_tx_ring_map != NULL)
977 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
978 if (sc->age_cdata.age_tx_ring_map != NULL &&
979 sc->age_rdata.age_tx_ring != NULL)
980 bus_dmamem_free(sc->sc_dmat,
981 &sc->age_rdata.age_tx_ring_seg, 1);
982 sc->age_rdata.age_tx_ring = NULL;
983 sc->age_cdata.age_tx_ring_map = NULL;
984
985 /* Rx ring. */
986 if (sc->age_cdata.age_rx_ring_map != NULL)
987 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
988 if (sc->age_cdata.age_rx_ring_map != NULL &&
989 sc->age_rdata.age_rx_ring != NULL)
990 bus_dmamem_free(sc->sc_dmat,
991 &sc->age_rdata.age_rx_ring_seg, 1);
992 sc->age_rdata.age_rx_ring = NULL;
993 sc->age_cdata.age_rx_ring_map = NULL;
994
995 /* Rx return ring. */
996 if (sc->age_cdata.age_rr_ring_map != NULL)
997 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
998 if (sc->age_cdata.age_rr_ring_map != NULL &&
999 sc->age_rdata.age_rr_ring != NULL)
1000 bus_dmamem_free(sc->sc_dmat,
1001 &sc->age_rdata.age_rr_ring_seg, 1);
1002 sc->age_rdata.age_rr_ring = NULL;
1003 sc->age_cdata.age_rr_ring_map = NULL;
1004
1005 /* CMB block */
1006 if (sc->age_cdata.age_cmb_block_map != NULL)
1007 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1008 if (sc->age_cdata.age_cmb_block_map != NULL &&
1009 sc->age_rdata.age_cmb_block != NULL)
1010 bus_dmamem_free(sc->sc_dmat,
1011 &sc->age_rdata.age_cmb_block_seg, 1);
1012 sc->age_rdata.age_cmb_block = NULL;
1013 sc->age_cdata.age_cmb_block_map = NULL;
1014
1015 /* SMB block */
1016 if (sc->age_cdata.age_smb_block_map != NULL)
1017 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1018 if (sc->age_cdata.age_smb_block_map != NULL &&
1019 sc->age_rdata.age_smb_block != NULL)
1020 bus_dmamem_free(sc->sc_dmat,
1021 &sc->age_rdata.age_smb_block_seg, 1);
1022 sc->age_rdata.age_smb_block = NULL;
1023 sc->age_cdata.age_smb_block_map = NULL;
1024 }
1025
1026 static void
1027 age_start(struct ifnet *ifp)
1028 {
1029 struct age_softc *sc = ifp->if_softc;
1030 struct mbuf *m_head;
1031 int enq;
1032
1033 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1034 return;
1035 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1036 return;
1037 if (IFQ_IS_EMPTY(&ifp->if_snd))
1038 return;
1039
1040 enq = 0;
1041 for (;;) {
1042 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1043 if (m_head == NULL)
1044 break;
1045
1046 /*
1047 * Pack the data into the transmit ring. If we
1048 * don't have room, set the OACTIVE flag and wait
1049 * for the NIC to drain the ring.
1050 */
1051 if (age_encap(sc, &m_head)) {
1052 if (m_head == NULL)
1053 break;
1054 IF_PREPEND(&ifp->if_snd, m_head);
1055 ifp->if_flags |= IFF_OACTIVE;
1056 break;
1057 }
1058 enq = 1;
1059
1060 /*
1061 * If there's a BPF listener, bounce a copy of this frame
1062 * to him.
1063 */
1064 bpf_mtap(ifp, m_head, BPF_D_OUT);
1065 }
1066
1067 if (enq) {
1068 /* Update mbox. */
1069 AGE_COMMIT_MBOX(sc);
1070 /* Set a timeout in case the chip goes out to lunch. */
1071 ifp->if_timer = AGE_TX_TIMEOUT;
1072 }
1073 }
1074
1075 static void
1076 age_watchdog(struct ifnet *ifp)
1077 {
1078 struct age_softc *sc = ifp->if_softc;
1079
1080 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1081 printf("%s: watchdog timeout (missed link)\n",
1082 device_xname(sc->sc_dev));
1083 ifp->if_oerrors++;
1084 age_init(ifp);
1085 return;
1086 }
1087
1088 if (sc->age_cdata.age_tx_cnt == 0) {
1089 printf("%s: watchdog timeout (missed Tx interrupts) "
1090 "-- recovering\n", device_xname(sc->sc_dev));
1091 age_start(ifp);
1092 return;
1093 }
1094
1095 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1096 ifp->if_oerrors++;
1097 age_init(ifp);
1098 age_start(ifp);
1099 }
1100
1101 static bool
1102 age_shutdown(device_t self, int howto)
1103 {
1104 struct age_softc *sc;
1105 struct ifnet *ifp;
1106
1107 sc = device_private(self);
1108 ifp = &sc->sc_ec.ec_if;
1109 age_stop(ifp, 1);
1110
1111 return true;
1112 }
1113
1114
1115 static int
1116 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 struct age_softc *sc = ifp->if_softc;
1119 int s, error;
1120
1121 s = splnet();
1122
1123 error = ether_ioctl(ifp, cmd, data);
1124 if (error == ENETRESET) {
1125 if (ifp->if_flags & IFF_RUNNING)
1126 age_rxfilter(sc);
1127 error = 0;
1128 }
1129
1130 splx(s);
1131 return error;
1132 }
1133
1134 static void
1135 age_mac_config(struct age_softc *sc)
1136 {
1137 struct mii_data *mii;
1138 uint32_t reg;
1139
1140 mii = &sc->sc_miibus;
1141
1142 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1143 reg &= ~MAC_CFG_FULL_DUPLEX;
1144 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1145 reg &= ~MAC_CFG_SPEED_MASK;
1146
1147 /* Reprogram MAC with resolved speed/duplex. */
1148 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1149 case IFM_10_T:
1150 case IFM_100_TX:
1151 reg |= MAC_CFG_SPEED_10_100;
1152 break;
1153 case IFM_1000_T:
1154 reg |= MAC_CFG_SPEED_1000;
1155 break;
1156 }
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1158 reg |= MAC_CFG_FULL_DUPLEX;
1159 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1160 reg |= MAC_CFG_TX_FC;
1161 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1162 reg |= MAC_CFG_RX_FC;
1163 }
1164
1165 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1166 }
1167
1168 static bool
1169 age_resume(device_t dv, const pmf_qual_t *qual)
1170 {
1171 struct age_softc *sc = device_private(dv);
1172 uint16_t cmd;
1173
1174 /*
1175 * Clear INTx emulation disable for hardware that
1176 * is set in resume event. From Linux.
1177 */
1178 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1179 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1180 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1181 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1182 PCI_COMMAND_STATUS_REG, cmd);
1183 }
1184
1185 return true;
1186 }
1187
1188 static int
1189 age_encap(struct age_softc *sc, struct mbuf **m_head)
1190 {
1191 struct age_txdesc *txd, *txd_last;
1192 struct tx_desc *desc;
1193 struct mbuf *m;
1194 bus_dmamap_t map;
1195 uint32_t cflags, poff, vtag;
1196 int error, i, nsegs, prod;
1197
1198 m = *m_head;
1199 cflags = vtag = 0;
1200 poff = 0;
1201
1202 prod = sc->age_cdata.age_tx_prod;
1203 txd = &sc->age_cdata.age_txdesc[prod];
1204 txd_last = txd;
1205 map = txd->tx_dmamap;
1206
1207 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1208
1209 if (error == EFBIG) {
1210 error = 0;
1211
1212 *m_head = m_pullup(*m_head, MHLEN);
1213 if (*m_head == NULL) {
1214 printf("%s: can't defrag TX mbuf\n",
1215 device_xname(sc->sc_dev));
1216 return ENOBUFS;
1217 }
1218
1219 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1220 BUS_DMA_NOWAIT);
1221
1222 if (error != 0) {
1223 printf("%s: could not load defragged TX mbuf\n",
1224 device_xname(sc->sc_dev));
1225 m_freem(*m_head);
1226 *m_head = NULL;
1227 return error;
1228 }
1229 } else if (error) {
1230 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1231 return error;
1232 }
1233
1234 nsegs = map->dm_nsegs;
1235
1236 if (nsegs == 0) {
1237 m_freem(*m_head);
1238 *m_head = NULL;
1239 return EIO;
1240 }
1241
1242 /* Check descriptor overrun. */
1243 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1244 bus_dmamap_unload(sc->sc_dmat, map);
1245 return ENOBUFS;
1246 }
1247 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1248 BUS_DMASYNC_PREWRITE);
1249
1250 m = *m_head;
1251 /* Configure Tx IP/TCP/UDP checksum offload. */
1252 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1253 cflags |= AGE_TD_CSUM;
1254 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1255 cflags |= AGE_TD_TCPCSUM;
1256 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1257 cflags |= AGE_TD_UDPCSUM;
1258 /* Set checksum start offset. */
1259 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1260 }
1261
1262 #if NVLAN > 0
1263 /* Configure VLAN hardware tag insertion. */
1264 if (vlan_has_tag(m)) {
1265 vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1266 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1267 cflags |= AGE_TD_INSERT_VLAN_TAG;
1268 }
1269 #endif
1270
1271 desc = NULL;
1272 KASSERT(nsegs > 0);
1273 for (i = 0; ; i++) {
1274 desc = &sc->age_rdata.age_tx_ring[prod];
1275 desc->addr = htole64(map->dm_segs[i].ds_addr);
1276 desc->len =
1277 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1278 desc->flags = htole32(cflags);
1279 sc->age_cdata.age_tx_cnt++;
1280 if (i == (nsegs - 1))
1281 break;
1282
1283 /* sync this descriptor and go to the next one */
1284 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1285 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1286 BUS_DMASYNC_PREWRITE);
1287 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 }
1289
1290 /* Set EOP on the last descriptor and sync it. */
1291 desc->flags |= htole32(AGE_TD_EOP);
1292 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1293 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1294 BUS_DMASYNC_PREWRITE);
1295
1296 if (nsegs > 1) {
1297 /* Swap dmamap of the first and the last. */
1298 txd = &sc->age_cdata.age_txdesc[prod];
1299 map = txd_last->tx_dmamap;
1300 txd_last->tx_dmamap = txd->tx_dmamap;
1301 txd->tx_dmamap = map;
1302 txd->tx_m = m;
1303 KASSERT(txd_last->tx_m == NULL);
1304 } else {
1305 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1306 txd_last->tx_m = m;
1307 }
1308
1309 /* Update producer index. */
1310 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1311 sc->age_cdata.age_tx_prod = prod;
1312
1313 return 0;
1314 }
1315
1316 static void
1317 age_txintr(struct age_softc *sc, int tpd_cons)
1318 {
1319 struct ifnet *ifp = &sc->sc_ec.ec_if;
1320 struct age_txdesc *txd;
1321 int cons, prog;
1322
1323
1324 if (sc->age_cdata.age_tx_cnt <= 0) {
1325 if (ifp->if_timer != 0)
1326 printf("timer running without packets\n");
1327 if (sc->age_cdata.age_tx_cnt)
1328 printf("age_tx_cnt corrupted\n");
1329 }
1330
1331 /*
1332 * Go through our Tx list and free mbufs for those
1333 * frames which have been transmitted.
1334 */
1335 cons = sc->age_cdata.age_tx_cons;
1336 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1337 if (sc->age_cdata.age_tx_cnt <= 0)
1338 break;
1339 prog++;
1340 ifp->if_flags &= ~IFF_OACTIVE;
1341 sc->age_cdata.age_tx_cnt--;
1342 txd = &sc->age_cdata.age_txdesc[cons];
1343 /*
1344 * Clear Tx descriptors, it's not required but would
1345 * help debugging in case of Tx issues.
1346 */
1347 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1348 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1349 BUS_DMASYNC_POSTWRITE);
1350 txd->tx_desc->addr = 0;
1351 txd->tx_desc->len = 0;
1352 txd->tx_desc->flags = 0;
1353
1354 if (txd->tx_m == NULL)
1355 continue;
1356 /* Reclaim transmitted mbufs. */
1357 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1358 m_freem(txd->tx_m);
1359 txd->tx_m = NULL;
1360 }
1361
1362 if (prog > 0) {
1363 sc->age_cdata.age_tx_cons = cons;
1364
1365 /*
1366 * Unarm watchdog timer only when there are no pending
1367 * Tx descriptors in queue.
1368 */
1369 if (sc->age_cdata.age_tx_cnt == 0)
1370 ifp->if_timer = 0;
1371 }
1372 }
1373
1374 /* Receive a frame. */
1375 static void
1376 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1377 {
1378 struct ifnet *ifp = &sc->sc_ec.ec_if;
1379 struct age_rxdesc *rxd;
1380 struct rx_desc *desc;
1381 struct mbuf *mp, *m;
1382 uint32_t status, index;
1383 int count, nsegs, pktlen;
1384 int rx_cons;
1385
1386 status = le32toh(rxrd->flags);
1387 index = le32toh(rxrd->index);
1388 rx_cons = AGE_RX_CONS(index);
1389 nsegs = AGE_RX_NSEGS(index);
1390
1391 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1392 if ((status & AGE_RRD_ERROR) != 0 &&
1393 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1394 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1395 /*
1396 * We want to pass the following frames to upper
1397 * layer regardless of error status of Rx return
1398 * ring.
1399 *
1400 * o IP/TCP/UDP checksum is bad.
1401 * o frame length and protocol specific length
1402 * does not match.
1403 */
1404 sc->age_cdata.age_rx_cons += nsegs;
1405 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1406 return;
1407 }
1408
1409 pktlen = 0;
1410 for (count = 0; count < nsegs; count++,
1411 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1412 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1413 mp = rxd->rx_m;
1414 desc = rxd->rx_desc;
1415 /* Add a new receive buffer to the ring. */
1416 if (age_newbuf(sc, rxd, 0) != 0) {
1417 ifp->if_iqdrops++;
1418 /* Reuse Rx buffers. */
1419 if (sc->age_cdata.age_rxhead != NULL) {
1420 m_freem(sc->age_cdata.age_rxhead);
1421 AGE_RXCHAIN_RESET(sc);
1422 }
1423 break;
1424 }
1425
1426 /* The length of the first mbuf is computed last. */
1427 if (count != 0) {
1428 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1429 pktlen += mp->m_len;
1430 }
1431
1432 /* Chain received mbufs. */
1433 if (sc->age_cdata.age_rxhead == NULL) {
1434 sc->age_cdata.age_rxhead = mp;
1435 sc->age_cdata.age_rxtail = mp;
1436 } else {
1437 m_remove_pkthdr(mp);
1438 sc->age_cdata.age_rxprev_tail =
1439 sc->age_cdata.age_rxtail;
1440 sc->age_cdata.age_rxtail->m_next = mp;
1441 sc->age_cdata.age_rxtail = mp;
1442 }
1443
1444 if (count == nsegs - 1) {
1445 /*
1446 * It seems that L1 controller has no way
1447 * to tell hardware to strip CRC bytes.
1448 */
1449 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1450 if (nsegs > 1) {
1451 /* Remove the CRC bytes in chained mbufs. */
1452 pktlen -= ETHER_CRC_LEN;
1453 if (mp->m_len <= ETHER_CRC_LEN) {
1454 sc->age_cdata.age_rxtail =
1455 sc->age_cdata.age_rxprev_tail;
1456 sc->age_cdata.age_rxtail->m_len -=
1457 (ETHER_CRC_LEN - mp->m_len);
1458 sc->age_cdata.age_rxtail->m_next = NULL;
1459 m_freem(mp);
1460 } else {
1461 mp->m_len -= ETHER_CRC_LEN;
1462 }
1463 }
1464
1465 m = sc->age_cdata.age_rxhead;
1466 KASSERT(m->m_flags & M_PKTHDR);
1467 m_set_rcvif(m, ifp);
1468 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1469 /* Set the first mbuf length. */
1470 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1471
1472 /*
1473 * Set checksum information.
1474 * It seems that L1 controller can compute partial
1475 * checksum. The partial checksum value can be used
1476 * to accelerate checksum computation for fragmented
1477 * TCP/UDP packets. Upper network stack already
1478 * takes advantage of the partial checksum value in
1479 * IP reassembly stage. But I'm not sure the
1480 * correctness of the partial hardware checksum
1481 * assistance due to lack of data sheet. If it is
1482 * proven to work on L1 I'll enable it.
1483 */
1484 if (status & AGE_RRD_IPV4) {
1485 if (status & AGE_RRD_IPCSUM_NOK)
1486 m->m_pkthdr.csum_flags |=
1487 M_CSUM_IPv4_BAD;
1488 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1489 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1490 m->m_pkthdr.csum_flags |=
1491 M_CSUM_TCP_UDP_BAD;
1492 }
1493 /*
1494 * Don't mark bad checksum for TCP/UDP frames
1495 * as fragmented frames may always have set
1496 * bad checksummed bit of descriptor status.
1497 */
1498 }
1499 #if NVLAN > 0
1500 /* Check for VLAN tagged frames. */
1501 if (status & AGE_RRD_VLAN) {
1502 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1503 vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
1504 }
1505 #endif
1506
1507 /* Pass it on. */
1508 if_percpuq_enqueue(ifp->if_percpuq, m);
1509
1510 /* Reset mbuf chains. */
1511 AGE_RXCHAIN_RESET(sc);
1512 }
1513 }
1514
1515 if (count != nsegs) {
1516 sc->age_cdata.age_rx_cons += nsegs;
1517 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1518 } else
1519 sc->age_cdata.age_rx_cons = rx_cons;
1520 }
1521
1522 static void
1523 age_rxintr(struct age_softc *sc, int rr_prod)
1524 {
1525 struct rx_rdesc *rxrd;
1526 int rr_cons, nsegs, pktlen, prog;
1527
1528 rr_cons = sc->age_cdata.age_rr_cons;
1529 if (rr_cons == rr_prod)
1530 return;
1531
1532 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1533 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1534 BUS_DMASYNC_POSTREAD);
1535
1536 for (prog = 0; rr_cons != rr_prod; prog++) {
1537 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1538 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1539 if (nsegs == 0)
1540 break;
1541 /*
1542 * Check number of segments against received bytes
1543 * Non-matching value would indicate that hardware
1544 * is still trying to update Rx return descriptors.
1545 * I'm not sure whether this check is really needed.
1546 */
1547 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1548 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1549 (MCLBYTES - ETHER_ALIGN)))
1550 break;
1551
1552 /* Received a frame. */
1553 age_rxeof(sc, rxrd);
1554
1555 /* Clear return ring. */
1556 rxrd->index = 0;
1557 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1558 }
1559
1560 if (prog > 0) {
1561 /* Update the consumer index. */
1562 sc->age_cdata.age_rr_cons = rr_cons;
1563
1564 /* Sync descriptors. */
1565 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1566 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1567 BUS_DMASYNC_PREWRITE);
1568
1569 /* Notify hardware availability of new Rx buffers. */
1570 AGE_COMMIT_MBOX(sc);
1571 }
1572 }
1573
1574 static void
1575 age_tick(void *xsc)
1576 {
1577 struct age_softc *sc = xsc;
1578 struct mii_data *mii = &sc->sc_miibus;
1579 int s;
1580
1581 s = splnet();
1582 mii_tick(mii);
1583 splx(s);
1584
1585 callout_schedule(&sc->sc_tick_ch, hz);
1586 }
1587
1588 static void
1589 age_reset(struct age_softc *sc)
1590 {
1591 uint32_t reg;
1592 int i;
1593
1594 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1595 CSR_READ_4(sc, AGE_MASTER_CFG);
1596 DELAY(1000);
1597 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1598 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1599 break;
1600 DELAY(10);
1601 }
1602
1603 if (i == 0)
1604 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1605 reg);
1606
1607 /* Initialize PCIe module. From Linux. */
1608 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1609 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1610 }
1611
1612 static int
1613 age_init(struct ifnet *ifp)
1614 {
1615 struct age_softc *sc = ifp->if_softc;
1616 struct mii_data *mii;
1617 uint8_t eaddr[ETHER_ADDR_LEN];
1618 bus_addr_t paddr;
1619 uint32_t reg, fsize;
1620 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1621 int error;
1622
1623 /*
1624 * Cancel any pending I/O.
1625 */
1626 age_stop(ifp, 0);
1627
1628 /*
1629 * Reset the chip to a known state.
1630 */
1631 age_reset(sc);
1632
1633 /* Initialize descriptors. */
1634 error = age_init_rx_ring(sc);
1635 if (error != 0) {
1636 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1637 age_stop(ifp, 0);
1638 return error;
1639 }
1640 age_init_rr_ring(sc);
1641 age_init_tx_ring(sc);
1642 age_init_cmb_block(sc);
1643 age_init_smb_block(sc);
1644
1645 /* Reprogram the station address. */
1646 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1647 CSR_WRITE_4(sc, AGE_PAR0,
1648 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1649 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1650
1651 /* Set descriptor base addresses. */
1652 paddr = sc->age_rdata.age_tx_ring_paddr;
1653 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1654 paddr = sc->age_rdata.age_rx_ring_paddr;
1655 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1656 paddr = sc->age_rdata.age_rr_ring_paddr;
1657 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1658 paddr = sc->age_rdata.age_tx_ring_paddr;
1659 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1660 paddr = sc->age_rdata.age_cmb_block_paddr;
1661 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1662 paddr = sc->age_rdata.age_smb_block_paddr;
1663 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1664
1665 /* Set Rx/Rx return descriptor counter. */
1666 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1667 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1668 DESC_RRD_CNT_MASK) |
1669 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1670
1671 /* Set Tx descriptor counter. */
1672 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1673 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1674
1675 /* Tell hardware that we're ready to load descriptors. */
1676 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677
1678 /*
1679 * Initialize mailbox register.
1680 * Updated producer/consumer index information is exchanged
1681 * through this mailbox register. However Tx producer and
1682 * Rx return consumer/Rx producer are all shared such that
1683 * it's hard to separate code path between Tx and Rx without
1684 * locking. If L1 hardware have a separate mail box register
1685 * for Tx and Rx consumer/producer management we could have
1686 * indepent Tx/Rx handler which in turn Rx handler could have
1687 * been run without any locking.
1688 */
1689 AGE_COMMIT_MBOX(sc);
1690
1691 /* Configure IPG/IFG parameters. */
1692 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1693 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1694 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1695 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1696 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1697
1698 /* Set parameters for half-duplex media. */
1699 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1700 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1701 HDPX_CFG_LCOL_MASK) |
1702 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1703 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1704 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1705 HDPX_CFG_ABEBT_MASK) |
1706 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1707 HDPX_CFG_JAMIPG_MASK));
1708
1709 /* Configure interrupt moderation timer. */
1710 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1711 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1712 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1713 reg &= ~MASTER_MTIMER_ENB;
1714 if (AGE_USECS(sc->age_int_mod) == 0)
1715 reg &= ~MASTER_ITIMER_ENB;
1716 else
1717 reg |= MASTER_ITIMER_ENB;
1718 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1719 if (agedebug)
1720 printf("%s: interrupt moderation is %d us.\n",
1721 device_xname(sc->sc_dev), sc->age_int_mod);
1722 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1723
1724 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1725 if (ifp->if_mtu < ETHERMTU)
1726 sc->age_max_frame_size = ETHERMTU;
1727 else
1728 sc->age_max_frame_size = ifp->if_mtu;
1729 sc->age_max_frame_size += ETHER_HDR_LEN +
1730 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1731 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1732
1733 /* Configure jumbo frame. */
1734 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1735 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1736 (((fsize / sizeof(uint64_t)) <<
1737 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1738 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1739 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1740 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1741 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1742
1743 /* Configure flow-control parameters. From Linux. */
1744 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1745 /*
1746 * Magic workaround for old-L1.
1747 * Don't know which hw revision requires this magic.
1748 */
1749 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1750 /*
1751 * Another magic workaround for flow-control mode
1752 * change. From Linux.
1753 */
1754 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1755 }
1756 /*
1757 * TODO
1758 * Should understand pause parameter relationships between FIFO
1759 * size and number of Rx descriptors and Rx return descriptors.
1760 *
1761 * Magic parameters came from Linux.
1762 */
1763 switch (sc->age_chip_rev) {
1764 case 0x8001:
1765 case 0x9001:
1766 case 0x9002:
1767 case 0x9003:
1768 rxf_hi = AGE_RX_RING_CNT / 16;
1769 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1770 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1771 rrd_lo = AGE_RR_RING_CNT / 16;
1772 break;
1773 default:
1774 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1775 rxf_lo = reg / 16;
1776 if (rxf_lo < 192)
1777 rxf_lo = 192;
1778 rxf_hi = (reg * 7) / 8;
1779 if (rxf_hi < rxf_lo)
1780 rxf_hi = rxf_lo + 16;
1781 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1782 rrd_lo = reg / 8;
1783 rrd_hi = (reg * 7) / 8;
1784 if (rrd_lo < 2)
1785 rrd_lo = 2;
1786 if (rrd_hi < rrd_lo)
1787 rrd_hi = rrd_lo + 3;
1788 break;
1789 }
1790 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1791 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1792 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1793 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1794 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1795 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1796 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1797 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1798 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1799 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1800
1801 /* Configure RxQ. */
1802 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1803 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1804 RXQ_CFG_RD_BURST_MASK) |
1805 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1806 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1807 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1808 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1809 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1810
1811 /* Configure TxQ. */
1812 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1813 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1814 TXQ_CFG_TPD_BURST_MASK) |
1815 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1816 TXQ_CFG_TX_FIFO_BURST_MASK) |
1817 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1818 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1819 TXQ_CFG_ENB);
1820
1821 /* Configure DMA parameters. */
1822 CSR_WRITE_4(sc, AGE_DMA_CFG,
1823 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1824 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1825 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1826
1827 /* Configure CMB DMA write threshold. */
1828 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1829 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1830 CMB_WR_THRESH_RRD_MASK) |
1831 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1832 CMB_WR_THRESH_TPD_MASK));
1833
1834 /* Set CMB/SMB timer and enable them. */
1835 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1836 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1837 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1838
1839 /* Request SMB updates for every seconds. */
1840 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1841 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1842
1843 /*
1844 * Disable all WOL bits as WOL can interfere normal Rx
1845 * operation.
1846 */
1847 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1848
1849 /*
1850 * Configure Tx/Rx MACs.
1851 * - Auto-padding for short frames.
1852 * - Enable CRC generation.
1853 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1854 * of MAC is followed after link establishment.
1855 */
1856 CSR_WRITE_4(sc, AGE_MAC_CFG,
1857 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1858 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1859 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1860 MAC_CFG_PREAMBLE_MASK));
1861
1862 /* Set up the receive filter. */
1863 age_rxfilter(sc);
1864 age_rxvlan(sc);
1865
1866 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1867 reg |= MAC_CFG_RXCSUM_ENB;
1868
1869 /* Ack all pending interrupts and clear it. */
1870 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1871 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1872
1873 /* Finally enable Tx/Rx MAC. */
1874 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1875
1876 sc->age_flags &= ~AGE_FLAG_LINK;
1877
1878 /* Switch to the current media. */
1879 mii = &sc->sc_miibus;
1880 mii_mediachg(mii);
1881
1882 callout_schedule(&sc->sc_tick_ch, hz);
1883
1884 ifp->if_flags |= IFF_RUNNING;
1885 ifp->if_flags &= ~IFF_OACTIVE;
1886
1887 return 0;
1888 }
1889
1890 static void
1891 age_stop(struct ifnet *ifp, int disable)
1892 {
1893 struct age_softc *sc = ifp->if_softc;
1894 struct age_txdesc *txd;
1895 struct age_rxdesc *rxd;
1896 uint32_t reg;
1897 int i;
1898
1899 callout_stop(&sc->sc_tick_ch);
1900
1901 /*
1902 * Mark the interface down and cancel the watchdog timer.
1903 */
1904 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1905 ifp->if_timer = 0;
1906
1907 sc->age_flags &= ~AGE_FLAG_LINK;
1908
1909 mii_down(&sc->sc_miibus);
1910
1911 /*
1912 * Disable interrupts.
1913 */
1914 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1915 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1916
1917 /* Stop CMB/SMB updates. */
1918 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1919
1920 /* Stop Rx/Tx MAC. */
1921 age_stop_rxmac(sc);
1922 age_stop_txmac(sc);
1923
1924 /* Stop DMA. */
1925 CSR_WRITE_4(sc, AGE_DMA_CFG,
1926 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1927
1928 /* Stop TxQ/RxQ. */
1929 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1930 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1931 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1932 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1933 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1934 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1935 break;
1936 DELAY(10);
1937 }
1938 if (i == 0)
1939 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1940 device_xname(sc->sc_dev), reg);
1941
1942 /* Reclaim Rx buffers that have been processed. */
1943 if (sc->age_cdata.age_rxhead != NULL)
1944 m_freem(sc->age_cdata.age_rxhead);
1945 AGE_RXCHAIN_RESET(sc);
1946
1947 /*
1948 * Free RX and TX mbufs still in the queues.
1949 */
1950 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1951 rxd = &sc->age_cdata.age_rxdesc[i];
1952 if (rxd->rx_m != NULL) {
1953 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1954 m_freem(rxd->rx_m);
1955 rxd->rx_m = NULL;
1956 }
1957 }
1958 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1959 txd = &sc->age_cdata.age_txdesc[i];
1960 if (txd->tx_m != NULL) {
1961 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1962 m_freem(txd->tx_m);
1963 txd->tx_m = NULL;
1964 }
1965 }
1966 }
1967
1968 static void
1969 age_stats_update(struct age_softc *sc)
1970 {
1971 struct ifnet *ifp = &sc->sc_ec.ec_if;
1972 struct age_stats *stat;
1973 struct smb *smb;
1974
1975 stat = &sc->age_stat;
1976
1977 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1978 sc->age_cdata.age_smb_block_map->dm_mapsize,
1979 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1980
1981 smb = sc->age_rdata.age_smb_block;
1982 if (smb->updated == 0)
1983 return;
1984
1985 /* Rx stats. */
1986 stat->rx_frames += smb->rx_frames;
1987 stat->rx_bcast_frames += smb->rx_bcast_frames;
1988 stat->rx_mcast_frames += smb->rx_mcast_frames;
1989 stat->rx_pause_frames += smb->rx_pause_frames;
1990 stat->rx_control_frames += smb->rx_control_frames;
1991 stat->rx_crcerrs += smb->rx_crcerrs;
1992 stat->rx_lenerrs += smb->rx_lenerrs;
1993 stat->rx_bytes += smb->rx_bytes;
1994 stat->rx_runts += smb->rx_runts;
1995 stat->rx_fragments += smb->rx_fragments;
1996 stat->rx_pkts_64 += smb->rx_pkts_64;
1997 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1998 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1999 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2000 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2001 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2002 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2003 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2004 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2005 stat->rx_desc_oflows += smb->rx_desc_oflows;
2006 stat->rx_alignerrs += smb->rx_alignerrs;
2007 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2008 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2009 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2010
2011 /* Tx stats. */
2012 stat->tx_frames += smb->tx_frames;
2013 stat->tx_bcast_frames += smb->tx_bcast_frames;
2014 stat->tx_mcast_frames += smb->tx_mcast_frames;
2015 stat->tx_pause_frames += smb->tx_pause_frames;
2016 stat->tx_excess_defer += smb->tx_excess_defer;
2017 stat->tx_control_frames += smb->tx_control_frames;
2018 stat->tx_deferred += smb->tx_deferred;
2019 stat->tx_bytes += smb->tx_bytes;
2020 stat->tx_pkts_64 += smb->tx_pkts_64;
2021 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2022 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2023 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2024 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2025 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2026 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2027 stat->tx_single_colls += smb->tx_single_colls;
2028 stat->tx_multi_colls += smb->tx_multi_colls;
2029 stat->tx_late_colls += smb->tx_late_colls;
2030 stat->tx_excess_colls += smb->tx_excess_colls;
2031 stat->tx_underrun += smb->tx_underrun;
2032 stat->tx_desc_underrun += smb->tx_desc_underrun;
2033 stat->tx_lenerrs += smb->tx_lenerrs;
2034 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2035 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2036 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2037
2038 /* Update counters in ifnet. */
2039 ifp->if_opackets += smb->tx_frames;
2040
2041 ifp->if_collisions += smb->tx_single_colls +
2042 smb->tx_multi_colls + smb->tx_late_colls +
2043 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2044
2045 ifp->if_oerrors += smb->tx_excess_colls +
2046 smb->tx_late_colls + smb->tx_underrun +
2047 smb->tx_pkts_truncated;
2048
2049 ifp->if_ipackets += smb->rx_frames;
2050
2051 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2052 smb->rx_runts + smb->rx_pkts_truncated +
2053 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2054 smb->rx_alignerrs;
2055
2056 /* Update done, clear. */
2057 smb->updated = 0;
2058
2059 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2060 sc->age_cdata.age_smb_block_map->dm_mapsize,
2061 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2062 }
2063
2064 static void
2065 age_stop_txmac(struct age_softc *sc)
2066 {
2067 uint32_t reg;
2068 int i;
2069
2070 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2071 if ((reg & MAC_CFG_TX_ENB) != 0) {
2072 reg &= ~MAC_CFG_TX_ENB;
2073 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2074 }
2075 /* Stop Tx DMA engine. */
2076 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2077 if ((reg & DMA_CFG_RD_ENB) != 0) {
2078 reg &= ~DMA_CFG_RD_ENB;
2079 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2080 }
2081 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2082 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2083 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2084 break;
2085 DELAY(10);
2086 }
2087 if (i == 0)
2088 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2089 }
2090
2091 static void
2092 age_stop_rxmac(struct age_softc *sc)
2093 {
2094 uint32_t reg;
2095 int i;
2096
2097 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2098 if ((reg & MAC_CFG_RX_ENB) != 0) {
2099 reg &= ~MAC_CFG_RX_ENB;
2100 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2101 }
2102 /* Stop Rx DMA engine. */
2103 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2104 if ((reg & DMA_CFG_WR_ENB) != 0) {
2105 reg &= ~DMA_CFG_WR_ENB;
2106 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2107 }
2108 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2109 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2110 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2111 break;
2112 DELAY(10);
2113 }
2114 if (i == 0)
2115 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2116 }
2117
2118 static void
2119 age_init_tx_ring(struct age_softc *sc)
2120 {
2121 struct age_ring_data *rd;
2122 struct age_txdesc *txd;
2123 int i;
2124
2125 sc->age_cdata.age_tx_prod = 0;
2126 sc->age_cdata.age_tx_cons = 0;
2127 sc->age_cdata.age_tx_cnt = 0;
2128
2129 rd = &sc->age_rdata;
2130 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2131 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2132 txd = &sc->age_cdata.age_txdesc[i];
2133 txd->tx_desc = &rd->age_tx_ring[i];
2134 txd->tx_m = NULL;
2135 }
2136 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2137 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2138 }
2139
2140 static int
2141 age_init_rx_ring(struct age_softc *sc)
2142 {
2143 struct age_ring_data *rd;
2144 struct age_rxdesc *rxd;
2145 int i;
2146
2147 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2148 rd = &sc->age_rdata;
2149 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2150 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2151 rxd = &sc->age_cdata.age_rxdesc[i];
2152 rxd->rx_m = NULL;
2153 rxd->rx_desc = &rd->age_rx_ring[i];
2154 if (age_newbuf(sc, rxd, 1) != 0)
2155 return ENOBUFS;
2156 }
2157
2158 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2159 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2160
2161 return 0;
2162 }
2163
2164 static void
2165 age_init_rr_ring(struct age_softc *sc)
2166 {
2167 struct age_ring_data *rd;
2168
2169 sc->age_cdata.age_rr_cons = 0;
2170 AGE_RXCHAIN_RESET(sc);
2171
2172 rd = &sc->age_rdata;
2173 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2174 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2175 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2176 }
2177
2178 static void
2179 age_init_cmb_block(struct age_softc *sc)
2180 {
2181 struct age_ring_data *rd;
2182
2183 rd = &sc->age_rdata;
2184 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2185 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2186 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2187 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2188 }
2189
2190 static void
2191 age_init_smb_block(struct age_softc *sc)
2192 {
2193 struct age_ring_data *rd;
2194
2195 rd = &sc->age_rdata;
2196 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2197 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2198 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 }
2200
2201 static int
2202 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2203 {
2204 struct rx_desc *desc;
2205 struct mbuf *m;
2206 bus_dmamap_t map;
2207 int error;
2208
2209 MGETHDR(m, M_DONTWAIT, MT_DATA);
2210 if (m == NULL)
2211 return ENOBUFS;
2212 MCLGET(m, M_DONTWAIT);
2213 if (!(m->m_flags & M_EXT)) {
2214 m_freem(m);
2215 return ENOBUFS;
2216 }
2217
2218 m->m_len = m->m_pkthdr.len = MCLBYTES;
2219 m_adj(m, ETHER_ALIGN);
2220
2221 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2222 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2223
2224 if (error != 0) {
2225 m_freem(m);
2226
2227 if (init)
2228 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2229 return error;
2230 }
2231
2232 if (rxd->rx_m != NULL) {
2233 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2234 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2235 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2236 }
2237 map = rxd->rx_dmamap;
2238 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2239 sc->age_cdata.age_rx_sparemap = map;
2240 rxd->rx_m = m;
2241
2242 desc = rxd->rx_desc;
2243 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2244 desc->len =
2245 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2246 AGE_RD_LEN_SHIFT);
2247
2248 return 0;
2249 }
2250
2251 static void
2252 age_rxvlan(struct age_softc *sc)
2253 {
2254 uint32_t reg;
2255
2256 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2257 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2258 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2259 reg |= MAC_CFG_VLAN_TAG_STRIP;
2260 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2261 }
2262
2263 static void
2264 age_rxfilter(struct age_softc *sc)
2265 {
2266 struct ethercom *ec = &sc->sc_ec;
2267 struct ifnet *ifp = &sc->sc_ec.ec_if;
2268 struct ether_multi *enm;
2269 struct ether_multistep step;
2270 uint32_t crc;
2271 uint32_t mchash[2];
2272 uint32_t rxcfg;
2273
2274 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2275 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2276 ifp->if_flags &= ~IFF_ALLMULTI;
2277
2278 /*
2279 * Always accept broadcast frames.
2280 */
2281 rxcfg |= MAC_CFG_BCAST;
2282
2283 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2284 ifp->if_flags |= IFF_ALLMULTI;
2285 if (ifp->if_flags & IFF_PROMISC)
2286 rxcfg |= MAC_CFG_PROMISC;
2287 else
2288 rxcfg |= MAC_CFG_ALLMULTI;
2289 mchash[0] = mchash[1] = 0xFFFFFFFF;
2290 } else {
2291 /* Program new filter. */
2292 memset(mchash, 0, sizeof(mchash));
2293
2294 ETHER_FIRST_MULTI(step, ec, enm);
2295 while (enm != NULL) {
2296 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2297 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2298 ETHER_NEXT_MULTI(step, enm);
2299 }
2300 }
2301
2302 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2303 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2304 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2305 }
2306