Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.54
      1 /*	$NetBSD: if_age.c,v 1.54 2018/12/09 11:14:02 jdolecek Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.54 2018/12/09 11:14:02 jdolecek Exp $");
     35 
     36 #include "vlan.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/proc.h>
     40 #include <sys/endian.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/queue.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/callout.h>
     49 #include <sys/socket.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 
     56 #ifdef INET
     57 #include <netinet/in.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/in_var.h>
     60 #include <netinet/ip.h>
     61 #endif
     62 
     63 #include <net/if_types.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net/bpf.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 
     71 #include <dev/pci/pcireg.h>
     72 #include <dev/pci/pcivar.h>
     73 #include <dev/pci/pcidevs.h>
     74 
     75 #include <dev/pci/if_agereg.h>
     76 
     77 static int	age_match(device_t, cfdata_t, void *);
     78 static void	age_attach(device_t, device_t, void *);
     79 static int	age_detach(device_t, int);
     80 
     81 static bool	age_resume(device_t, const pmf_qual_t *);
     82 
     83 static int	age_miibus_readreg(device_t, int, int);
     84 static void	age_miibus_writereg(device_t, int, int, int);
     85 static void	age_miibus_statchg(struct ifnet *);
     86 
     87 static int	age_init(struct ifnet *);
     88 static int	age_ioctl(struct ifnet *, u_long, void *);
     89 static void	age_start(struct ifnet *);
     90 static void	age_watchdog(struct ifnet *);
     91 static bool	age_shutdown(device_t, int);
     92 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     93 static int	age_mediachange(struct ifnet *);
     94 
     95 static int	age_intr(void *);
     96 static int	age_dma_alloc(struct age_softc *);
     97 static void	age_dma_free(struct age_softc *);
     98 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
     99 static void	age_phy_reset(struct age_softc *);
    100 
    101 static int	age_encap(struct age_softc *, struct mbuf **);
    102 static void	age_init_tx_ring(struct age_softc *);
    103 static int	age_init_rx_ring(struct age_softc *);
    104 static void	age_init_rr_ring(struct age_softc *);
    105 static void	age_init_cmb_block(struct age_softc *);
    106 static void	age_init_smb_block(struct age_softc *);
    107 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    108 static void	age_mac_config(struct age_softc *);
    109 static void	age_txintr(struct age_softc *, int);
    110 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    111 static void	age_rxintr(struct age_softc *, int);
    112 static void	age_tick(void *);
    113 static void	age_reset(struct age_softc *);
    114 static void	age_stop(struct ifnet *, int);
    115 static void	age_stats_update(struct age_softc *);
    116 static void	age_stop_txmac(struct age_softc *);
    117 static void	age_stop_rxmac(struct age_softc *);
    118 static void	age_rxvlan(struct age_softc *sc);
    119 static void	age_rxfilter(struct age_softc *);
    120 
    121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    122     age_match, age_attach, age_detach, NULL);
    123 
    124 int agedebug = 0;
    125 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    126 
    127 #define ETHER_ALIGN 2
    128 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    129 
    130 static int
    131 age_match(device_t dev, cfdata_t match, void *aux)
    132 {
    133 	struct pci_attach_args *pa = aux;
    134 
    135 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    136 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    137 }
    138 
    139 static void
    140 age_attach(device_t parent, device_t self, void *aux)
    141 {
    142 	struct age_softc *sc = device_private(self);
    143 	struct pci_attach_args *pa = aux;
    144 	pci_intr_handle_t ih;
    145 	const char *intrstr;
    146 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    147 	pcireg_t memtype;
    148 	int error = 0;
    149 	char intrbuf[PCI_INTRSTR_LEN];
    150 
    151 	aprint_naive("\n");
    152 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    153 
    154 	sc->sc_dev = self;
    155 	sc->sc_dmat = pa->pa_dmat;
    156 	sc->sc_pct = pa->pa_pc;
    157 	sc->sc_pcitag = pa->pa_tag;
    158 
    159 	/*
    160 	 * Allocate IO memory
    161 	 */
    162 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    163 	switch (memtype) {
    164         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    167 		break;
    168         default:
    169 		aprint_error_dev(self, "invalid base address register\n");
    170 		break;
    171 	}
    172 
    173 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    174 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    175 		aprint_error_dev(self, "could not map mem space\n");
    176 		return;
    177 	}
    178 
    179 	if (pci_intr_map(pa, &ih) != 0) {
    180 		aprint_error_dev(self, "could not map interrupt\n");
    181 		goto fail;
    182 	}
    183 
    184 	/*
    185 	 * Allocate IRQ
    186 	 */
    187 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    188 	sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
    189 	    age_intr, sc, device_xname(self));
    190 	if (sc->sc_irq_handle == NULL) {
    191 		aprint_error_dev(self, "could not establish interrupt");
    192 		if (intrstr != NULL)
    193 			aprint_error(" at %s", intrstr);
    194 		aprint_error("\n");
    195 		goto fail;
    196 	}
    197 	aprint_normal_dev(self, "%s\n", intrstr);
    198 
    199 	/* Set PHY address. */
    200 	sc->age_phyaddr = AGE_PHY_ADDR;
    201 
    202 	/* Reset PHY. */
    203 	age_phy_reset(sc);
    204 
    205 	/* Reset the ethernet controller. */
    206 	age_reset(sc);
    207 
    208 	/* Get PCI and chip id/revision. */
    209 	sc->age_rev = PCI_REVISION(pa->pa_class);
    210 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    211 	    MASTER_CHIP_REV_SHIFT;
    212 
    213 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    214 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    215 
    216 	if (agedebug) {
    217 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    218 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    219 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    220 	}
    221 
    222 	/* Set max allowable DMA size. */
    223 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    224 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    225 
    226 	/* Allocate DMA stuffs */
    227 	error = age_dma_alloc(sc);
    228 	if (error)
    229 		goto fail;
    230 
    231 	callout_init(&sc->sc_tick_ch, 0);
    232 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    233 
    234 	/* Load station address. */
    235 	age_get_macaddr(sc, sc->sc_enaddr);
    236 
    237 	aprint_normal_dev(self, "Ethernet address %s\n",
    238 	    ether_sprintf(sc->sc_enaddr));
    239 
    240 	ifp->if_softc = sc;
    241 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    242 	ifp->if_init = age_init;
    243 	ifp->if_ioctl = age_ioctl;
    244 	ifp->if_start = age_start;
    245 	ifp->if_stop = age_stop;
    246 	ifp->if_watchdog = age_watchdog;
    247 	ifp->if_baudrate = IF_Gbps(1);
    248 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    251 
    252 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    253 
    254 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    255 				IFCAP_CSUM_TCPv4_Rx |
    256 				IFCAP_CSUM_UDPv4_Rx;
    257 #ifdef AGE_CHECKSUM
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    259 				IFCAP_CSUM_TCPv4_Tx |
    260 				IFCAP_CSUM_UDPv4_Tx;
    261 #endif
    262 
    263 #if NVLAN > 0
    264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    265 #endif
    266 
    267 	/* Set up MII bus. */
    268 	sc->sc_miibus.mii_ifp = ifp;
    269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    272 
    273 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    275 	    age_mediastatus);
    276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    277 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    278 
    279 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    280 		aprint_error_dev(self, "no PHY found!\n");
    281 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    282 		    0, NULL);
    283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    284 	} else
    285 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    286 
    287 	if_attach(ifp);
    288 	if_deferred_start_init(ifp, NULL);
    289 	ether_ifattach(ifp, sc->sc_enaddr);
    290 
    291 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
    292 		pmf_class_network_register(self, ifp);
    293 	else
    294 		aprint_error_dev(self, "couldn't establish power handler\n");
    295 
    296 	return;
    297 
    298 fail:
    299 	age_dma_free(sc);
    300 	if (sc->sc_irq_handle != NULL) {
    301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302 		sc->sc_irq_handle = NULL;
    303 	}
    304 	if (sc->sc_mem_size) {
    305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306 		sc->sc_mem_size = 0;
    307 	}
    308 }
    309 
    310 static int
    311 age_detach(device_t self, int flags)
    312 {
    313 	struct age_softc *sc = device_private(self);
    314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315 	int s;
    316 
    317 	pmf_device_deregister(self);
    318 	s = splnet();
    319 	age_stop(ifp, 0);
    320 	splx(s);
    321 
    322 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    323 
    324 	/* Delete all remaining media. */
    325 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    326 
    327 	ether_ifdetach(ifp);
    328 	if_detach(ifp);
    329 	age_dma_free(sc);
    330 
    331 	if (sc->sc_irq_handle != NULL) {
    332 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    333 		sc->sc_irq_handle = NULL;
    334 	}
    335 	if (sc->sc_mem_size) {
    336 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    337 		sc->sc_mem_size = 0;
    338 	}
    339 	return 0;
    340 }
    341 
    342 /*
    343  *	Read a PHY register on the MII of the L1.
    344  */
    345 static int
    346 age_miibus_readreg(device_t dev, int phy, int reg)
    347 {
    348 	struct age_softc *sc = device_private(dev);
    349 	uint32_t v;
    350 	int i;
    351 
    352 	if (phy != sc->age_phyaddr)
    353 		return 0;
    354 
    355 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    356 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    357 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    358 		DELAY(1);
    359 		v = CSR_READ_4(sc, AGE_MDIO);
    360 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    361 			break;
    362 	}
    363 
    364 	if (i == 0) {
    365 		printf("%s: phy read timeout: phy %d, reg %d\n",
    366 			device_xname(sc->sc_dev), phy, reg);
    367 		return 0;
    368 	}
    369 
    370 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    371 }
    372 
    373 /*
    374  * 	Write a PHY register on the MII of the L1.
    375  */
    376 static void
    377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    378 {
    379 	struct age_softc *sc = device_private(dev);
    380 	uint32_t v;
    381 	int i;
    382 
    383 	if (phy != sc->age_phyaddr)
    384 		return;
    385 
    386 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    387 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    388 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    389 
    390 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    391 		DELAY(1);
    392 		v = CSR_READ_4(sc, AGE_MDIO);
    393 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    394 			break;
    395 	}
    396 
    397 	if (i == 0) {
    398 		printf("%s: phy write timeout: phy %d, reg %d\n",
    399 		    device_xname(sc->sc_dev), phy, reg);
    400 	}
    401 }
    402 
    403 /*
    404  *	Callback from MII layer when media changes.
    405  */
    406 static void
    407 age_miibus_statchg(struct ifnet *ifp)
    408 {
    409 	struct age_softc *sc = ifp->if_softc;
    410 	struct mii_data *mii = &sc->sc_miibus;
    411 
    412 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    413 		return;
    414 
    415 	sc->age_flags &= ~AGE_FLAG_LINK;
    416 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    417 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    418 		case IFM_10_T:
    419 		case IFM_100_TX:
    420 		case IFM_1000_T:
    421 			sc->age_flags |= AGE_FLAG_LINK;
    422 			break;
    423 		default:
    424 			break;
    425 		}
    426 	}
    427 
    428 	/* Stop Rx/Tx MACs. */
    429 	age_stop_rxmac(sc);
    430 	age_stop_txmac(sc);
    431 
    432 	/* Program MACs with resolved speed/duplex/flow-control. */
    433 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    434 		uint32_t reg;
    435 
    436 		age_mac_config(sc);
    437 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    438 		/* Restart DMA engine and Tx/Rx MAC. */
    439 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    440 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    441 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    442 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    443 	}
    444 }
    445 
    446 /*
    447  *	Get the current interface media status.
    448  */
    449 static void
    450 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    451 {
    452 	struct age_softc *sc = ifp->if_softc;
    453 	struct mii_data *mii = &sc->sc_miibus;
    454 
    455 	mii_pollstat(mii);
    456 	ifmr->ifm_status = mii->mii_media_status;
    457 	ifmr->ifm_active = mii->mii_media_active;
    458 }
    459 
    460 /*
    461  *	Set hardware to newly-selected media.
    462  */
    463 static int
    464 age_mediachange(struct ifnet *ifp)
    465 {
    466 	struct age_softc *sc = ifp->if_softc;
    467 	struct mii_data *mii = &sc->sc_miibus;
    468 	int error;
    469 
    470 	if (mii->mii_instance != 0) {
    471 		struct mii_softc *miisc;
    472 
    473 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    474 			mii_phy_reset(miisc);
    475 	}
    476 	error = mii_mediachg(mii);
    477 
    478 	return error;
    479 }
    480 
    481 static int
    482 age_intr(void *arg)
    483 {
    484         struct age_softc *sc = arg;
    485         struct ifnet *ifp = &sc->sc_ec.ec_if;
    486 	struct cmb *cmb;
    487         uint32_t status;
    488 
    489 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    490 	if (status == 0 || (status & AGE_INTRS) == 0)
    491 		return 0;
    492 
    493 	cmb = sc->age_rdata.age_cmb_block;
    494 	if (cmb == NULL) {
    495 		/* Happens when bringing up the interface
    496 		 * w/o having a carrier. Ack the interrupt.
    497 		 */
    498 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    499 		return 0;
    500 	}
    501 
    502 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    503 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    504 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    505 	status = le32toh(cmb->intr_status);
    506 	/* ACK/reenable interrupts */
    507 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    508 	while ((status & AGE_INTRS) != 0) {
    509 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    510 		    TPD_CONS_SHIFT;
    511 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    512 		    RRD_PROD_SHIFT;
    513 
    514 		/* Let hardware know CMB was served. */
    515 		cmb->intr_status = 0;
    516 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    517 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    518 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    519 
    520 		if (ifp->if_flags & IFF_RUNNING) {
    521 			if (status & INTR_CMB_RX)
    522 				age_rxintr(sc, sc->age_rr_prod);
    523 
    524 			if (status & INTR_CMB_TX)
    525 				age_txintr(sc, sc->age_tpd_cons);
    526 
    527 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    528 				if (status & INTR_DMA_RD_TO_RST)
    529 					printf("%s: DMA read error! -- "
    530 					    "resetting\n",
    531 					    device_xname(sc->sc_dev));
    532 				if (status & INTR_DMA_WR_TO_RST)
    533 					printf("%s: DMA write error! -- "
    534 					    "resetting\n",
    535 					    device_xname(sc->sc_dev));
    536 				age_init(ifp);
    537 			}
    538 
    539 			if_schedule_deferred_start(ifp);
    540 
    541 			if (status & INTR_SMB)
    542 				age_stats_update(sc);
    543 		}
    544 		/* check if more interrupts did came in */
    545 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    546 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    547 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    548 		status = le32toh(cmb->intr_status);
    549 	}
    550 
    551 	return 1;
    552 }
    553 
    554 static void
    555 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    556 {
    557 	uint32_t ea[2], reg;
    558 	int i, vpdc;
    559 
    560 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    561 	if ((reg & SPI_VPD_ENB) != 0) {
    562 		/* Get VPD stored in TWSI EEPROM. */
    563 		reg &= ~SPI_VPD_ENB;
    564 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    565 	}
    566 
    567 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    568 	    PCI_CAP_VPD, &vpdc, NULL)) {
    569 		/*
    570 		 * PCI VPD capability found, let TWSI reload EEPROM.
    571 		 * This will set Ethernet address of controller.
    572 		 */
    573 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    574 		    TWSI_CTRL_SW_LD_START);
    575 		for (i = 100; i > 0; i++) {
    576 			DELAY(1000);
    577 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    578 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    579 				break;
    580 		}
    581 		if (i == 0)
    582 			printf("%s: reloading EEPROM timeout!\n",
    583 			    device_xname(sc->sc_dev));
    584 	} else {
    585 		if (agedebug)
    586 			printf("%s: PCI VPD capability not found!\n",
    587 			    device_xname(sc->sc_dev));
    588 	}
    589 
    590 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    591 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    592 
    593 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    594 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    595 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    596 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    597 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    598 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    599 }
    600 
    601 static void
    602 age_phy_reset(struct age_softc *sc)
    603 {
    604 	uint16_t reg, pn;
    605 	int i, linkup;
    606 
    607 	/* Reset PHY. */
    608 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    609 	DELAY(2000);
    610 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    611 	DELAY(2000);
    612 
    613 #define ATPHY_DBG_ADDR		0x1D
    614 #define ATPHY_DBG_DATA		0x1E
    615 #define ATPHY_CDTC		0x16
    616 #define PHY_CDTC_ENB		0x0001
    617 #define PHY_CDTC_POFF		8
    618 #define ATPHY_CDTS		0x1C
    619 #define PHY_CDTS_STAT_OK	0x0000
    620 #define PHY_CDTS_STAT_SHORT	0x0100
    621 #define PHY_CDTS_STAT_OPEN	0x0200
    622 #define PHY_CDTS_STAT_INVAL	0x0300
    623 #define PHY_CDTS_STAT_MASK	0x0300
    624 
    625 	/* Check power saving mode. Magic from Linux. */
    626 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    627 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    628 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    629 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    630 		for (i = 200; i > 0; i--) {
    631 			DELAY(1000);
    632 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    633 			    ATPHY_CDTC);
    634 			if ((reg & PHY_CDTC_ENB) == 0)
    635 				break;
    636 		}
    637 		DELAY(1000);
    638 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    639 		    ATPHY_CDTS);
    640 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    641 			linkup++;
    642 			break;
    643 		}
    644 	}
    645 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    646 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    647 	if (linkup == 0) {
    648 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    649 		    ATPHY_DBG_ADDR, 0);
    650 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    651 		    ATPHY_DBG_DATA, 0x124E);
    652 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    653 		    ATPHY_DBG_ADDR, 1);
    654 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    655 		    ATPHY_DBG_DATA);
    656 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    657 		    ATPHY_DBG_DATA, reg | 0x03);
    658 		/* XXX */
    659 		DELAY(1500 * 1000);
    660 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    661 		    ATPHY_DBG_ADDR, 0);
    662 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    663 		    ATPHY_DBG_DATA, 0x024E);
    664 	}
    665 
    666 #undef ATPHY_DBG_ADDR
    667 #undef ATPHY_DBG_DATA
    668 #undef ATPHY_CDTC
    669 #undef PHY_CDTC_ENB
    670 #undef PHY_CDTC_POFF
    671 #undef ATPHY_CDTS
    672 #undef PHY_CDTS_STAT_OK
    673 #undef PHY_CDTS_STAT_SHORT
    674 #undef PHY_CDTS_STAT_OPEN
    675 #undef PHY_CDTS_STAT_INVAL
    676 #undef PHY_CDTS_STAT_MASK
    677 }
    678 
    679 static int
    680 age_dma_alloc(struct age_softc *sc)
    681 {
    682 	struct age_txdesc *txd;
    683 	struct age_rxdesc *rxd;
    684 	int nsegs, error, i;
    685 
    686 	/*
    687 	 * Create DMA stuffs for TX ring
    688 	 */
    689 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    690 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    691 	if (error) {
    692 		sc->age_cdata.age_tx_ring_map = NULL;
    693 		return ENOBUFS;
    694 	}
    695 
    696 	/* Allocate DMA'able memory for TX ring */
    697 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    698 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    699 	    &nsegs, BUS_DMA_NOWAIT);
    700 	if (error) {
    701 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    702 		    "error = %i\n", device_xname(sc->sc_dev), error);
    703 		return error;
    704 	}
    705 
    706 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    707 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    708 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    709 	if (error)
    710 		return ENOBUFS;
    711 
    712 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    713 
    714 	/*  Load the DMA map for Tx ring. */
    715 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    716 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    717 	if (error) {
    718 		printf("%s: could not load DMA'able memory for Tx ring, "
    719 		    "error = %i\n", device_xname(sc->sc_dev), error);
    720 		bus_dmamem_free(sc->sc_dmat,
    721 		    &sc->age_rdata.age_tx_ring_seg, 1);
    722 		return error;
    723 	}
    724 
    725 	sc->age_rdata.age_tx_ring_paddr =
    726 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    727 
    728 	/*
    729 	 * Create DMA stuffs for RX ring
    730 	 */
    731 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    732 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    733 	if (error) {
    734 		sc->age_cdata.age_rx_ring_map = NULL;
    735 		return ENOBUFS;
    736 	}
    737 
    738 	/* Allocate DMA'able memory for RX ring */
    739 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    740 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    741 	    &nsegs, BUS_DMA_NOWAIT);
    742 	if (error) {
    743 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    744 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    745 		return error;
    746 	}
    747 
    748 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    749 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    750 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    751 	if (error)
    752 		return ENOBUFS;
    753 
    754 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    755 
    756 	/* Load the DMA map for Rx ring. */
    757 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    758 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    759 	if (error) {
    760 		printf("%s: could not load DMA'able memory for Rx ring, "
    761 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    762 		bus_dmamem_free(sc->sc_dmat,
    763 		    &sc->age_rdata.age_rx_ring_seg, 1);
    764 		return error;
    765 	}
    766 
    767 	sc->age_rdata.age_rx_ring_paddr =
    768 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    769 
    770 	/*
    771 	 * Create DMA stuffs for RX return ring
    772 	 */
    773 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    774 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    775 	if (error) {
    776 		sc->age_cdata.age_rr_ring_map = NULL;
    777 		return ENOBUFS;
    778 	}
    779 
    780 	/* Allocate DMA'able memory for RX return ring */
    781 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    782 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    783 	    &nsegs, BUS_DMA_NOWAIT);
    784 	if (error) {
    785 		printf("%s: could not allocate DMA'able memory for Rx "
    786 		    "return ring, error = %i.\n",
    787 		    device_xname(sc->sc_dev), error);
    788 		return error;
    789 	}
    790 
    791 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    792 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    793 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    794 	if (error)
    795 		return ENOBUFS;
    796 
    797 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    798 
    799 	/*  Load the DMA map for Rx return ring. */
    800 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    801 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
    802 	if (error) {
    803 		printf("%s: could not load DMA'able memory for Rx return ring, "
    804 		    "error = %i\n", device_xname(sc->sc_dev), error);
    805 		bus_dmamem_free(sc->sc_dmat,
    806 		    &sc->age_rdata.age_rr_ring_seg, 1);
    807 		return error;
    808 	}
    809 
    810 	sc->age_rdata.age_rr_ring_paddr =
    811 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    812 
    813 	/*
    814 	 * Create DMA stuffs for CMB block
    815 	 */
    816 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    817 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    818 	    &sc->age_cdata.age_cmb_block_map);
    819 	if (error) {
    820 		sc->age_cdata.age_cmb_block_map = NULL;
    821 		return ENOBUFS;
    822 	}
    823 
    824 	/* Allocate DMA'able memory for CMB block */
    825 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    826 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    827 	    &nsegs, BUS_DMA_NOWAIT);
    828 	if (error) {
    829 		printf("%s: could not allocate DMA'able memory for "
    830 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    831 		return error;
    832 	}
    833 
    834 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    835 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    836 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    837 	if (error)
    838 		return ENOBUFS;
    839 
    840 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    841 
    842 	/*  Load the DMA map for CMB block. */
    843 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    844 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    845 	    BUS_DMA_NOWAIT);
    846 	if (error) {
    847 		printf("%s: could not load DMA'able memory for CMB block, "
    848 		    "error = %i\n", device_xname(sc->sc_dev), error);
    849 		bus_dmamem_free(sc->sc_dmat,
    850 		    &sc->age_rdata.age_cmb_block_seg, 1);
    851 		return error;
    852 	}
    853 
    854 	sc->age_rdata.age_cmb_block_paddr =
    855 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    856 
    857 	/*
    858 	 * Create DMA stuffs for SMB block
    859 	 */
    860 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    861 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    862 	    &sc->age_cdata.age_smb_block_map);
    863 	if (error) {
    864 		sc->age_cdata.age_smb_block_map = NULL;
    865 		return ENOBUFS;
    866 	}
    867 
    868 	/* Allocate DMA'able memory for SMB block */
    869 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    870 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    871 	    &nsegs, BUS_DMA_NOWAIT);
    872 	if (error) {
    873 		printf("%s: could not allocate DMA'able memory for "
    874 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    875 		return error;
    876 	}
    877 
    878 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    879 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    880 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    881 	if (error)
    882 		return ENOBUFS;
    883 
    884 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    885 
    886 	/*  Load the DMA map for SMB block */
    887 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    888 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    889 	    BUS_DMA_NOWAIT);
    890 	if (error) {
    891 		printf("%s: could not load DMA'able memory for SMB block, "
    892 		    "error = %i\n", device_xname(sc->sc_dev), error);
    893 		bus_dmamem_free(sc->sc_dmat,
    894 		    &sc->age_rdata.age_smb_block_seg, 1);
    895 		return error;
    896 	}
    897 
    898 	sc->age_rdata.age_smb_block_paddr =
    899 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    900 
    901 	/* Create DMA maps for Tx buffers. */
    902 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    903 		txd = &sc->age_cdata.age_txdesc[i];
    904 		txd->tx_m = NULL;
    905 		txd->tx_dmamap = NULL;
    906 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    907 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    908 		    &txd->tx_dmamap);
    909 		if (error) {
    910 			txd->tx_dmamap = NULL;
    911 			printf("%s: could not create Tx dmamap, error = %i.\n",
    912 			    device_xname(sc->sc_dev), error);
    913 			return error;
    914 		}
    915 	}
    916 
    917 	/* Create DMA maps for Rx buffers. */
    918 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    919 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    920 	if (error) {
    921 		sc->age_cdata.age_rx_sparemap = NULL;
    922 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    923 		    device_xname(sc->sc_dev), error);
    924 		return error;
    925 	}
    926 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    927 		rxd = &sc->age_cdata.age_rxdesc[i];
    928 		rxd->rx_m = NULL;
    929 		rxd->rx_dmamap = NULL;
    930 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    931 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    932 		if (error) {
    933 			rxd->rx_dmamap = NULL;
    934 			printf("%s: could not create Rx dmamap, error = %i.\n",
    935 			    device_xname(sc->sc_dev), error);
    936 			return error;
    937 		}
    938 	}
    939 
    940 	return 0;
    941 }
    942 
    943 static void
    944 age_dma_free(struct age_softc *sc)
    945 {
    946 	struct age_txdesc *txd;
    947 	struct age_rxdesc *rxd;
    948 	int i;
    949 
    950 	/* Tx buffers */
    951 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    952 		txd = &sc->age_cdata.age_txdesc[i];
    953 		if (txd->tx_dmamap != NULL) {
    954 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    955 			txd->tx_dmamap = NULL;
    956 		}
    957 	}
    958 	/* Rx buffers */
    959 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    960 		rxd = &sc->age_cdata.age_rxdesc[i];
    961 		if (rxd->rx_dmamap != NULL) {
    962 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    963 			rxd->rx_dmamap = NULL;
    964 		}
    965 	}
    966 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    967 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    968 		sc->age_cdata.age_rx_sparemap = NULL;
    969 	}
    970 
    971 	/* Tx ring. */
    972 	if (sc->age_cdata.age_tx_ring_map != NULL)
    973 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    974 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    975 	    sc->age_rdata.age_tx_ring != NULL)
    976 		bus_dmamem_free(sc->sc_dmat,
    977 		    &sc->age_rdata.age_tx_ring_seg, 1);
    978 	sc->age_rdata.age_tx_ring = NULL;
    979 	sc->age_cdata.age_tx_ring_map = NULL;
    980 
    981 	/* Rx ring. */
    982 	if (sc->age_cdata.age_rx_ring_map != NULL)
    983 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    984 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    985 	    sc->age_rdata.age_rx_ring != NULL)
    986 		bus_dmamem_free(sc->sc_dmat,
    987 		    &sc->age_rdata.age_rx_ring_seg, 1);
    988 	sc->age_rdata.age_rx_ring = NULL;
    989 	sc->age_cdata.age_rx_ring_map = NULL;
    990 
    991 	/* Rx return ring. */
    992 	if (sc->age_cdata.age_rr_ring_map != NULL)
    993 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    994 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    995 	    sc->age_rdata.age_rr_ring != NULL)
    996 		bus_dmamem_free(sc->sc_dmat,
    997 		    &sc->age_rdata.age_rr_ring_seg, 1);
    998 	sc->age_rdata.age_rr_ring = NULL;
    999 	sc->age_cdata.age_rr_ring_map = NULL;
   1000 
   1001 	/* CMB block */
   1002 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1003 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1004 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1005 	    sc->age_rdata.age_cmb_block != NULL)
   1006 		bus_dmamem_free(sc->sc_dmat,
   1007 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1008 	sc->age_rdata.age_cmb_block = NULL;
   1009 	sc->age_cdata.age_cmb_block_map = NULL;
   1010 
   1011 	/* SMB block */
   1012 	if (sc->age_cdata.age_smb_block_map != NULL)
   1013 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1014 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1015 	    sc->age_rdata.age_smb_block != NULL)
   1016 		bus_dmamem_free(sc->sc_dmat,
   1017 		    &sc->age_rdata.age_smb_block_seg, 1);
   1018 	sc->age_rdata.age_smb_block = NULL;
   1019 	sc->age_cdata.age_smb_block_map = NULL;
   1020 }
   1021 
   1022 static void
   1023 age_start(struct ifnet *ifp)
   1024 {
   1025         struct age_softc *sc = ifp->if_softc;
   1026         struct mbuf *m_head;
   1027 	int enq;
   1028 
   1029 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1030 		return;
   1031 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
   1032 		return;
   1033 	if (IFQ_IS_EMPTY(&ifp->if_snd))
   1034 		return;
   1035 
   1036 	enq = 0;
   1037 	for (;;) {
   1038 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1039 		if (m_head == NULL)
   1040 			break;
   1041 
   1042 		/*
   1043 		 * Pack the data into the transmit ring. If we
   1044 		 * don't have room, set the OACTIVE flag and wait
   1045 		 * for the NIC to drain the ring.
   1046 		 */
   1047 		if (age_encap(sc, &m_head)) {
   1048 			if (m_head == NULL)
   1049 				break;
   1050 			IF_PREPEND(&ifp->if_snd, m_head);
   1051 			ifp->if_flags |= IFF_OACTIVE;
   1052 			break;
   1053 		}
   1054 		enq = 1;
   1055 
   1056 		/*
   1057 		 * If there's a BPF listener, bounce a copy of this frame
   1058 		 * to him.
   1059 		 */
   1060 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1061 	}
   1062 
   1063 	if (enq) {
   1064 		/* Update mbox. */
   1065 		AGE_COMMIT_MBOX(sc);
   1066 		/* Set a timeout in case the chip goes out to lunch. */
   1067 		ifp->if_timer = AGE_TX_TIMEOUT;
   1068 	}
   1069 }
   1070 
   1071 static void
   1072 age_watchdog(struct ifnet *ifp)
   1073 {
   1074 	struct age_softc *sc = ifp->if_softc;
   1075 
   1076 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1077 		printf("%s: watchdog timeout (missed link)\n",
   1078 		    device_xname(sc->sc_dev));
   1079 		ifp->if_oerrors++;
   1080 		age_init(ifp);
   1081 		return;
   1082 	}
   1083 
   1084 	if (sc->age_cdata.age_tx_cnt == 0) {
   1085 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1086 		    "-- recovering\n", device_xname(sc->sc_dev));
   1087 		age_start(ifp);
   1088 		return;
   1089 	}
   1090 
   1091 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1092 	ifp->if_oerrors++;
   1093 	age_init(ifp);
   1094 	age_start(ifp);
   1095 }
   1096 
   1097 static bool
   1098 age_shutdown(device_t self, int howto)
   1099 {
   1100 	struct age_softc *sc;
   1101 	struct ifnet *ifp;
   1102 
   1103 	sc = device_private(self);
   1104 	ifp = &sc->sc_ec.ec_if;
   1105 	age_stop(ifp, 1);
   1106 
   1107 	return true;
   1108 }
   1109 
   1110 
   1111 static int
   1112 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1113 {
   1114 	struct age_softc *sc = ifp->if_softc;
   1115 	int s, error;
   1116 
   1117 	s = splnet();
   1118 
   1119 	error = ether_ioctl(ifp, cmd, data);
   1120 	if (error == ENETRESET) {
   1121 		if (ifp->if_flags & IFF_RUNNING)
   1122 			age_rxfilter(sc);
   1123 		error = 0;
   1124 	}
   1125 
   1126 	splx(s);
   1127 	return error;
   1128 }
   1129 
   1130 static void
   1131 age_mac_config(struct age_softc *sc)
   1132 {
   1133 	struct mii_data *mii;
   1134 	uint32_t reg;
   1135 
   1136 	mii = &sc->sc_miibus;
   1137 
   1138 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1139 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1140 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1141 	reg &= ~MAC_CFG_SPEED_MASK;
   1142 
   1143 	/* Reprogram MAC with resolved speed/duplex. */
   1144 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1145 	case IFM_10_T:
   1146 	case IFM_100_TX:
   1147 		reg |= MAC_CFG_SPEED_10_100;
   1148 		break;
   1149 	case IFM_1000_T:
   1150 		reg |= MAC_CFG_SPEED_1000;
   1151 		break;
   1152 	}
   1153 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1154 		reg |= MAC_CFG_FULL_DUPLEX;
   1155 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1156 			reg |= MAC_CFG_TX_FC;
   1157 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1158 			reg |= MAC_CFG_RX_FC;
   1159 	}
   1160 
   1161 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1162 }
   1163 
   1164 static bool
   1165 age_resume(device_t dv, const pmf_qual_t *qual)
   1166 {
   1167 	struct age_softc *sc = device_private(dv);
   1168 	uint16_t cmd;
   1169 
   1170 	/*
   1171 	 * Clear INTx emulation disable for hardware that
   1172 	 * is set in resume event. From Linux.
   1173 	 */
   1174 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1175 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1176 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1177 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1178 		    PCI_COMMAND_STATUS_REG, cmd);
   1179 	}
   1180 
   1181 	return true;
   1182 }
   1183 
   1184 static int
   1185 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1186 {
   1187 	struct age_txdesc *txd, *txd_last;
   1188 	struct tx_desc *desc;
   1189 	struct mbuf *m;
   1190 	bus_dmamap_t map;
   1191 	uint32_t cflags, poff, vtag;
   1192 	int error, i, nsegs, prod;
   1193 
   1194 	m = *m_head;
   1195 	cflags = vtag = 0;
   1196 	poff = 0;
   1197 
   1198 	prod = sc->age_cdata.age_tx_prod;
   1199 	txd = &sc->age_cdata.age_txdesc[prod];
   1200 	txd_last = txd;
   1201 	map = txd->tx_dmamap;
   1202 
   1203 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1204 
   1205 	if (error == EFBIG) {
   1206 		error = 0;
   1207 
   1208 		*m_head = m_pullup(*m_head, MHLEN);
   1209 		if (*m_head == NULL) {
   1210 			printf("%s: can't defrag TX mbuf\n",
   1211 			    device_xname(sc->sc_dev));
   1212 			return ENOBUFS;
   1213 		}
   1214 
   1215 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1216 		  	    BUS_DMA_NOWAIT);
   1217 
   1218 		if (error != 0) {
   1219 			printf("%s: could not load defragged TX mbuf\n",
   1220 			    device_xname(sc->sc_dev));
   1221 			m_freem(*m_head);
   1222 			*m_head = NULL;
   1223 			return error;
   1224 		}
   1225 	} else if (error) {
   1226 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1227 		return error;
   1228 	}
   1229 
   1230 	nsegs = map->dm_nsegs;
   1231 
   1232 	if (nsegs == 0) {
   1233 		m_freem(*m_head);
   1234 		*m_head = NULL;
   1235 		return EIO;
   1236 	}
   1237 
   1238 	/* Check descriptor overrun. */
   1239 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1240 		bus_dmamap_unload(sc->sc_dmat, map);
   1241 		return ENOBUFS;
   1242 	}
   1243 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1244 	    BUS_DMASYNC_PREWRITE);
   1245 
   1246 	m = *m_head;
   1247 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1248 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1249 		cflags |= AGE_TD_CSUM;
   1250 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1251 			cflags |= AGE_TD_TCPCSUM;
   1252 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1253 			cflags |= AGE_TD_UDPCSUM;
   1254 		/* Set checksum start offset. */
   1255 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1256 	}
   1257 
   1258 #if NVLAN > 0
   1259 	/* Configure VLAN hardware tag insertion. */
   1260 	if (vlan_has_tag(m)) {
   1261 		vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
   1262 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1263 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1264 	}
   1265 #endif
   1266 
   1267 	desc = NULL;
   1268 	KASSERT(nsegs > 0);
   1269 	for (i = 0; ; i++) {
   1270 		desc = &sc->age_rdata.age_tx_ring[prod];
   1271 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1272 		desc->len =
   1273 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1274 		desc->flags = htole32(cflags);
   1275 		sc->age_cdata.age_tx_cnt++;
   1276 		if (i == (nsegs - 1))
   1277 			break;
   1278 
   1279 		/* sync this descriptor and go to the next one */
   1280 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1281 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1282 		    BUS_DMASYNC_PREWRITE);
   1283 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1284 	}
   1285 
   1286 	/* Set EOP on the last descriptor and sync it. */
   1287 	desc->flags |= htole32(AGE_TD_EOP);
   1288 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1289 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1290 	    BUS_DMASYNC_PREWRITE);
   1291 
   1292 	if (nsegs > 1) {
   1293 		/* Swap dmamap of the first and the last. */
   1294 		txd = &sc->age_cdata.age_txdesc[prod];
   1295 		map = txd_last->tx_dmamap;
   1296 		txd_last->tx_dmamap = txd->tx_dmamap;
   1297 		txd->tx_dmamap = map;
   1298 		txd->tx_m = m;
   1299 		KASSERT(txd_last->tx_m == NULL);
   1300 	} else {
   1301 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
   1302 		txd_last->tx_m = m;
   1303 	}
   1304 
   1305 	/* Update producer index. */
   1306 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1307 	sc->age_cdata.age_tx_prod = prod;
   1308 
   1309 	return 0;
   1310 }
   1311 
   1312 static void
   1313 age_txintr(struct age_softc *sc, int tpd_cons)
   1314 {
   1315 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1316 	struct age_txdesc *txd;
   1317 	int cons, prog;
   1318 
   1319 
   1320 	if (sc->age_cdata.age_tx_cnt <= 0) {
   1321 		if (ifp->if_timer != 0)
   1322 			printf("timer running without packets\n");
   1323 		if (sc->age_cdata.age_tx_cnt)
   1324 			printf("age_tx_cnt corrupted\n");
   1325 	}
   1326 
   1327 	/*
   1328 	 * Go through our Tx list and free mbufs for those
   1329 	 * frames which have been transmitted.
   1330 	 */
   1331 	cons = sc->age_cdata.age_tx_cons;
   1332 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1333 		if (sc->age_cdata.age_tx_cnt <= 0)
   1334 			break;
   1335 		prog++;
   1336 		ifp->if_flags &= ~IFF_OACTIVE;
   1337 		sc->age_cdata.age_tx_cnt--;
   1338 		txd = &sc->age_cdata.age_txdesc[cons];
   1339 		/*
   1340 		 * Clear Tx descriptors, it's not required but would
   1341 		 * help debugging in case of Tx issues.
   1342 		 */
   1343 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1344 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1345 		    BUS_DMASYNC_POSTWRITE);
   1346 		txd->tx_desc->addr = 0;
   1347 		txd->tx_desc->len = 0;
   1348 		txd->tx_desc->flags = 0;
   1349 
   1350 		if (txd->tx_m == NULL)
   1351 			continue;
   1352 		/* Reclaim transmitted mbufs. */
   1353 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1354 		m_freem(txd->tx_m);
   1355 		txd->tx_m = NULL;
   1356 	}
   1357 
   1358 	if (prog > 0) {
   1359 		sc->age_cdata.age_tx_cons = cons;
   1360 
   1361 		/*
   1362 		 * Unarm watchdog timer only when there are no pending
   1363 		 * Tx descriptors in queue.
   1364 		 */
   1365 		if (sc->age_cdata.age_tx_cnt == 0)
   1366 			ifp->if_timer = 0;
   1367 	}
   1368 }
   1369 
   1370 /* Receive a frame. */
   1371 static void
   1372 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1373 {
   1374 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1375 	struct age_rxdesc *rxd;
   1376 	struct rx_desc *desc;
   1377 	struct mbuf *mp, *m;
   1378 	uint32_t status, index;
   1379 	int count, nsegs, pktlen;
   1380 	int rx_cons;
   1381 
   1382 	status = le32toh(rxrd->flags);
   1383 	index = le32toh(rxrd->index);
   1384 	rx_cons = AGE_RX_CONS(index);
   1385 	nsegs = AGE_RX_NSEGS(index);
   1386 
   1387 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1388 	if ((status & AGE_RRD_ERROR) != 0 &&
   1389 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1390 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1391 		/*
   1392 		 * We want to pass the following frames to upper
   1393 		 * layer regardless of error status of Rx return
   1394 		 * ring.
   1395 		 *
   1396 		 *  o IP/TCP/UDP checksum is bad.
   1397 		 *  o frame length and protocol specific length
   1398 		 *     does not match.
   1399 		 */
   1400 		sc->age_cdata.age_rx_cons += nsegs;
   1401 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1402 		return;
   1403 	}
   1404 
   1405 	pktlen = 0;
   1406 	for (count = 0; count < nsegs; count++,
   1407 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1408 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1409 		mp = rxd->rx_m;
   1410 		desc = rxd->rx_desc;
   1411 		/* Add a new receive buffer to the ring. */
   1412 		if (age_newbuf(sc, rxd, 0) != 0) {
   1413 			ifp->if_iqdrops++;
   1414 			/* Reuse Rx buffers. */
   1415 			if (sc->age_cdata.age_rxhead != NULL) {
   1416 				m_freem(sc->age_cdata.age_rxhead);
   1417 				AGE_RXCHAIN_RESET(sc);
   1418 			}
   1419 			break;
   1420 		}
   1421 
   1422 		/* The length of the first mbuf is computed last. */
   1423 		if (count != 0) {
   1424 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1425 			pktlen += mp->m_len;
   1426 		}
   1427 
   1428 		/* Chain received mbufs. */
   1429 		if (sc->age_cdata.age_rxhead == NULL) {
   1430 			sc->age_cdata.age_rxhead = mp;
   1431 			sc->age_cdata.age_rxtail = mp;
   1432 		} else {
   1433 			m_remove_pkthdr(mp);
   1434 			sc->age_cdata.age_rxprev_tail =
   1435 			    sc->age_cdata.age_rxtail;
   1436 			sc->age_cdata.age_rxtail->m_next = mp;
   1437 			sc->age_cdata.age_rxtail = mp;
   1438 		}
   1439 
   1440 		if (count == nsegs - 1) {
   1441 			/*
   1442 			 * It seems that L1 controller has no way
   1443 			 * to tell hardware to strip CRC bytes.
   1444 			 */
   1445 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1446 			if (nsegs > 1) {
   1447 				/* Remove the CRC bytes in chained mbufs. */
   1448 				pktlen -= ETHER_CRC_LEN;
   1449 				if (mp->m_len <= ETHER_CRC_LEN) {
   1450 					sc->age_cdata.age_rxtail =
   1451 					    sc->age_cdata.age_rxprev_tail;
   1452 					sc->age_cdata.age_rxtail->m_len -=
   1453 					    (ETHER_CRC_LEN - mp->m_len);
   1454 					sc->age_cdata.age_rxtail->m_next = NULL;
   1455 					m_freem(mp);
   1456 				} else {
   1457 					mp->m_len -= ETHER_CRC_LEN;
   1458 				}
   1459 			}
   1460 
   1461 			m = sc->age_cdata.age_rxhead;
   1462 			KASSERT(m->m_flags & M_PKTHDR);
   1463 			m_set_rcvif(m, ifp);
   1464 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1465 			/* Set the first mbuf length. */
   1466 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1467 
   1468 			/*
   1469 			 * Set checksum information.
   1470 			 * It seems that L1 controller can compute partial
   1471 			 * checksum. The partial checksum value can be used
   1472 			 * to accelerate checksum computation for fragmented
   1473 			 * TCP/UDP packets. Upper network stack already
   1474 			 * takes advantage of the partial checksum value in
   1475 			 * IP reassembly stage. But I'm not sure the
   1476 			 * correctness of the partial hardware checksum
   1477 			 * assistance due to lack of data sheet. If it is
   1478 			 * proven to work on L1 I'll enable it.
   1479 			 */
   1480 			if (status & AGE_RRD_IPV4) {
   1481 				if (status & AGE_RRD_IPCSUM_NOK)
   1482 					m->m_pkthdr.csum_flags |=
   1483 					    M_CSUM_IPv4_BAD;
   1484 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1485 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1486 					m->m_pkthdr.csum_flags |=
   1487 					    M_CSUM_TCP_UDP_BAD;
   1488 				}
   1489 				/*
   1490 				 * Don't mark bad checksum for TCP/UDP frames
   1491 				 * as fragmented frames may always have set
   1492 				 * bad checksummed bit of descriptor status.
   1493 				 */
   1494 			}
   1495 #if NVLAN > 0
   1496 			/* Check for VLAN tagged frames. */
   1497 			if (status & AGE_RRD_VLAN) {
   1498 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1499 				vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
   1500 			}
   1501 #endif
   1502 
   1503 			/* Pass it on. */
   1504 			if_percpuq_enqueue(ifp->if_percpuq, m);
   1505 
   1506 			/* Reset mbuf chains. */
   1507 			AGE_RXCHAIN_RESET(sc);
   1508 		}
   1509 	}
   1510 
   1511 	if (count != nsegs) {
   1512 		sc->age_cdata.age_rx_cons += nsegs;
   1513 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1514 	} else
   1515 		sc->age_cdata.age_rx_cons = rx_cons;
   1516 }
   1517 
   1518 static void
   1519 age_rxintr(struct age_softc *sc, int rr_prod)
   1520 {
   1521 	struct rx_rdesc *rxrd;
   1522 	int rr_cons, nsegs, pktlen, prog;
   1523 
   1524 	rr_cons = sc->age_cdata.age_rr_cons;
   1525 	if (rr_cons == rr_prod)
   1526 		return;
   1527 
   1528 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1529 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1530 	    BUS_DMASYNC_POSTREAD);
   1531 
   1532 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1533 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1534 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1535 		if (nsegs == 0)
   1536 			break;
   1537 		/*
   1538 		 * Check number of segments against received bytes
   1539 		 * Non-matching value would indicate that hardware
   1540 		 * is still trying to update Rx return descriptors.
   1541 		 * I'm not sure whether this check is really needed.
   1542 		 */
   1543 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1544 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1545 		    (MCLBYTES - ETHER_ALIGN)))
   1546 			break;
   1547 
   1548 		/* Received a frame. */
   1549 		age_rxeof(sc, rxrd);
   1550 
   1551 		/* Clear return ring. */
   1552 		rxrd->index = 0;
   1553 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1554 	}
   1555 
   1556 	if (prog > 0) {
   1557 		/* Update the consumer index. */
   1558 		sc->age_cdata.age_rr_cons = rr_cons;
   1559 
   1560 		/* Sync descriptors. */
   1561 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1562 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1563 		    BUS_DMASYNC_PREWRITE);
   1564 
   1565 		/* Notify hardware availability of new Rx buffers. */
   1566 		AGE_COMMIT_MBOX(sc);
   1567 	}
   1568 }
   1569 
   1570 static void
   1571 age_tick(void *xsc)
   1572 {
   1573 	struct age_softc *sc = xsc;
   1574 	struct mii_data *mii = &sc->sc_miibus;
   1575 	int s;
   1576 
   1577 	s = splnet();
   1578 	mii_tick(mii);
   1579 	splx(s);
   1580 
   1581 	callout_schedule(&sc->sc_tick_ch, hz);
   1582 }
   1583 
   1584 static void
   1585 age_reset(struct age_softc *sc)
   1586 {
   1587 	uint32_t reg;
   1588 	int i;
   1589 
   1590 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1591 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1592 	DELAY(1000);
   1593 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1594 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1595 			break;
   1596 		DELAY(10);
   1597 	}
   1598 
   1599 	if (i == 0)
   1600 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1601 		    reg);
   1602 
   1603 	/* Initialize PCIe module. From Linux. */
   1604 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1605 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1606 }
   1607 
   1608 static int
   1609 age_init(struct ifnet *ifp)
   1610 {
   1611 	struct age_softc *sc = ifp->if_softc;
   1612 	struct mii_data *mii;
   1613 	uint8_t eaddr[ETHER_ADDR_LEN];
   1614 	bus_addr_t paddr;
   1615 	uint32_t reg, fsize;
   1616 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1617 	int error;
   1618 
   1619 	/*
   1620 	 * Cancel any pending I/O.
   1621 	 */
   1622 	age_stop(ifp, 0);
   1623 
   1624 	/*
   1625 	 * Reset the chip to a known state.
   1626 	 */
   1627 	age_reset(sc);
   1628 
   1629 	/* Initialize descriptors. */
   1630 	error = age_init_rx_ring(sc);
   1631         if (error != 0) {
   1632 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1633 		age_stop(ifp, 0);
   1634 		return error;
   1635         }
   1636 	age_init_rr_ring(sc);
   1637 	age_init_tx_ring(sc);
   1638 	age_init_cmb_block(sc);
   1639 	age_init_smb_block(sc);
   1640 
   1641 	/* Reprogram the station address. */
   1642 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1643 	CSR_WRITE_4(sc, AGE_PAR0,
   1644 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1645 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1646 
   1647 	/* Set descriptor base addresses. */
   1648 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1649 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1650 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1651 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1652 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1653 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1654 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1655 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1656 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1657 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1658 	paddr = sc->age_rdata.age_smb_block_paddr;
   1659 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1660 
   1661 	/* Set Rx/Rx return descriptor counter. */
   1662 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1663 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1664 	    DESC_RRD_CNT_MASK) |
   1665 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1666 
   1667 	/* Set Tx descriptor counter. */
   1668 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1669 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1670 
   1671 	/* Tell hardware that we're ready to load descriptors. */
   1672 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1673 
   1674         /*
   1675 	 * Initialize mailbox register.
   1676 	 * Updated producer/consumer index information is exchanged
   1677 	 * through this mailbox register. However Tx producer and
   1678 	 * Rx return consumer/Rx producer are all shared such that
   1679 	 * it's hard to separate code path between Tx and Rx without
   1680 	 * locking. If L1 hardware have a separate mail box register
   1681 	 * for Tx and Rx consumer/producer management we could have
   1682 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1683 	 * been run without any locking.
   1684 	*/
   1685 	AGE_COMMIT_MBOX(sc);
   1686 
   1687 	/* Configure IPG/IFG parameters. */
   1688 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1689 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1690 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1691 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1692 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1693 
   1694 	/* Set parameters for half-duplex media. */
   1695 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1696 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1697 	    HDPX_CFG_LCOL_MASK) |
   1698 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1699 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1700 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1701 	    HDPX_CFG_ABEBT_MASK) |
   1702 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1703 	     HDPX_CFG_JAMIPG_MASK));
   1704 
   1705 	/* Configure interrupt moderation timer. */
   1706 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1707 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1708 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1709 	reg &= ~MASTER_MTIMER_ENB;
   1710 	if (AGE_USECS(sc->age_int_mod) == 0)
   1711 		reg &= ~MASTER_ITIMER_ENB;
   1712 	else
   1713 		reg |= MASTER_ITIMER_ENB;
   1714 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1715 	if (agedebug)
   1716 		printf("%s: interrupt moderation is %d us.\n",
   1717 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1718 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1719 
   1720 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1721 	if (ifp->if_mtu < ETHERMTU)
   1722 		sc->age_max_frame_size = ETHERMTU;
   1723 	else
   1724 		sc->age_max_frame_size = ifp->if_mtu;
   1725 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1726 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1727 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1728 
   1729 	/* Configure jumbo frame. */
   1730 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1731 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1732 	    (((fsize / sizeof(uint64_t)) <<
   1733 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1734 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1735 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1736 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1737 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1738 
   1739 	/* Configure flow-control parameters. From Linux. */
   1740 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1741 		/*
   1742 		 * Magic workaround for old-L1.
   1743 		 * Don't know which hw revision requires this magic.
   1744 		 */
   1745 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1746 		/*
   1747 		 * Another magic workaround for flow-control mode
   1748 		 * change. From Linux.
   1749 		 */
   1750 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1751 	}
   1752 	/*
   1753 	 * TODO
   1754 	 *  Should understand pause parameter relationships between FIFO
   1755 	 *  size and number of Rx descriptors and Rx return descriptors.
   1756 	 *
   1757 	 *  Magic parameters came from Linux.
   1758 	 */
   1759 	switch (sc->age_chip_rev) {
   1760 	case 0x8001:
   1761 	case 0x9001:
   1762 	case 0x9002:
   1763 	case 0x9003:
   1764 		rxf_hi = AGE_RX_RING_CNT / 16;
   1765 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1766 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1767 		rrd_lo = AGE_RR_RING_CNT / 16;
   1768 		break;
   1769 	default:
   1770 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1771 		rxf_lo = reg / 16;
   1772 		if (rxf_lo < 192)
   1773 			rxf_lo = 192;
   1774 		rxf_hi = (reg * 7) / 8;
   1775 		if (rxf_hi < rxf_lo)
   1776 			rxf_hi = rxf_lo + 16;
   1777 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1778 		rrd_lo = reg / 8;
   1779 		rrd_hi = (reg * 7) / 8;
   1780 		if (rrd_lo < 2)
   1781 			rrd_lo = 2;
   1782 		if (rrd_hi < rrd_lo)
   1783 			rrd_hi = rrd_lo + 3;
   1784 		break;
   1785 	}
   1786 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1787 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1788 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1789 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1790 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1791 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1792 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1793 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1794 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1795 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1796 
   1797 	/* Configure RxQ. */
   1798 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1799 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1800 	    RXQ_CFG_RD_BURST_MASK) |
   1801 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1802 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1803 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1804 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1805 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1806 
   1807 	/* Configure TxQ. */
   1808 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1809 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1810 	    TXQ_CFG_TPD_BURST_MASK) |
   1811 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1812 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1813 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1814 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1815 	    TXQ_CFG_ENB);
   1816 
   1817 	/* Configure DMA parameters. */
   1818 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1819 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1820 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1821 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1822 
   1823 	/* Configure CMB DMA write threshold. */
   1824 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1825 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1826 	    CMB_WR_THRESH_RRD_MASK) |
   1827 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1828 	    CMB_WR_THRESH_TPD_MASK));
   1829 
   1830 	/* Set CMB/SMB timer and enable them. */
   1831 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1832 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1833 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1834 
   1835 	/* Request SMB updates for every seconds. */
   1836 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1837 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1838 
   1839 	/*
   1840 	 * Disable all WOL bits as WOL can interfere normal Rx
   1841 	 * operation.
   1842 	 */
   1843 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1844 
   1845         /*
   1846 	 * Configure Tx/Rx MACs.
   1847 	 *  - Auto-padding for short frames.
   1848 	 *  - Enable CRC generation.
   1849 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1850 	 *  of MAC is followed after link establishment.
   1851 	 */
   1852 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1853 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1854 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1855 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1856 	    MAC_CFG_PREAMBLE_MASK));
   1857 
   1858 	/* Set up the receive filter. */
   1859 	age_rxfilter(sc);
   1860 	age_rxvlan(sc);
   1861 
   1862 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1863 	reg |= MAC_CFG_RXCSUM_ENB;
   1864 
   1865 	/* Ack all pending interrupts and clear it. */
   1866 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1867 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1868 
   1869 	/* Finally enable Tx/Rx MAC. */
   1870 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1871 
   1872 	sc->age_flags &= ~AGE_FLAG_LINK;
   1873 
   1874 	/* Switch to the current media. */
   1875 	mii = &sc->sc_miibus;
   1876 	mii_mediachg(mii);
   1877 
   1878 	callout_schedule(&sc->sc_tick_ch, hz);
   1879 
   1880 	ifp->if_flags |= IFF_RUNNING;
   1881 	ifp->if_flags &= ~IFF_OACTIVE;
   1882 
   1883 	return 0;
   1884 }
   1885 
   1886 static void
   1887 age_stop(struct ifnet *ifp, int disable)
   1888 {
   1889 	struct age_softc *sc = ifp->if_softc;
   1890 	struct age_txdesc *txd;
   1891 	struct age_rxdesc *rxd;
   1892 	uint32_t reg;
   1893 	int i;
   1894 
   1895 	callout_stop(&sc->sc_tick_ch);
   1896 
   1897 	/*
   1898 	 * Mark the interface down and cancel the watchdog timer.
   1899 	 */
   1900 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1901 	ifp->if_timer = 0;
   1902 
   1903 	sc->age_flags &= ~AGE_FLAG_LINK;
   1904 
   1905 	mii_down(&sc->sc_miibus);
   1906 
   1907 	/*
   1908 	 * Disable interrupts.
   1909 	 */
   1910 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1911 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1912 
   1913 	/* Stop CMB/SMB updates. */
   1914 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1915 
   1916 	/* Stop Rx/Tx MAC. */
   1917 	age_stop_rxmac(sc);
   1918 	age_stop_txmac(sc);
   1919 
   1920 	/* Stop DMA. */
   1921 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1922 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1923 
   1924 	/* Stop TxQ/RxQ. */
   1925 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1926 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1927 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1928 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1929 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1930 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1931 			break;
   1932 		DELAY(10);
   1933 	}
   1934 	if (i == 0)
   1935 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1936 		    device_xname(sc->sc_dev), reg);
   1937 
   1938 	/* Reclaim Rx buffers that have been processed. */
   1939 	if (sc->age_cdata.age_rxhead != NULL)
   1940 		m_freem(sc->age_cdata.age_rxhead);
   1941 	AGE_RXCHAIN_RESET(sc);
   1942 
   1943 	/*
   1944 	 * Free RX and TX mbufs still in the queues.
   1945 	 */
   1946 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1947 		rxd = &sc->age_cdata.age_rxdesc[i];
   1948 		if (rxd->rx_m != NULL) {
   1949 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1950 			m_freem(rxd->rx_m);
   1951 			rxd->rx_m = NULL;
   1952 		}
   1953 	}
   1954 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1955 		txd = &sc->age_cdata.age_txdesc[i];
   1956 		if (txd->tx_m != NULL) {
   1957 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1958 			m_freem(txd->tx_m);
   1959 			txd->tx_m = NULL;
   1960 		}
   1961 	}
   1962 }
   1963 
   1964 static void
   1965 age_stats_update(struct age_softc *sc)
   1966 {
   1967 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1968 	struct age_stats *stat;
   1969 	struct smb *smb;
   1970 
   1971 	stat = &sc->age_stat;
   1972 
   1973 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1974 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   1975 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1976 
   1977 	smb = sc->age_rdata.age_smb_block;
   1978 	if (smb->updated == 0)
   1979 		return;
   1980 
   1981 	/* Rx stats. */
   1982 	stat->rx_frames += smb->rx_frames;
   1983 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1984 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1985 	stat->rx_pause_frames += smb->rx_pause_frames;
   1986 	stat->rx_control_frames += smb->rx_control_frames;
   1987 	stat->rx_crcerrs += smb->rx_crcerrs;
   1988 	stat->rx_lenerrs += smb->rx_lenerrs;
   1989 	stat->rx_bytes += smb->rx_bytes;
   1990 	stat->rx_runts += smb->rx_runts;
   1991 	stat->rx_fragments += smb->rx_fragments;
   1992 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1993 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1994 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1995 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1996 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1997 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1998 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1999 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2000 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2001 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2002 	stat->rx_alignerrs += smb->rx_alignerrs;
   2003 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2004 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2005 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2006 
   2007 	/* Tx stats. */
   2008 	stat->tx_frames += smb->tx_frames;
   2009 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2010 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2011 	stat->tx_pause_frames += smb->tx_pause_frames;
   2012 	stat->tx_excess_defer += smb->tx_excess_defer;
   2013 	stat->tx_control_frames += smb->tx_control_frames;
   2014 	stat->tx_deferred += smb->tx_deferred;
   2015 	stat->tx_bytes += smb->tx_bytes;
   2016 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2017 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2018 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2019 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2020 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2021 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2022 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2023 	stat->tx_single_colls += smb->tx_single_colls;
   2024 	stat->tx_multi_colls += smb->tx_multi_colls;
   2025 	stat->tx_late_colls += smb->tx_late_colls;
   2026 	stat->tx_excess_colls += smb->tx_excess_colls;
   2027 	stat->tx_underrun += smb->tx_underrun;
   2028 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2029 	stat->tx_lenerrs += smb->tx_lenerrs;
   2030 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2031 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2032 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2033 
   2034 	/* Update counters in ifnet. */
   2035 	ifp->if_opackets += smb->tx_frames;
   2036 
   2037 	ifp->if_collisions += smb->tx_single_colls +
   2038 	    smb->tx_multi_colls + smb->tx_late_colls +
   2039 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2040 
   2041 	ifp->if_oerrors += smb->tx_excess_colls +
   2042 	    smb->tx_late_colls + smb->tx_underrun +
   2043 	    smb->tx_pkts_truncated;
   2044 
   2045 	ifp->if_ipackets += smb->rx_frames;
   2046 
   2047 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2048 	    smb->rx_runts + smb->rx_pkts_truncated +
   2049 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2050 	    smb->rx_alignerrs;
   2051 
   2052 	/* Update done, clear. */
   2053 	smb->updated = 0;
   2054 
   2055 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2056 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   2057 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2058 }
   2059 
   2060 static void
   2061 age_stop_txmac(struct age_softc *sc)
   2062 {
   2063 	uint32_t reg;
   2064 	int i;
   2065 
   2066 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2067 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2068 		reg &= ~MAC_CFG_TX_ENB;
   2069 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2070 	}
   2071 	/* Stop Tx DMA engine. */
   2072 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2073 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2074 		reg &= ~DMA_CFG_RD_ENB;
   2075 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2076 	}
   2077 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2078 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2079 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2080 			break;
   2081 		DELAY(10);
   2082 	}
   2083 	if (i == 0)
   2084 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2085 }
   2086 
   2087 static void
   2088 age_stop_rxmac(struct age_softc *sc)
   2089 {
   2090 	uint32_t reg;
   2091 	int i;
   2092 
   2093 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2094 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2095 		reg &= ~MAC_CFG_RX_ENB;
   2096 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2097 	}
   2098 	/* Stop Rx DMA engine. */
   2099 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2100 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2101 		reg &= ~DMA_CFG_WR_ENB;
   2102 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2103 	}
   2104 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2105 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2106 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2107 			break;
   2108 		DELAY(10);
   2109 	}
   2110 	if (i == 0)
   2111 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2112 }
   2113 
   2114 static void
   2115 age_init_tx_ring(struct age_softc *sc)
   2116 {
   2117 	struct age_ring_data *rd;
   2118 	struct age_txdesc *txd;
   2119 	int i;
   2120 
   2121 	sc->age_cdata.age_tx_prod = 0;
   2122 	sc->age_cdata.age_tx_cons = 0;
   2123 	sc->age_cdata.age_tx_cnt = 0;
   2124 
   2125 	rd = &sc->age_rdata;
   2126 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2127 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2128 		txd = &sc->age_cdata.age_txdesc[i];
   2129 		txd->tx_desc = &rd->age_tx_ring[i];
   2130 		txd->tx_m = NULL;
   2131 	}
   2132 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2133 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2134 }
   2135 
   2136 static int
   2137 age_init_rx_ring(struct age_softc *sc)
   2138 {
   2139 	struct age_ring_data *rd;
   2140 	struct age_rxdesc *rxd;
   2141 	int i;
   2142 
   2143 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2144 	rd = &sc->age_rdata;
   2145 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2146 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2147 		rxd = &sc->age_cdata.age_rxdesc[i];
   2148 		rxd->rx_m = NULL;
   2149 		rxd->rx_desc = &rd->age_rx_ring[i];
   2150 		if (age_newbuf(sc, rxd, 1) != 0)
   2151 			return ENOBUFS;
   2152 	}
   2153 
   2154 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2155 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2156 
   2157 	return 0;
   2158 }
   2159 
   2160 static void
   2161 age_init_rr_ring(struct age_softc *sc)
   2162 {
   2163 	struct age_ring_data *rd;
   2164 
   2165 	sc->age_cdata.age_rr_cons = 0;
   2166 	AGE_RXCHAIN_RESET(sc);
   2167 
   2168 	rd = &sc->age_rdata;
   2169 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2170 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2171 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2172 }
   2173 
   2174 static void
   2175 age_init_cmb_block(struct age_softc *sc)
   2176 {
   2177 	struct age_ring_data *rd;
   2178 
   2179 	rd = &sc->age_rdata;
   2180 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2181 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2182 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
   2183 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2184 }
   2185 
   2186 static void
   2187 age_init_smb_block(struct age_softc *sc)
   2188 {
   2189 	struct age_ring_data *rd;
   2190 
   2191 	rd = &sc->age_rdata;
   2192 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2193 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2194 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2195 }
   2196 
   2197 static int
   2198 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2199 {
   2200 	struct rx_desc *desc;
   2201 	struct mbuf *m;
   2202 	bus_dmamap_t map;
   2203 	int error;
   2204 
   2205 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2206 	if (m == NULL)
   2207 		return ENOBUFS;
   2208 	MCLGET(m, M_DONTWAIT);
   2209 	if (!(m->m_flags & M_EXT)) {
   2210 		 m_freem(m);
   2211 		 return ENOBUFS;
   2212 	}
   2213 
   2214 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2215 	m_adj(m, ETHER_ALIGN);
   2216 
   2217 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2218 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2219 
   2220 	if (error != 0) {
   2221 		m_freem(m);
   2222 
   2223 		if (init)
   2224 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2225 		return error;
   2226 	}
   2227 
   2228 	if (rxd->rx_m != NULL) {
   2229 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2230 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2231 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2232 	}
   2233 	map = rxd->rx_dmamap;
   2234 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2235 	sc->age_cdata.age_rx_sparemap = map;
   2236 	rxd->rx_m = m;
   2237 
   2238 	desc = rxd->rx_desc;
   2239 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2240 	desc->len =
   2241 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2242 	    AGE_RD_LEN_SHIFT);
   2243 
   2244 	return 0;
   2245 }
   2246 
   2247 static void
   2248 age_rxvlan(struct age_softc *sc)
   2249 {
   2250 	uint32_t reg;
   2251 
   2252 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2253 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2254 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2255 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2256 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2257 }
   2258 
   2259 static void
   2260 age_rxfilter(struct age_softc *sc)
   2261 {
   2262 	struct ethercom *ec = &sc->sc_ec;
   2263 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2264 	struct ether_multi *enm;
   2265 	struct ether_multistep step;
   2266 	uint32_t crc;
   2267 	uint32_t mchash[2];
   2268 	uint32_t rxcfg;
   2269 
   2270 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2271 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2272 	ifp->if_flags &= ~IFF_ALLMULTI;
   2273 
   2274 	/*
   2275 	 * Always accept broadcast frames.
   2276 	 */
   2277 	rxcfg |= MAC_CFG_BCAST;
   2278 
   2279 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2280 		ifp->if_flags |= IFF_ALLMULTI;
   2281 		if (ifp->if_flags & IFF_PROMISC)
   2282 			rxcfg |= MAC_CFG_PROMISC;
   2283 		else
   2284 			rxcfg |= MAC_CFG_ALLMULTI;
   2285 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2286 	} else {
   2287 		/* Program new filter. */
   2288 		memset(mchash, 0, sizeof(mchash));
   2289 
   2290 		ETHER_FIRST_MULTI(step, ec, enm);
   2291 		while (enm != NULL) {
   2292 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2293 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2294 			ETHER_NEXT_MULTI(step, enm);
   2295 		}
   2296 	}
   2297 
   2298 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2299 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2300 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2301 }
   2302