if_age.c revision 1.54 1 /* $NetBSD: if_age.c,v 1.54 2018/12/09 11:14:02 jdolecek Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.54 2018/12/09 11:14:02 jdolecek Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/if_agereg.h>
76
77 static int age_match(device_t, cfdata_t, void *);
78 static void age_attach(device_t, device_t, void *);
79 static int age_detach(device_t, int);
80
81 static bool age_resume(device_t, const pmf_qual_t *);
82
83 static int age_miibus_readreg(device_t, int, int);
84 static void age_miibus_writereg(device_t, int, int, int);
85 static void age_miibus_statchg(struct ifnet *);
86
87 static int age_init(struct ifnet *);
88 static int age_ioctl(struct ifnet *, u_long, void *);
89 static void age_start(struct ifnet *);
90 static void age_watchdog(struct ifnet *);
91 static bool age_shutdown(device_t, int);
92 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int age_mediachange(struct ifnet *);
94
95 static int age_intr(void *);
96 static int age_dma_alloc(struct age_softc *);
97 static void age_dma_free(struct age_softc *);
98 static void age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void age_phy_reset(struct age_softc *);
100
101 static int age_encap(struct age_softc *, struct mbuf **);
102 static void age_init_tx_ring(struct age_softc *);
103 static int age_init_rx_ring(struct age_softc *);
104 static void age_init_rr_ring(struct age_softc *);
105 static void age_init_cmb_block(struct age_softc *);
106 static void age_init_smb_block(struct age_softc *);
107 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void age_mac_config(struct age_softc *);
109 static void age_txintr(struct age_softc *, int);
110 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void age_rxintr(struct age_softc *, int);
112 static void age_tick(void *);
113 static void age_reset(struct age_softc *);
114 static void age_stop(struct ifnet *, int);
115 static void age_stats_update(struct age_softc *);
116 static void age_stop_txmac(struct age_softc *);
117 static void age_stop_rxmac(struct age_softc *);
118 static void age_rxvlan(struct age_softc *sc);
119 static void age_rxfilter(struct age_softc *);
120
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122 age_match, age_attach, age_detach, NULL);
123
124 int agedebug = 0;
125 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
126
127 #define ETHER_ALIGN 2
128 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
129
130 static int
131 age_match(device_t dev, cfdata_t match, void *aux)
132 {
133 struct pci_attach_args *pa = aux;
134
135 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
136 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
137 }
138
139 static void
140 age_attach(device_t parent, device_t self, void *aux)
141 {
142 struct age_softc *sc = device_private(self);
143 struct pci_attach_args *pa = aux;
144 pci_intr_handle_t ih;
145 const char *intrstr;
146 struct ifnet *ifp = &sc->sc_ec.ec_if;
147 pcireg_t memtype;
148 int error = 0;
149 char intrbuf[PCI_INTRSTR_LEN];
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_dmat = pa->pa_dmat;
156 sc->sc_pct = pa->pa_pc;
157 sc->sc_pcitag = pa->pa_tag;
158
159 /*
160 * Allocate IO memory
161 */
162 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
163 switch (memtype) {
164 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
167 break;
168 default:
169 aprint_error_dev(self, "invalid base address register\n");
170 break;
171 }
172
173 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
174 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
175 aprint_error_dev(self, "could not map mem space\n");
176 return;
177 }
178
179 if (pci_intr_map(pa, &ih) != 0) {
180 aprint_error_dev(self, "could not map interrupt\n");
181 goto fail;
182 }
183
184 /*
185 * Allocate IRQ
186 */
187 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
188 sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
189 age_intr, sc, device_xname(self));
190 if (sc->sc_irq_handle == NULL) {
191 aprint_error_dev(self, "could not establish interrupt");
192 if (intrstr != NULL)
193 aprint_error(" at %s", intrstr);
194 aprint_error("\n");
195 goto fail;
196 }
197 aprint_normal_dev(self, "%s\n", intrstr);
198
199 /* Set PHY address. */
200 sc->age_phyaddr = AGE_PHY_ADDR;
201
202 /* Reset PHY. */
203 age_phy_reset(sc);
204
205 /* Reset the ethernet controller. */
206 age_reset(sc);
207
208 /* Get PCI and chip id/revision. */
209 sc->age_rev = PCI_REVISION(pa->pa_class);
210 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
211 MASTER_CHIP_REV_SHIFT;
212
213 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
214 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
215
216 if (agedebug) {
217 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
218 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
219 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
220 }
221
222 /* Set max allowable DMA size. */
223 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
224 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
225
226 /* Allocate DMA stuffs */
227 error = age_dma_alloc(sc);
228 if (error)
229 goto fail;
230
231 callout_init(&sc->sc_tick_ch, 0);
232 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
233
234 /* Load station address. */
235 age_get_macaddr(sc, sc->sc_enaddr);
236
237 aprint_normal_dev(self, "Ethernet address %s\n",
238 ether_sprintf(sc->sc_enaddr));
239
240 ifp->if_softc = sc;
241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
242 ifp->if_init = age_init;
243 ifp->if_ioctl = age_ioctl;
244 ifp->if_start = age_start;
245 ifp->if_stop = age_stop;
246 ifp->if_watchdog = age_watchdog;
247 ifp->if_baudrate = IF_Gbps(1);
248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 IFQ_SET_READY(&ifp->if_snd);
250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251
252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253
254 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
255 IFCAP_CSUM_TCPv4_Rx |
256 IFCAP_CSUM_UDPv4_Rx;
257 #ifdef AGE_CHECKSUM
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
259 IFCAP_CSUM_TCPv4_Tx |
260 IFCAP_CSUM_UDPv4_Tx;
261 #endif
262
263 #if NVLAN > 0
264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266
267 /* Set up MII bus. */
268 sc->sc_miibus.mii_ifp = ifp;
269 sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 sc->sc_miibus.mii_statchg = age_miibus_statchg;
272
273 sc->sc_ec.ec_mii = &sc->sc_miibus;
274 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
275 age_mediastatus);
276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 MII_OFFSET_ANY, MIIF_DOPAUSE);
278
279 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
280 aprint_error_dev(self, "no PHY found!\n");
281 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
282 0, NULL);
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
284 } else
285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
286
287 if_attach(ifp);
288 if_deferred_start_init(ifp, NULL);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
292 pmf_class_network_register(self, ifp);
293 else
294 aprint_error_dev(self, "couldn't establish power handler\n");
295
296 return;
297
298 fail:
299 age_dma_free(sc);
300 if (sc->sc_irq_handle != NULL) {
301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 sc->sc_irq_handle = NULL;
303 }
304 if (sc->sc_mem_size) {
305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 sc->sc_mem_size = 0;
307 }
308 }
309
310 static int
311 age_detach(device_t self, int flags)
312 {
313 struct age_softc *sc = device_private(self);
314 struct ifnet *ifp = &sc->sc_ec.ec_if;
315 int s;
316
317 pmf_device_deregister(self);
318 s = splnet();
319 age_stop(ifp, 0);
320 splx(s);
321
322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323
324 /* Delete all remaining media. */
325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 if (sc->sc_irq_handle != NULL) {
332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 sc->sc_irq_handle = NULL;
334 }
335 if (sc->sc_mem_size) {
336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 sc->sc_mem_size = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Read a PHY register on the MII of the L1.
344 */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 struct age_softc *sc = device_private(dev);
349 uint32_t v;
350 int i;
351
352 if (phy != sc->age_phyaddr)
353 return 0;
354
355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 DELAY(1);
359 v = CSR_READ_4(sc, AGE_MDIO);
360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 break;
362 }
363
364 if (i == 0) {
365 printf("%s: phy read timeout: phy %d, reg %d\n",
366 device_xname(sc->sc_dev), phy, reg);
367 return 0;
368 }
369
370 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372
373 /*
374 * Write a PHY register on the MII of the L1.
375 */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 struct age_softc *sc = device_private(dev);
380 uint32_t v;
381 int i;
382
383 if (phy != sc->age_phyaddr)
384 return;
385
386 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389
390 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 DELAY(1);
392 v = CSR_READ_4(sc, AGE_MDIO);
393 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 break;
395 }
396
397 if (i == 0) {
398 printf("%s: phy write timeout: phy %d, reg %d\n",
399 device_xname(sc->sc_dev), phy, reg);
400 }
401 }
402
403 /*
404 * Callback from MII layer when media changes.
405 */
406 static void
407 age_miibus_statchg(struct ifnet *ifp)
408 {
409 struct age_softc *sc = ifp->if_softc;
410 struct mii_data *mii = &sc->sc_miibus;
411
412 if ((ifp->if_flags & IFF_RUNNING) == 0)
413 return;
414
415 sc->age_flags &= ~AGE_FLAG_LINK;
416 if ((mii->mii_media_status & IFM_AVALID) != 0) {
417 switch (IFM_SUBTYPE(mii->mii_media_active)) {
418 case IFM_10_T:
419 case IFM_100_TX:
420 case IFM_1000_T:
421 sc->age_flags |= AGE_FLAG_LINK;
422 break;
423 default:
424 break;
425 }
426 }
427
428 /* Stop Rx/Tx MACs. */
429 age_stop_rxmac(sc);
430 age_stop_txmac(sc);
431
432 /* Program MACs with resolved speed/duplex/flow-control. */
433 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
434 uint32_t reg;
435
436 age_mac_config(sc);
437 reg = CSR_READ_4(sc, AGE_MAC_CFG);
438 /* Restart DMA engine and Tx/Rx MAC. */
439 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
440 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
441 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
442 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
443 }
444 }
445
446 /*
447 * Get the current interface media status.
448 */
449 static void
450 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
451 {
452 struct age_softc *sc = ifp->if_softc;
453 struct mii_data *mii = &sc->sc_miibus;
454
455 mii_pollstat(mii);
456 ifmr->ifm_status = mii->mii_media_status;
457 ifmr->ifm_active = mii->mii_media_active;
458 }
459
460 /*
461 * Set hardware to newly-selected media.
462 */
463 static int
464 age_mediachange(struct ifnet *ifp)
465 {
466 struct age_softc *sc = ifp->if_softc;
467 struct mii_data *mii = &sc->sc_miibus;
468 int error;
469
470 if (mii->mii_instance != 0) {
471 struct mii_softc *miisc;
472
473 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
474 mii_phy_reset(miisc);
475 }
476 error = mii_mediachg(mii);
477
478 return error;
479 }
480
481 static int
482 age_intr(void *arg)
483 {
484 struct age_softc *sc = arg;
485 struct ifnet *ifp = &sc->sc_ec.ec_if;
486 struct cmb *cmb;
487 uint32_t status;
488
489 status = CSR_READ_4(sc, AGE_INTR_STATUS);
490 if (status == 0 || (status & AGE_INTRS) == 0)
491 return 0;
492
493 cmb = sc->age_rdata.age_cmb_block;
494 if (cmb == NULL) {
495 /* Happens when bringing up the interface
496 * w/o having a carrier. Ack the interrupt.
497 */
498 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
499 return 0;
500 }
501
502 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
503 sc->age_cdata.age_cmb_block_map->dm_mapsize,
504 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
505 status = le32toh(cmb->intr_status);
506 /* ACK/reenable interrupts */
507 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
508 while ((status & AGE_INTRS) != 0) {
509 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
510 TPD_CONS_SHIFT;
511 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
512 RRD_PROD_SHIFT;
513
514 /* Let hardware know CMB was served. */
515 cmb->intr_status = 0;
516 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
517 sc->age_cdata.age_cmb_block_map->dm_mapsize,
518 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519
520 if (ifp->if_flags & IFF_RUNNING) {
521 if (status & INTR_CMB_RX)
522 age_rxintr(sc, sc->age_rr_prod);
523
524 if (status & INTR_CMB_TX)
525 age_txintr(sc, sc->age_tpd_cons);
526
527 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
528 if (status & INTR_DMA_RD_TO_RST)
529 printf("%s: DMA read error! -- "
530 "resetting\n",
531 device_xname(sc->sc_dev));
532 if (status & INTR_DMA_WR_TO_RST)
533 printf("%s: DMA write error! -- "
534 "resetting\n",
535 device_xname(sc->sc_dev));
536 age_init(ifp);
537 }
538
539 if_schedule_deferred_start(ifp);
540
541 if (status & INTR_SMB)
542 age_stats_update(sc);
543 }
544 /* check if more interrupts did came in */
545 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
546 sc->age_cdata.age_cmb_block_map->dm_mapsize,
547 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
548 status = le32toh(cmb->intr_status);
549 }
550
551 return 1;
552 }
553
554 static void
555 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
556 {
557 uint32_t ea[2], reg;
558 int i, vpdc;
559
560 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
561 if ((reg & SPI_VPD_ENB) != 0) {
562 /* Get VPD stored in TWSI EEPROM. */
563 reg &= ~SPI_VPD_ENB;
564 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
565 }
566
567 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
568 PCI_CAP_VPD, &vpdc, NULL)) {
569 /*
570 * PCI VPD capability found, let TWSI reload EEPROM.
571 * This will set Ethernet address of controller.
572 */
573 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
574 TWSI_CTRL_SW_LD_START);
575 for (i = 100; i > 0; i++) {
576 DELAY(1000);
577 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
578 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
579 break;
580 }
581 if (i == 0)
582 printf("%s: reloading EEPROM timeout!\n",
583 device_xname(sc->sc_dev));
584 } else {
585 if (agedebug)
586 printf("%s: PCI VPD capability not found!\n",
587 device_xname(sc->sc_dev));
588 }
589
590 ea[0] = CSR_READ_4(sc, AGE_PAR0);
591 ea[1] = CSR_READ_4(sc, AGE_PAR1);
592
593 eaddr[0] = (ea[1] >> 8) & 0xFF;
594 eaddr[1] = (ea[1] >> 0) & 0xFF;
595 eaddr[2] = (ea[0] >> 24) & 0xFF;
596 eaddr[3] = (ea[0] >> 16) & 0xFF;
597 eaddr[4] = (ea[0] >> 8) & 0xFF;
598 eaddr[5] = (ea[0] >> 0) & 0xFF;
599 }
600
601 static void
602 age_phy_reset(struct age_softc *sc)
603 {
604 uint16_t reg, pn;
605 int i, linkup;
606
607 /* Reset PHY. */
608 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
609 DELAY(2000);
610 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
611 DELAY(2000);
612
613 #define ATPHY_DBG_ADDR 0x1D
614 #define ATPHY_DBG_DATA 0x1E
615 #define ATPHY_CDTC 0x16
616 #define PHY_CDTC_ENB 0x0001
617 #define PHY_CDTC_POFF 8
618 #define ATPHY_CDTS 0x1C
619 #define PHY_CDTS_STAT_OK 0x0000
620 #define PHY_CDTS_STAT_SHORT 0x0100
621 #define PHY_CDTS_STAT_OPEN 0x0200
622 #define PHY_CDTS_STAT_INVAL 0x0300
623 #define PHY_CDTS_STAT_MASK 0x0300
624
625 /* Check power saving mode. Magic from Linux. */
626 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
627 for (linkup = 0, pn = 0; pn < 4; pn++) {
628 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
629 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
630 for (i = 200; i > 0; i--) {
631 DELAY(1000);
632 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
633 ATPHY_CDTC);
634 if ((reg & PHY_CDTC_ENB) == 0)
635 break;
636 }
637 DELAY(1000);
638 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
639 ATPHY_CDTS);
640 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
641 linkup++;
642 break;
643 }
644 }
645 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
646 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
647 if (linkup == 0) {
648 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
649 ATPHY_DBG_ADDR, 0);
650 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
651 ATPHY_DBG_DATA, 0x124E);
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
653 ATPHY_DBG_ADDR, 1);
654 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_DATA);
656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_DATA, reg | 0x03);
658 /* XXX */
659 DELAY(1500 * 1000);
660 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
661 ATPHY_DBG_ADDR, 0);
662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 ATPHY_DBG_DATA, 0x024E);
664 }
665
666 #undef ATPHY_DBG_ADDR
667 #undef ATPHY_DBG_DATA
668 #undef ATPHY_CDTC
669 #undef PHY_CDTC_ENB
670 #undef PHY_CDTC_POFF
671 #undef ATPHY_CDTS
672 #undef PHY_CDTS_STAT_OK
673 #undef PHY_CDTS_STAT_SHORT
674 #undef PHY_CDTS_STAT_OPEN
675 #undef PHY_CDTS_STAT_INVAL
676 #undef PHY_CDTS_STAT_MASK
677 }
678
679 static int
680 age_dma_alloc(struct age_softc *sc)
681 {
682 struct age_txdesc *txd;
683 struct age_rxdesc *rxd;
684 int nsegs, error, i;
685
686 /*
687 * Create DMA stuffs for TX ring
688 */
689 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
690 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
691 if (error) {
692 sc->age_cdata.age_tx_ring_map = NULL;
693 return ENOBUFS;
694 }
695
696 /* Allocate DMA'able memory for TX ring */
697 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
698 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
699 &nsegs, BUS_DMA_NOWAIT);
700 if (error) {
701 printf("%s: could not allocate DMA'able memory for Tx ring, "
702 "error = %i\n", device_xname(sc->sc_dev), error);
703 return error;
704 }
705
706 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
707 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
708 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
709 if (error)
710 return ENOBUFS;
711
712 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
713
714 /* Load the DMA map for Tx ring. */
715 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
716 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
717 if (error) {
718 printf("%s: could not load DMA'able memory for Tx ring, "
719 "error = %i\n", device_xname(sc->sc_dev), error);
720 bus_dmamem_free(sc->sc_dmat,
721 &sc->age_rdata.age_tx_ring_seg, 1);
722 return error;
723 }
724
725 sc->age_rdata.age_tx_ring_paddr =
726 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
727
728 /*
729 * Create DMA stuffs for RX ring
730 */
731 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
732 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
733 if (error) {
734 sc->age_cdata.age_rx_ring_map = NULL;
735 return ENOBUFS;
736 }
737
738 /* Allocate DMA'able memory for RX ring */
739 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
740 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
741 &nsegs, BUS_DMA_NOWAIT);
742 if (error) {
743 printf("%s: could not allocate DMA'able memory for Rx ring, "
744 "error = %i.\n", device_xname(sc->sc_dev), error);
745 return error;
746 }
747
748 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
749 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
750 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
751 if (error)
752 return ENOBUFS;
753
754 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
755
756 /* Load the DMA map for Rx ring. */
757 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
758 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
759 if (error) {
760 printf("%s: could not load DMA'able memory for Rx ring, "
761 "error = %i.\n", device_xname(sc->sc_dev), error);
762 bus_dmamem_free(sc->sc_dmat,
763 &sc->age_rdata.age_rx_ring_seg, 1);
764 return error;
765 }
766
767 sc->age_rdata.age_rx_ring_paddr =
768 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
769
770 /*
771 * Create DMA stuffs for RX return ring
772 */
773 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
774 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
775 if (error) {
776 sc->age_cdata.age_rr_ring_map = NULL;
777 return ENOBUFS;
778 }
779
780 /* Allocate DMA'able memory for RX return ring */
781 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
782 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
783 &nsegs, BUS_DMA_NOWAIT);
784 if (error) {
785 printf("%s: could not allocate DMA'able memory for Rx "
786 "return ring, error = %i.\n",
787 device_xname(sc->sc_dev), error);
788 return error;
789 }
790
791 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
792 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
793 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
794 if (error)
795 return ENOBUFS;
796
797 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
798
799 /* Load the DMA map for Rx return ring. */
800 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
801 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
802 if (error) {
803 printf("%s: could not load DMA'able memory for Rx return ring, "
804 "error = %i\n", device_xname(sc->sc_dev), error);
805 bus_dmamem_free(sc->sc_dmat,
806 &sc->age_rdata.age_rr_ring_seg, 1);
807 return error;
808 }
809
810 sc->age_rdata.age_rr_ring_paddr =
811 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
812
813 /*
814 * Create DMA stuffs for CMB block
815 */
816 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
817 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
818 &sc->age_cdata.age_cmb_block_map);
819 if (error) {
820 sc->age_cdata.age_cmb_block_map = NULL;
821 return ENOBUFS;
822 }
823
824 /* Allocate DMA'able memory for CMB block */
825 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
826 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
827 &nsegs, BUS_DMA_NOWAIT);
828 if (error) {
829 printf("%s: could not allocate DMA'able memory for "
830 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
831 return error;
832 }
833
834 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
835 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
836 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
837 if (error)
838 return ENOBUFS;
839
840 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
841
842 /* Load the DMA map for CMB block. */
843 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
844 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
845 BUS_DMA_NOWAIT);
846 if (error) {
847 printf("%s: could not load DMA'able memory for CMB block, "
848 "error = %i\n", device_xname(sc->sc_dev), error);
849 bus_dmamem_free(sc->sc_dmat,
850 &sc->age_rdata.age_cmb_block_seg, 1);
851 return error;
852 }
853
854 sc->age_rdata.age_cmb_block_paddr =
855 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
856
857 /*
858 * Create DMA stuffs for SMB block
859 */
860 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
861 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
862 &sc->age_cdata.age_smb_block_map);
863 if (error) {
864 sc->age_cdata.age_smb_block_map = NULL;
865 return ENOBUFS;
866 }
867
868 /* Allocate DMA'able memory for SMB block */
869 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
870 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
871 &nsegs, BUS_DMA_NOWAIT);
872 if (error) {
873 printf("%s: could not allocate DMA'able memory for "
874 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
875 return error;
876 }
877
878 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
879 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
880 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
881 if (error)
882 return ENOBUFS;
883
884 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
885
886 /* Load the DMA map for SMB block */
887 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
888 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
889 BUS_DMA_NOWAIT);
890 if (error) {
891 printf("%s: could not load DMA'able memory for SMB block, "
892 "error = %i\n", device_xname(sc->sc_dev), error);
893 bus_dmamem_free(sc->sc_dmat,
894 &sc->age_rdata.age_smb_block_seg, 1);
895 return error;
896 }
897
898 sc->age_rdata.age_smb_block_paddr =
899 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
900
901 /* Create DMA maps for Tx buffers. */
902 for (i = 0; i < AGE_TX_RING_CNT; i++) {
903 txd = &sc->age_cdata.age_txdesc[i];
904 txd->tx_m = NULL;
905 txd->tx_dmamap = NULL;
906 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
907 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
908 &txd->tx_dmamap);
909 if (error) {
910 txd->tx_dmamap = NULL;
911 printf("%s: could not create Tx dmamap, error = %i.\n",
912 device_xname(sc->sc_dev), error);
913 return error;
914 }
915 }
916
917 /* Create DMA maps for Rx buffers. */
918 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
919 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
920 if (error) {
921 sc->age_cdata.age_rx_sparemap = NULL;
922 printf("%s: could not create spare Rx dmamap, error = %i.\n",
923 device_xname(sc->sc_dev), error);
924 return error;
925 }
926 for (i = 0; i < AGE_RX_RING_CNT; i++) {
927 rxd = &sc->age_cdata.age_rxdesc[i];
928 rxd->rx_m = NULL;
929 rxd->rx_dmamap = NULL;
930 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
931 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
932 if (error) {
933 rxd->rx_dmamap = NULL;
934 printf("%s: could not create Rx dmamap, error = %i.\n",
935 device_xname(sc->sc_dev), error);
936 return error;
937 }
938 }
939
940 return 0;
941 }
942
943 static void
944 age_dma_free(struct age_softc *sc)
945 {
946 struct age_txdesc *txd;
947 struct age_rxdesc *rxd;
948 int i;
949
950 /* Tx buffers */
951 for (i = 0; i < AGE_TX_RING_CNT; i++) {
952 txd = &sc->age_cdata.age_txdesc[i];
953 if (txd->tx_dmamap != NULL) {
954 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
955 txd->tx_dmamap = NULL;
956 }
957 }
958 /* Rx buffers */
959 for (i = 0; i < AGE_RX_RING_CNT; i++) {
960 rxd = &sc->age_cdata.age_rxdesc[i];
961 if (rxd->rx_dmamap != NULL) {
962 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
963 rxd->rx_dmamap = NULL;
964 }
965 }
966 if (sc->age_cdata.age_rx_sparemap != NULL) {
967 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
968 sc->age_cdata.age_rx_sparemap = NULL;
969 }
970
971 /* Tx ring. */
972 if (sc->age_cdata.age_tx_ring_map != NULL)
973 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
974 if (sc->age_cdata.age_tx_ring_map != NULL &&
975 sc->age_rdata.age_tx_ring != NULL)
976 bus_dmamem_free(sc->sc_dmat,
977 &sc->age_rdata.age_tx_ring_seg, 1);
978 sc->age_rdata.age_tx_ring = NULL;
979 sc->age_cdata.age_tx_ring_map = NULL;
980
981 /* Rx ring. */
982 if (sc->age_cdata.age_rx_ring_map != NULL)
983 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
984 if (sc->age_cdata.age_rx_ring_map != NULL &&
985 sc->age_rdata.age_rx_ring != NULL)
986 bus_dmamem_free(sc->sc_dmat,
987 &sc->age_rdata.age_rx_ring_seg, 1);
988 sc->age_rdata.age_rx_ring = NULL;
989 sc->age_cdata.age_rx_ring_map = NULL;
990
991 /* Rx return ring. */
992 if (sc->age_cdata.age_rr_ring_map != NULL)
993 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
994 if (sc->age_cdata.age_rr_ring_map != NULL &&
995 sc->age_rdata.age_rr_ring != NULL)
996 bus_dmamem_free(sc->sc_dmat,
997 &sc->age_rdata.age_rr_ring_seg, 1);
998 sc->age_rdata.age_rr_ring = NULL;
999 sc->age_cdata.age_rr_ring_map = NULL;
1000
1001 /* CMB block */
1002 if (sc->age_cdata.age_cmb_block_map != NULL)
1003 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1004 if (sc->age_cdata.age_cmb_block_map != NULL &&
1005 sc->age_rdata.age_cmb_block != NULL)
1006 bus_dmamem_free(sc->sc_dmat,
1007 &sc->age_rdata.age_cmb_block_seg, 1);
1008 sc->age_rdata.age_cmb_block = NULL;
1009 sc->age_cdata.age_cmb_block_map = NULL;
1010
1011 /* SMB block */
1012 if (sc->age_cdata.age_smb_block_map != NULL)
1013 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1014 if (sc->age_cdata.age_smb_block_map != NULL &&
1015 sc->age_rdata.age_smb_block != NULL)
1016 bus_dmamem_free(sc->sc_dmat,
1017 &sc->age_rdata.age_smb_block_seg, 1);
1018 sc->age_rdata.age_smb_block = NULL;
1019 sc->age_cdata.age_smb_block_map = NULL;
1020 }
1021
1022 static void
1023 age_start(struct ifnet *ifp)
1024 {
1025 struct age_softc *sc = ifp->if_softc;
1026 struct mbuf *m_head;
1027 int enq;
1028
1029 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1030 return;
1031 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1032 return;
1033 if (IFQ_IS_EMPTY(&ifp->if_snd))
1034 return;
1035
1036 enq = 0;
1037 for (;;) {
1038 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1039 if (m_head == NULL)
1040 break;
1041
1042 /*
1043 * Pack the data into the transmit ring. If we
1044 * don't have room, set the OACTIVE flag and wait
1045 * for the NIC to drain the ring.
1046 */
1047 if (age_encap(sc, &m_head)) {
1048 if (m_head == NULL)
1049 break;
1050 IF_PREPEND(&ifp->if_snd, m_head);
1051 ifp->if_flags |= IFF_OACTIVE;
1052 break;
1053 }
1054 enq = 1;
1055
1056 /*
1057 * If there's a BPF listener, bounce a copy of this frame
1058 * to him.
1059 */
1060 bpf_mtap(ifp, m_head, BPF_D_OUT);
1061 }
1062
1063 if (enq) {
1064 /* Update mbox. */
1065 AGE_COMMIT_MBOX(sc);
1066 /* Set a timeout in case the chip goes out to lunch. */
1067 ifp->if_timer = AGE_TX_TIMEOUT;
1068 }
1069 }
1070
1071 static void
1072 age_watchdog(struct ifnet *ifp)
1073 {
1074 struct age_softc *sc = ifp->if_softc;
1075
1076 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1077 printf("%s: watchdog timeout (missed link)\n",
1078 device_xname(sc->sc_dev));
1079 ifp->if_oerrors++;
1080 age_init(ifp);
1081 return;
1082 }
1083
1084 if (sc->age_cdata.age_tx_cnt == 0) {
1085 printf("%s: watchdog timeout (missed Tx interrupts) "
1086 "-- recovering\n", device_xname(sc->sc_dev));
1087 age_start(ifp);
1088 return;
1089 }
1090
1091 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1092 ifp->if_oerrors++;
1093 age_init(ifp);
1094 age_start(ifp);
1095 }
1096
1097 static bool
1098 age_shutdown(device_t self, int howto)
1099 {
1100 struct age_softc *sc;
1101 struct ifnet *ifp;
1102
1103 sc = device_private(self);
1104 ifp = &sc->sc_ec.ec_if;
1105 age_stop(ifp, 1);
1106
1107 return true;
1108 }
1109
1110
1111 static int
1112 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 struct age_softc *sc = ifp->if_softc;
1115 int s, error;
1116
1117 s = splnet();
1118
1119 error = ether_ioctl(ifp, cmd, data);
1120 if (error == ENETRESET) {
1121 if (ifp->if_flags & IFF_RUNNING)
1122 age_rxfilter(sc);
1123 error = 0;
1124 }
1125
1126 splx(s);
1127 return error;
1128 }
1129
1130 static void
1131 age_mac_config(struct age_softc *sc)
1132 {
1133 struct mii_data *mii;
1134 uint32_t reg;
1135
1136 mii = &sc->sc_miibus;
1137
1138 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1139 reg &= ~MAC_CFG_FULL_DUPLEX;
1140 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1141 reg &= ~MAC_CFG_SPEED_MASK;
1142
1143 /* Reprogram MAC with resolved speed/duplex. */
1144 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1145 case IFM_10_T:
1146 case IFM_100_TX:
1147 reg |= MAC_CFG_SPEED_10_100;
1148 break;
1149 case IFM_1000_T:
1150 reg |= MAC_CFG_SPEED_1000;
1151 break;
1152 }
1153 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1154 reg |= MAC_CFG_FULL_DUPLEX;
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1156 reg |= MAC_CFG_TX_FC;
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1158 reg |= MAC_CFG_RX_FC;
1159 }
1160
1161 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1162 }
1163
1164 static bool
1165 age_resume(device_t dv, const pmf_qual_t *qual)
1166 {
1167 struct age_softc *sc = device_private(dv);
1168 uint16_t cmd;
1169
1170 /*
1171 * Clear INTx emulation disable for hardware that
1172 * is set in resume event. From Linux.
1173 */
1174 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1175 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1176 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1177 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1178 PCI_COMMAND_STATUS_REG, cmd);
1179 }
1180
1181 return true;
1182 }
1183
1184 static int
1185 age_encap(struct age_softc *sc, struct mbuf **m_head)
1186 {
1187 struct age_txdesc *txd, *txd_last;
1188 struct tx_desc *desc;
1189 struct mbuf *m;
1190 bus_dmamap_t map;
1191 uint32_t cflags, poff, vtag;
1192 int error, i, nsegs, prod;
1193
1194 m = *m_head;
1195 cflags = vtag = 0;
1196 poff = 0;
1197
1198 prod = sc->age_cdata.age_tx_prod;
1199 txd = &sc->age_cdata.age_txdesc[prod];
1200 txd_last = txd;
1201 map = txd->tx_dmamap;
1202
1203 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1204
1205 if (error == EFBIG) {
1206 error = 0;
1207
1208 *m_head = m_pullup(*m_head, MHLEN);
1209 if (*m_head == NULL) {
1210 printf("%s: can't defrag TX mbuf\n",
1211 device_xname(sc->sc_dev));
1212 return ENOBUFS;
1213 }
1214
1215 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1216 BUS_DMA_NOWAIT);
1217
1218 if (error != 0) {
1219 printf("%s: could not load defragged TX mbuf\n",
1220 device_xname(sc->sc_dev));
1221 m_freem(*m_head);
1222 *m_head = NULL;
1223 return error;
1224 }
1225 } else if (error) {
1226 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1227 return error;
1228 }
1229
1230 nsegs = map->dm_nsegs;
1231
1232 if (nsegs == 0) {
1233 m_freem(*m_head);
1234 *m_head = NULL;
1235 return EIO;
1236 }
1237
1238 /* Check descriptor overrun. */
1239 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1240 bus_dmamap_unload(sc->sc_dmat, map);
1241 return ENOBUFS;
1242 }
1243 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1244 BUS_DMASYNC_PREWRITE);
1245
1246 m = *m_head;
1247 /* Configure Tx IP/TCP/UDP checksum offload. */
1248 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1249 cflags |= AGE_TD_CSUM;
1250 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1251 cflags |= AGE_TD_TCPCSUM;
1252 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1253 cflags |= AGE_TD_UDPCSUM;
1254 /* Set checksum start offset. */
1255 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1256 }
1257
1258 #if NVLAN > 0
1259 /* Configure VLAN hardware tag insertion. */
1260 if (vlan_has_tag(m)) {
1261 vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1262 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1263 cflags |= AGE_TD_INSERT_VLAN_TAG;
1264 }
1265 #endif
1266
1267 desc = NULL;
1268 KASSERT(nsegs > 0);
1269 for (i = 0; ; i++) {
1270 desc = &sc->age_rdata.age_tx_ring[prod];
1271 desc->addr = htole64(map->dm_segs[i].ds_addr);
1272 desc->len =
1273 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1274 desc->flags = htole32(cflags);
1275 sc->age_cdata.age_tx_cnt++;
1276 if (i == (nsegs - 1))
1277 break;
1278
1279 /* sync this descriptor and go to the next one */
1280 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1281 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1282 BUS_DMASYNC_PREWRITE);
1283 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1284 }
1285
1286 /* Set EOP on the last descriptor and sync it. */
1287 desc->flags |= htole32(AGE_TD_EOP);
1288 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1289 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1290 BUS_DMASYNC_PREWRITE);
1291
1292 if (nsegs > 1) {
1293 /* Swap dmamap of the first and the last. */
1294 txd = &sc->age_cdata.age_txdesc[prod];
1295 map = txd_last->tx_dmamap;
1296 txd_last->tx_dmamap = txd->tx_dmamap;
1297 txd->tx_dmamap = map;
1298 txd->tx_m = m;
1299 KASSERT(txd_last->tx_m == NULL);
1300 } else {
1301 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1302 txd_last->tx_m = m;
1303 }
1304
1305 /* Update producer index. */
1306 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1307 sc->age_cdata.age_tx_prod = prod;
1308
1309 return 0;
1310 }
1311
1312 static void
1313 age_txintr(struct age_softc *sc, int tpd_cons)
1314 {
1315 struct ifnet *ifp = &sc->sc_ec.ec_if;
1316 struct age_txdesc *txd;
1317 int cons, prog;
1318
1319
1320 if (sc->age_cdata.age_tx_cnt <= 0) {
1321 if (ifp->if_timer != 0)
1322 printf("timer running without packets\n");
1323 if (sc->age_cdata.age_tx_cnt)
1324 printf("age_tx_cnt corrupted\n");
1325 }
1326
1327 /*
1328 * Go through our Tx list and free mbufs for those
1329 * frames which have been transmitted.
1330 */
1331 cons = sc->age_cdata.age_tx_cons;
1332 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1333 if (sc->age_cdata.age_tx_cnt <= 0)
1334 break;
1335 prog++;
1336 ifp->if_flags &= ~IFF_OACTIVE;
1337 sc->age_cdata.age_tx_cnt--;
1338 txd = &sc->age_cdata.age_txdesc[cons];
1339 /*
1340 * Clear Tx descriptors, it's not required but would
1341 * help debugging in case of Tx issues.
1342 */
1343 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1344 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1345 BUS_DMASYNC_POSTWRITE);
1346 txd->tx_desc->addr = 0;
1347 txd->tx_desc->len = 0;
1348 txd->tx_desc->flags = 0;
1349
1350 if (txd->tx_m == NULL)
1351 continue;
1352 /* Reclaim transmitted mbufs. */
1353 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1354 m_freem(txd->tx_m);
1355 txd->tx_m = NULL;
1356 }
1357
1358 if (prog > 0) {
1359 sc->age_cdata.age_tx_cons = cons;
1360
1361 /*
1362 * Unarm watchdog timer only when there are no pending
1363 * Tx descriptors in queue.
1364 */
1365 if (sc->age_cdata.age_tx_cnt == 0)
1366 ifp->if_timer = 0;
1367 }
1368 }
1369
1370 /* Receive a frame. */
1371 static void
1372 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1373 {
1374 struct ifnet *ifp = &sc->sc_ec.ec_if;
1375 struct age_rxdesc *rxd;
1376 struct rx_desc *desc;
1377 struct mbuf *mp, *m;
1378 uint32_t status, index;
1379 int count, nsegs, pktlen;
1380 int rx_cons;
1381
1382 status = le32toh(rxrd->flags);
1383 index = le32toh(rxrd->index);
1384 rx_cons = AGE_RX_CONS(index);
1385 nsegs = AGE_RX_NSEGS(index);
1386
1387 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1388 if ((status & AGE_RRD_ERROR) != 0 &&
1389 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1390 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1391 /*
1392 * We want to pass the following frames to upper
1393 * layer regardless of error status of Rx return
1394 * ring.
1395 *
1396 * o IP/TCP/UDP checksum is bad.
1397 * o frame length and protocol specific length
1398 * does not match.
1399 */
1400 sc->age_cdata.age_rx_cons += nsegs;
1401 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1402 return;
1403 }
1404
1405 pktlen = 0;
1406 for (count = 0; count < nsegs; count++,
1407 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1408 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1409 mp = rxd->rx_m;
1410 desc = rxd->rx_desc;
1411 /* Add a new receive buffer to the ring. */
1412 if (age_newbuf(sc, rxd, 0) != 0) {
1413 ifp->if_iqdrops++;
1414 /* Reuse Rx buffers. */
1415 if (sc->age_cdata.age_rxhead != NULL) {
1416 m_freem(sc->age_cdata.age_rxhead);
1417 AGE_RXCHAIN_RESET(sc);
1418 }
1419 break;
1420 }
1421
1422 /* The length of the first mbuf is computed last. */
1423 if (count != 0) {
1424 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1425 pktlen += mp->m_len;
1426 }
1427
1428 /* Chain received mbufs. */
1429 if (sc->age_cdata.age_rxhead == NULL) {
1430 sc->age_cdata.age_rxhead = mp;
1431 sc->age_cdata.age_rxtail = mp;
1432 } else {
1433 m_remove_pkthdr(mp);
1434 sc->age_cdata.age_rxprev_tail =
1435 sc->age_cdata.age_rxtail;
1436 sc->age_cdata.age_rxtail->m_next = mp;
1437 sc->age_cdata.age_rxtail = mp;
1438 }
1439
1440 if (count == nsegs - 1) {
1441 /*
1442 * It seems that L1 controller has no way
1443 * to tell hardware to strip CRC bytes.
1444 */
1445 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1446 if (nsegs > 1) {
1447 /* Remove the CRC bytes in chained mbufs. */
1448 pktlen -= ETHER_CRC_LEN;
1449 if (mp->m_len <= ETHER_CRC_LEN) {
1450 sc->age_cdata.age_rxtail =
1451 sc->age_cdata.age_rxprev_tail;
1452 sc->age_cdata.age_rxtail->m_len -=
1453 (ETHER_CRC_LEN - mp->m_len);
1454 sc->age_cdata.age_rxtail->m_next = NULL;
1455 m_freem(mp);
1456 } else {
1457 mp->m_len -= ETHER_CRC_LEN;
1458 }
1459 }
1460
1461 m = sc->age_cdata.age_rxhead;
1462 KASSERT(m->m_flags & M_PKTHDR);
1463 m_set_rcvif(m, ifp);
1464 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1465 /* Set the first mbuf length. */
1466 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1467
1468 /*
1469 * Set checksum information.
1470 * It seems that L1 controller can compute partial
1471 * checksum. The partial checksum value can be used
1472 * to accelerate checksum computation for fragmented
1473 * TCP/UDP packets. Upper network stack already
1474 * takes advantage of the partial checksum value in
1475 * IP reassembly stage. But I'm not sure the
1476 * correctness of the partial hardware checksum
1477 * assistance due to lack of data sheet. If it is
1478 * proven to work on L1 I'll enable it.
1479 */
1480 if (status & AGE_RRD_IPV4) {
1481 if (status & AGE_RRD_IPCSUM_NOK)
1482 m->m_pkthdr.csum_flags |=
1483 M_CSUM_IPv4_BAD;
1484 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1485 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1486 m->m_pkthdr.csum_flags |=
1487 M_CSUM_TCP_UDP_BAD;
1488 }
1489 /*
1490 * Don't mark bad checksum for TCP/UDP frames
1491 * as fragmented frames may always have set
1492 * bad checksummed bit of descriptor status.
1493 */
1494 }
1495 #if NVLAN > 0
1496 /* Check for VLAN tagged frames. */
1497 if (status & AGE_RRD_VLAN) {
1498 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1499 vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
1500 }
1501 #endif
1502
1503 /* Pass it on. */
1504 if_percpuq_enqueue(ifp->if_percpuq, m);
1505
1506 /* Reset mbuf chains. */
1507 AGE_RXCHAIN_RESET(sc);
1508 }
1509 }
1510
1511 if (count != nsegs) {
1512 sc->age_cdata.age_rx_cons += nsegs;
1513 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1514 } else
1515 sc->age_cdata.age_rx_cons = rx_cons;
1516 }
1517
1518 static void
1519 age_rxintr(struct age_softc *sc, int rr_prod)
1520 {
1521 struct rx_rdesc *rxrd;
1522 int rr_cons, nsegs, pktlen, prog;
1523
1524 rr_cons = sc->age_cdata.age_rr_cons;
1525 if (rr_cons == rr_prod)
1526 return;
1527
1528 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1529 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1530 BUS_DMASYNC_POSTREAD);
1531
1532 for (prog = 0; rr_cons != rr_prod; prog++) {
1533 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1534 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1535 if (nsegs == 0)
1536 break;
1537 /*
1538 * Check number of segments against received bytes
1539 * Non-matching value would indicate that hardware
1540 * is still trying to update Rx return descriptors.
1541 * I'm not sure whether this check is really needed.
1542 */
1543 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1544 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1545 (MCLBYTES - ETHER_ALIGN)))
1546 break;
1547
1548 /* Received a frame. */
1549 age_rxeof(sc, rxrd);
1550
1551 /* Clear return ring. */
1552 rxrd->index = 0;
1553 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1554 }
1555
1556 if (prog > 0) {
1557 /* Update the consumer index. */
1558 sc->age_cdata.age_rr_cons = rr_cons;
1559
1560 /* Sync descriptors. */
1561 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1562 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1563 BUS_DMASYNC_PREWRITE);
1564
1565 /* Notify hardware availability of new Rx buffers. */
1566 AGE_COMMIT_MBOX(sc);
1567 }
1568 }
1569
1570 static void
1571 age_tick(void *xsc)
1572 {
1573 struct age_softc *sc = xsc;
1574 struct mii_data *mii = &sc->sc_miibus;
1575 int s;
1576
1577 s = splnet();
1578 mii_tick(mii);
1579 splx(s);
1580
1581 callout_schedule(&sc->sc_tick_ch, hz);
1582 }
1583
1584 static void
1585 age_reset(struct age_softc *sc)
1586 {
1587 uint32_t reg;
1588 int i;
1589
1590 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1591 CSR_READ_4(sc, AGE_MASTER_CFG);
1592 DELAY(1000);
1593 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1594 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1595 break;
1596 DELAY(10);
1597 }
1598
1599 if (i == 0)
1600 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 reg);
1602
1603 /* Initialize PCIe module. From Linux. */
1604 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1605 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1606 }
1607
1608 static int
1609 age_init(struct ifnet *ifp)
1610 {
1611 struct age_softc *sc = ifp->if_softc;
1612 struct mii_data *mii;
1613 uint8_t eaddr[ETHER_ADDR_LEN];
1614 bus_addr_t paddr;
1615 uint32_t reg, fsize;
1616 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1617 int error;
1618
1619 /*
1620 * Cancel any pending I/O.
1621 */
1622 age_stop(ifp, 0);
1623
1624 /*
1625 * Reset the chip to a known state.
1626 */
1627 age_reset(sc);
1628
1629 /* Initialize descriptors. */
1630 error = age_init_rx_ring(sc);
1631 if (error != 0) {
1632 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1633 age_stop(ifp, 0);
1634 return error;
1635 }
1636 age_init_rr_ring(sc);
1637 age_init_tx_ring(sc);
1638 age_init_cmb_block(sc);
1639 age_init_smb_block(sc);
1640
1641 /* Reprogram the station address. */
1642 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1643 CSR_WRITE_4(sc, AGE_PAR0,
1644 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1645 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1646
1647 /* Set descriptor base addresses. */
1648 paddr = sc->age_rdata.age_tx_ring_paddr;
1649 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1650 paddr = sc->age_rdata.age_rx_ring_paddr;
1651 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1652 paddr = sc->age_rdata.age_rr_ring_paddr;
1653 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1654 paddr = sc->age_rdata.age_tx_ring_paddr;
1655 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1656 paddr = sc->age_rdata.age_cmb_block_paddr;
1657 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1658 paddr = sc->age_rdata.age_smb_block_paddr;
1659 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1660
1661 /* Set Rx/Rx return descriptor counter. */
1662 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1663 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1664 DESC_RRD_CNT_MASK) |
1665 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1666
1667 /* Set Tx descriptor counter. */
1668 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1669 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1670
1671 /* Tell hardware that we're ready to load descriptors. */
1672 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1673
1674 /*
1675 * Initialize mailbox register.
1676 * Updated producer/consumer index information is exchanged
1677 * through this mailbox register. However Tx producer and
1678 * Rx return consumer/Rx producer are all shared such that
1679 * it's hard to separate code path between Tx and Rx without
1680 * locking. If L1 hardware have a separate mail box register
1681 * for Tx and Rx consumer/producer management we could have
1682 * indepent Tx/Rx handler which in turn Rx handler could have
1683 * been run without any locking.
1684 */
1685 AGE_COMMIT_MBOX(sc);
1686
1687 /* Configure IPG/IFG parameters. */
1688 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1689 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1690 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1691 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1692 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1693
1694 /* Set parameters for half-duplex media. */
1695 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1696 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1697 HDPX_CFG_LCOL_MASK) |
1698 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1699 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1700 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1701 HDPX_CFG_ABEBT_MASK) |
1702 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1703 HDPX_CFG_JAMIPG_MASK));
1704
1705 /* Configure interrupt moderation timer. */
1706 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1707 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1708 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1709 reg &= ~MASTER_MTIMER_ENB;
1710 if (AGE_USECS(sc->age_int_mod) == 0)
1711 reg &= ~MASTER_ITIMER_ENB;
1712 else
1713 reg |= MASTER_ITIMER_ENB;
1714 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1715 if (agedebug)
1716 printf("%s: interrupt moderation is %d us.\n",
1717 device_xname(sc->sc_dev), sc->age_int_mod);
1718 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1719
1720 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1721 if (ifp->if_mtu < ETHERMTU)
1722 sc->age_max_frame_size = ETHERMTU;
1723 else
1724 sc->age_max_frame_size = ifp->if_mtu;
1725 sc->age_max_frame_size += ETHER_HDR_LEN +
1726 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1727 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1728
1729 /* Configure jumbo frame. */
1730 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1731 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1732 (((fsize / sizeof(uint64_t)) <<
1733 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1734 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1735 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1736 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1737 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1738
1739 /* Configure flow-control parameters. From Linux. */
1740 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1741 /*
1742 * Magic workaround for old-L1.
1743 * Don't know which hw revision requires this magic.
1744 */
1745 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1746 /*
1747 * Another magic workaround for flow-control mode
1748 * change. From Linux.
1749 */
1750 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1751 }
1752 /*
1753 * TODO
1754 * Should understand pause parameter relationships between FIFO
1755 * size and number of Rx descriptors and Rx return descriptors.
1756 *
1757 * Magic parameters came from Linux.
1758 */
1759 switch (sc->age_chip_rev) {
1760 case 0x8001:
1761 case 0x9001:
1762 case 0x9002:
1763 case 0x9003:
1764 rxf_hi = AGE_RX_RING_CNT / 16;
1765 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1766 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1767 rrd_lo = AGE_RR_RING_CNT / 16;
1768 break;
1769 default:
1770 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1771 rxf_lo = reg / 16;
1772 if (rxf_lo < 192)
1773 rxf_lo = 192;
1774 rxf_hi = (reg * 7) / 8;
1775 if (rxf_hi < rxf_lo)
1776 rxf_hi = rxf_lo + 16;
1777 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1778 rrd_lo = reg / 8;
1779 rrd_hi = (reg * 7) / 8;
1780 if (rrd_lo < 2)
1781 rrd_lo = 2;
1782 if (rrd_hi < rrd_lo)
1783 rrd_hi = rrd_lo + 3;
1784 break;
1785 }
1786 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1787 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1788 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1789 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1790 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1791 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1792 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1793 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1794 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1795 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1796
1797 /* Configure RxQ. */
1798 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1799 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1800 RXQ_CFG_RD_BURST_MASK) |
1801 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1802 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1803 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1804 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1805 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1806
1807 /* Configure TxQ. */
1808 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1809 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1810 TXQ_CFG_TPD_BURST_MASK) |
1811 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1812 TXQ_CFG_TX_FIFO_BURST_MASK) |
1813 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1814 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1815 TXQ_CFG_ENB);
1816
1817 /* Configure DMA parameters. */
1818 CSR_WRITE_4(sc, AGE_DMA_CFG,
1819 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1820 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1821 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1822
1823 /* Configure CMB DMA write threshold. */
1824 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1825 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1826 CMB_WR_THRESH_RRD_MASK) |
1827 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1828 CMB_WR_THRESH_TPD_MASK));
1829
1830 /* Set CMB/SMB timer and enable them. */
1831 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1832 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1833 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1834
1835 /* Request SMB updates for every seconds. */
1836 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1837 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1838
1839 /*
1840 * Disable all WOL bits as WOL can interfere normal Rx
1841 * operation.
1842 */
1843 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1844
1845 /*
1846 * Configure Tx/Rx MACs.
1847 * - Auto-padding for short frames.
1848 * - Enable CRC generation.
1849 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1850 * of MAC is followed after link establishment.
1851 */
1852 CSR_WRITE_4(sc, AGE_MAC_CFG,
1853 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1854 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1855 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1856 MAC_CFG_PREAMBLE_MASK));
1857
1858 /* Set up the receive filter. */
1859 age_rxfilter(sc);
1860 age_rxvlan(sc);
1861
1862 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1863 reg |= MAC_CFG_RXCSUM_ENB;
1864
1865 /* Ack all pending interrupts and clear it. */
1866 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1867 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1868
1869 /* Finally enable Tx/Rx MAC. */
1870 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1871
1872 sc->age_flags &= ~AGE_FLAG_LINK;
1873
1874 /* Switch to the current media. */
1875 mii = &sc->sc_miibus;
1876 mii_mediachg(mii);
1877
1878 callout_schedule(&sc->sc_tick_ch, hz);
1879
1880 ifp->if_flags |= IFF_RUNNING;
1881 ifp->if_flags &= ~IFF_OACTIVE;
1882
1883 return 0;
1884 }
1885
1886 static void
1887 age_stop(struct ifnet *ifp, int disable)
1888 {
1889 struct age_softc *sc = ifp->if_softc;
1890 struct age_txdesc *txd;
1891 struct age_rxdesc *rxd;
1892 uint32_t reg;
1893 int i;
1894
1895 callout_stop(&sc->sc_tick_ch);
1896
1897 /*
1898 * Mark the interface down and cancel the watchdog timer.
1899 */
1900 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901 ifp->if_timer = 0;
1902
1903 sc->age_flags &= ~AGE_FLAG_LINK;
1904
1905 mii_down(&sc->sc_miibus);
1906
1907 /*
1908 * Disable interrupts.
1909 */
1910 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1911 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1912
1913 /* Stop CMB/SMB updates. */
1914 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1915
1916 /* Stop Rx/Tx MAC. */
1917 age_stop_rxmac(sc);
1918 age_stop_txmac(sc);
1919
1920 /* Stop DMA. */
1921 CSR_WRITE_4(sc, AGE_DMA_CFG,
1922 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1923
1924 /* Stop TxQ/RxQ. */
1925 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1926 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1927 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1928 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1929 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1930 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1931 break;
1932 DELAY(10);
1933 }
1934 if (i == 0)
1935 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1936 device_xname(sc->sc_dev), reg);
1937
1938 /* Reclaim Rx buffers that have been processed. */
1939 if (sc->age_cdata.age_rxhead != NULL)
1940 m_freem(sc->age_cdata.age_rxhead);
1941 AGE_RXCHAIN_RESET(sc);
1942
1943 /*
1944 * Free RX and TX mbufs still in the queues.
1945 */
1946 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1947 rxd = &sc->age_cdata.age_rxdesc[i];
1948 if (rxd->rx_m != NULL) {
1949 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1950 m_freem(rxd->rx_m);
1951 rxd->rx_m = NULL;
1952 }
1953 }
1954 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1955 txd = &sc->age_cdata.age_txdesc[i];
1956 if (txd->tx_m != NULL) {
1957 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1958 m_freem(txd->tx_m);
1959 txd->tx_m = NULL;
1960 }
1961 }
1962 }
1963
1964 static void
1965 age_stats_update(struct age_softc *sc)
1966 {
1967 struct ifnet *ifp = &sc->sc_ec.ec_if;
1968 struct age_stats *stat;
1969 struct smb *smb;
1970
1971 stat = &sc->age_stat;
1972
1973 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1974 sc->age_cdata.age_smb_block_map->dm_mapsize,
1975 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1976
1977 smb = sc->age_rdata.age_smb_block;
1978 if (smb->updated == 0)
1979 return;
1980
1981 /* Rx stats. */
1982 stat->rx_frames += smb->rx_frames;
1983 stat->rx_bcast_frames += smb->rx_bcast_frames;
1984 stat->rx_mcast_frames += smb->rx_mcast_frames;
1985 stat->rx_pause_frames += smb->rx_pause_frames;
1986 stat->rx_control_frames += smb->rx_control_frames;
1987 stat->rx_crcerrs += smb->rx_crcerrs;
1988 stat->rx_lenerrs += smb->rx_lenerrs;
1989 stat->rx_bytes += smb->rx_bytes;
1990 stat->rx_runts += smb->rx_runts;
1991 stat->rx_fragments += smb->rx_fragments;
1992 stat->rx_pkts_64 += smb->rx_pkts_64;
1993 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1994 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1995 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1996 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1997 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1998 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1999 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2000 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2001 stat->rx_desc_oflows += smb->rx_desc_oflows;
2002 stat->rx_alignerrs += smb->rx_alignerrs;
2003 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2004 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2005 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2006
2007 /* Tx stats. */
2008 stat->tx_frames += smb->tx_frames;
2009 stat->tx_bcast_frames += smb->tx_bcast_frames;
2010 stat->tx_mcast_frames += smb->tx_mcast_frames;
2011 stat->tx_pause_frames += smb->tx_pause_frames;
2012 stat->tx_excess_defer += smb->tx_excess_defer;
2013 stat->tx_control_frames += smb->tx_control_frames;
2014 stat->tx_deferred += smb->tx_deferred;
2015 stat->tx_bytes += smb->tx_bytes;
2016 stat->tx_pkts_64 += smb->tx_pkts_64;
2017 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2018 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2019 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2020 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2021 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2022 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2023 stat->tx_single_colls += smb->tx_single_colls;
2024 stat->tx_multi_colls += smb->tx_multi_colls;
2025 stat->tx_late_colls += smb->tx_late_colls;
2026 stat->tx_excess_colls += smb->tx_excess_colls;
2027 stat->tx_underrun += smb->tx_underrun;
2028 stat->tx_desc_underrun += smb->tx_desc_underrun;
2029 stat->tx_lenerrs += smb->tx_lenerrs;
2030 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2031 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2032 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2033
2034 /* Update counters in ifnet. */
2035 ifp->if_opackets += smb->tx_frames;
2036
2037 ifp->if_collisions += smb->tx_single_colls +
2038 smb->tx_multi_colls + smb->tx_late_colls +
2039 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2040
2041 ifp->if_oerrors += smb->tx_excess_colls +
2042 smb->tx_late_colls + smb->tx_underrun +
2043 smb->tx_pkts_truncated;
2044
2045 ifp->if_ipackets += smb->rx_frames;
2046
2047 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2048 smb->rx_runts + smb->rx_pkts_truncated +
2049 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2050 smb->rx_alignerrs;
2051
2052 /* Update done, clear. */
2053 smb->updated = 0;
2054
2055 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2056 sc->age_cdata.age_smb_block_map->dm_mapsize,
2057 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2058 }
2059
2060 static void
2061 age_stop_txmac(struct age_softc *sc)
2062 {
2063 uint32_t reg;
2064 int i;
2065
2066 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2067 if ((reg & MAC_CFG_TX_ENB) != 0) {
2068 reg &= ~MAC_CFG_TX_ENB;
2069 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2070 }
2071 /* Stop Tx DMA engine. */
2072 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2073 if ((reg & DMA_CFG_RD_ENB) != 0) {
2074 reg &= ~DMA_CFG_RD_ENB;
2075 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2076 }
2077 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2078 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2079 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2080 break;
2081 DELAY(10);
2082 }
2083 if (i == 0)
2084 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2085 }
2086
2087 static void
2088 age_stop_rxmac(struct age_softc *sc)
2089 {
2090 uint32_t reg;
2091 int i;
2092
2093 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2094 if ((reg & MAC_CFG_RX_ENB) != 0) {
2095 reg &= ~MAC_CFG_RX_ENB;
2096 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2097 }
2098 /* Stop Rx DMA engine. */
2099 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2100 if ((reg & DMA_CFG_WR_ENB) != 0) {
2101 reg &= ~DMA_CFG_WR_ENB;
2102 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2103 }
2104 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2105 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2106 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2107 break;
2108 DELAY(10);
2109 }
2110 if (i == 0)
2111 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2112 }
2113
2114 static void
2115 age_init_tx_ring(struct age_softc *sc)
2116 {
2117 struct age_ring_data *rd;
2118 struct age_txdesc *txd;
2119 int i;
2120
2121 sc->age_cdata.age_tx_prod = 0;
2122 sc->age_cdata.age_tx_cons = 0;
2123 sc->age_cdata.age_tx_cnt = 0;
2124
2125 rd = &sc->age_rdata;
2126 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2127 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2128 txd = &sc->age_cdata.age_txdesc[i];
2129 txd->tx_desc = &rd->age_tx_ring[i];
2130 txd->tx_m = NULL;
2131 }
2132 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2133 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2134 }
2135
2136 static int
2137 age_init_rx_ring(struct age_softc *sc)
2138 {
2139 struct age_ring_data *rd;
2140 struct age_rxdesc *rxd;
2141 int i;
2142
2143 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2144 rd = &sc->age_rdata;
2145 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2146 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2147 rxd = &sc->age_cdata.age_rxdesc[i];
2148 rxd->rx_m = NULL;
2149 rxd->rx_desc = &rd->age_rx_ring[i];
2150 if (age_newbuf(sc, rxd, 1) != 0)
2151 return ENOBUFS;
2152 }
2153
2154 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2155 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2156
2157 return 0;
2158 }
2159
2160 static void
2161 age_init_rr_ring(struct age_softc *sc)
2162 {
2163 struct age_ring_data *rd;
2164
2165 sc->age_cdata.age_rr_cons = 0;
2166 AGE_RXCHAIN_RESET(sc);
2167
2168 rd = &sc->age_rdata;
2169 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2170 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2171 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2172 }
2173
2174 static void
2175 age_init_cmb_block(struct age_softc *sc)
2176 {
2177 struct age_ring_data *rd;
2178
2179 rd = &sc->age_rdata;
2180 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2181 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2182 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2183 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2184 }
2185
2186 static void
2187 age_init_smb_block(struct age_softc *sc)
2188 {
2189 struct age_ring_data *rd;
2190
2191 rd = &sc->age_rdata;
2192 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2193 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2194 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2195 }
2196
2197 static int
2198 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2199 {
2200 struct rx_desc *desc;
2201 struct mbuf *m;
2202 bus_dmamap_t map;
2203 int error;
2204
2205 MGETHDR(m, M_DONTWAIT, MT_DATA);
2206 if (m == NULL)
2207 return ENOBUFS;
2208 MCLGET(m, M_DONTWAIT);
2209 if (!(m->m_flags & M_EXT)) {
2210 m_freem(m);
2211 return ENOBUFS;
2212 }
2213
2214 m->m_len = m->m_pkthdr.len = MCLBYTES;
2215 m_adj(m, ETHER_ALIGN);
2216
2217 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2218 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2219
2220 if (error != 0) {
2221 m_freem(m);
2222
2223 if (init)
2224 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2225 return error;
2226 }
2227
2228 if (rxd->rx_m != NULL) {
2229 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2230 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2231 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2232 }
2233 map = rxd->rx_dmamap;
2234 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2235 sc->age_cdata.age_rx_sparemap = map;
2236 rxd->rx_m = m;
2237
2238 desc = rxd->rx_desc;
2239 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2240 desc->len =
2241 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2242 AGE_RD_LEN_SHIFT);
2243
2244 return 0;
2245 }
2246
2247 static void
2248 age_rxvlan(struct age_softc *sc)
2249 {
2250 uint32_t reg;
2251
2252 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2253 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2254 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2255 reg |= MAC_CFG_VLAN_TAG_STRIP;
2256 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2257 }
2258
2259 static void
2260 age_rxfilter(struct age_softc *sc)
2261 {
2262 struct ethercom *ec = &sc->sc_ec;
2263 struct ifnet *ifp = &sc->sc_ec.ec_if;
2264 struct ether_multi *enm;
2265 struct ether_multistep step;
2266 uint32_t crc;
2267 uint32_t mchash[2];
2268 uint32_t rxcfg;
2269
2270 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2271 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2272 ifp->if_flags &= ~IFF_ALLMULTI;
2273
2274 /*
2275 * Always accept broadcast frames.
2276 */
2277 rxcfg |= MAC_CFG_BCAST;
2278
2279 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2280 ifp->if_flags |= IFF_ALLMULTI;
2281 if (ifp->if_flags & IFF_PROMISC)
2282 rxcfg |= MAC_CFG_PROMISC;
2283 else
2284 rxcfg |= MAC_CFG_ALLMULTI;
2285 mchash[0] = mchash[1] = 0xFFFFFFFF;
2286 } else {
2287 /* Program new filter. */
2288 memset(mchash, 0, sizeof(mchash));
2289
2290 ETHER_FIRST_MULTI(step, ec, enm);
2291 while (enm != NULL) {
2292 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2293 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2294 ETHER_NEXT_MULTI(step, enm);
2295 }
2296 }
2297
2298 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2299 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2300 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2301 }
2302