Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.56
      1 /*	$NetBSD: if_age.c,v 1.56 2019/03/05 08:25:02 msaitoh Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.56 2019/03/05 08:25:02 msaitoh Exp $");
     35 
     36 #include "vlan.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/proc.h>
     40 #include <sys/endian.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/queue.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/callout.h>
     49 #include <sys/socket.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 
     56 #ifdef INET
     57 #include <netinet/in.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/in_var.h>
     60 #include <netinet/ip.h>
     61 #endif
     62 
     63 #include <net/if_types.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net/bpf.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 
     71 #include <dev/pci/pcireg.h>
     72 #include <dev/pci/pcivar.h>
     73 #include <dev/pci/pcidevs.h>
     74 
     75 #include <dev/pci/if_agereg.h>
     76 
     77 static int	age_match(device_t, cfdata_t, void *);
     78 static void	age_attach(device_t, device_t, void *);
     79 static int	age_detach(device_t, int);
     80 
     81 static bool	age_resume(device_t, const pmf_qual_t *);
     82 
     83 static int	age_miibus_readreg(device_t, int, int, uint16_t *);
     84 static int	age_miibus_writereg(device_t, int, int, uint16_t);
     85 static void	age_miibus_statchg(struct ifnet *);
     86 
     87 static int	age_init(struct ifnet *);
     88 static int	age_ioctl(struct ifnet *, u_long, void *);
     89 static void	age_start(struct ifnet *);
     90 static void	age_watchdog(struct ifnet *);
     91 static bool	age_shutdown(device_t, int);
     92 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     93 static int	age_mediachange(struct ifnet *);
     94 
     95 static int	age_intr(void *);
     96 static int	age_dma_alloc(struct age_softc *);
     97 static void	age_dma_free(struct age_softc *);
     98 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
     99 static void	age_phy_reset(struct age_softc *);
    100 
    101 static int	age_encap(struct age_softc *, struct mbuf **);
    102 static void	age_init_tx_ring(struct age_softc *);
    103 static int	age_init_rx_ring(struct age_softc *);
    104 static void	age_init_rr_ring(struct age_softc *);
    105 static void	age_init_cmb_block(struct age_softc *);
    106 static void	age_init_smb_block(struct age_softc *);
    107 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    108 static void	age_mac_config(struct age_softc *);
    109 static void	age_txintr(struct age_softc *, int);
    110 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    111 static void	age_rxintr(struct age_softc *, int);
    112 static void	age_tick(void *);
    113 static void	age_reset(struct age_softc *);
    114 static void	age_stop(struct ifnet *, int);
    115 static void	age_stats_update(struct age_softc *);
    116 static void	age_stop_txmac(struct age_softc *);
    117 static void	age_stop_rxmac(struct age_softc *);
    118 static void	age_rxvlan(struct age_softc *sc);
    119 static void	age_rxfilter(struct age_softc *);
    120 
    121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    122     age_match, age_attach, age_detach, NULL);
    123 
    124 int agedebug = 0;
    125 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    126 
    127 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    128 
    129 static int
    130 age_match(device_t dev, cfdata_t match, void *aux)
    131 {
    132 	struct pci_attach_args *pa = aux;
    133 
    134 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    136 }
    137 
    138 static void
    139 age_attach(device_t parent, device_t self, void *aux)
    140 {
    141 	struct age_softc *sc = device_private(self);
    142 	struct pci_attach_args *pa = aux;
    143 	pci_intr_handle_t ih;
    144 	const char *intrstr;
    145 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    146 	pcireg_t memtype;
    147 	int error = 0;
    148 	char intrbuf[PCI_INTRSTR_LEN];
    149 
    150 	aprint_naive("\n");
    151 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    152 
    153 	sc->sc_dev = self;
    154 	sc->sc_dmat = pa->pa_dmat;
    155 	sc->sc_pct = pa->pa_pc;
    156 	sc->sc_pcitag = pa->pa_tag;
    157 
    158 	/*
    159 	 * Allocate IO memory
    160 	 */
    161 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    162 	switch (memtype) {
    163         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    164         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    166 		break;
    167         default:
    168 		aprint_error_dev(self, "invalid base address register\n");
    169 		break;
    170 	}
    171 
    172 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    173 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    174 		aprint_error_dev(self, "could not map mem space\n");
    175 		return;
    176 	}
    177 
    178 	if (pci_intr_map(pa, &ih) != 0) {
    179 		aprint_error_dev(self, "could not map interrupt\n");
    180 		goto fail;
    181 	}
    182 
    183 	/*
    184 	 * Allocate IRQ
    185 	 */
    186 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    187 	sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
    188 	    age_intr, sc, device_xname(self));
    189 	if (sc->sc_irq_handle == NULL) {
    190 		aprint_error_dev(self, "could not establish interrupt");
    191 		if (intrstr != NULL)
    192 			aprint_error(" at %s", intrstr);
    193 		aprint_error("\n");
    194 		goto fail;
    195 	}
    196 	aprint_normal_dev(self, "%s\n", intrstr);
    197 
    198 	/* Set PHY address. */
    199 	sc->age_phyaddr = AGE_PHY_ADDR;
    200 
    201 	/* Reset PHY. */
    202 	age_phy_reset(sc);
    203 
    204 	/* Reset the ethernet controller. */
    205 	age_reset(sc);
    206 
    207 	/* Get PCI and chip id/revision. */
    208 	sc->age_rev = PCI_REVISION(pa->pa_class);
    209 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    210 	    MASTER_CHIP_REV_SHIFT;
    211 
    212 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    213 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    214 
    215 	if (agedebug) {
    216 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    217 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    218 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    219 	}
    220 
    221 	/* Set max allowable DMA size. */
    222 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    223 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    224 
    225 	/* Allocate DMA stuffs */
    226 	error = age_dma_alloc(sc);
    227 	if (error)
    228 		goto fail;
    229 
    230 	callout_init(&sc->sc_tick_ch, 0);
    231 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    232 
    233 	/* Load station address. */
    234 	age_get_macaddr(sc, sc->sc_enaddr);
    235 
    236 	aprint_normal_dev(self, "Ethernet address %s\n",
    237 	    ether_sprintf(sc->sc_enaddr));
    238 
    239 	ifp->if_softc = sc;
    240 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    241 	ifp->if_init = age_init;
    242 	ifp->if_ioctl = age_ioctl;
    243 	ifp->if_start = age_start;
    244 	ifp->if_stop = age_stop;
    245 	ifp->if_watchdog = age_watchdog;
    246 	ifp->if_baudrate = IF_Gbps(1);
    247 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    248 	IFQ_SET_READY(&ifp->if_snd);
    249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    250 
    251 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    252 
    253 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    254 				IFCAP_CSUM_TCPv4_Rx |
    255 				IFCAP_CSUM_UDPv4_Rx;
    256 #ifdef AGE_CHECKSUM
    257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    258 				IFCAP_CSUM_TCPv4_Tx |
    259 				IFCAP_CSUM_UDPv4_Tx;
    260 #endif
    261 
    262 #if NVLAN > 0
    263 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    264 #endif
    265 
    266 	/* Set up MII bus. */
    267 	sc->sc_miibus.mii_ifp = ifp;
    268 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    269 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    270 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    271 
    272 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    273 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    274 	    age_mediastatus);
    275 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    276 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    277 
    278 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    279 		aprint_error_dev(self, "no PHY found!\n");
    280 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    281 		    0, NULL);
    282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    283 	} else
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    285 
    286 	if_attach(ifp);
    287 	if_deferred_start_init(ifp, NULL);
    288 	ether_ifattach(ifp, sc->sc_enaddr);
    289 
    290 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
    291 		pmf_class_network_register(self, ifp);
    292 	else
    293 		aprint_error_dev(self, "couldn't establish power handler\n");
    294 
    295 	return;
    296 
    297 fail:
    298 	age_dma_free(sc);
    299 	if (sc->sc_irq_handle != NULL) {
    300 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    301 		sc->sc_irq_handle = NULL;
    302 	}
    303 	if (sc->sc_mem_size) {
    304 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    305 		sc->sc_mem_size = 0;
    306 	}
    307 }
    308 
    309 static int
    310 age_detach(device_t self, int flags)
    311 {
    312 	struct age_softc *sc = device_private(self);
    313 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    314 	int s;
    315 
    316 	pmf_device_deregister(self);
    317 	s = splnet();
    318 	age_stop(ifp, 0);
    319 	splx(s);
    320 
    321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    322 
    323 	/* Delete all remaining media. */
    324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    325 
    326 	ether_ifdetach(ifp);
    327 	if_detach(ifp);
    328 	age_dma_free(sc);
    329 
    330 	if (sc->sc_irq_handle != NULL) {
    331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    332 		sc->sc_irq_handle = NULL;
    333 	}
    334 	if (sc->sc_mem_size) {
    335 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    336 		sc->sc_mem_size = 0;
    337 	}
    338 	return 0;
    339 }
    340 
    341 /*
    342  *	Read a PHY register on the MII of the L1.
    343  */
    344 static int
    345 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    346 {
    347 	struct age_softc *sc = device_private(dev);
    348 	uint32_t v;
    349 	int i;
    350 
    351 	if (phy != sc->age_phyaddr)
    352 		return -1;
    353 
    354 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    355 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    356 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    357 		DELAY(1);
    358 		v = CSR_READ_4(sc, AGE_MDIO);
    359 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    360 			break;
    361 	}
    362 
    363 	if (i == 0) {
    364 		printf("%s: phy read timeout: phy %d, reg %d\n",
    365 			device_xname(sc->sc_dev), phy, reg);
    366 		return ETIMEDOUT;
    367 	}
    368 
    369 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
    370 	return 0;
    371 }
    372 
    373 /*
    374  * 	Write a PHY register on the MII of the L1.
    375  */
    376 static int
    377 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    378 {
    379 	struct age_softc *sc = device_private(dev);
    380 	uint32_t v;
    381 	int i;
    382 
    383 	if (phy != sc->age_phyaddr)
    384 		return -1;
    385 
    386 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    387 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    388 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    389 
    390 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    391 		DELAY(1);
    392 		v = CSR_READ_4(sc, AGE_MDIO);
    393 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    394 			break;
    395 	}
    396 
    397 	if (i == 0) {
    398 		printf("%s: phy write timeout: phy %d, reg %d\n",
    399 		    device_xname(sc->sc_dev), phy, reg);
    400 		return ETIMEDOUT;
    401 	}
    402 
    403 	return 0;
    404 }
    405 
    406 /*
    407  *	Callback from MII layer when media changes.
    408  */
    409 static void
    410 age_miibus_statchg(struct ifnet *ifp)
    411 {
    412 	struct age_softc *sc = ifp->if_softc;
    413 	struct mii_data *mii = &sc->sc_miibus;
    414 
    415 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    416 		return;
    417 
    418 	sc->age_flags &= ~AGE_FLAG_LINK;
    419 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    420 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    421 		case IFM_10_T:
    422 		case IFM_100_TX:
    423 		case IFM_1000_T:
    424 			sc->age_flags |= AGE_FLAG_LINK;
    425 			break;
    426 		default:
    427 			break;
    428 		}
    429 	}
    430 
    431 	/* Stop Rx/Tx MACs. */
    432 	age_stop_rxmac(sc);
    433 	age_stop_txmac(sc);
    434 
    435 	/* Program MACs with resolved speed/duplex/flow-control. */
    436 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    437 		uint32_t reg;
    438 
    439 		age_mac_config(sc);
    440 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    441 		/* Restart DMA engine and Tx/Rx MAC. */
    442 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    443 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    444 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    445 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    446 	}
    447 }
    448 
    449 /*
    450  *	Get the current interface media status.
    451  */
    452 static void
    453 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    454 {
    455 	struct age_softc *sc = ifp->if_softc;
    456 	struct mii_data *mii = &sc->sc_miibus;
    457 
    458 	mii_pollstat(mii);
    459 	ifmr->ifm_status = mii->mii_media_status;
    460 	ifmr->ifm_active = mii->mii_media_active;
    461 }
    462 
    463 /*
    464  *	Set hardware to newly-selected media.
    465  */
    466 static int
    467 age_mediachange(struct ifnet *ifp)
    468 {
    469 	struct age_softc *sc = ifp->if_softc;
    470 	struct mii_data *mii = &sc->sc_miibus;
    471 	int error;
    472 
    473 	if (mii->mii_instance != 0) {
    474 		struct mii_softc *miisc;
    475 
    476 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    477 			mii_phy_reset(miisc);
    478 	}
    479 	error = mii_mediachg(mii);
    480 
    481 	return error;
    482 }
    483 
    484 static int
    485 age_intr(void *arg)
    486 {
    487         struct age_softc *sc = arg;
    488         struct ifnet *ifp = &sc->sc_ec.ec_if;
    489 	struct cmb *cmb;
    490         uint32_t status;
    491 
    492 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    493 	if (status == 0 || (status & AGE_INTRS) == 0)
    494 		return 0;
    495 
    496 	cmb = sc->age_rdata.age_cmb_block;
    497 	if (cmb == NULL) {
    498 		/* Happens when bringing up the interface
    499 		 * w/o having a carrier. Ack the interrupt.
    500 		 */
    501 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    502 		return 0;
    503 	}
    504 
    505 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    506 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    507 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    508 	status = le32toh(cmb->intr_status);
    509 	/* ACK/reenable interrupts */
    510 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    511 	while ((status & AGE_INTRS) != 0) {
    512 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    513 		    TPD_CONS_SHIFT;
    514 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    515 		    RRD_PROD_SHIFT;
    516 
    517 		/* Let hardware know CMB was served. */
    518 		cmb->intr_status = 0;
    519 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    520 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    521 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    522 
    523 		if (ifp->if_flags & IFF_RUNNING) {
    524 			if (status & INTR_CMB_RX)
    525 				age_rxintr(sc, sc->age_rr_prod);
    526 
    527 			if (status & INTR_CMB_TX)
    528 				age_txintr(sc, sc->age_tpd_cons);
    529 
    530 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    531 				if (status & INTR_DMA_RD_TO_RST)
    532 					printf("%s: DMA read error! -- "
    533 					    "resetting\n",
    534 					    device_xname(sc->sc_dev));
    535 				if (status & INTR_DMA_WR_TO_RST)
    536 					printf("%s: DMA write error! -- "
    537 					    "resetting\n",
    538 					    device_xname(sc->sc_dev));
    539 				age_init(ifp);
    540 			}
    541 
    542 			if_schedule_deferred_start(ifp);
    543 
    544 			if (status & INTR_SMB)
    545 				age_stats_update(sc);
    546 		}
    547 		/* check if more interrupts did came in */
    548 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    549 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    550 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    551 		status = le32toh(cmb->intr_status);
    552 	}
    553 
    554 	return 1;
    555 }
    556 
    557 static void
    558 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    559 {
    560 	uint32_t ea[2], reg;
    561 	int i, vpdc;
    562 
    563 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    564 	if ((reg & SPI_VPD_ENB) != 0) {
    565 		/* Get VPD stored in TWSI EEPROM. */
    566 		reg &= ~SPI_VPD_ENB;
    567 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    568 	}
    569 
    570 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    571 	    PCI_CAP_VPD, &vpdc, NULL)) {
    572 		/*
    573 		 * PCI VPD capability found, let TWSI reload EEPROM.
    574 		 * This will set Ethernet address of controller.
    575 		 */
    576 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    577 		    TWSI_CTRL_SW_LD_START);
    578 		for (i = 100; i > 0; i++) {
    579 			DELAY(1000);
    580 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    581 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    582 				break;
    583 		}
    584 		if (i == 0)
    585 			printf("%s: reloading EEPROM timeout!\n",
    586 			    device_xname(sc->sc_dev));
    587 	} else {
    588 		if (agedebug)
    589 			printf("%s: PCI VPD capability not found!\n",
    590 			    device_xname(sc->sc_dev));
    591 	}
    592 
    593 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    594 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    595 
    596 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    597 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    598 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    599 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    600 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    601 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    602 }
    603 
    604 static void
    605 age_phy_reset(struct age_softc *sc)
    606 {
    607 	uint16_t reg, pn;
    608 	int i, linkup;
    609 
    610 	/* Reset PHY. */
    611 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    612 	DELAY(2000);
    613 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    614 	DELAY(2000);
    615 
    616 #define ATPHY_DBG_ADDR		0x1D
    617 #define ATPHY_DBG_DATA		0x1E
    618 #define ATPHY_CDTC		0x16
    619 #define PHY_CDTC_ENB		0x0001
    620 #define PHY_CDTC_POFF		8
    621 #define ATPHY_CDTS		0x1C
    622 #define PHY_CDTS_STAT_OK	0x0000
    623 #define PHY_CDTS_STAT_SHORT	0x0100
    624 #define PHY_CDTS_STAT_OPEN	0x0200
    625 #define PHY_CDTS_STAT_INVAL	0x0300
    626 #define PHY_CDTS_STAT_MASK	0x0300
    627 
    628 	/* Check power saving mode. Magic from Linux. */
    629 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    630 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    631 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    632 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    633 		for (i = 200; i > 0; i--) {
    634 			DELAY(1000);
    635 			age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    636 			    ATPHY_CDTC, &reg);
    637 			if ((reg & PHY_CDTC_ENB) == 0)
    638 				break;
    639 		}
    640 		DELAY(1000);
    641 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    642 		    ATPHY_CDTS, &reg);
    643 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    644 			linkup++;
    645 			break;
    646 		}
    647 	}
    648 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    649 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    650 	if (linkup == 0) {
    651 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    652 		    ATPHY_DBG_ADDR, 0);
    653 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    654 		    ATPHY_DBG_DATA, 0x124E);
    655 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    656 		    ATPHY_DBG_ADDR, 1);
    657 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    658 		    ATPHY_DBG_DATA, &reg);
    659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    660 		    ATPHY_DBG_DATA, reg | 0x03);
    661 		/* XXX */
    662 		DELAY(1500 * 1000);
    663 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    664 		    ATPHY_DBG_ADDR, 0);
    665 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    666 		    ATPHY_DBG_DATA, 0x024E);
    667 	}
    668 
    669 #undef ATPHY_DBG_ADDR
    670 #undef ATPHY_DBG_DATA
    671 #undef ATPHY_CDTC
    672 #undef PHY_CDTC_ENB
    673 #undef PHY_CDTC_POFF
    674 #undef ATPHY_CDTS
    675 #undef PHY_CDTS_STAT_OK
    676 #undef PHY_CDTS_STAT_SHORT
    677 #undef PHY_CDTS_STAT_OPEN
    678 #undef PHY_CDTS_STAT_INVAL
    679 #undef PHY_CDTS_STAT_MASK
    680 }
    681 
    682 static int
    683 age_dma_alloc(struct age_softc *sc)
    684 {
    685 	struct age_txdesc *txd;
    686 	struct age_rxdesc *rxd;
    687 	int nsegs, error, i;
    688 
    689 	/*
    690 	 * Create DMA stuffs for TX ring
    691 	 */
    692 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    693 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    694 	if (error) {
    695 		sc->age_cdata.age_tx_ring_map = NULL;
    696 		return ENOBUFS;
    697 	}
    698 
    699 	/* Allocate DMA'able memory for TX ring */
    700 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    701 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    702 	    &nsegs, BUS_DMA_NOWAIT);
    703 	if (error) {
    704 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    705 		    "error = %i\n", device_xname(sc->sc_dev), error);
    706 		return error;
    707 	}
    708 
    709 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    710 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    711 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    712 	if (error)
    713 		return ENOBUFS;
    714 
    715 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    716 
    717 	/*  Load the DMA map for Tx ring. */
    718 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    719 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    720 	if (error) {
    721 		printf("%s: could not load DMA'able memory for Tx ring, "
    722 		    "error = %i\n", device_xname(sc->sc_dev), error);
    723 		bus_dmamem_free(sc->sc_dmat,
    724 		    &sc->age_rdata.age_tx_ring_seg, 1);
    725 		return error;
    726 	}
    727 
    728 	sc->age_rdata.age_tx_ring_paddr =
    729 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    730 
    731 	/*
    732 	 * Create DMA stuffs for RX ring
    733 	 */
    734 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    735 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    736 	if (error) {
    737 		sc->age_cdata.age_rx_ring_map = NULL;
    738 		return ENOBUFS;
    739 	}
    740 
    741 	/* Allocate DMA'able memory for RX ring */
    742 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    743 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    744 	    &nsegs, BUS_DMA_NOWAIT);
    745 	if (error) {
    746 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    747 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    748 		return error;
    749 	}
    750 
    751 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    752 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    753 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    754 	if (error)
    755 		return ENOBUFS;
    756 
    757 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    758 
    759 	/* Load the DMA map for Rx ring. */
    760 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    761 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    762 	if (error) {
    763 		printf("%s: could not load DMA'able memory for Rx ring, "
    764 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    765 		bus_dmamem_free(sc->sc_dmat,
    766 		    &sc->age_rdata.age_rx_ring_seg, 1);
    767 		return error;
    768 	}
    769 
    770 	sc->age_rdata.age_rx_ring_paddr =
    771 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    772 
    773 	/*
    774 	 * Create DMA stuffs for RX return ring
    775 	 */
    776 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    777 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    778 	if (error) {
    779 		sc->age_cdata.age_rr_ring_map = NULL;
    780 		return ENOBUFS;
    781 	}
    782 
    783 	/* Allocate DMA'able memory for RX return ring */
    784 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    785 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    786 	    &nsegs, BUS_DMA_NOWAIT);
    787 	if (error) {
    788 		printf("%s: could not allocate DMA'able memory for Rx "
    789 		    "return ring, error = %i.\n",
    790 		    device_xname(sc->sc_dev), error);
    791 		return error;
    792 	}
    793 
    794 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    795 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    796 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    797 	if (error)
    798 		return ENOBUFS;
    799 
    800 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    801 
    802 	/*  Load the DMA map for Rx return ring. */
    803 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    804 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
    805 	if (error) {
    806 		printf("%s: could not load DMA'able memory for Rx return ring, "
    807 		    "error = %i\n", device_xname(sc->sc_dev), error);
    808 		bus_dmamem_free(sc->sc_dmat,
    809 		    &sc->age_rdata.age_rr_ring_seg, 1);
    810 		return error;
    811 	}
    812 
    813 	sc->age_rdata.age_rr_ring_paddr =
    814 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    815 
    816 	/*
    817 	 * Create DMA stuffs for CMB block
    818 	 */
    819 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    820 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    821 	    &sc->age_cdata.age_cmb_block_map);
    822 	if (error) {
    823 		sc->age_cdata.age_cmb_block_map = NULL;
    824 		return ENOBUFS;
    825 	}
    826 
    827 	/* Allocate DMA'able memory for CMB block */
    828 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    829 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    830 	    &nsegs, BUS_DMA_NOWAIT);
    831 	if (error) {
    832 		printf("%s: could not allocate DMA'able memory for "
    833 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    834 		return error;
    835 	}
    836 
    837 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    838 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    839 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    840 	if (error)
    841 		return ENOBUFS;
    842 
    843 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    844 
    845 	/*  Load the DMA map for CMB block. */
    846 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    847 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    848 	    BUS_DMA_NOWAIT);
    849 	if (error) {
    850 		printf("%s: could not load DMA'able memory for CMB block, "
    851 		    "error = %i\n", device_xname(sc->sc_dev), error);
    852 		bus_dmamem_free(sc->sc_dmat,
    853 		    &sc->age_rdata.age_cmb_block_seg, 1);
    854 		return error;
    855 	}
    856 
    857 	sc->age_rdata.age_cmb_block_paddr =
    858 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    859 
    860 	/*
    861 	 * Create DMA stuffs for SMB block
    862 	 */
    863 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    864 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    865 	    &sc->age_cdata.age_smb_block_map);
    866 	if (error) {
    867 		sc->age_cdata.age_smb_block_map = NULL;
    868 		return ENOBUFS;
    869 	}
    870 
    871 	/* Allocate DMA'able memory for SMB block */
    872 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    873 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    874 	    &nsegs, BUS_DMA_NOWAIT);
    875 	if (error) {
    876 		printf("%s: could not allocate DMA'able memory for "
    877 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    878 		return error;
    879 	}
    880 
    881 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    882 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    883 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    884 	if (error)
    885 		return ENOBUFS;
    886 
    887 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    888 
    889 	/*  Load the DMA map for SMB block */
    890 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    891 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    892 	    BUS_DMA_NOWAIT);
    893 	if (error) {
    894 		printf("%s: could not load DMA'able memory for SMB block, "
    895 		    "error = %i\n", device_xname(sc->sc_dev), error);
    896 		bus_dmamem_free(sc->sc_dmat,
    897 		    &sc->age_rdata.age_smb_block_seg, 1);
    898 		return error;
    899 	}
    900 
    901 	sc->age_rdata.age_smb_block_paddr =
    902 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    903 
    904 	/* Create DMA maps for Tx buffers. */
    905 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    906 		txd = &sc->age_cdata.age_txdesc[i];
    907 		txd->tx_m = NULL;
    908 		txd->tx_dmamap = NULL;
    909 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    910 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    911 		    &txd->tx_dmamap);
    912 		if (error) {
    913 			txd->tx_dmamap = NULL;
    914 			printf("%s: could not create Tx dmamap, error = %i.\n",
    915 			    device_xname(sc->sc_dev), error);
    916 			return error;
    917 		}
    918 	}
    919 
    920 	/* Create DMA maps for Rx buffers. */
    921 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    922 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    923 	if (error) {
    924 		sc->age_cdata.age_rx_sparemap = NULL;
    925 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    926 		    device_xname(sc->sc_dev), error);
    927 		return error;
    928 	}
    929 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    930 		rxd = &sc->age_cdata.age_rxdesc[i];
    931 		rxd->rx_m = NULL;
    932 		rxd->rx_dmamap = NULL;
    933 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    934 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    935 		if (error) {
    936 			rxd->rx_dmamap = NULL;
    937 			printf("%s: could not create Rx dmamap, error = %i.\n",
    938 			    device_xname(sc->sc_dev), error);
    939 			return error;
    940 		}
    941 	}
    942 
    943 	return 0;
    944 }
    945 
    946 static void
    947 age_dma_free(struct age_softc *sc)
    948 {
    949 	struct age_txdesc *txd;
    950 	struct age_rxdesc *rxd;
    951 	int i;
    952 
    953 	/* Tx buffers */
    954 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    955 		txd = &sc->age_cdata.age_txdesc[i];
    956 		if (txd->tx_dmamap != NULL) {
    957 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    958 			txd->tx_dmamap = NULL;
    959 		}
    960 	}
    961 	/* Rx buffers */
    962 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    963 		rxd = &sc->age_cdata.age_rxdesc[i];
    964 		if (rxd->rx_dmamap != NULL) {
    965 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    966 			rxd->rx_dmamap = NULL;
    967 		}
    968 	}
    969 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    970 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    971 		sc->age_cdata.age_rx_sparemap = NULL;
    972 	}
    973 
    974 	/* Tx ring. */
    975 	if (sc->age_cdata.age_tx_ring_map != NULL)
    976 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    977 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    978 	    sc->age_rdata.age_tx_ring != NULL)
    979 		bus_dmamem_free(sc->sc_dmat,
    980 		    &sc->age_rdata.age_tx_ring_seg, 1);
    981 	sc->age_rdata.age_tx_ring = NULL;
    982 	sc->age_cdata.age_tx_ring_map = NULL;
    983 
    984 	/* Rx ring. */
    985 	if (sc->age_cdata.age_rx_ring_map != NULL)
    986 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    987 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    988 	    sc->age_rdata.age_rx_ring != NULL)
    989 		bus_dmamem_free(sc->sc_dmat,
    990 		    &sc->age_rdata.age_rx_ring_seg, 1);
    991 	sc->age_rdata.age_rx_ring = NULL;
    992 	sc->age_cdata.age_rx_ring_map = NULL;
    993 
    994 	/* Rx return ring. */
    995 	if (sc->age_cdata.age_rr_ring_map != NULL)
    996 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    997 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    998 	    sc->age_rdata.age_rr_ring != NULL)
    999 		bus_dmamem_free(sc->sc_dmat,
   1000 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1001 	sc->age_rdata.age_rr_ring = NULL;
   1002 	sc->age_cdata.age_rr_ring_map = NULL;
   1003 
   1004 	/* CMB block */
   1005 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1006 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1007 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1008 	    sc->age_rdata.age_cmb_block != NULL)
   1009 		bus_dmamem_free(sc->sc_dmat,
   1010 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1011 	sc->age_rdata.age_cmb_block = NULL;
   1012 	sc->age_cdata.age_cmb_block_map = NULL;
   1013 
   1014 	/* SMB block */
   1015 	if (sc->age_cdata.age_smb_block_map != NULL)
   1016 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1017 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1018 	    sc->age_rdata.age_smb_block != NULL)
   1019 		bus_dmamem_free(sc->sc_dmat,
   1020 		    &sc->age_rdata.age_smb_block_seg, 1);
   1021 	sc->age_rdata.age_smb_block = NULL;
   1022 	sc->age_cdata.age_smb_block_map = NULL;
   1023 }
   1024 
   1025 static void
   1026 age_start(struct ifnet *ifp)
   1027 {
   1028         struct age_softc *sc = ifp->if_softc;
   1029         struct mbuf *m_head;
   1030 	int enq;
   1031 
   1032 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1033 		return;
   1034 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
   1035 		return;
   1036 	if (IFQ_IS_EMPTY(&ifp->if_snd))
   1037 		return;
   1038 
   1039 	enq = 0;
   1040 	for (;;) {
   1041 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1042 		if (m_head == NULL)
   1043 			break;
   1044 
   1045 		/*
   1046 		 * Pack the data into the transmit ring. If we
   1047 		 * don't have room, set the OACTIVE flag and wait
   1048 		 * for the NIC to drain the ring.
   1049 		 */
   1050 		if (age_encap(sc, &m_head)) {
   1051 			if (m_head == NULL)
   1052 				break;
   1053 			IF_PREPEND(&ifp->if_snd, m_head);
   1054 			ifp->if_flags |= IFF_OACTIVE;
   1055 			break;
   1056 		}
   1057 		enq = 1;
   1058 
   1059 		/*
   1060 		 * If there's a BPF listener, bounce a copy of this frame
   1061 		 * to him.
   1062 		 */
   1063 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1064 	}
   1065 
   1066 	if (enq) {
   1067 		/* Update mbox. */
   1068 		AGE_COMMIT_MBOX(sc);
   1069 		/* Set a timeout in case the chip goes out to lunch. */
   1070 		ifp->if_timer = AGE_TX_TIMEOUT;
   1071 	}
   1072 }
   1073 
   1074 static void
   1075 age_watchdog(struct ifnet *ifp)
   1076 {
   1077 	struct age_softc *sc = ifp->if_softc;
   1078 
   1079 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1080 		printf("%s: watchdog timeout (missed link)\n",
   1081 		    device_xname(sc->sc_dev));
   1082 		ifp->if_oerrors++;
   1083 		age_init(ifp);
   1084 		return;
   1085 	}
   1086 
   1087 	if (sc->age_cdata.age_tx_cnt == 0) {
   1088 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1089 		    "-- recovering\n", device_xname(sc->sc_dev));
   1090 		age_start(ifp);
   1091 		return;
   1092 	}
   1093 
   1094 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1095 	ifp->if_oerrors++;
   1096 	age_init(ifp);
   1097 	age_start(ifp);
   1098 }
   1099 
   1100 static bool
   1101 age_shutdown(device_t self, int howto)
   1102 {
   1103 	struct age_softc *sc;
   1104 	struct ifnet *ifp;
   1105 
   1106 	sc = device_private(self);
   1107 	ifp = &sc->sc_ec.ec_if;
   1108 	age_stop(ifp, 1);
   1109 
   1110 	return true;
   1111 }
   1112 
   1113 
   1114 static int
   1115 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1116 {
   1117 	struct age_softc *sc = ifp->if_softc;
   1118 	int s, error;
   1119 
   1120 	s = splnet();
   1121 
   1122 	error = ether_ioctl(ifp, cmd, data);
   1123 	if (error == ENETRESET) {
   1124 		if (ifp->if_flags & IFF_RUNNING)
   1125 			age_rxfilter(sc);
   1126 		error = 0;
   1127 	}
   1128 
   1129 	splx(s);
   1130 	return error;
   1131 }
   1132 
   1133 static void
   1134 age_mac_config(struct age_softc *sc)
   1135 {
   1136 	struct mii_data *mii;
   1137 	uint32_t reg;
   1138 
   1139 	mii = &sc->sc_miibus;
   1140 
   1141 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1142 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1143 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1144 	reg &= ~MAC_CFG_SPEED_MASK;
   1145 
   1146 	/* Reprogram MAC with resolved speed/duplex. */
   1147 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1148 	case IFM_10_T:
   1149 	case IFM_100_TX:
   1150 		reg |= MAC_CFG_SPEED_10_100;
   1151 		break;
   1152 	case IFM_1000_T:
   1153 		reg |= MAC_CFG_SPEED_1000;
   1154 		break;
   1155 	}
   1156 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1157 		reg |= MAC_CFG_FULL_DUPLEX;
   1158 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1159 			reg |= MAC_CFG_TX_FC;
   1160 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1161 			reg |= MAC_CFG_RX_FC;
   1162 	}
   1163 
   1164 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1165 }
   1166 
   1167 static bool
   1168 age_resume(device_t dv, const pmf_qual_t *qual)
   1169 {
   1170 	struct age_softc *sc = device_private(dv);
   1171 	uint16_t cmd;
   1172 
   1173 	/*
   1174 	 * Clear INTx emulation disable for hardware that
   1175 	 * is set in resume event. From Linux.
   1176 	 */
   1177 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1178 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1179 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1180 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1181 		    PCI_COMMAND_STATUS_REG, cmd);
   1182 	}
   1183 
   1184 	return true;
   1185 }
   1186 
   1187 static int
   1188 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1189 {
   1190 	struct age_txdesc *txd, *txd_last;
   1191 	struct tx_desc *desc;
   1192 	struct mbuf *m;
   1193 	bus_dmamap_t map;
   1194 	uint32_t cflags, poff, vtag;
   1195 	int error, i, nsegs, prod;
   1196 
   1197 	m = *m_head;
   1198 	cflags = vtag = 0;
   1199 	poff = 0;
   1200 
   1201 	prod = sc->age_cdata.age_tx_prod;
   1202 	txd = &sc->age_cdata.age_txdesc[prod];
   1203 	txd_last = txd;
   1204 	map = txd->tx_dmamap;
   1205 
   1206 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1207 
   1208 	if (error == EFBIG) {
   1209 		error = 0;
   1210 
   1211 		*m_head = m_pullup(*m_head, MHLEN);
   1212 		if (*m_head == NULL) {
   1213 			printf("%s: can't defrag TX mbuf\n",
   1214 			    device_xname(sc->sc_dev));
   1215 			return ENOBUFS;
   1216 		}
   1217 
   1218 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1219 		  	    BUS_DMA_NOWAIT);
   1220 
   1221 		if (error != 0) {
   1222 			printf("%s: could not load defragged TX mbuf\n",
   1223 			    device_xname(sc->sc_dev));
   1224 			m_freem(*m_head);
   1225 			*m_head = NULL;
   1226 			return error;
   1227 		}
   1228 	} else if (error) {
   1229 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1230 		return error;
   1231 	}
   1232 
   1233 	nsegs = map->dm_nsegs;
   1234 
   1235 	if (nsegs == 0) {
   1236 		m_freem(*m_head);
   1237 		*m_head = NULL;
   1238 		return EIO;
   1239 	}
   1240 
   1241 	/* Check descriptor overrun. */
   1242 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1243 		bus_dmamap_unload(sc->sc_dmat, map);
   1244 		return ENOBUFS;
   1245 	}
   1246 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1247 	    BUS_DMASYNC_PREWRITE);
   1248 
   1249 	m = *m_head;
   1250 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1251 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1252 		cflags |= AGE_TD_CSUM;
   1253 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1254 			cflags |= AGE_TD_TCPCSUM;
   1255 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1256 			cflags |= AGE_TD_UDPCSUM;
   1257 		/* Set checksum start offset. */
   1258 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1259 	}
   1260 
   1261 #if NVLAN > 0
   1262 	/* Configure VLAN hardware tag insertion. */
   1263 	if (vlan_has_tag(m)) {
   1264 		vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
   1265 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1266 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1267 	}
   1268 #endif
   1269 
   1270 	desc = NULL;
   1271 	KASSERT(nsegs > 0);
   1272 	for (i = 0; ; i++) {
   1273 		desc = &sc->age_rdata.age_tx_ring[prod];
   1274 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1275 		desc->len =
   1276 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1277 		desc->flags = htole32(cflags);
   1278 		sc->age_cdata.age_tx_cnt++;
   1279 		if (i == (nsegs - 1))
   1280 			break;
   1281 
   1282 		/* sync this descriptor and go to the next one */
   1283 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1284 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1285 		    BUS_DMASYNC_PREWRITE);
   1286 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1287 	}
   1288 
   1289 	/* Set EOP on the last descriptor and sync it. */
   1290 	desc->flags |= htole32(AGE_TD_EOP);
   1291 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1292 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1293 	    BUS_DMASYNC_PREWRITE);
   1294 
   1295 	if (nsegs > 1) {
   1296 		/* Swap dmamap of the first and the last. */
   1297 		txd = &sc->age_cdata.age_txdesc[prod];
   1298 		map = txd_last->tx_dmamap;
   1299 		txd_last->tx_dmamap = txd->tx_dmamap;
   1300 		txd->tx_dmamap = map;
   1301 		txd->tx_m = m;
   1302 		KASSERT(txd_last->tx_m == NULL);
   1303 	} else {
   1304 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
   1305 		txd_last->tx_m = m;
   1306 	}
   1307 
   1308 	/* Update producer index. */
   1309 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1310 	sc->age_cdata.age_tx_prod = prod;
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 static void
   1316 age_txintr(struct age_softc *sc, int tpd_cons)
   1317 {
   1318 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1319 	struct age_txdesc *txd;
   1320 	int cons, prog;
   1321 
   1322 
   1323 	if (sc->age_cdata.age_tx_cnt <= 0) {
   1324 		if (ifp->if_timer != 0)
   1325 			printf("timer running without packets\n");
   1326 		if (sc->age_cdata.age_tx_cnt)
   1327 			printf("age_tx_cnt corrupted\n");
   1328 	}
   1329 
   1330 	/*
   1331 	 * Go through our Tx list and free mbufs for those
   1332 	 * frames which have been transmitted.
   1333 	 */
   1334 	cons = sc->age_cdata.age_tx_cons;
   1335 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1336 		if (sc->age_cdata.age_tx_cnt <= 0)
   1337 			break;
   1338 		prog++;
   1339 		ifp->if_flags &= ~IFF_OACTIVE;
   1340 		sc->age_cdata.age_tx_cnt--;
   1341 		txd = &sc->age_cdata.age_txdesc[cons];
   1342 		/*
   1343 		 * Clear Tx descriptors, it's not required but would
   1344 		 * help debugging in case of Tx issues.
   1345 		 */
   1346 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1347 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1348 		    BUS_DMASYNC_POSTWRITE);
   1349 		txd->tx_desc->addr = 0;
   1350 		txd->tx_desc->len = 0;
   1351 		txd->tx_desc->flags = 0;
   1352 
   1353 		if (txd->tx_m == NULL)
   1354 			continue;
   1355 		/* Reclaim transmitted mbufs. */
   1356 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1357 		m_freem(txd->tx_m);
   1358 		txd->tx_m = NULL;
   1359 	}
   1360 
   1361 	if (prog > 0) {
   1362 		sc->age_cdata.age_tx_cons = cons;
   1363 
   1364 		/*
   1365 		 * Unarm watchdog timer only when there are no pending
   1366 		 * Tx descriptors in queue.
   1367 		 */
   1368 		if (sc->age_cdata.age_tx_cnt == 0)
   1369 			ifp->if_timer = 0;
   1370 	}
   1371 }
   1372 
   1373 /* Receive a frame. */
   1374 static void
   1375 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1376 {
   1377 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1378 	struct age_rxdesc *rxd;
   1379 	struct rx_desc *desc;
   1380 	struct mbuf *mp, *m;
   1381 	uint32_t status, index;
   1382 	int count, nsegs, pktlen;
   1383 	int rx_cons;
   1384 
   1385 	status = le32toh(rxrd->flags);
   1386 	index = le32toh(rxrd->index);
   1387 	rx_cons = AGE_RX_CONS(index);
   1388 	nsegs = AGE_RX_NSEGS(index);
   1389 
   1390 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1391 	if ((status & AGE_RRD_ERROR) != 0 &&
   1392 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1393 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1394 		/*
   1395 		 * We want to pass the following frames to upper
   1396 		 * layer regardless of error status of Rx return
   1397 		 * ring.
   1398 		 *
   1399 		 *  o IP/TCP/UDP checksum is bad.
   1400 		 *  o frame length and protocol specific length
   1401 		 *     does not match.
   1402 		 */
   1403 		sc->age_cdata.age_rx_cons += nsegs;
   1404 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1405 		return;
   1406 	}
   1407 
   1408 	pktlen = 0;
   1409 	for (count = 0; count < nsegs; count++,
   1410 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1411 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1412 		mp = rxd->rx_m;
   1413 		desc = rxd->rx_desc;
   1414 		/* Add a new receive buffer to the ring. */
   1415 		if (age_newbuf(sc, rxd, 0) != 0) {
   1416 			ifp->if_iqdrops++;
   1417 			/* Reuse Rx buffers. */
   1418 			if (sc->age_cdata.age_rxhead != NULL) {
   1419 				m_freem(sc->age_cdata.age_rxhead);
   1420 				AGE_RXCHAIN_RESET(sc);
   1421 			}
   1422 			break;
   1423 		}
   1424 
   1425 		/* The length of the first mbuf is computed last. */
   1426 		if (count != 0) {
   1427 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1428 			pktlen += mp->m_len;
   1429 		}
   1430 
   1431 		/* Chain received mbufs. */
   1432 		if (sc->age_cdata.age_rxhead == NULL) {
   1433 			sc->age_cdata.age_rxhead = mp;
   1434 			sc->age_cdata.age_rxtail = mp;
   1435 		} else {
   1436 			m_remove_pkthdr(mp);
   1437 			sc->age_cdata.age_rxprev_tail =
   1438 			    sc->age_cdata.age_rxtail;
   1439 			sc->age_cdata.age_rxtail->m_next = mp;
   1440 			sc->age_cdata.age_rxtail = mp;
   1441 		}
   1442 
   1443 		if (count == nsegs - 1) {
   1444 			/*
   1445 			 * It seems that L1 controller has no way
   1446 			 * to tell hardware to strip CRC bytes.
   1447 			 */
   1448 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1449 			if (nsegs > 1) {
   1450 				/* Remove the CRC bytes in chained mbufs. */
   1451 				pktlen -= ETHER_CRC_LEN;
   1452 				if (mp->m_len <= ETHER_CRC_LEN) {
   1453 					sc->age_cdata.age_rxtail =
   1454 					    sc->age_cdata.age_rxprev_tail;
   1455 					sc->age_cdata.age_rxtail->m_len -=
   1456 					    (ETHER_CRC_LEN - mp->m_len);
   1457 					sc->age_cdata.age_rxtail->m_next = NULL;
   1458 					m_freem(mp);
   1459 				} else {
   1460 					mp->m_len -= ETHER_CRC_LEN;
   1461 				}
   1462 			}
   1463 
   1464 			m = sc->age_cdata.age_rxhead;
   1465 			KASSERT(m->m_flags & M_PKTHDR);
   1466 			m_set_rcvif(m, ifp);
   1467 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1468 			/* Set the first mbuf length. */
   1469 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1470 
   1471 			/*
   1472 			 * Set checksum information.
   1473 			 * It seems that L1 controller can compute partial
   1474 			 * checksum. The partial checksum value can be used
   1475 			 * to accelerate checksum computation for fragmented
   1476 			 * TCP/UDP packets. Upper network stack already
   1477 			 * takes advantage of the partial checksum value in
   1478 			 * IP reassembly stage. But I'm not sure the
   1479 			 * correctness of the partial hardware checksum
   1480 			 * assistance due to lack of data sheet. If it is
   1481 			 * proven to work on L1 I'll enable it.
   1482 			 */
   1483 			if (status & AGE_RRD_IPV4) {
   1484 				if (status & AGE_RRD_IPCSUM_NOK)
   1485 					m->m_pkthdr.csum_flags |=
   1486 					    M_CSUM_IPv4_BAD;
   1487 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1488 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1489 					m->m_pkthdr.csum_flags |=
   1490 					    M_CSUM_TCP_UDP_BAD;
   1491 				}
   1492 				/*
   1493 				 * Don't mark bad checksum for TCP/UDP frames
   1494 				 * as fragmented frames may always have set
   1495 				 * bad checksummed bit of descriptor status.
   1496 				 */
   1497 			}
   1498 #if NVLAN > 0
   1499 			/* Check for VLAN tagged frames. */
   1500 			if (status & AGE_RRD_VLAN) {
   1501 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1502 				vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
   1503 			}
   1504 #endif
   1505 
   1506 			/* Pass it on. */
   1507 			if_percpuq_enqueue(ifp->if_percpuq, m);
   1508 
   1509 			/* Reset mbuf chains. */
   1510 			AGE_RXCHAIN_RESET(sc);
   1511 		}
   1512 	}
   1513 
   1514 	if (count != nsegs) {
   1515 		sc->age_cdata.age_rx_cons += nsegs;
   1516 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1517 	} else
   1518 		sc->age_cdata.age_rx_cons = rx_cons;
   1519 }
   1520 
   1521 static void
   1522 age_rxintr(struct age_softc *sc, int rr_prod)
   1523 {
   1524 	struct rx_rdesc *rxrd;
   1525 	int rr_cons, nsegs, pktlen, prog;
   1526 
   1527 	rr_cons = sc->age_cdata.age_rr_cons;
   1528 	if (rr_cons == rr_prod)
   1529 		return;
   1530 
   1531 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1532 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1533 	    BUS_DMASYNC_POSTREAD);
   1534 
   1535 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1536 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1537 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1538 		if (nsegs == 0)
   1539 			break;
   1540 		/*
   1541 		 * Check number of segments against received bytes
   1542 		 * Non-matching value would indicate that hardware
   1543 		 * is still trying to update Rx return descriptors.
   1544 		 * I'm not sure whether this check is really needed.
   1545 		 */
   1546 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1547 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1548 		    (MCLBYTES - ETHER_ALIGN)))
   1549 			break;
   1550 
   1551 		/* Received a frame. */
   1552 		age_rxeof(sc, rxrd);
   1553 
   1554 		/* Clear return ring. */
   1555 		rxrd->index = 0;
   1556 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1557 	}
   1558 
   1559 	if (prog > 0) {
   1560 		/* Update the consumer index. */
   1561 		sc->age_cdata.age_rr_cons = rr_cons;
   1562 
   1563 		/* Sync descriptors. */
   1564 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1565 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1566 		    BUS_DMASYNC_PREWRITE);
   1567 
   1568 		/* Notify hardware availability of new Rx buffers. */
   1569 		AGE_COMMIT_MBOX(sc);
   1570 	}
   1571 }
   1572 
   1573 static void
   1574 age_tick(void *xsc)
   1575 {
   1576 	struct age_softc *sc = xsc;
   1577 	struct mii_data *mii = &sc->sc_miibus;
   1578 	int s;
   1579 
   1580 	s = splnet();
   1581 	mii_tick(mii);
   1582 	splx(s);
   1583 
   1584 	callout_schedule(&sc->sc_tick_ch, hz);
   1585 }
   1586 
   1587 static void
   1588 age_reset(struct age_softc *sc)
   1589 {
   1590 	uint32_t reg;
   1591 	int i;
   1592 
   1593 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1594 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1595 	DELAY(1000);
   1596 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1597 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1598 			break;
   1599 		DELAY(10);
   1600 	}
   1601 
   1602 	if (i == 0)
   1603 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1604 		    reg);
   1605 
   1606 	/* Initialize PCIe module. From Linux. */
   1607 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1608 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1609 }
   1610 
   1611 static int
   1612 age_init(struct ifnet *ifp)
   1613 {
   1614 	struct age_softc *sc = ifp->if_softc;
   1615 	struct mii_data *mii;
   1616 	uint8_t eaddr[ETHER_ADDR_LEN];
   1617 	bus_addr_t paddr;
   1618 	uint32_t reg, fsize;
   1619 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1620 	int error;
   1621 
   1622 	/*
   1623 	 * Cancel any pending I/O.
   1624 	 */
   1625 	age_stop(ifp, 0);
   1626 
   1627 	/*
   1628 	 * Reset the chip to a known state.
   1629 	 */
   1630 	age_reset(sc);
   1631 
   1632 	/* Initialize descriptors. */
   1633 	error = age_init_rx_ring(sc);
   1634         if (error != 0) {
   1635 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1636 		age_stop(ifp, 0);
   1637 		return error;
   1638         }
   1639 	age_init_rr_ring(sc);
   1640 	age_init_tx_ring(sc);
   1641 	age_init_cmb_block(sc);
   1642 	age_init_smb_block(sc);
   1643 
   1644 	/* Reprogram the station address. */
   1645 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1646 	CSR_WRITE_4(sc, AGE_PAR0,
   1647 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1648 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1649 
   1650 	/* Set descriptor base addresses. */
   1651 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1652 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1653 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1654 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1655 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1656 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1657 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1658 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1659 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1660 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1661 	paddr = sc->age_rdata.age_smb_block_paddr;
   1662 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1663 
   1664 	/* Set Rx/Rx return descriptor counter. */
   1665 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1666 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1667 	    DESC_RRD_CNT_MASK) |
   1668 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1669 
   1670 	/* Set Tx descriptor counter. */
   1671 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1672 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1673 
   1674 	/* Tell hardware that we're ready to load descriptors. */
   1675 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1676 
   1677         /*
   1678 	 * Initialize mailbox register.
   1679 	 * Updated producer/consumer index information is exchanged
   1680 	 * through this mailbox register. However Tx producer and
   1681 	 * Rx return consumer/Rx producer are all shared such that
   1682 	 * it's hard to separate code path between Tx and Rx without
   1683 	 * locking. If L1 hardware have a separate mail box register
   1684 	 * for Tx and Rx consumer/producer management we could have
   1685 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1686 	 * been run without any locking.
   1687 	*/
   1688 	AGE_COMMIT_MBOX(sc);
   1689 
   1690 	/* Configure IPG/IFG parameters. */
   1691 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1692 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1693 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1694 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1695 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1696 
   1697 	/* Set parameters for half-duplex media. */
   1698 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1699 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1700 	    HDPX_CFG_LCOL_MASK) |
   1701 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1702 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1703 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1704 	    HDPX_CFG_ABEBT_MASK) |
   1705 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1706 	     HDPX_CFG_JAMIPG_MASK));
   1707 
   1708 	/* Configure interrupt moderation timer. */
   1709 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1710 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1711 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1712 	reg &= ~MASTER_MTIMER_ENB;
   1713 	if (AGE_USECS(sc->age_int_mod) == 0)
   1714 		reg &= ~MASTER_ITIMER_ENB;
   1715 	else
   1716 		reg |= MASTER_ITIMER_ENB;
   1717 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1718 	if (agedebug)
   1719 		printf("%s: interrupt moderation is %d us.\n",
   1720 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1721 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1722 
   1723 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1724 	if (ifp->if_mtu < ETHERMTU)
   1725 		sc->age_max_frame_size = ETHERMTU;
   1726 	else
   1727 		sc->age_max_frame_size = ifp->if_mtu;
   1728 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1729 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1730 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1731 
   1732 	/* Configure jumbo frame. */
   1733 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1734 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1735 	    (((fsize / sizeof(uint64_t)) <<
   1736 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1737 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1738 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1739 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1740 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1741 
   1742 	/* Configure flow-control parameters. From Linux. */
   1743 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1744 		/*
   1745 		 * Magic workaround for old-L1.
   1746 		 * Don't know which hw revision requires this magic.
   1747 		 */
   1748 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1749 		/*
   1750 		 * Another magic workaround for flow-control mode
   1751 		 * change. From Linux.
   1752 		 */
   1753 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1754 	}
   1755 	/*
   1756 	 * TODO
   1757 	 *  Should understand pause parameter relationships between FIFO
   1758 	 *  size and number of Rx descriptors and Rx return descriptors.
   1759 	 *
   1760 	 *  Magic parameters came from Linux.
   1761 	 */
   1762 	switch (sc->age_chip_rev) {
   1763 	case 0x8001:
   1764 	case 0x9001:
   1765 	case 0x9002:
   1766 	case 0x9003:
   1767 		rxf_hi = AGE_RX_RING_CNT / 16;
   1768 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1769 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1770 		rrd_lo = AGE_RR_RING_CNT / 16;
   1771 		break;
   1772 	default:
   1773 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1774 		rxf_lo = reg / 16;
   1775 		if (rxf_lo < 192)
   1776 			rxf_lo = 192;
   1777 		rxf_hi = (reg * 7) / 8;
   1778 		if (rxf_hi < rxf_lo)
   1779 			rxf_hi = rxf_lo + 16;
   1780 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1781 		rrd_lo = reg / 8;
   1782 		rrd_hi = (reg * 7) / 8;
   1783 		if (rrd_lo < 2)
   1784 			rrd_lo = 2;
   1785 		if (rrd_hi < rrd_lo)
   1786 			rrd_hi = rrd_lo + 3;
   1787 		break;
   1788 	}
   1789 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1790 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1791 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1792 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1793 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1794 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1795 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1796 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1797 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1798 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1799 
   1800 	/* Configure RxQ. */
   1801 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1802 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1803 	    RXQ_CFG_RD_BURST_MASK) |
   1804 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1805 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1806 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1807 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1808 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1809 
   1810 	/* Configure TxQ. */
   1811 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1812 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1813 	    TXQ_CFG_TPD_BURST_MASK) |
   1814 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1815 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1816 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1817 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1818 	    TXQ_CFG_ENB);
   1819 
   1820 	/* Configure DMA parameters. */
   1821 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1822 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1823 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1824 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1825 
   1826 	/* Configure CMB DMA write threshold. */
   1827 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1828 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1829 	    CMB_WR_THRESH_RRD_MASK) |
   1830 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1831 	    CMB_WR_THRESH_TPD_MASK));
   1832 
   1833 	/* Set CMB/SMB timer and enable them. */
   1834 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1835 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1836 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1837 
   1838 	/* Request SMB updates for every seconds. */
   1839 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1840 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1841 
   1842 	/*
   1843 	 * Disable all WOL bits as WOL can interfere normal Rx
   1844 	 * operation.
   1845 	 */
   1846 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1847 
   1848         /*
   1849 	 * Configure Tx/Rx MACs.
   1850 	 *  - Auto-padding for short frames.
   1851 	 *  - Enable CRC generation.
   1852 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1853 	 *  of MAC is followed after link establishment.
   1854 	 */
   1855 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1856 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1857 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1858 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1859 	    MAC_CFG_PREAMBLE_MASK));
   1860 
   1861 	/* Set up the receive filter. */
   1862 	age_rxfilter(sc);
   1863 	age_rxvlan(sc);
   1864 
   1865 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1866 	reg |= MAC_CFG_RXCSUM_ENB;
   1867 
   1868 	/* Ack all pending interrupts and clear it. */
   1869 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1870 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1871 
   1872 	/* Finally enable Tx/Rx MAC. */
   1873 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1874 
   1875 	sc->age_flags &= ~AGE_FLAG_LINK;
   1876 
   1877 	/* Switch to the current media. */
   1878 	mii = &sc->sc_miibus;
   1879 	mii_mediachg(mii);
   1880 
   1881 	callout_schedule(&sc->sc_tick_ch, hz);
   1882 
   1883 	ifp->if_flags |= IFF_RUNNING;
   1884 	ifp->if_flags &= ~IFF_OACTIVE;
   1885 
   1886 	return 0;
   1887 }
   1888 
   1889 static void
   1890 age_stop(struct ifnet *ifp, int disable)
   1891 {
   1892 	struct age_softc *sc = ifp->if_softc;
   1893 	struct age_txdesc *txd;
   1894 	struct age_rxdesc *rxd;
   1895 	uint32_t reg;
   1896 	int i;
   1897 
   1898 	callout_stop(&sc->sc_tick_ch);
   1899 
   1900 	/*
   1901 	 * Mark the interface down and cancel the watchdog timer.
   1902 	 */
   1903 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1904 	ifp->if_timer = 0;
   1905 
   1906 	sc->age_flags &= ~AGE_FLAG_LINK;
   1907 
   1908 	mii_down(&sc->sc_miibus);
   1909 
   1910 	/*
   1911 	 * Disable interrupts.
   1912 	 */
   1913 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1914 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1915 
   1916 	/* Stop CMB/SMB updates. */
   1917 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1918 
   1919 	/* Stop Rx/Tx MAC. */
   1920 	age_stop_rxmac(sc);
   1921 	age_stop_txmac(sc);
   1922 
   1923 	/* Stop DMA. */
   1924 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1925 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1926 
   1927 	/* Stop TxQ/RxQ. */
   1928 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1929 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1930 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1931 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1932 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1933 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1934 			break;
   1935 		DELAY(10);
   1936 	}
   1937 	if (i == 0)
   1938 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1939 		    device_xname(sc->sc_dev), reg);
   1940 
   1941 	/* Reclaim Rx buffers that have been processed. */
   1942 	if (sc->age_cdata.age_rxhead != NULL)
   1943 		m_freem(sc->age_cdata.age_rxhead);
   1944 	AGE_RXCHAIN_RESET(sc);
   1945 
   1946 	/*
   1947 	 * Free RX and TX mbufs still in the queues.
   1948 	 */
   1949 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1950 		rxd = &sc->age_cdata.age_rxdesc[i];
   1951 		if (rxd->rx_m != NULL) {
   1952 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1953 			m_freem(rxd->rx_m);
   1954 			rxd->rx_m = NULL;
   1955 		}
   1956 	}
   1957 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1958 		txd = &sc->age_cdata.age_txdesc[i];
   1959 		if (txd->tx_m != NULL) {
   1960 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1961 			m_freem(txd->tx_m);
   1962 			txd->tx_m = NULL;
   1963 		}
   1964 	}
   1965 }
   1966 
   1967 static void
   1968 age_stats_update(struct age_softc *sc)
   1969 {
   1970 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1971 	struct age_stats *stat;
   1972 	struct smb *smb;
   1973 
   1974 	stat = &sc->age_stat;
   1975 
   1976 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1977 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   1978 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1979 
   1980 	smb = sc->age_rdata.age_smb_block;
   1981 	if (smb->updated == 0)
   1982 		return;
   1983 
   1984 	/* Rx stats. */
   1985 	stat->rx_frames += smb->rx_frames;
   1986 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1987 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1988 	stat->rx_pause_frames += smb->rx_pause_frames;
   1989 	stat->rx_control_frames += smb->rx_control_frames;
   1990 	stat->rx_crcerrs += smb->rx_crcerrs;
   1991 	stat->rx_lenerrs += smb->rx_lenerrs;
   1992 	stat->rx_bytes += smb->rx_bytes;
   1993 	stat->rx_runts += smb->rx_runts;
   1994 	stat->rx_fragments += smb->rx_fragments;
   1995 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1996 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1997 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1998 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1999 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2000 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2001 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2002 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2003 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2004 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2005 	stat->rx_alignerrs += smb->rx_alignerrs;
   2006 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2007 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2008 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2009 
   2010 	/* Tx stats. */
   2011 	stat->tx_frames += smb->tx_frames;
   2012 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2013 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2014 	stat->tx_pause_frames += smb->tx_pause_frames;
   2015 	stat->tx_excess_defer += smb->tx_excess_defer;
   2016 	stat->tx_control_frames += smb->tx_control_frames;
   2017 	stat->tx_deferred += smb->tx_deferred;
   2018 	stat->tx_bytes += smb->tx_bytes;
   2019 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2020 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2021 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2022 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2023 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2024 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2025 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2026 	stat->tx_single_colls += smb->tx_single_colls;
   2027 	stat->tx_multi_colls += smb->tx_multi_colls;
   2028 	stat->tx_late_colls += smb->tx_late_colls;
   2029 	stat->tx_excess_colls += smb->tx_excess_colls;
   2030 	stat->tx_underrun += smb->tx_underrun;
   2031 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2032 	stat->tx_lenerrs += smb->tx_lenerrs;
   2033 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2034 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2035 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2036 
   2037 	/* Update counters in ifnet. */
   2038 	ifp->if_opackets += smb->tx_frames;
   2039 
   2040 	ifp->if_collisions += smb->tx_single_colls +
   2041 	    smb->tx_multi_colls + smb->tx_late_colls +
   2042 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2043 
   2044 	ifp->if_oerrors += smb->tx_excess_colls +
   2045 	    smb->tx_late_colls + smb->tx_underrun +
   2046 	    smb->tx_pkts_truncated;
   2047 
   2048 	ifp->if_ipackets += smb->rx_frames;
   2049 
   2050 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2051 	    smb->rx_runts + smb->rx_pkts_truncated +
   2052 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2053 	    smb->rx_alignerrs;
   2054 
   2055 	/* Update done, clear. */
   2056 	smb->updated = 0;
   2057 
   2058 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2059 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   2060 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2061 }
   2062 
   2063 static void
   2064 age_stop_txmac(struct age_softc *sc)
   2065 {
   2066 	uint32_t reg;
   2067 	int i;
   2068 
   2069 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2070 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2071 		reg &= ~MAC_CFG_TX_ENB;
   2072 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2073 	}
   2074 	/* Stop Tx DMA engine. */
   2075 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2076 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2077 		reg &= ~DMA_CFG_RD_ENB;
   2078 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2079 	}
   2080 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2081 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2082 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2083 			break;
   2084 		DELAY(10);
   2085 	}
   2086 	if (i == 0)
   2087 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2088 }
   2089 
   2090 static void
   2091 age_stop_rxmac(struct age_softc *sc)
   2092 {
   2093 	uint32_t reg;
   2094 	int i;
   2095 
   2096 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2097 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2098 		reg &= ~MAC_CFG_RX_ENB;
   2099 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2100 	}
   2101 	/* Stop Rx DMA engine. */
   2102 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2103 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2104 		reg &= ~DMA_CFG_WR_ENB;
   2105 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2106 	}
   2107 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2108 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2109 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2110 			break;
   2111 		DELAY(10);
   2112 	}
   2113 	if (i == 0)
   2114 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2115 }
   2116 
   2117 static void
   2118 age_init_tx_ring(struct age_softc *sc)
   2119 {
   2120 	struct age_ring_data *rd;
   2121 	struct age_txdesc *txd;
   2122 	int i;
   2123 
   2124 	sc->age_cdata.age_tx_prod = 0;
   2125 	sc->age_cdata.age_tx_cons = 0;
   2126 	sc->age_cdata.age_tx_cnt = 0;
   2127 
   2128 	rd = &sc->age_rdata;
   2129 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2130 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2131 		txd = &sc->age_cdata.age_txdesc[i];
   2132 		txd->tx_desc = &rd->age_tx_ring[i];
   2133 		txd->tx_m = NULL;
   2134 	}
   2135 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2136 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2137 }
   2138 
   2139 static int
   2140 age_init_rx_ring(struct age_softc *sc)
   2141 {
   2142 	struct age_ring_data *rd;
   2143 	struct age_rxdesc *rxd;
   2144 	int i;
   2145 
   2146 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2147 	rd = &sc->age_rdata;
   2148 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2149 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2150 		rxd = &sc->age_cdata.age_rxdesc[i];
   2151 		rxd->rx_m = NULL;
   2152 		rxd->rx_desc = &rd->age_rx_ring[i];
   2153 		if (age_newbuf(sc, rxd, 1) != 0)
   2154 			return ENOBUFS;
   2155 	}
   2156 
   2157 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2158 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2159 
   2160 	return 0;
   2161 }
   2162 
   2163 static void
   2164 age_init_rr_ring(struct age_softc *sc)
   2165 {
   2166 	struct age_ring_data *rd;
   2167 
   2168 	sc->age_cdata.age_rr_cons = 0;
   2169 	AGE_RXCHAIN_RESET(sc);
   2170 
   2171 	rd = &sc->age_rdata;
   2172 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2173 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2174 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2175 }
   2176 
   2177 static void
   2178 age_init_cmb_block(struct age_softc *sc)
   2179 {
   2180 	struct age_ring_data *rd;
   2181 
   2182 	rd = &sc->age_rdata;
   2183 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2184 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2185 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
   2186 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2187 }
   2188 
   2189 static void
   2190 age_init_smb_block(struct age_softc *sc)
   2191 {
   2192 	struct age_ring_data *rd;
   2193 
   2194 	rd = &sc->age_rdata;
   2195 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2196 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2197 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2198 }
   2199 
   2200 static int
   2201 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2202 {
   2203 	struct rx_desc *desc;
   2204 	struct mbuf *m;
   2205 	bus_dmamap_t map;
   2206 	int error;
   2207 
   2208 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2209 	if (m == NULL)
   2210 		return ENOBUFS;
   2211 	MCLGET(m, M_DONTWAIT);
   2212 	if (!(m->m_flags & M_EXT)) {
   2213 		 m_freem(m);
   2214 		 return ENOBUFS;
   2215 	}
   2216 
   2217 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2218 	m_adj(m, ETHER_ALIGN);
   2219 
   2220 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2221 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2222 
   2223 	if (error != 0) {
   2224 		m_freem(m);
   2225 
   2226 		if (init)
   2227 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2228 		return error;
   2229 	}
   2230 
   2231 	if (rxd->rx_m != NULL) {
   2232 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2233 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2234 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2235 	}
   2236 	map = rxd->rx_dmamap;
   2237 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2238 	sc->age_cdata.age_rx_sparemap = map;
   2239 	rxd->rx_m = m;
   2240 
   2241 	desc = rxd->rx_desc;
   2242 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2243 	desc->len =
   2244 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2245 	    AGE_RD_LEN_SHIFT);
   2246 
   2247 	return 0;
   2248 }
   2249 
   2250 static void
   2251 age_rxvlan(struct age_softc *sc)
   2252 {
   2253 	uint32_t reg;
   2254 
   2255 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2256 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2257 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2258 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2259 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2260 }
   2261 
   2262 static void
   2263 age_rxfilter(struct age_softc *sc)
   2264 {
   2265 	struct ethercom *ec = &sc->sc_ec;
   2266 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2267 	struct ether_multi *enm;
   2268 	struct ether_multistep step;
   2269 	uint32_t crc;
   2270 	uint32_t mchash[2];
   2271 	uint32_t rxcfg;
   2272 
   2273 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2274 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2275 	ifp->if_flags &= ~IFF_ALLMULTI;
   2276 
   2277 	/*
   2278 	 * Always accept broadcast frames.
   2279 	 */
   2280 	rxcfg |= MAC_CFG_BCAST;
   2281 
   2282 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2283 		ifp->if_flags |= IFF_ALLMULTI;
   2284 		if (ifp->if_flags & IFF_PROMISC)
   2285 			rxcfg |= MAC_CFG_PROMISC;
   2286 		else
   2287 			rxcfg |= MAC_CFG_ALLMULTI;
   2288 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2289 	} else {
   2290 		/* Program new filter. */
   2291 		memset(mchash, 0, sizeof(mchash));
   2292 
   2293 		ETHER_FIRST_MULTI(step, ec, enm);
   2294 		while (enm != NULL) {
   2295 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2296 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2297 			ETHER_NEXT_MULTI(step, enm);
   2298 		}
   2299 	}
   2300 
   2301 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2302 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2303 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2304 }
   2305