if_age.c revision 1.57 1 /* $NetBSD: if_age.c,v 1.57 2019/05/23 10:51:39 msaitoh Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.57 2019/05/23 10:51:39 msaitoh Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/if_agereg.h>
76
77 static int age_match(device_t, cfdata_t, void *);
78 static void age_attach(device_t, device_t, void *);
79 static int age_detach(device_t, int);
80
81 static bool age_resume(device_t, const pmf_qual_t *);
82
83 static int age_miibus_readreg(device_t, int, int, uint16_t *);
84 static int age_miibus_writereg(device_t, int, int, uint16_t);
85 static void age_miibus_statchg(struct ifnet *);
86
87 static int age_init(struct ifnet *);
88 static int age_ioctl(struct ifnet *, u_long, void *);
89 static void age_start(struct ifnet *);
90 static void age_watchdog(struct ifnet *);
91 static bool age_shutdown(device_t, int);
92 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int age_mediachange(struct ifnet *);
94
95 static int age_intr(void *);
96 static int age_dma_alloc(struct age_softc *);
97 static void age_dma_free(struct age_softc *);
98 static void age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void age_phy_reset(struct age_softc *);
100
101 static int age_encap(struct age_softc *, struct mbuf **);
102 static void age_init_tx_ring(struct age_softc *);
103 static int age_init_rx_ring(struct age_softc *);
104 static void age_init_rr_ring(struct age_softc *);
105 static void age_init_cmb_block(struct age_softc *);
106 static void age_init_smb_block(struct age_softc *);
107 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void age_mac_config(struct age_softc *);
109 static void age_txintr(struct age_softc *, int);
110 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void age_rxintr(struct age_softc *, int);
112 static void age_tick(void *);
113 static void age_reset(struct age_softc *);
114 static void age_stop(struct ifnet *, int);
115 static void age_stats_update(struct age_softc *);
116 static void age_stop_txmac(struct age_softc *);
117 static void age_stop_rxmac(struct age_softc *);
118 static void age_rxvlan(struct age_softc *sc);
119 static void age_rxfilter(struct age_softc *);
120
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122 age_match, age_attach, age_detach, NULL);
123
124 int agedebug = 0;
125 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
126
127 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
128
129 static int
130 age_match(device_t dev, cfdata_t match, void *aux)
131 {
132 struct pci_attach_args *pa = aux;
133
134 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
136 }
137
138 static void
139 age_attach(device_t parent, device_t self, void *aux)
140 {
141 struct age_softc *sc = device_private(self);
142 struct pci_attach_args *pa = aux;
143 pci_intr_handle_t ih;
144 const char *intrstr;
145 struct ifnet *ifp = &sc->sc_ec.ec_if;
146 struct mii_data * const mii = &sc->sc_miibus;
147 pcireg_t memtype;
148 int error = 0;
149 char intrbuf[PCI_INTRSTR_LEN];
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_dmat = pa->pa_dmat;
156 sc->sc_pct = pa->pa_pc;
157 sc->sc_pcitag = pa->pa_tag;
158
159 /*
160 * Allocate IO memory
161 */
162 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
163 switch (memtype) {
164 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
167 break;
168 default:
169 aprint_error_dev(self, "invalid base address register\n");
170 break;
171 }
172
173 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
174 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
175 aprint_error_dev(self, "could not map mem space\n");
176 return;
177 }
178
179 if (pci_intr_map(pa, &ih) != 0) {
180 aprint_error_dev(self, "could not map interrupt\n");
181 goto fail;
182 }
183
184 /*
185 * Allocate IRQ
186 */
187 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
188 sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
189 age_intr, sc, device_xname(self));
190 if (sc->sc_irq_handle == NULL) {
191 aprint_error_dev(self, "could not establish interrupt");
192 if (intrstr != NULL)
193 aprint_error(" at %s", intrstr);
194 aprint_error("\n");
195 goto fail;
196 }
197 aprint_normal_dev(self, "%s\n", intrstr);
198
199 /* Set PHY address. */
200 sc->age_phyaddr = AGE_PHY_ADDR;
201
202 /* Reset PHY. */
203 age_phy_reset(sc);
204
205 /* Reset the ethernet controller. */
206 age_reset(sc);
207
208 /* Get PCI and chip id/revision. */
209 sc->age_rev = PCI_REVISION(pa->pa_class);
210 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
211 MASTER_CHIP_REV_SHIFT;
212
213 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
214 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
215
216 if (agedebug) {
217 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
218 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
219 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
220 }
221
222 /* Set max allowable DMA size. */
223 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
224 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
225
226 /* Allocate DMA stuffs */
227 error = age_dma_alloc(sc);
228 if (error)
229 goto fail;
230
231 callout_init(&sc->sc_tick_ch, 0);
232 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
233
234 /* Load station address. */
235 age_get_macaddr(sc, sc->sc_enaddr);
236
237 aprint_normal_dev(self, "Ethernet address %s\n",
238 ether_sprintf(sc->sc_enaddr));
239
240 ifp->if_softc = sc;
241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
242 ifp->if_init = age_init;
243 ifp->if_ioctl = age_ioctl;
244 ifp->if_start = age_start;
245 ifp->if_stop = age_stop;
246 ifp->if_watchdog = age_watchdog;
247 ifp->if_baudrate = IF_Gbps(1);
248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 IFQ_SET_READY(&ifp->if_snd);
250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251
252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253
254 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
255 IFCAP_CSUM_TCPv4_Rx |
256 IFCAP_CSUM_UDPv4_Rx;
257 #ifdef AGE_CHECKSUM
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
259 IFCAP_CSUM_TCPv4_Tx |
260 IFCAP_CSUM_UDPv4_Tx;
261 #endif
262
263 #if NVLAN > 0
264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266
267 /* Set up MII bus. */
268 mii->mii_ifp = ifp;
269 mii->mii_readreg = age_miibus_readreg;
270 mii->mii_writereg = age_miibus_writereg;
271 mii->mii_statchg = age_miibus_statchg;
272
273 sc->sc_ec.ec_mii = mii;
274 ifmedia_init(&mii->mii_media, 0, age_mediachange, age_mediastatus);
275 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
276 MII_OFFSET_ANY, MIIF_DOPAUSE);
277
278 if (LIST_FIRST(&mii->mii_phys) == NULL) {
279 aprint_error_dev(self, "no PHY found!\n");
280 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
281 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
282 } else
283 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
284
285 if_attach(ifp);
286 if_deferred_start_init(ifp, NULL);
287 ether_ifattach(ifp, sc->sc_enaddr);
288
289 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
290 pmf_class_network_register(self, ifp);
291 else
292 aprint_error_dev(self, "couldn't establish power handler\n");
293
294 return;
295
296 fail:
297 age_dma_free(sc);
298 if (sc->sc_irq_handle != NULL) {
299 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
300 sc->sc_irq_handle = NULL;
301 }
302 if (sc->sc_mem_size) {
303 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
304 sc->sc_mem_size = 0;
305 }
306 }
307
308 static int
309 age_detach(device_t self, int flags)
310 {
311 struct age_softc *sc = device_private(self);
312 struct ifnet *ifp = &sc->sc_ec.ec_if;
313 int s;
314
315 pmf_device_deregister(self);
316 s = splnet();
317 age_stop(ifp, 0);
318 splx(s);
319
320 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
321
322 /* Delete all remaining media. */
323 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
324
325 ether_ifdetach(ifp);
326 if_detach(ifp);
327 age_dma_free(sc);
328
329 if (sc->sc_irq_handle != NULL) {
330 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
331 sc->sc_irq_handle = NULL;
332 }
333 if (sc->sc_mem_size) {
334 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
335 sc->sc_mem_size = 0;
336 }
337 return 0;
338 }
339
340 /*
341 * Read a PHY register on the MII of the L1.
342 */
343 static int
344 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
345 {
346 struct age_softc *sc = device_private(dev);
347 uint32_t v;
348 int i;
349
350 if (phy != sc->age_phyaddr)
351 return -1;
352
353 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
354 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
355 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
356 DELAY(1);
357 v = CSR_READ_4(sc, AGE_MDIO);
358 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
359 break;
360 }
361
362 if (i == 0) {
363 printf("%s: phy read timeout: phy %d, reg %d\n",
364 device_xname(sc->sc_dev), phy, reg);
365 return ETIMEDOUT;
366 }
367
368 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
369 return 0;
370 }
371
372 /*
373 * Write a PHY register on the MII of the L1.
374 */
375 static int
376 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
377 {
378 struct age_softc *sc = device_private(dev);
379 uint32_t v;
380 int i;
381
382 if (phy != sc->age_phyaddr)
383 return -1;
384
385 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
386 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
387 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
388
389 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
390 DELAY(1);
391 v = CSR_READ_4(sc, AGE_MDIO);
392 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
393 break;
394 }
395
396 if (i == 0) {
397 printf("%s: phy write timeout: phy %d, reg %d\n",
398 device_xname(sc->sc_dev), phy, reg);
399 return ETIMEDOUT;
400 }
401
402 return 0;
403 }
404
405 /*
406 * Callback from MII layer when media changes.
407 */
408 static void
409 age_miibus_statchg(struct ifnet *ifp)
410 {
411 struct age_softc *sc = ifp->if_softc;
412 struct mii_data *mii = &sc->sc_miibus;
413
414 if ((ifp->if_flags & IFF_RUNNING) == 0)
415 return;
416
417 sc->age_flags &= ~AGE_FLAG_LINK;
418 if ((mii->mii_media_status & IFM_AVALID) != 0) {
419 switch (IFM_SUBTYPE(mii->mii_media_active)) {
420 case IFM_10_T:
421 case IFM_100_TX:
422 case IFM_1000_T:
423 sc->age_flags |= AGE_FLAG_LINK;
424 break;
425 default:
426 break;
427 }
428 }
429
430 /* Stop Rx/Tx MACs. */
431 age_stop_rxmac(sc);
432 age_stop_txmac(sc);
433
434 /* Program MACs with resolved speed/duplex/flow-control. */
435 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
436 uint32_t reg;
437
438 age_mac_config(sc);
439 reg = CSR_READ_4(sc, AGE_MAC_CFG);
440 /* Restart DMA engine and Tx/Rx MAC. */
441 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
442 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
443 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
444 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
445 }
446 }
447
448 /*
449 * Get the current interface media status.
450 */
451 static void
452 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
453 {
454 struct age_softc *sc = ifp->if_softc;
455 struct mii_data *mii = &sc->sc_miibus;
456
457 mii_pollstat(mii);
458 ifmr->ifm_status = mii->mii_media_status;
459 ifmr->ifm_active = mii->mii_media_active;
460 }
461
462 /*
463 * Set hardware to newly-selected media.
464 */
465 static int
466 age_mediachange(struct ifnet *ifp)
467 {
468 struct age_softc *sc = ifp->if_softc;
469 struct mii_data *mii = &sc->sc_miibus;
470 int error;
471
472 if (mii->mii_instance != 0) {
473 struct mii_softc *miisc;
474
475 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
476 mii_phy_reset(miisc);
477 }
478 error = mii_mediachg(mii);
479
480 return error;
481 }
482
483 static int
484 age_intr(void *arg)
485 {
486 struct age_softc *sc = arg;
487 struct ifnet *ifp = &sc->sc_ec.ec_if;
488 struct cmb *cmb;
489 uint32_t status;
490
491 status = CSR_READ_4(sc, AGE_INTR_STATUS);
492 if (status == 0 || (status & AGE_INTRS) == 0)
493 return 0;
494
495 cmb = sc->age_rdata.age_cmb_block;
496 if (cmb == NULL) {
497 /* Happens when bringing up the interface
498 * w/o having a carrier. Ack the interrupt.
499 */
500 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
501 return 0;
502 }
503
504 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
505 sc->age_cdata.age_cmb_block_map->dm_mapsize,
506 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
507 status = le32toh(cmb->intr_status);
508 /* ACK/reenable interrupts */
509 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
510 while ((status & AGE_INTRS) != 0) {
511 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
512 TPD_CONS_SHIFT;
513 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
514 RRD_PROD_SHIFT;
515
516 /* Let hardware know CMB was served. */
517 cmb->intr_status = 0;
518 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
519 sc->age_cdata.age_cmb_block_map->dm_mapsize,
520 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
521
522 if (ifp->if_flags & IFF_RUNNING) {
523 if (status & INTR_CMB_RX)
524 age_rxintr(sc, sc->age_rr_prod);
525
526 if (status & INTR_CMB_TX)
527 age_txintr(sc, sc->age_tpd_cons);
528
529 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
530 if (status & INTR_DMA_RD_TO_RST)
531 printf("%s: DMA read error! -- "
532 "resetting\n",
533 device_xname(sc->sc_dev));
534 if (status & INTR_DMA_WR_TO_RST)
535 printf("%s: DMA write error! -- "
536 "resetting\n",
537 device_xname(sc->sc_dev));
538 age_init(ifp);
539 }
540
541 if_schedule_deferred_start(ifp);
542
543 if (status & INTR_SMB)
544 age_stats_update(sc);
545 }
546 /* check if more interrupts did came in */
547 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
548 sc->age_cdata.age_cmb_block_map->dm_mapsize,
549 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
550 status = le32toh(cmb->intr_status);
551 }
552
553 return 1;
554 }
555
556 static void
557 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
558 {
559 uint32_t ea[2], reg;
560 int i, vpdc;
561
562 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
563 if ((reg & SPI_VPD_ENB) != 0) {
564 /* Get VPD stored in TWSI EEPROM. */
565 reg &= ~SPI_VPD_ENB;
566 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
567 }
568
569 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
570 PCI_CAP_VPD, &vpdc, NULL)) {
571 /*
572 * PCI VPD capability found, let TWSI reload EEPROM.
573 * This will set Ethernet address of controller.
574 */
575 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
576 TWSI_CTRL_SW_LD_START);
577 for (i = 100; i > 0; i++) {
578 DELAY(1000);
579 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
580 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
581 break;
582 }
583 if (i == 0)
584 printf("%s: reloading EEPROM timeout!\n",
585 device_xname(sc->sc_dev));
586 } else {
587 if (agedebug)
588 printf("%s: PCI VPD capability not found!\n",
589 device_xname(sc->sc_dev));
590 }
591
592 ea[0] = CSR_READ_4(sc, AGE_PAR0);
593 ea[1] = CSR_READ_4(sc, AGE_PAR1);
594
595 eaddr[0] = (ea[1] >> 8) & 0xFF;
596 eaddr[1] = (ea[1] >> 0) & 0xFF;
597 eaddr[2] = (ea[0] >> 24) & 0xFF;
598 eaddr[3] = (ea[0] >> 16) & 0xFF;
599 eaddr[4] = (ea[0] >> 8) & 0xFF;
600 eaddr[5] = (ea[0] >> 0) & 0xFF;
601 }
602
603 static void
604 age_phy_reset(struct age_softc *sc)
605 {
606 uint16_t reg, pn;
607 int i, linkup;
608
609 /* Reset PHY. */
610 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
611 DELAY(2000);
612 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
613 DELAY(2000);
614
615 #define ATPHY_DBG_ADDR 0x1D
616 #define ATPHY_DBG_DATA 0x1E
617 #define ATPHY_CDTC 0x16
618 #define PHY_CDTC_ENB 0x0001
619 #define PHY_CDTC_POFF 8
620 #define ATPHY_CDTS 0x1C
621 #define PHY_CDTS_STAT_OK 0x0000
622 #define PHY_CDTS_STAT_SHORT 0x0100
623 #define PHY_CDTS_STAT_OPEN 0x0200
624 #define PHY_CDTS_STAT_INVAL 0x0300
625 #define PHY_CDTS_STAT_MASK 0x0300
626
627 /* Check power saving mode. Magic from Linux. */
628 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
629 for (linkup = 0, pn = 0; pn < 4; pn++) {
630 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
631 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
632 for (i = 200; i > 0; i--) {
633 DELAY(1000);
634 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
635 ATPHY_CDTC, ®);
636 if ((reg & PHY_CDTC_ENB) == 0)
637 break;
638 }
639 DELAY(1000);
640 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
641 ATPHY_CDTS, ®);
642 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
643 linkup++;
644 break;
645 }
646 }
647 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
648 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
649 if (linkup == 0) {
650 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
651 ATPHY_DBG_ADDR, 0);
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
653 ATPHY_DBG_DATA, 0x124E);
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
655 ATPHY_DBG_ADDR, 1);
656 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
657 ATPHY_DBG_DATA, ®);
658 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
659 ATPHY_DBG_DATA, reg | 0x03);
660 /* XXX */
661 DELAY(1500 * 1000);
662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 ATPHY_DBG_ADDR, 0);
664 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
665 ATPHY_DBG_DATA, 0x024E);
666 }
667
668 #undef ATPHY_DBG_ADDR
669 #undef ATPHY_DBG_DATA
670 #undef ATPHY_CDTC
671 #undef PHY_CDTC_ENB
672 #undef PHY_CDTC_POFF
673 #undef ATPHY_CDTS
674 #undef PHY_CDTS_STAT_OK
675 #undef PHY_CDTS_STAT_SHORT
676 #undef PHY_CDTS_STAT_OPEN
677 #undef PHY_CDTS_STAT_INVAL
678 #undef PHY_CDTS_STAT_MASK
679 }
680
681 static int
682 age_dma_alloc(struct age_softc *sc)
683 {
684 struct age_txdesc *txd;
685 struct age_rxdesc *rxd;
686 int nsegs, error, i;
687
688 /*
689 * Create DMA stuffs for TX ring
690 */
691 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
692 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
693 if (error) {
694 sc->age_cdata.age_tx_ring_map = NULL;
695 return ENOBUFS;
696 }
697
698 /* Allocate DMA'able memory for TX ring */
699 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
700 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
701 &nsegs, BUS_DMA_NOWAIT);
702 if (error) {
703 printf("%s: could not allocate DMA'able memory for Tx ring, "
704 "error = %i\n", device_xname(sc->sc_dev), error);
705 return error;
706 }
707
708 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
709 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
710 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
711 if (error)
712 return ENOBUFS;
713
714 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
715
716 /* Load the DMA map for Tx ring. */
717 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
718 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
719 if (error) {
720 printf("%s: could not load DMA'able memory for Tx ring, "
721 "error = %i\n", device_xname(sc->sc_dev), error);
722 bus_dmamem_free(sc->sc_dmat,
723 &sc->age_rdata.age_tx_ring_seg, 1);
724 return error;
725 }
726
727 sc->age_rdata.age_tx_ring_paddr =
728 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
729
730 /*
731 * Create DMA stuffs for RX ring
732 */
733 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
734 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
735 if (error) {
736 sc->age_cdata.age_rx_ring_map = NULL;
737 return ENOBUFS;
738 }
739
740 /* Allocate DMA'able memory for RX ring */
741 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
742 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
743 &nsegs, BUS_DMA_NOWAIT);
744 if (error) {
745 printf("%s: could not allocate DMA'able memory for Rx ring, "
746 "error = %i.\n", device_xname(sc->sc_dev), error);
747 return error;
748 }
749
750 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
751 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
752 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
753 if (error)
754 return ENOBUFS;
755
756 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
757
758 /* Load the DMA map for Rx ring. */
759 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
760 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
761 if (error) {
762 printf("%s: could not load DMA'able memory for Rx ring, "
763 "error = %i.\n", device_xname(sc->sc_dev), error);
764 bus_dmamem_free(sc->sc_dmat,
765 &sc->age_rdata.age_rx_ring_seg, 1);
766 return error;
767 }
768
769 sc->age_rdata.age_rx_ring_paddr =
770 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
771
772 /*
773 * Create DMA stuffs for RX return ring
774 */
775 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
776 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
777 if (error) {
778 sc->age_cdata.age_rr_ring_map = NULL;
779 return ENOBUFS;
780 }
781
782 /* Allocate DMA'able memory for RX return ring */
783 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
784 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
785 &nsegs, BUS_DMA_NOWAIT);
786 if (error) {
787 printf("%s: could not allocate DMA'able memory for Rx "
788 "return ring, error = %i.\n",
789 device_xname(sc->sc_dev), error);
790 return error;
791 }
792
793 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
794 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
795 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
796 if (error)
797 return ENOBUFS;
798
799 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
800
801 /* Load the DMA map for Rx return ring. */
802 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
803 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
804 if (error) {
805 printf("%s: could not load DMA'able memory for Rx return ring, "
806 "error = %i\n", device_xname(sc->sc_dev), error);
807 bus_dmamem_free(sc->sc_dmat,
808 &sc->age_rdata.age_rr_ring_seg, 1);
809 return error;
810 }
811
812 sc->age_rdata.age_rr_ring_paddr =
813 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
814
815 /*
816 * Create DMA stuffs for CMB block
817 */
818 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
819 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
820 &sc->age_cdata.age_cmb_block_map);
821 if (error) {
822 sc->age_cdata.age_cmb_block_map = NULL;
823 return ENOBUFS;
824 }
825
826 /* Allocate DMA'able memory for CMB block */
827 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
828 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
829 &nsegs, BUS_DMA_NOWAIT);
830 if (error) {
831 printf("%s: could not allocate DMA'able memory for "
832 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
833 return error;
834 }
835
836 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
837 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
838 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
839 if (error)
840 return ENOBUFS;
841
842 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
843
844 /* Load the DMA map for CMB block. */
845 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
846 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
847 BUS_DMA_NOWAIT);
848 if (error) {
849 printf("%s: could not load DMA'able memory for CMB block, "
850 "error = %i\n", device_xname(sc->sc_dev), error);
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->age_rdata.age_cmb_block_seg, 1);
853 return error;
854 }
855
856 sc->age_rdata.age_cmb_block_paddr =
857 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
858
859 /*
860 * Create DMA stuffs for SMB block
861 */
862 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
863 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
864 &sc->age_cdata.age_smb_block_map);
865 if (error) {
866 sc->age_cdata.age_smb_block_map = NULL;
867 return ENOBUFS;
868 }
869
870 /* Allocate DMA'able memory for SMB block */
871 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
872 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
873 &nsegs, BUS_DMA_NOWAIT);
874 if (error) {
875 printf("%s: could not allocate DMA'able memory for "
876 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
877 return error;
878 }
879
880 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
881 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
882 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
883 if (error)
884 return ENOBUFS;
885
886 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
887
888 /* Load the DMA map for SMB block */
889 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
890 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
891 BUS_DMA_NOWAIT);
892 if (error) {
893 printf("%s: could not load DMA'able memory for SMB block, "
894 "error = %i\n", device_xname(sc->sc_dev), error);
895 bus_dmamem_free(sc->sc_dmat,
896 &sc->age_rdata.age_smb_block_seg, 1);
897 return error;
898 }
899
900 sc->age_rdata.age_smb_block_paddr =
901 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
902
903 /* Create DMA maps for Tx buffers. */
904 for (i = 0; i < AGE_TX_RING_CNT; i++) {
905 txd = &sc->age_cdata.age_txdesc[i];
906 txd->tx_m = NULL;
907 txd->tx_dmamap = NULL;
908 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
909 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
910 &txd->tx_dmamap);
911 if (error) {
912 txd->tx_dmamap = NULL;
913 printf("%s: could not create Tx dmamap, error = %i.\n",
914 device_xname(sc->sc_dev), error);
915 return error;
916 }
917 }
918
919 /* Create DMA maps for Rx buffers. */
920 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
921 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
922 if (error) {
923 sc->age_cdata.age_rx_sparemap = NULL;
924 printf("%s: could not create spare Rx dmamap, error = %i.\n",
925 device_xname(sc->sc_dev), error);
926 return error;
927 }
928 for (i = 0; i < AGE_RX_RING_CNT; i++) {
929 rxd = &sc->age_cdata.age_rxdesc[i];
930 rxd->rx_m = NULL;
931 rxd->rx_dmamap = NULL;
932 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
933 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
934 if (error) {
935 rxd->rx_dmamap = NULL;
936 printf("%s: could not create Rx dmamap, error = %i.\n",
937 device_xname(sc->sc_dev), error);
938 return error;
939 }
940 }
941
942 return 0;
943 }
944
945 static void
946 age_dma_free(struct age_softc *sc)
947 {
948 struct age_txdesc *txd;
949 struct age_rxdesc *rxd;
950 int i;
951
952 /* Tx buffers */
953 for (i = 0; i < AGE_TX_RING_CNT; i++) {
954 txd = &sc->age_cdata.age_txdesc[i];
955 if (txd->tx_dmamap != NULL) {
956 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
957 txd->tx_dmamap = NULL;
958 }
959 }
960 /* Rx buffers */
961 for (i = 0; i < AGE_RX_RING_CNT; i++) {
962 rxd = &sc->age_cdata.age_rxdesc[i];
963 if (rxd->rx_dmamap != NULL) {
964 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
965 rxd->rx_dmamap = NULL;
966 }
967 }
968 if (sc->age_cdata.age_rx_sparemap != NULL) {
969 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
970 sc->age_cdata.age_rx_sparemap = NULL;
971 }
972
973 /* Tx ring. */
974 if (sc->age_cdata.age_tx_ring_map != NULL)
975 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
976 if (sc->age_cdata.age_tx_ring_map != NULL &&
977 sc->age_rdata.age_tx_ring != NULL)
978 bus_dmamem_free(sc->sc_dmat,
979 &sc->age_rdata.age_tx_ring_seg, 1);
980 sc->age_rdata.age_tx_ring = NULL;
981 sc->age_cdata.age_tx_ring_map = NULL;
982
983 /* Rx ring. */
984 if (sc->age_cdata.age_rx_ring_map != NULL)
985 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
986 if (sc->age_cdata.age_rx_ring_map != NULL &&
987 sc->age_rdata.age_rx_ring != NULL)
988 bus_dmamem_free(sc->sc_dmat,
989 &sc->age_rdata.age_rx_ring_seg, 1);
990 sc->age_rdata.age_rx_ring = NULL;
991 sc->age_cdata.age_rx_ring_map = NULL;
992
993 /* Rx return ring. */
994 if (sc->age_cdata.age_rr_ring_map != NULL)
995 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
996 if (sc->age_cdata.age_rr_ring_map != NULL &&
997 sc->age_rdata.age_rr_ring != NULL)
998 bus_dmamem_free(sc->sc_dmat,
999 &sc->age_rdata.age_rr_ring_seg, 1);
1000 sc->age_rdata.age_rr_ring = NULL;
1001 sc->age_cdata.age_rr_ring_map = NULL;
1002
1003 /* CMB block */
1004 if (sc->age_cdata.age_cmb_block_map != NULL)
1005 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1006 if (sc->age_cdata.age_cmb_block_map != NULL &&
1007 sc->age_rdata.age_cmb_block != NULL)
1008 bus_dmamem_free(sc->sc_dmat,
1009 &sc->age_rdata.age_cmb_block_seg, 1);
1010 sc->age_rdata.age_cmb_block = NULL;
1011 sc->age_cdata.age_cmb_block_map = NULL;
1012
1013 /* SMB block */
1014 if (sc->age_cdata.age_smb_block_map != NULL)
1015 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1016 if (sc->age_cdata.age_smb_block_map != NULL &&
1017 sc->age_rdata.age_smb_block != NULL)
1018 bus_dmamem_free(sc->sc_dmat,
1019 &sc->age_rdata.age_smb_block_seg, 1);
1020 sc->age_rdata.age_smb_block = NULL;
1021 sc->age_cdata.age_smb_block_map = NULL;
1022 }
1023
1024 static void
1025 age_start(struct ifnet *ifp)
1026 {
1027 struct age_softc *sc = ifp->if_softc;
1028 struct mbuf *m_head;
1029 int enq;
1030
1031 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1032 return;
1033 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1034 return;
1035 if (IFQ_IS_EMPTY(&ifp->if_snd))
1036 return;
1037
1038 enq = 0;
1039 for (;;) {
1040 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1041 if (m_head == NULL)
1042 break;
1043
1044 /*
1045 * Pack the data into the transmit ring. If we
1046 * don't have room, set the OACTIVE flag and wait
1047 * for the NIC to drain the ring.
1048 */
1049 if (age_encap(sc, &m_head)) {
1050 if (m_head == NULL)
1051 break;
1052 IF_PREPEND(&ifp->if_snd, m_head);
1053 ifp->if_flags |= IFF_OACTIVE;
1054 break;
1055 }
1056 enq = 1;
1057
1058 /*
1059 * If there's a BPF listener, bounce a copy of this frame
1060 * to him.
1061 */
1062 bpf_mtap(ifp, m_head, BPF_D_OUT);
1063 }
1064
1065 if (enq) {
1066 /* Update mbox. */
1067 AGE_COMMIT_MBOX(sc);
1068 /* Set a timeout in case the chip goes out to lunch. */
1069 ifp->if_timer = AGE_TX_TIMEOUT;
1070 }
1071 }
1072
1073 static void
1074 age_watchdog(struct ifnet *ifp)
1075 {
1076 struct age_softc *sc = ifp->if_softc;
1077
1078 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1079 printf("%s: watchdog timeout (missed link)\n",
1080 device_xname(sc->sc_dev));
1081 ifp->if_oerrors++;
1082 age_init(ifp);
1083 return;
1084 }
1085
1086 if (sc->age_cdata.age_tx_cnt == 0) {
1087 printf("%s: watchdog timeout (missed Tx interrupts) "
1088 "-- recovering\n", device_xname(sc->sc_dev));
1089 age_start(ifp);
1090 return;
1091 }
1092
1093 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1094 ifp->if_oerrors++;
1095 age_init(ifp);
1096 age_start(ifp);
1097 }
1098
1099 static bool
1100 age_shutdown(device_t self, int howto)
1101 {
1102 struct age_softc *sc;
1103 struct ifnet *ifp;
1104
1105 sc = device_private(self);
1106 ifp = &sc->sc_ec.ec_if;
1107 age_stop(ifp, 1);
1108
1109 return true;
1110 }
1111
1112 static int
1113 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 struct age_softc *sc = ifp->if_softc;
1116 int s, error;
1117
1118 s = splnet();
1119
1120 error = ether_ioctl(ifp, cmd, data);
1121 if (error == ENETRESET) {
1122 if (ifp->if_flags & IFF_RUNNING)
1123 age_rxfilter(sc);
1124 error = 0;
1125 }
1126
1127 splx(s);
1128 return error;
1129 }
1130
1131 static void
1132 age_mac_config(struct age_softc *sc)
1133 {
1134 struct mii_data *mii;
1135 uint32_t reg;
1136
1137 mii = &sc->sc_miibus;
1138
1139 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1140 reg &= ~MAC_CFG_FULL_DUPLEX;
1141 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1142 reg &= ~MAC_CFG_SPEED_MASK;
1143
1144 /* Reprogram MAC with resolved speed/duplex. */
1145 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1146 case IFM_10_T:
1147 case IFM_100_TX:
1148 reg |= MAC_CFG_SPEED_10_100;
1149 break;
1150 case IFM_1000_T:
1151 reg |= MAC_CFG_SPEED_1000;
1152 break;
1153 }
1154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1155 reg |= MAC_CFG_FULL_DUPLEX;
1156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1157 reg |= MAC_CFG_TX_FC;
1158 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1159 reg |= MAC_CFG_RX_FC;
1160 }
1161
1162 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1163 }
1164
1165 static bool
1166 age_resume(device_t dv, const pmf_qual_t *qual)
1167 {
1168 struct age_softc *sc = device_private(dv);
1169 uint16_t cmd;
1170
1171 /*
1172 * Clear INTx emulation disable for hardware that
1173 * is set in resume event. From Linux.
1174 */
1175 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1176 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1177 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1178 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1179 PCI_COMMAND_STATUS_REG, cmd);
1180 }
1181
1182 return true;
1183 }
1184
1185 static int
1186 age_encap(struct age_softc *sc, struct mbuf **m_head)
1187 {
1188 struct age_txdesc *txd, *txd_last;
1189 struct tx_desc *desc;
1190 struct mbuf *m;
1191 bus_dmamap_t map;
1192 uint32_t cflags, poff, vtag;
1193 int error, i, nsegs, prod;
1194
1195 m = *m_head;
1196 cflags = vtag = 0;
1197 poff = 0;
1198
1199 prod = sc->age_cdata.age_tx_prod;
1200 txd = &sc->age_cdata.age_txdesc[prod];
1201 txd_last = txd;
1202 map = txd->tx_dmamap;
1203
1204 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1205
1206 if (error == EFBIG) {
1207 error = 0;
1208
1209 *m_head = m_pullup(*m_head, MHLEN);
1210 if (*m_head == NULL) {
1211 printf("%s: can't defrag TX mbuf\n",
1212 device_xname(sc->sc_dev));
1213 return ENOBUFS;
1214 }
1215
1216 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1217 BUS_DMA_NOWAIT);
1218
1219 if (error != 0) {
1220 printf("%s: could not load defragged TX mbuf\n",
1221 device_xname(sc->sc_dev));
1222 m_freem(*m_head);
1223 *m_head = NULL;
1224 return error;
1225 }
1226 } else if (error) {
1227 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1228 return error;
1229 }
1230
1231 nsegs = map->dm_nsegs;
1232
1233 if (nsegs == 0) {
1234 m_freem(*m_head);
1235 *m_head = NULL;
1236 return EIO;
1237 }
1238
1239 /* Check descriptor overrun. */
1240 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1241 bus_dmamap_unload(sc->sc_dmat, map);
1242 return ENOBUFS;
1243 }
1244 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1245 BUS_DMASYNC_PREWRITE);
1246
1247 m = *m_head;
1248 /* Configure Tx IP/TCP/UDP checksum offload. */
1249 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1250 cflags |= AGE_TD_CSUM;
1251 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1252 cflags |= AGE_TD_TCPCSUM;
1253 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1254 cflags |= AGE_TD_UDPCSUM;
1255 /* Set checksum start offset. */
1256 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1257 }
1258
1259 #if NVLAN > 0
1260 /* Configure VLAN hardware tag insertion. */
1261 if (vlan_has_tag(m)) {
1262 vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1263 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1264 cflags |= AGE_TD_INSERT_VLAN_TAG;
1265 }
1266 #endif
1267
1268 desc = NULL;
1269 KASSERT(nsegs > 0);
1270 for (i = 0; ; i++) {
1271 desc = &sc->age_rdata.age_tx_ring[prod];
1272 desc->addr = htole64(map->dm_segs[i].ds_addr);
1273 desc->len =
1274 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1275 desc->flags = htole32(cflags);
1276 sc->age_cdata.age_tx_cnt++;
1277 if (i == (nsegs - 1))
1278 break;
1279
1280 /* Sync this descriptor and go to the next one */
1281 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1282 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1283 BUS_DMASYNC_PREWRITE);
1284 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1285 }
1286
1287 /* Set EOP on the last descriptor and sync it. */
1288 desc->flags |= htole32(AGE_TD_EOP);
1289 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1290 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1291 BUS_DMASYNC_PREWRITE);
1292
1293 if (nsegs > 1) {
1294 /* Swap dmamap of the first and the last. */
1295 txd = &sc->age_cdata.age_txdesc[prod];
1296 map = txd_last->tx_dmamap;
1297 txd_last->tx_dmamap = txd->tx_dmamap;
1298 txd->tx_dmamap = map;
1299 txd->tx_m = m;
1300 KASSERT(txd_last->tx_m == NULL);
1301 } else {
1302 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1303 txd_last->tx_m = m;
1304 }
1305
1306 /* Update producer index. */
1307 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1308 sc->age_cdata.age_tx_prod = prod;
1309
1310 return 0;
1311 }
1312
1313 static void
1314 age_txintr(struct age_softc *sc, int tpd_cons)
1315 {
1316 struct ifnet *ifp = &sc->sc_ec.ec_if;
1317 struct age_txdesc *txd;
1318 int cons, prog;
1319
1320 if (sc->age_cdata.age_tx_cnt <= 0) {
1321 if (ifp->if_timer != 0)
1322 printf("timer running without packets\n");
1323 if (sc->age_cdata.age_tx_cnt)
1324 printf("age_tx_cnt corrupted\n");
1325 }
1326
1327 /*
1328 * Go through our Tx list and free mbufs for those
1329 * frames which have been transmitted.
1330 */
1331 cons = sc->age_cdata.age_tx_cons;
1332 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1333 if (sc->age_cdata.age_tx_cnt <= 0)
1334 break;
1335 prog++;
1336 ifp->if_flags &= ~IFF_OACTIVE;
1337 sc->age_cdata.age_tx_cnt--;
1338 txd = &sc->age_cdata.age_txdesc[cons];
1339 /*
1340 * Clear Tx descriptors, it's not required but would
1341 * help debugging in case of Tx issues.
1342 */
1343 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1344 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1345 BUS_DMASYNC_POSTWRITE);
1346 txd->tx_desc->addr = 0;
1347 txd->tx_desc->len = 0;
1348 txd->tx_desc->flags = 0;
1349
1350 if (txd->tx_m == NULL)
1351 continue;
1352 /* Reclaim transmitted mbufs. */
1353 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1354 m_freem(txd->tx_m);
1355 txd->tx_m = NULL;
1356 }
1357
1358 if (prog > 0) {
1359 sc->age_cdata.age_tx_cons = cons;
1360
1361 /*
1362 * Unarm watchdog timer only when there are no pending
1363 * Tx descriptors in queue.
1364 */
1365 if (sc->age_cdata.age_tx_cnt == 0)
1366 ifp->if_timer = 0;
1367 }
1368 }
1369
1370 /* Receive a frame. */
1371 static void
1372 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1373 {
1374 struct ifnet *ifp = &sc->sc_ec.ec_if;
1375 struct age_rxdesc *rxd;
1376 struct rx_desc *desc;
1377 struct mbuf *mp, *m;
1378 uint32_t status, index;
1379 int count, nsegs, pktlen;
1380 int rx_cons;
1381
1382 status = le32toh(rxrd->flags);
1383 index = le32toh(rxrd->index);
1384 rx_cons = AGE_RX_CONS(index);
1385 nsegs = AGE_RX_NSEGS(index);
1386
1387 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1388 if ((status & AGE_RRD_ERROR) != 0 &&
1389 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1390 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1391 /*
1392 * We want to pass the following frames to upper
1393 * layer regardless of error status of Rx return
1394 * ring.
1395 *
1396 * o IP/TCP/UDP checksum is bad.
1397 * o frame length and protocol specific length
1398 * does not match.
1399 */
1400 sc->age_cdata.age_rx_cons += nsegs;
1401 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1402 return;
1403 }
1404
1405 pktlen = 0;
1406 for (count = 0; count < nsegs; count++,
1407 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1408 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1409 mp = rxd->rx_m;
1410 desc = rxd->rx_desc;
1411 /* Add a new receive buffer to the ring. */
1412 if (age_newbuf(sc, rxd, 0) != 0) {
1413 ifp->if_iqdrops++;
1414 /* Reuse Rx buffers. */
1415 if (sc->age_cdata.age_rxhead != NULL) {
1416 m_freem(sc->age_cdata.age_rxhead);
1417 AGE_RXCHAIN_RESET(sc);
1418 }
1419 break;
1420 }
1421
1422 /* The length of the first mbuf is computed last. */
1423 if (count != 0) {
1424 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1425 pktlen += mp->m_len;
1426 }
1427
1428 /* Chain received mbufs. */
1429 if (sc->age_cdata.age_rxhead == NULL) {
1430 sc->age_cdata.age_rxhead = mp;
1431 sc->age_cdata.age_rxtail = mp;
1432 } else {
1433 m_remove_pkthdr(mp);
1434 sc->age_cdata.age_rxprev_tail =
1435 sc->age_cdata.age_rxtail;
1436 sc->age_cdata.age_rxtail->m_next = mp;
1437 sc->age_cdata.age_rxtail = mp;
1438 }
1439
1440 if (count == nsegs - 1) {
1441 /*
1442 * It seems that L1 controller has no way
1443 * to tell hardware to strip CRC bytes.
1444 */
1445 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1446 if (nsegs > 1) {
1447 /* Remove the CRC bytes in chained mbufs. */
1448 pktlen -= ETHER_CRC_LEN;
1449 if (mp->m_len <= ETHER_CRC_LEN) {
1450 sc->age_cdata.age_rxtail =
1451 sc->age_cdata.age_rxprev_tail;
1452 sc->age_cdata.age_rxtail->m_len -=
1453 (ETHER_CRC_LEN - mp->m_len);
1454 sc->age_cdata.age_rxtail->m_next = NULL;
1455 m_freem(mp);
1456 } else {
1457 mp->m_len -= ETHER_CRC_LEN;
1458 }
1459 }
1460
1461 m = sc->age_cdata.age_rxhead;
1462 KASSERT(m->m_flags & M_PKTHDR);
1463 m_set_rcvif(m, ifp);
1464 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1465 /* Set the first mbuf length. */
1466 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1467
1468 /*
1469 * Set checksum information.
1470 * It seems that L1 controller can compute partial
1471 * checksum. The partial checksum value can be used
1472 * to accelerate checksum computation for fragmented
1473 * TCP/UDP packets. Upper network stack already
1474 * takes advantage of the partial checksum value in
1475 * IP reassembly stage. But I'm not sure the
1476 * correctness of the partial hardware checksum
1477 * assistance due to lack of data sheet. If it is
1478 * proven to work on L1 I'll enable it.
1479 */
1480 if (status & AGE_RRD_IPV4) {
1481 if (status & AGE_RRD_IPCSUM_NOK)
1482 m->m_pkthdr.csum_flags |=
1483 M_CSUM_IPv4_BAD;
1484 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1485 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1486 m->m_pkthdr.csum_flags |=
1487 M_CSUM_TCP_UDP_BAD;
1488 }
1489 /*
1490 * Don't mark bad checksum for TCP/UDP frames
1491 * as fragmented frames may always have set
1492 * bad checksummed bit of descriptor status.
1493 */
1494 }
1495 #if NVLAN > 0
1496 /* Check for VLAN tagged frames. */
1497 if (status & AGE_RRD_VLAN) {
1498 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1499 vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
1500 }
1501 #endif
1502
1503 /* Pass it on. */
1504 if_percpuq_enqueue(ifp->if_percpuq, m);
1505
1506 /* Reset mbuf chains. */
1507 AGE_RXCHAIN_RESET(sc);
1508 }
1509 }
1510
1511 if (count != nsegs) {
1512 sc->age_cdata.age_rx_cons += nsegs;
1513 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1514 } else
1515 sc->age_cdata.age_rx_cons = rx_cons;
1516 }
1517
1518 static void
1519 age_rxintr(struct age_softc *sc, int rr_prod)
1520 {
1521 struct rx_rdesc *rxrd;
1522 int rr_cons, nsegs, pktlen, prog;
1523
1524 rr_cons = sc->age_cdata.age_rr_cons;
1525 if (rr_cons == rr_prod)
1526 return;
1527
1528 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1529 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1530 BUS_DMASYNC_POSTREAD);
1531
1532 for (prog = 0; rr_cons != rr_prod; prog++) {
1533 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1534 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1535 if (nsegs == 0)
1536 break;
1537 /*
1538 * Check number of segments against received bytes
1539 * Non-matching value would indicate that hardware
1540 * is still trying to update Rx return descriptors.
1541 * I'm not sure whether this check is really needed.
1542 */
1543 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1544 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1545 (MCLBYTES - ETHER_ALIGN)))
1546 break;
1547
1548 /* Received a frame. */
1549 age_rxeof(sc, rxrd);
1550
1551 /* Clear return ring. */
1552 rxrd->index = 0;
1553 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1554 }
1555
1556 if (prog > 0) {
1557 /* Update the consumer index. */
1558 sc->age_cdata.age_rr_cons = rr_cons;
1559
1560 /* Sync descriptors. */
1561 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1562 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1563 BUS_DMASYNC_PREWRITE);
1564
1565 /* Notify hardware availability of new Rx buffers. */
1566 AGE_COMMIT_MBOX(sc);
1567 }
1568 }
1569
1570 static void
1571 age_tick(void *xsc)
1572 {
1573 struct age_softc *sc = xsc;
1574 struct mii_data *mii = &sc->sc_miibus;
1575 int s;
1576
1577 s = splnet();
1578 mii_tick(mii);
1579 splx(s);
1580
1581 callout_schedule(&sc->sc_tick_ch, hz);
1582 }
1583
1584 static void
1585 age_reset(struct age_softc *sc)
1586 {
1587 uint32_t reg;
1588 int i;
1589
1590 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1591 CSR_READ_4(sc, AGE_MASTER_CFG);
1592 DELAY(1000);
1593 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1594 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1595 break;
1596 DELAY(10);
1597 }
1598
1599 if (i == 0)
1600 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 reg);
1602
1603 /* Initialize PCIe module. From Linux. */
1604 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1605 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1606 }
1607
1608 static int
1609 age_init(struct ifnet *ifp)
1610 {
1611 struct age_softc *sc = ifp->if_softc;
1612 struct mii_data *mii;
1613 uint8_t eaddr[ETHER_ADDR_LEN];
1614 bus_addr_t paddr;
1615 uint32_t reg, fsize;
1616 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1617 int error;
1618
1619 /*
1620 * Cancel any pending I/O.
1621 */
1622 age_stop(ifp, 0);
1623
1624 /*
1625 * Reset the chip to a known state.
1626 */
1627 age_reset(sc);
1628
1629 /* Initialize descriptors. */
1630 error = age_init_rx_ring(sc);
1631 if (error != 0) {
1632 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1633 age_stop(ifp, 0);
1634 return error;
1635 }
1636 age_init_rr_ring(sc);
1637 age_init_tx_ring(sc);
1638 age_init_cmb_block(sc);
1639 age_init_smb_block(sc);
1640
1641 /* Reprogram the station address. */
1642 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1643 CSR_WRITE_4(sc, AGE_PAR0,
1644 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1645 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1646
1647 /* Set descriptor base addresses. */
1648 paddr = sc->age_rdata.age_tx_ring_paddr;
1649 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1650 paddr = sc->age_rdata.age_rx_ring_paddr;
1651 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1652 paddr = sc->age_rdata.age_rr_ring_paddr;
1653 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1654 paddr = sc->age_rdata.age_tx_ring_paddr;
1655 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1656 paddr = sc->age_rdata.age_cmb_block_paddr;
1657 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1658 paddr = sc->age_rdata.age_smb_block_paddr;
1659 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1660
1661 /* Set Rx/Rx return descriptor counter. */
1662 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1663 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1664 DESC_RRD_CNT_MASK) |
1665 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1666
1667 /* Set Tx descriptor counter. */
1668 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1669 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1670
1671 /* Tell hardware that we're ready to load descriptors. */
1672 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1673
1674 /*
1675 * Initialize mailbox register.
1676 * Updated producer/consumer index information is exchanged
1677 * through this mailbox register. However Tx producer and
1678 * Rx return consumer/Rx producer are all shared such that
1679 * it's hard to separate code path between Tx and Rx without
1680 * locking. If L1 hardware have a separate mail box register
1681 * for Tx and Rx consumer/producer management we could have
1682 * indepent Tx/Rx handler which in turn Rx handler could have
1683 * been run without any locking.
1684 */
1685 AGE_COMMIT_MBOX(sc);
1686
1687 /* Configure IPG/IFG parameters. */
1688 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1689 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1690 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1691 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1692 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1693
1694 /* Set parameters for half-duplex media. */
1695 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1696 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1697 HDPX_CFG_LCOL_MASK) |
1698 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1699 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1700 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1701 HDPX_CFG_ABEBT_MASK) |
1702 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1703 HDPX_CFG_JAMIPG_MASK));
1704
1705 /* Configure interrupt moderation timer. */
1706 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1707 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1708 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1709 reg &= ~MASTER_MTIMER_ENB;
1710 if (AGE_USECS(sc->age_int_mod) == 0)
1711 reg &= ~MASTER_ITIMER_ENB;
1712 else
1713 reg |= MASTER_ITIMER_ENB;
1714 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1715 if (agedebug)
1716 printf("%s: interrupt moderation is %d us.\n",
1717 device_xname(sc->sc_dev), sc->age_int_mod);
1718 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1719
1720 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1721 if (ifp->if_mtu < ETHERMTU)
1722 sc->age_max_frame_size = ETHERMTU;
1723 else
1724 sc->age_max_frame_size = ifp->if_mtu;
1725 sc->age_max_frame_size += ETHER_HDR_LEN +
1726 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1727 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1728
1729 /* Configure jumbo frame. */
1730 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1731 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1732 (((fsize / sizeof(uint64_t)) <<
1733 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1734 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1735 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1736 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1737 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1738
1739 /* Configure flow-control parameters. From Linux. */
1740 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1741 /*
1742 * Magic workaround for old-L1.
1743 * Don't know which hw revision requires this magic.
1744 */
1745 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1746 /*
1747 * Another magic workaround for flow-control mode
1748 * change. From Linux.
1749 */
1750 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1751 }
1752 /*
1753 * TODO
1754 * Should understand pause parameter relationships between FIFO
1755 * size and number of Rx descriptors and Rx return descriptors.
1756 *
1757 * Magic parameters came from Linux.
1758 */
1759 switch (sc->age_chip_rev) {
1760 case 0x8001:
1761 case 0x9001:
1762 case 0x9002:
1763 case 0x9003:
1764 rxf_hi = AGE_RX_RING_CNT / 16;
1765 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1766 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1767 rrd_lo = AGE_RR_RING_CNT / 16;
1768 break;
1769 default:
1770 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1771 rxf_lo = reg / 16;
1772 if (rxf_lo < 192)
1773 rxf_lo = 192;
1774 rxf_hi = (reg * 7) / 8;
1775 if (rxf_hi < rxf_lo)
1776 rxf_hi = rxf_lo + 16;
1777 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1778 rrd_lo = reg / 8;
1779 rrd_hi = (reg * 7) / 8;
1780 if (rrd_lo < 2)
1781 rrd_lo = 2;
1782 if (rrd_hi < rrd_lo)
1783 rrd_hi = rrd_lo + 3;
1784 break;
1785 }
1786 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1787 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1788 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1789 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1790 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1791 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1792 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1793 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1794 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1795 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1796
1797 /* Configure RxQ. */
1798 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1799 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1800 RXQ_CFG_RD_BURST_MASK) |
1801 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1802 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1803 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1804 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1805 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1806
1807 /* Configure TxQ. */
1808 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1809 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1810 TXQ_CFG_TPD_BURST_MASK) |
1811 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1812 TXQ_CFG_TX_FIFO_BURST_MASK) |
1813 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1814 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1815 TXQ_CFG_ENB);
1816
1817 /* Configure DMA parameters. */
1818 CSR_WRITE_4(sc, AGE_DMA_CFG,
1819 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1820 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1821 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1822
1823 /* Configure CMB DMA write threshold. */
1824 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1825 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1826 CMB_WR_THRESH_RRD_MASK) |
1827 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1828 CMB_WR_THRESH_TPD_MASK));
1829
1830 /* Set CMB/SMB timer and enable them. */
1831 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1832 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1833 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1834
1835 /* Request SMB updates for every seconds. */
1836 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1837 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1838
1839 /*
1840 * Disable all WOL bits as WOL can interfere normal Rx
1841 * operation.
1842 */
1843 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1844
1845 /*
1846 * Configure Tx/Rx MACs.
1847 * - Auto-padding for short frames.
1848 * - Enable CRC generation.
1849 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1850 * of MAC is followed after link establishment.
1851 */
1852 CSR_WRITE_4(sc, AGE_MAC_CFG,
1853 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1854 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1855 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1856 MAC_CFG_PREAMBLE_MASK));
1857
1858 /* Set up the receive filter. */
1859 age_rxfilter(sc);
1860 age_rxvlan(sc);
1861
1862 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1863 reg |= MAC_CFG_RXCSUM_ENB;
1864
1865 /* Ack all pending interrupts and clear it. */
1866 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1867 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1868
1869 /* Finally enable Tx/Rx MAC. */
1870 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1871
1872 sc->age_flags &= ~AGE_FLAG_LINK;
1873
1874 /* Switch to the current media. */
1875 mii = &sc->sc_miibus;
1876 mii_mediachg(mii);
1877
1878 callout_schedule(&sc->sc_tick_ch, hz);
1879
1880 ifp->if_flags |= IFF_RUNNING;
1881 ifp->if_flags &= ~IFF_OACTIVE;
1882
1883 return 0;
1884 }
1885
1886 static void
1887 age_stop(struct ifnet *ifp, int disable)
1888 {
1889 struct age_softc *sc = ifp->if_softc;
1890 struct age_txdesc *txd;
1891 struct age_rxdesc *rxd;
1892 uint32_t reg;
1893 int i;
1894
1895 callout_stop(&sc->sc_tick_ch);
1896
1897 /*
1898 * Mark the interface down and cancel the watchdog timer.
1899 */
1900 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901 ifp->if_timer = 0;
1902
1903 sc->age_flags &= ~AGE_FLAG_LINK;
1904
1905 mii_down(&sc->sc_miibus);
1906
1907 /*
1908 * Disable interrupts.
1909 */
1910 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1911 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1912
1913 /* Stop CMB/SMB updates. */
1914 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1915
1916 /* Stop Rx/Tx MAC. */
1917 age_stop_rxmac(sc);
1918 age_stop_txmac(sc);
1919
1920 /* Stop DMA. */
1921 CSR_WRITE_4(sc, AGE_DMA_CFG,
1922 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1923
1924 /* Stop TxQ/RxQ. */
1925 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1926 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1927 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1928 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1929 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1930 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1931 break;
1932 DELAY(10);
1933 }
1934 if (i == 0)
1935 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1936 device_xname(sc->sc_dev), reg);
1937
1938 /* Reclaim Rx buffers that have been processed. */
1939 if (sc->age_cdata.age_rxhead != NULL)
1940 m_freem(sc->age_cdata.age_rxhead);
1941 AGE_RXCHAIN_RESET(sc);
1942
1943 /*
1944 * Free RX and TX mbufs still in the queues.
1945 */
1946 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1947 rxd = &sc->age_cdata.age_rxdesc[i];
1948 if (rxd->rx_m != NULL) {
1949 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1950 m_freem(rxd->rx_m);
1951 rxd->rx_m = NULL;
1952 }
1953 }
1954 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1955 txd = &sc->age_cdata.age_txdesc[i];
1956 if (txd->tx_m != NULL) {
1957 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1958 m_freem(txd->tx_m);
1959 txd->tx_m = NULL;
1960 }
1961 }
1962 }
1963
1964 static void
1965 age_stats_update(struct age_softc *sc)
1966 {
1967 struct ifnet *ifp = &sc->sc_ec.ec_if;
1968 struct age_stats *stat;
1969 struct smb *smb;
1970
1971 stat = &sc->age_stat;
1972
1973 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1974 sc->age_cdata.age_smb_block_map->dm_mapsize,
1975 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1976
1977 smb = sc->age_rdata.age_smb_block;
1978 if (smb->updated == 0)
1979 return;
1980
1981 /* Rx stats. */
1982 stat->rx_frames += smb->rx_frames;
1983 stat->rx_bcast_frames += smb->rx_bcast_frames;
1984 stat->rx_mcast_frames += smb->rx_mcast_frames;
1985 stat->rx_pause_frames += smb->rx_pause_frames;
1986 stat->rx_control_frames += smb->rx_control_frames;
1987 stat->rx_crcerrs += smb->rx_crcerrs;
1988 stat->rx_lenerrs += smb->rx_lenerrs;
1989 stat->rx_bytes += smb->rx_bytes;
1990 stat->rx_runts += smb->rx_runts;
1991 stat->rx_fragments += smb->rx_fragments;
1992 stat->rx_pkts_64 += smb->rx_pkts_64;
1993 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1994 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1995 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1996 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1997 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1998 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1999 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2000 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2001 stat->rx_desc_oflows += smb->rx_desc_oflows;
2002 stat->rx_alignerrs += smb->rx_alignerrs;
2003 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2004 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2005 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2006
2007 /* Tx stats. */
2008 stat->tx_frames += smb->tx_frames;
2009 stat->tx_bcast_frames += smb->tx_bcast_frames;
2010 stat->tx_mcast_frames += smb->tx_mcast_frames;
2011 stat->tx_pause_frames += smb->tx_pause_frames;
2012 stat->tx_excess_defer += smb->tx_excess_defer;
2013 stat->tx_control_frames += smb->tx_control_frames;
2014 stat->tx_deferred += smb->tx_deferred;
2015 stat->tx_bytes += smb->tx_bytes;
2016 stat->tx_pkts_64 += smb->tx_pkts_64;
2017 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2018 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2019 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2020 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2021 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2022 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2023 stat->tx_single_colls += smb->tx_single_colls;
2024 stat->tx_multi_colls += smb->tx_multi_colls;
2025 stat->tx_late_colls += smb->tx_late_colls;
2026 stat->tx_excess_colls += smb->tx_excess_colls;
2027 stat->tx_underrun += smb->tx_underrun;
2028 stat->tx_desc_underrun += smb->tx_desc_underrun;
2029 stat->tx_lenerrs += smb->tx_lenerrs;
2030 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2031 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2032 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2033
2034 /* Update counters in ifnet. */
2035 ifp->if_opackets += smb->tx_frames;
2036
2037 ifp->if_collisions += smb->tx_single_colls +
2038 smb->tx_multi_colls + smb->tx_late_colls +
2039 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2040
2041 ifp->if_oerrors += smb->tx_excess_colls +
2042 smb->tx_late_colls + smb->tx_underrun +
2043 smb->tx_pkts_truncated;
2044
2045 ifp->if_ipackets += smb->rx_frames;
2046
2047 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2048 smb->rx_runts + smb->rx_pkts_truncated +
2049 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2050 smb->rx_alignerrs;
2051
2052 /* Update done, clear. */
2053 smb->updated = 0;
2054
2055 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2056 sc->age_cdata.age_smb_block_map->dm_mapsize,
2057 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2058 }
2059
2060 static void
2061 age_stop_txmac(struct age_softc *sc)
2062 {
2063 uint32_t reg;
2064 int i;
2065
2066 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2067 if ((reg & MAC_CFG_TX_ENB) != 0) {
2068 reg &= ~MAC_CFG_TX_ENB;
2069 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2070 }
2071 /* Stop Tx DMA engine. */
2072 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2073 if ((reg & DMA_CFG_RD_ENB) != 0) {
2074 reg &= ~DMA_CFG_RD_ENB;
2075 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2076 }
2077 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2078 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2079 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2080 break;
2081 DELAY(10);
2082 }
2083 if (i == 0)
2084 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2085 }
2086
2087 static void
2088 age_stop_rxmac(struct age_softc *sc)
2089 {
2090 uint32_t reg;
2091 int i;
2092
2093 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2094 if ((reg & MAC_CFG_RX_ENB) != 0) {
2095 reg &= ~MAC_CFG_RX_ENB;
2096 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2097 }
2098 /* Stop Rx DMA engine. */
2099 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2100 if ((reg & DMA_CFG_WR_ENB) != 0) {
2101 reg &= ~DMA_CFG_WR_ENB;
2102 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2103 }
2104 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2105 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2106 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2107 break;
2108 DELAY(10);
2109 }
2110 if (i == 0)
2111 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2112 }
2113
2114 static void
2115 age_init_tx_ring(struct age_softc *sc)
2116 {
2117 struct age_ring_data *rd;
2118 struct age_txdesc *txd;
2119 int i;
2120
2121 sc->age_cdata.age_tx_prod = 0;
2122 sc->age_cdata.age_tx_cons = 0;
2123 sc->age_cdata.age_tx_cnt = 0;
2124
2125 rd = &sc->age_rdata;
2126 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2127 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2128 txd = &sc->age_cdata.age_txdesc[i];
2129 txd->tx_desc = &rd->age_tx_ring[i];
2130 txd->tx_m = NULL;
2131 }
2132 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2133 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2134 }
2135
2136 static int
2137 age_init_rx_ring(struct age_softc *sc)
2138 {
2139 struct age_ring_data *rd;
2140 struct age_rxdesc *rxd;
2141 int i;
2142
2143 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2144 rd = &sc->age_rdata;
2145 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2146 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2147 rxd = &sc->age_cdata.age_rxdesc[i];
2148 rxd->rx_m = NULL;
2149 rxd->rx_desc = &rd->age_rx_ring[i];
2150 if (age_newbuf(sc, rxd, 1) != 0)
2151 return ENOBUFS;
2152 }
2153
2154 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2155 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2156
2157 return 0;
2158 }
2159
2160 static void
2161 age_init_rr_ring(struct age_softc *sc)
2162 {
2163 struct age_ring_data *rd;
2164
2165 sc->age_cdata.age_rr_cons = 0;
2166 AGE_RXCHAIN_RESET(sc);
2167
2168 rd = &sc->age_rdata;
2169 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2170 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2171 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2172 }
2173
2174 static void
2175 age_init_cmb_block(struct age_softc *sc)
2176 {
2177 struct age_ring_data *rd;
2178
2179 rd = &sc->age_rdata;
2180 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2181 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2182 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2183 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2184 }
2185
2186 static void
2187 age_init_smb_block(struct age_softc *sc)
2188 {
2189 struct age_ring_data *rd;
2190
2191 rd = &sc->age_rdata;
2192 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2193 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2194 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2195 }
2196
2197 static int
2198 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2199 {
2200 struct rx_desc *desc;
2201 struct mbuf *m;
2202 bus_dmamap_t map;
2203 int error;
2204
2205 MGETHDR(m, M_DONTWAIT, MT_DATA);
2206 if (m == NULL)
2207 return ENOBUFS;
2208 MCLGET(m, M_DONTWAIT);
2209 if (!(m->m_flags & M_EXT)) {
2210 m_freem(m);
2211 return ENOBUFS;
2212 }
2213
2214 m->m_len = m->m_pkthdr.len = MCLBYTES;
2215 m_adj(m, ETHER_ALIGN);
2216
2217 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2218 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2219
2220 if (error != 0) {
2221 m_freem(m);
2222
2223 if (init)
2224 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2225 return error;
2226 }
2227
2228 if (rxd->rx_m != NULL) {
2229 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2230 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2231 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2232 }
2233 map = rxd->rx_dmamap;
2234 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2235 sc->age_cdata.age_rx_sparemap = map;
2236 rxd->rx_m = m;
2237
2238 desc = rxd->rx_desc;
2239 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2240 desc->len =
2241 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2242 AGE_RD_LEN_SHIFT);
2243
2244 return 0;
2245 }
2246
2247 static void
2248 age_rxvlan(struct age_softc *sc)
2249 {
2250 uint32_t reg;
2251
2252 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2253 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2254 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2255 reg |= MAC_CFG_VLAN_TAG_STRIP;
2256 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2257 }
2258
2259 static void
2260 age_rxfilter(struct age_softc *sc)
2261 {
2262 struct ethercom *ec = &sc->sc_ec;
2263 struct ifnet *ifp = &sc->sc_ec.ec_if;
2264 struct ether_multi *enm;
2265 struct ether_multistep step;
2266 uint32_t crc;
2267 uint32_t mchash[2];
2268 uint32_t rxcfg;
2269
2270 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2271 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2272 ifp->if_flags &= ~IFF_ALLMULTI;
2273
2274 /*
2275 * Always accept broadcast frames.
2276 */
2277 rxcfg |= MAC_CFG_BCAST;
2278
2279 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2280 ifp->if_flags |= IFF_ALLMULTI;
2281 if (ifp->if_flags & IFF_PROMISC)
2282 rxcfg |= MAC_CFG_PROMISC;
2283 else
2284 rxcfg |= MAC_CFG_ALLMULTI;
2285 mchash[0] = mchash[1] = 0xFFFFFFFF;
2286 } else {
2287 /* Program new filter. */
2288 memset(mchash, 0, sizeof(mchash));
2289
2290 ETHER_FIRST_MULTI(step, ec, enm);
2291 while (enm != NULL) {
2292 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2293 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2294 ETHER_NEXT_MULTI(step, enm);
2295 }
2296 }
2297
2298 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2299 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2300 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2301 }
2302