if_age.c revision 1.6.2.2 1 /* $NetBSD: if_age.c,v 1.6.2.2 2009/01/17 13:28:59 mjf Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.6.2.2 2009/01/17 13:28:59 mjf Exp $");
35
36 #include "bpfilter.h"
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_agereg.h>
81
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
85
86 static bool age_resume(device_t PMF_FN_PROTO);
87
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
91
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
98
99 static int age_intr(void *);
100 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int age_dma_alloc(struct age_softc *);
102 static void age_dma_free(struct age_softc *);
103 static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void age_phy_reset(struct age_softc *);
105
106 static int age_encap(struct age_softc *, struct mbuf **);
107 static void age_init_tx_ring(struct age_softc *);
108 static int age_init_rx_ring(struct age_softc *);
109 static void age_init_rr_ring(struct age_softc *);
110 static void age_init_cmb_block(struct age_softc *);
111 static void age_init_smb_block(struct age_softc *);
112 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void age_mac_config(struct age_softc *);
114 static void age_txintr(struct age_softc *, int);
115 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void age_rxintr(struct age_softc *, int);
117 static void age_tick(void *);
118 static void age_reset(struct age_softc *);
119 static void age_stop(struct age_softc *);
120 static void age_stats_update(struct age_softc *);
121 static void age_stop_txmac(struct age_softc *);
122 static void age_stop_rxmac(struct age_softc *);
123 static void age_rxvlan(struct age_softc *sc);
124 static void age_rxfilter(struct age_softc *);
125
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 age_match, age_attach, age_detach, NULL);
128
129 int agedebug = 0;
130 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131
132 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
133
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
136 {
137 struct pci_attach_args *pa = aux;
138
139 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 }
142
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
145 {
146 struct age_softc *sc = device_private(self);
147 struct pci_attach_args *pa = aux;
148 pci_intr_handle_t ih;
149 const char *intrstr;
150 struct ifnet *ifp = &sc->sc_ec.ec_if;
151 pcireg_t memtype;
152 int error = 0;
153
154 aprint_naive("\n");
155 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156
157 sc->sc_dev = self;
158 sc->sc_dmat = pa->pa_dmat;
159 sc->sc_pct = pa->pa_pc;
160 sc->sc_pcitag = pa->pa_tag;
161
162 /*
163 * Allocate IO memory
164 */
165 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 switch (memtype) {
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 break;
171 default:
172 aprint_error_dev(self, "invalid base address register\n");
173 break;
174 }
175
176 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 aprint_error_dev(self, "could not map mem space\n");
179 return;
180 }
181
182 if (pci_intr_map(pa, &ih) != 0) {
183 aprint_error_dev(self, "could not map interrupt\n");
184 return;
185 }
186
187 /*
188 * Allocate IRQ
189 */
190 intrstr = pci_intr_string(sc->sc_pct, ih);
191 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 age_intr, sc);
193 if (sc->sc_irq_handle == NULL) {
194 aprint_error_dev(self, "could not establish interrupt");
195 if (intrstr != NULL)
196 aprint_error(" at %s", intrstr);
197 aprint_error("\n");
198 return;
199 }
200 aprint_normal_dev(self, "%s", intrstr);
201
202 /* Set PHY address. */
203 sc->age_phyaddr = AGE_PHY_ADDR;
204
205 /* Reset PHY. */
206 age_phy_reset(sc);
207
208 /* Reset the ethernet controller. */
209 age_reset(sc);
210
211 /* Get PCI and chip id/revision. */
212 sc->age_rev = PCI_REVISION(pa->pa_class);
213 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 MASTER_CHIP_REV_SHIFT;
215
216 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218
219 if (agedebug) {
220 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 }
224
225 /* Set max allowable DMA size. */
226 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228
229 /* Allocate DMA stuffs */
230 error = age_dma_alloc(sc);
231 if (error)
232 goto fail;
233
234 callout_init(&sc->sc_tick_ch, 0);
235 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236
237 /* Load station address. */
238 age_get_macaddr(sc, sc->sc_enaddr);
239
240 aprint_normal_dev(self, "Ethernet address %s\n",
241 ether_sprintf(sc->sc_enaddr));
242
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = age_init;
246 ifp->if_ioctl = age_ioctl;
247 ifp->if_start = age_start;
248 ifp->if_watchdog = age_watchdog;
249 ifp->if_baudrate = IF_Gbps(1);
250 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
251 IFQ_SET_READY(&ifp->if_snd);
252 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
253
254 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
255
256 #ifdef AGE_CHECKSUM
257 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
258 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
259 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
260 #endif
261
262 #if NVLAN > 0
263 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
264 #endif
265
266 /* Set up MII bus. */
267 sc->sc_miibus.mii_ifp = ifp;
268 sc->sc_miibus.mii_readreg = age_miibus_readreg;
269 sc->sc_miibus.mii_writereg = age_miibus_writereg;
270 sc->sc_miibus.mii_statchg = age_miibus_statchg;
271
272 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
273 age_mediastatus);
274 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
275 MII_OFFSET_ANY, 0);
276
277 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
278 aprint_error_dev(self, "no PHY found!\n");
279 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
280 0, NULL);
281 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
282 } else
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
284
285 if_attach(ifp);
286 ether_ifattach(ifp, sc->sc_enaddr);
287
288 if (!pmf_device_register(self, NULL, age_resume))
289 aprint_error_dev(self, "couldn't establish power handler\n");
290 else
291 pmf_class_network_register(self, ifp);
292
293 return;
294 fail:
295 age_detach(sc->sc_dev, 0);
296 }
297
298 static int
299 age_detach(device_t self, int flags)
300 {
301 struct age_softc *sc = device_private(self);
302 struct ifnet *ifp = &sc->sc_ec.ec_if;
303 int s;
304
305 s = splnet();
306 age_stop(sc);
307 splx(s);
308
309 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
310
311 /* Delete all remaining media. */
312 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
313
314 ether_ifdetach(ifp);
315 if_detach(ifp);
316 age_dma_free(sc);
317
318 if (sc->sc_irq_handle != NULL) {
319 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
320 sc->sc_irq_handle = NULL;
321 }
322
323 return (0);
324 }
325
326 /*
327 * Read a PHY register on the MII of the L1.
328 */
329 static int
330 age_miibus_readreg(struct device *dev, int phy, int reg)
331 {
332 struct age_softc *sc = device_private(dev);
333 uint32_t v;
334 int i;
335
336 if (phy != sc->age_phyaddr)
337 return (0);
338
339 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
340 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
341 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
342 DELAY(1);
343 v = CSR_READ_4(sc, AGE_MDIO);
344 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
345 break;
346 }
347
348 if (i == 0) {
349 printf("%s: phy read timeout: phy %d, reg %d\n",
350 device_xname(sc->sc_dev), phy, reg);
351 return (0);
352 }
353
354 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
355 }
356
357 /*
358 * Write a PHY register on the MII of the L1.
359 */
360 static void
361 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
362 {
363 struct age_softc *sc = device_private(dev);
364 uint32_t v;
365 int i;
366
367 if (phy != sc->age_phyaddr)
368 return;
369
370 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
371 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
372 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
373
374 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
375 DELAY(1);
376 v = CSR_READ_4(sc, AGE_MDIO);
377 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
378 break;
379 }
380
381 if (i == 0) {
382 printf("%s: phy write timeout: phy %d, reg %d\n",
383 device_xname(sc->sc_dev), phy, reg);
384 }
385 }
386
387 /*
388 * Callback from MII layer when media changes.
389 */
390 static void
391 age_miibus_statchg(device_t dev)
392 {
393 struct age_softc *sc = device_private(dev);
394 struct ifnet *ifp = &sc->sc_ec.ec_if;
395 struct mii_data *mii;
396
397 if ((ifp->if_flags & IFF_RUNNING) == 0)
398 return;
399
400 mii = &sc->sc_miibus;
401
402 sc->age_flags &= ~AGE_FLAG_LINK;
403 if ((mii->mii_media_status & IFM_AVALID) != 0) {
404 switch (IFM_SUBTYPE(mii->mii_media_active)) {
405 case IFM_10_T:
406 case IFM_100_TX:
407 case IFM_1000_T:
408 sc->age_flags |= AGE_FLAG_LINK;
409 break;
410 default:
411 break;
412 }
413 }
414
415 /* Stop Rx/Tx MACs. */
416 age_stop_rxmac(sc);
417 age_stop_txmac(sc);
418
419 /* Program MACs with resolved speed/duplex/flow-control. */
420 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
421 uint32_t reg;
422
423 age_mac_config(sc);
424 reg = CSR_READ_4(sc, AGE_MAC_CFG);
425 /* Restart DMA engine and Tx/Rx MAC. */
426 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
427 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
428 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
429 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
430 }
431 }
432
433 /*
434 * Get the current interface media status.
435 */
436 static void
437 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
438 {
439 struct age_softc *sc = ifp->if_softc;
440 struct mii_data *mii = &sc->sc_miibus;
441
442 mii_pollstat(mii);
443 ifmr->ifm_status = mii->mii_media_status;
444 ifmr->ifm_active = mii->mii_media_active;
445 }
446
447 /*
448 * Set hardware to newly-selected media.
449 */
450 static int
451 age_mediachange(struct ifnet *ifp)
452 {
453 struct age_softc *sc = ifp->if_softc;
454 struct mii_data *mii = &sc->sc_miibus;
455 int error;
456
457 if (mii->mii_instance != 0) {
458 struct mii_softc *miisc;
459
460 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
461 mii_phy_reset(miisc);
462 }
463 error = mii_mediachg(mii);
464
465 return (error);
466 }
467
468 static int
469 age_intr(void *arg)
470 {
471 struct age_softc *sc = arg;
472 struct ifnet *ifp = &sc->sc_ec.ec_if;
473 struct cmb *cmb;
474 uint32_t status;
475
476 status = CSR_READ_4(sc, AGE_INTR_STATUS);
477 if (status == 0 || (status & AGE_INTRS) == 0)
478 return (0);
479
480 /* Disable interrupts. */
481 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
482
483 cmb = sc->age_rdata.age_cmb_block;
484
485 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
486 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
487 status = le32toh(cmb->intr_status);
488 if ((status & AGE_INTRS) == 0)
489 goto back;
490
491 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
492 TPD_CONS_SHIFT;
493 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
494 RRD_PROD_SHIFT;
495
496 /* Let hardware know CMB was served. */
497 cmb->intr_status = 0;
498 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
499 sc->age_cdata.age_cmb_block_map->dm_mapsize,
500 BUS_DMASYNC_PREWRITE);
501
502 if (ifp->if_flags & IFF_RUNNING) {
503 if (status & INTR_CMB_RX)
504 age_rxintr(sc, sc->age_rr_prod);
505
506 if (status & INTR_CMB_TX)
507 age_txintr(sc, sc->age_tpd_cons);
508
509 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
510 if (status & INTR_DMA_RD_TO_RST)
511 printf("%s: DMA read error! -- resetting\n",
512 device_xname(sc->sc_dev));
513 if (status & INTR_DMA_WR_TO_RST)
514 printf("%s: DMA write error! -- resetting\n",
515 device_xname(sc->sc_dev));
516 age_init(ifp);
517 }
518
519 if (!IFQ_IS_EMPTY(&ifp->if_snd))
520 age_start(ifp);
521
522 if (status & INTR_SMB)
523 age_stats_update(sc);
524 }
525
526 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
527 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
528 sc->age_cdata.age_cmb_block_map->dm_mapsize,
529 BUS_DMASYNC_POSTREAD);
530
531 back:
532 /* Re-enable interrupts. */
533 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
534
535 return (1);
536 }
537
538 static int
539 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
540 uint32_t *word)
541 {
542 int i;
543 pcireg_t rv;
544
545 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
546 offset << PCI_VPD_ADDRESS_SHIFT);
547 for (i = AGE_TIMEOUT; i > 0; i--) {
548 DELAY(10);
549 rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
550 PCI_VPD_ADDRESS(vpdc));
551 if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
552 break;
553 }
554 if (i == 0) {
555 printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
556 *word = 0;
557 return ETIMEDOUT;
558 }
559
560 *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
561 return 0;
562 }
563
564 static void
565 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
566 {
567 uint32_t ea[2], off, reg, word;
568 int vpd_error, match, vpdc;
569
570 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
571 if ((reg & SPI_VPD_ENB) != 0) {
572 /* Get VPD stored in TWSI EEPROM. */
573 reg &= ~SPI_VPD_ENB;
574 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
575 }
576
577 vpd_error = 0;
578 ea[0] = ea[1] = 0;
579 if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
580 PCI_CAP_VPD, &vpdc, NULL))) {
581 /*
582 * PCI VPD capability exists, but it seems that it's
583 * not in the standard form as stated in PCI VPD
584 * specification such that driver could not use
585 * pci_get_vpd_readonly(9) with keyword 'NA'.
586 * Search VPD data starting at address 0x0100. The data
587 * should be used as initializers to set AGE_PAR0,
588 * AGE_PAR1 register including other PCI configuration
589 * registers.
590 */
591 word = 0;
592 match = 0;
593 reg = 0;
594 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
595 off += sizeof(uint32_t)) {
596 vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
597 if (vpd_error != 0)
598 break;
599 if (match != 0) {
600 switch (reg) {
601 case AGE_PAR0:
602 ea[0] = word;
603 break;
604 case AGE_PAR1:
605 ea[1] = word;
606 break;
607 default:
608 break;
609 }
610 match = 0;
611 } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
612 match = 1;
613 reg = word >> 16;
614 } else
615 break;
616 }
617 if (off >= AGE_VPD_REG_CONF_END)
618 vpd_error = ENOENT;
619 if (vpd_error == 0) {
620 /*
621 * Don't blindly trust ethernet address obtained
622 * from VPD. Check whether ethernet address is
623 * valid one. Otherwise fall-back to reading
624 * PAR register.
625 */
626 ea[1] &= 0xFFFF;
627 if ((ea[0] == 0 && ea[1] == 0) ||
628 (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
629 if (agedebug)
630 printf("%s: invalid ethernet address "
631 "returned from VPD.\n",
632 device_xname(sc->sc_dev));
633 vpd_error = EINVAL;
634 }
635 }
636 if (vpd_error != 0 && (agedebug))
637 printf("%s: VPD access failure!\n",
638 device_xname(sc->sc_dev));
639 } else {
640 if (agedebug)
641 printf("%s: PCI VPD capability not found!\n",
642 device_xname(sc->sc_dev));
643 }
644
645 /*
646 * It seems that L1 also provides a way to extract ethernet
647 * address via SPI flash interface. Because SPI flash memory
648 * device of different vendors vary in their instruction
649 * codes for read ID instruction, it's very hard to get
650 * instructions codes without detailed information for the
651 * flash memory device used on ethernet controller. To simplify
652 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
653 * address which is supposed to be set by hardware during
654 * power on reset.
655 */
656 if (vpd_error != 0) {
657 /*
658 * VPD is mapped to SPI flash memory or BIOS set it.
659 */
660 ea[0] = CSR_READ_4(sc, AGE_PAR0);
661 ea[1] = CSR_READ_4(sc, AGE_PAR1);
662 }
663
664 ea[1] &= 0xFFFF;
665 eaddr[0] = (ea[1] >> 8) & 0xFF;
666 eaddr[1] = (ea[1] >> 0) & 0xFF;
667 eaddr[2] = (ea[0] >> 24) & 0xFF;
668 eaddr[3] = (ea[0] >> 16) & 0xFF;
669 eaddr[4] = (ea[0] >> 8) & 0xFF;
670 eaddr[5] = (ea[0] >> 0) & 0xFF;
671 }
672
673 static void
674 age_phy_reset(struct age_softc *sc)
675 {
676 /* Reset PHY. */
677 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
678 DELAY(1000);
679 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
680 DELAY(1000);
681 }
682
683 static int
684 age_dma_alloc(struct age_softc *sc)
685 {
686 struct age_txdesc *txd;
687 struct age_rxdesc *rxd;
688 int nsegs, error, i;
689
690 /*
691 * Create DMA stuffs for TX ring
692 */
693 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
694 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
695 if (error)
696 return (ENOBUFS);
697
698 /* Allocate DMA'able memory for TX ring */
699 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
700 PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
701 &nsegs, BUS_DMA_WAITOK);
702 if (error) {
703 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
704 device_xname(sc->sc_dev));
705 return error;
706 }
707
708 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
709 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
710 BUS_DMA_NOWAIT);
711 if (error)
712 return (ENOBUFS);
713
714 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
715
716 /* Load the DMA map for Tx ring. */
717 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
718 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
719 if (error) {
720 printf("%s: could not load DMA'able memory for Tx ring.\n",
721 device_xname(sc->sc_dev));
722 bus_dmamem_free(sc->sc_dmat,
723 (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
724 return error;
725 }
726
727 sc->age_rdata.age_tx_ring_paddr =
728 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
729
730 /*
731 * Create DMA stuffs for RX ring
732 */
733 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
734 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
735 if (error)
736 return (ENOBUFS);
737
738 /* Allocate DMA'able memory for RX ring */
739 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
740 PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
741 &nsegs, BUS_DMA_WAITOK);
742 if (error) {
743 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
744 device_xname(sc->sc_dev));
745 return error;
746 }
747
748 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
749 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
750 BUS_DMA_NOWAIT);
751 if (error)
752 return (ENOBUFS);
753
754 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
755
756 /* Load the DMA map for Rx ring. */
757 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
758 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
759 if (error) {
760 printf("%s: could not load DMA'able memory for Rx ring.\n",
761 device_xname(sc->sc_dev));
762 bus_dmamem_free(sc->sc_dmat,
763 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
764 return error;
765 }
766
767 sc->age_rdata.age_rx_ring_paddr =
768 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
769
770 /*
771 * Create DMA stuffs for RX return ring
772 */
773 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
774 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
775 if (error)
776 return (ENOBUFS);
777
778 /* Allocate DMA'able memory for RX return ring */
779 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
780 PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
781 &nsegs, BUS_DMA_WAITOK);
782 if (error) {
783 printf("%s: could not allocate DMA'able memory for Rx "
784 "return ring.\n", device_xname(sc->sc_dev));
785 return error;
786 }
787
788 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
789 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
790 BUS_DMA_NOWAIT);
791 if (error)
792 return (ENOBUFS);
793
794 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
795
796 /* Load the DMA map for Rx return ring. */
797 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
798 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
799 if (error) {
800 printf("%s: could not load DMA'able memory for Rx return ring."
801 "\n", device_xname(sc->sc_dev));
802 bus_dmamem_free(sc->sc_dmat,
803 (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
804 return error;
805 }
806
807 sc->age_rdata.age_rr_ring_paddr =
808 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
809
810 /*
811 * Create DMA stuffs for CMB block
812 */
813 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
814 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
815 &sc->age_cdata.age_cmb_block_map);
816 if (error)
817 return (ENOBUFS);
818
819 /* Allocate DMA'able memory for CMB block */
820 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
821 PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
822 &nsegs, BUS_DMA_WAITOK);
823 if (error) {
824 printf("%s: could not allocate DMA'able memory for "
825 "CMB block\n", device_xname(sc->sc_dev));
826 return error;
827 }
828
829 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
830 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
831 BUS_DMA_NOWAIT);
832 if (error)
833 return (ENOBUFS);
834
835 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
836
837 /* Load the DMA map for CMB block. */
838 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
839 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
840 BUS_DMA_WAITOK);
841 if (error) {
842 printf("%s: could not load DMA'able memory for CMB block\n",
843 device_xname(sc->sc_dev));
844 bus_dmamem_free(sc->sc_dmat,
845 (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
846 return error;
847 }
848
849 sc->age_rdata.age_cmb_block_paddr =
850 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
851
852 /*
853 * Create DMA stuffs for SMB block
854 */
855 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
856 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
857 &sc->age_cdata.age_smb_block_map);
858 if (error)
859 return (ENOBUFS);
860
861 /* Allocate DMA'able memory for SMB block */
862 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
863 PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
864 &nsegs, BUS_DMA_WAITOK);
865 if (error) {
866 printf("%s: could not allocate DMA'able memory for "
867 "SMB block\n", device_xname(sc->sc_dev));
868 return error;
869 }
870
871 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
872 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
873 BUS_DMA_NOWAIT);
874 if (error)
875 return (ENOBUFS);
876
877 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
878
879 /* Load the DMA map for SMB block */
880 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
881 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
882 BUS_DMA_WAITOK);
883 if (error) {
884 printf("%s: could not load DMA'able memory for SMB block\n",
885 device_xname(sc->sc_dev));
886 bus_dmamem_free(sc->sc_dmat,
887 (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
888 return error;
889 }
890
891 sc->age_rdata.age_smb_block_paddr =
892 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
893
894 /* Create DMA maps for Tx buffers. */
895 for (i = 0; i < AGE_TX_RING_CNT; i++) {
896 txd = &sc->age_cdata.age_txdesc[i];
897 txd->tx_m = NULL;
898 txd->tx_dmamap = NULL;
899 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
900 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
901 &txd->tx_dmamap);
902 if (error) {
903 printf("%s: could not create Tx dmamap.\n",
904 device_xname(sc->sc_dev));
905 return error;
906 }
907 }
908
909 /* Create DMA maps for Rx buffers. */
910 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
911 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
912 if (error) {
913 printf("%s: could not create spare Rx dmamap.\n",
914 device_xname(sc->sc_dev));
915 return error;
916 }
917 for (i = 0; i < AGE_RX_RING_CNT; i++) {
918 rxd = &sc->age_cdata.age_rxdesc[i];
919 rxd->rx_m = NULL;
920 rxd->rx_dmamap = NULL;
921 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
922 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
923 if (error) {
924 printf("%s: could not create Rx dmamap.\n",
925 device_xname(sc->sc_dev));
926 return error;
927 }
928 }
929
930 return (0);
931 }
932
933 static void
934 age_dma_free(struct age_softc *sc)
935 {
936 struct age_txdesc *txd;
937 struct age_rxdesc *rxd;
938 int i;
939
940 /* Tx buffers */
941 for (i = 0; i < AGE_TX_RING_CNT; i++) {
942 txd = &sc->age_cdata.age_txdesc[i];
943 if (txd->tx_dmamap != NULL) {
944 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
945 txd->tx_dmamap = NULL;
946 }
947 }
948 /* Rx buffers */
949 for (i = 0; i < AGE_RX_RING_CNT; i++) {
950 rxd = &sc->age_cdata.age_rxdesc[i];
951 if (rxd->rx_dmamap != NULL) {
952 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
953 rxd->rx_dmamap = NULL;
954 }
955 }
956 if (sc->age_cdata.age_rx_sparemap != NULL) {
957 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
958 sc->age_cdata.age_rx_sparemap = NULL;
959 }
960
961 /* Tx ring. */
962 if (sc->age_cdata.age_tx_ring_map != NULL)
963 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
964 if (sc->age_cdata.age_tx_ring_map != NULL &&
965 sc->age_rdata.age_tx_ring != NULL)
966 bus_dmamem_free(sc->sc_dmat,
967 (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
968 sc->age_rdata.age_tx_ring = NULL;
969 sc->age_cdata.age_tx_ring_map = NULL;
970
971 /* Rx ring. */
972 if (sc->age_cdata.age_rx_ring_map != NULL)
973 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
974 if (sc->age_cdata.age_rx_ring_map != NULL &&
975 sc->age_rdata.age_rx_ring != NULL)
976 bus_dmamem_free(sc->sc_dmat,
977 (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
978 sc->age_rdata.age_rx_ring = NULL;
979 sc->age_cdata.age_rx_ring_map = NULL;
980
981 /* Rx return ring. */
982 if (sc->age_cdata.age_rr_ring_map != NULL)
983 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
984 if (sc->age_cdata.age_rr_ring_map != NULL &&
985 sc->age_rdata.age_rr_ring != NULL)
986 bus_dmamem_free(sc->sc_dmat,
987 (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
988 sc->age_rdata.age_rr_ring = NULL;
989 sc->age_cdata.age_rr_ring_map = NULL;
990
991 /* CMB block */
992 if (sc->age_cdata.age_cmb_block_map != NULL)
993 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
994 if (sc->age_cdata.age_cmb_block_map != NULL &&
995 sc->age_rdata.age_cmb_block != NULL)
996 bus_dmamem_free(sc->sc_dmat,
997 (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
998 sc->age_rdata.age_cmb_block = NULL;
999 sc->age_cdata.age_cmb_block_map = NULL;
1000
1001 /* SMB block */
1002 if (sc->age_cdata.age_smb_block_map != NULL)
1003 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1004 if (sc->age_cdata.age_smb_block_map != NULL &&
1005 sc->age_rdata.age_smb_block != NULL)
1006 bus_dmamem_free(sc->sc_dmat,
1007 (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1008 }
1009
1010 static void
1011 age_start(struct ifnet *ifp)
1012 {
1013 struct age_softc *sc = ifp->if_softc;
1014 struct mbuf *m_head;
1015 int enq;
1016
1017 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1018 return;
1019
1020 enq = 0;
1021 for (;;) {
1022 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1023 if (m_head == NULL)
1024 break;
1025
1026 /*
1027 * Pack the data into the transmit ring. If we
1028 * don't have room, set the OACTIVE flag and wait
1029 * for the NIC to drain the ring.
1030 */
1031 if (age_encap(sc, &m_head)) {
1032 if (m_head == NULL)
1033 break;
1034 ifp->if_flags |= IFF_OACTIVE;
1035 break;
1036 }
1037 enq = 1;
1038
1039 #if NBPFILTER > 0
1040 /*
1041 * If there's a BPF listener, bounce a copy of this frame
1042 * to him.
1043 */
1044 if (ifp->if_bpf != NULL)
1045 bpf_mtap(ifp->if_bpf, m_head);
1046 #endif
1047 }
1048
1049 if (enq) {
1050 /* Update mbox. */
1051 AGE_COMMIT_MBOX(sc);
1052 /* Set a timeout in case the chip goes out to lunch. */
1053 ifp->if_timer = AGE_TX_TIMEOUT;
1054 }
1055 }
1056
1057 static void
1058 age_watchdog(struct ifnet *ifp)
1059 {
1060 struct age_softc *sc = ifp->if_softc;
1061
1062 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1063 printf("%s: watchdog timeout (missed link)\n",
1064 device_xname(sc->sc_dev));
1065 ifp->if_oerrors++;
1066 age_init(ifp);
1067 return;
1068 }
1069
1070 if (sc->age_cdata.age_tx_cnt == 0) {
1071 printf("%s: watchdog timeout (missed Tx interrupts) "
1072 "-- recovering\n", device_xname(sc->sc_dev));
1073 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1074 age_start(ifp);
1075 return;
1076 }
1077
1078 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1079 ifp->if_oerrors++;
1080 age_init(ifp);
1081
1082 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1083 age_start(ifp);
1084 }
1085
1086 static int
1087 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1088 {
1089 struct age_softc *sc = ifp->if_softc;
1090 struct mii_data *mii = &sc->sc_miibus;
1091 struct ifreq *ifr = (struct ifreq *)data;
1092 int s, error = 0;
1093
1094 s = splnet();
1095
1096 switch (cmd) {
1097 case SIOCSIFADDR:
1098 ifp->if_flags |= IFF_UP;
1099 if (!(ifp->if_flags & IFF_RUNNING))
1100 age_init(ifp);
1101 #ifdef INET
1102 if (ifa->ifa_addr->sa_family == AF_INET)
1103 arp_ifinit(&sc->sc_ec, ifa);
1104 #endif
1105 break;
1106
1107 case SIOCSIFFLAGS:
1108 error = ifioctl_common(ifp, cmd, data);
1109 if (error)
1110 break;
1111 if (ifp->if_flags & IFF_UP) {
1112 if (ifp->if_flags & IFF_RUNNING)
1113 age_rxfilter(sc);
1114 else
1115 age_init(ifp);
1116 } else {
1117 if (ifp->if_flags & IFF_RUNNING)
1118 age_stop(sc);
1119 }
1120 sc->age_if_flags = ifp->if_flags;
1121 break;
1122
1123 case SIOCADDMULTI:
1124 case SIOCDELMULTI:
1125 error = ether_ioctl(ifp, cmd, data);
1126 break;
1127
1128 case SIOCSIFMEDIA:
1129 case SIOCGIFMEDIA:
1130 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1131 break;
1132 default:
1133 error = ether_ioctl(ifp, cmd, data);
1134 break;
1135 }
1136
1137 if (error == ENETRESET) {
1138 if (ifp->if_flags & IFF_RUNNING)
1139 age_rxfilter(sc);
1140 error = 0;
1141 }
1142
1143 splx(s);
1144 return (error);
1145 }
1146
1147 static void
1148 age_mac_config(struct age_softc *sc)
1149 {
1150 struct mii_data *mii;
1151 uint32_t reg;
1152
1153 mii = &sc->sc_miibus;
1154
1155 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1156 reg &= ~MAC_CFG_FULL_DUPLEX;
1157 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1158 reg &= ~MAC_CFG_SPEED_MASK;
1159
1160 /* Reprogram MAC with resolved speed/duplex. */
1161 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1162 case IFM_10_T:
1163 case IFM_100_TX:
1164 reg |= MAC_CFG_SPEED_10_100;
1165 break;
1166 case IFM_1000_T:
1167 reg |= MAC_CFG_SPEED_1000;
1168 break;
1169 }
1170 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1171 reg |= MAC_CFG_FULL_DUPLEX;
1172 #ifdef notyet
1173 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1174 reg |= MAC_CFG_TX_FC;
1175 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1176 reg |= MAC_CFG_RX_FC;
1177 #endif
1178 }
1179
1180 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1181 }
1182
1183 static bool
1184 age_resume(device_t dv PMF_FN_ARGS)
1185 {
1186 struct age_softc *sc = device_private(dv);
1187 uint16_t cmd;
1188
1189 /*
1190 * Clear INTx emulation disable for hardware that
1191 * is set in resume event. From Linux.
1192 */
1193 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1194 if ((cmd & 0x0400) != 0) {
1195 cmd &= ~0x0400;
1196 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1197 PCI_COMMAND_STATUS_REG, cmd);
1198 }
1199
1200 return true;
1201 }
1202
1203 static int
1204 age_encap(struct age_softc *sc, struct mbuf **m_head)
1205 {
1206 struct age_txdesc *txd, *txd_last;
1207 struct tx_desc *desc;
1208 struct mbuf *m;
1209 bus_dmamap_t map;
1210 uint32_t cflags, poff, vtag;
1211 int error, i, nsegs, prod;
1212 struct m_tag *mtag;
1213
1214 m = *m_head;
1215 cflags = vtag = 0;
1216 poff = 0;
1217
1218 prod = sc->age_cdata.age_tx_prod;
1219 txd = &sc->age_cdata.age_txdesc[prod];
1220 txd_last = txd;
1221 map = txd->tx_dmamap;
1222
1223 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1224
1225 if (error != 0) {
1226 bus_dmamap_unload(sc->sc_dmat, map);
1227 error = EFBIG;
1228 }
1229 if (error == EFBIG) {
1230 error = 0;
1231
1232 MGETHDR(m, M_DONTWAIT, MT_DATA);
1233 if (m == NULL) {
1234 printf("%s: can't defrag TX mbuf\n",
1235 device_xname(sc->sc_dev));
1236 m_freem(*m_head);
1237 *m_head = NULL;
1238 return (ENOBUFS);
1239 }
1240
1241 MCLGET(m, M_DONTWAIT);
1242 if (!(m->m_flags & M_EXT)) {
1243 m_freem(m);
1244 *m_head = NULL;
1245 return (ENOBUFS);
1246 }
1247 m->m_len = m->m_pkthdr.len;
1248 *m_head = m;
1249
1250 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1251 BUS_DMA_NOWAIT);
1252
1253 if (error != 0) {
1254 printf("%s: could not load defragged TX mbuf\n",
1255 device_xname(sc->sc_dev));
1256 if (!error) {
1257 bus_dmamap_unload(sc->sc_dmat, map);
1258 error = EFBIG;
1259 }
1260 m_freem(*m_head);
1261 *m_head = NULL;
1262 return (error);
1263 }
1264 } else if (error) {
1265 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1266 return (error);
1267 }
1268
1269 nsegs = map->dm_nsegs;
1270
1271 if (nsegs == 0) {
1272 m_freem(*m_head);
1273 *m_head = NULL;
1274 return (EIO);
1275 }
1276
1277 /* Check descriptor overrun. */
1278 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1279 bus_dmamap_unload(sc->sc_dmat, map);
1280 return (ENOBUFS);
1281 }
1282
1283 m = *m_head;
1284 /* Configure Tx IP/TCP/UDP checksum offload. */
1285 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1286 cflags |= AGE_TD_CSUM;
1287 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1288 cflags |= AGE_TD_TCPCSUM;
1289 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1290 cflags |= AGE_TD_UDPCSUM;
1291 /* Set checksum start offset. */
1292 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1293 }
1294
1295 #if NVLAN > 0
1296 /* Configure VLAN hardware tag insertion. */
1297 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1298 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1299 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1300 cflags |= AGE_TD_INSERT_VLAN_TAG;
1301 }
1302 #endif
1303
1304 desc = NULL;
1305 for (i = 0; i < nsegs; i++) {
1306 desc = &sc->age_rdata.age_tx_ring[prod];
1307 desc->addr = htole64(map->dm_segs[i].ds_addr);
1308 desc->len =
1309 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1310 desc->flags = htole32(cflags);
1311 sc->age_cdata.age_tx_cnt++;
1312 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1313 }
1314
1315 /* Update producer index. */
1316 sc->age_cdata.age_tx_prod = prod;
1317
1318 /* Set EOP on the last descriptor. */
1319 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1320 desc = &sc->age_rdata.age_tx_ring[prod];
1321 desc->flags |= htole32(AGE_TD_EOP);
1322
1323 /* Swap dmamap of the first and the last. */
1324 txd = &sc->age_cdata.age_txdesc[prod];
1325 map = txd_last->tx_dmamap;
1326 txd_last->tx_dmamap = txd->tx_dmamap;
1327 txd->tx_dmamap = map;
1328 txd->tx_m = m;
1329
1330 /* Sync descriptors. */
1331 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1332 BUS_DMASYNC_PREWRITE);
1333 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1334 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1335
1336 return (0);
1337 }
1338
1339 static void
1340 age_txintr(struct age_softc *sc, int tpd_cons)
1341 {
1342 struct ifnet *ifp = &sc->sc_ec.ec_if;
1343 struct age_txdesc *txd;
1344 int cons, prog;
1345
1346 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1347 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348
1349 /*
1350 * Go through our Tx list and free mbufs for those
1351 * frames which have been transmitted.
1352 */
1353 cons = sc->age_cdata.age_tx_cons;
1354 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1355 if (sc->age_cdata.age_tx_cnt <= 0)
1356 break;
1357 prog++;
1358 ifp->if_flags &= ~IFF_OACTIVE;
1359 sc->age_cdata.age_tx_cnt--;
1360 txd = &sc->age_cdata.age_txdesc[cons];
1361 /*
1362 * Clear Tx descriptors, it's not required but would
1363 * help debugging in case of Tx issues.
1364 */
1365 txd->tx_desc->addr = 0;
1366 txd->tx_desc->len = 0;
1367 txd->tx_desc->flags = 0;
1368
1369 if (txd->tx_m == NULL)
1370 continue;
1371 /* Reclaim transmitted mbufs. */
1372 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1373 m_freem(txd->tx_m);
1374 txd->tx_m = NULL;
1375 }
1376
1377 if (prog > 0) {
1378 sc->age_cdata.age_tx_cons = cons;
1379
1380 /*
1381 * Unarm watchdog timer only when there are no pending
1382 * Tx descriptors in queue.
1383 */
1384 if (sc->age_cdata.age_tx_cnt == 0)
1385 ifp->if_timer = 0;
1386
1387 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1388 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1389 BUS_DMASYNC_PREWRITE);
1390 }
1391 }
1392
1393 /* Receive a frame. */
1394 static void
1395 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1396 {
1397 struct ifnet *ifp = &sc->sc_ec.ec_if;
1398 struct age_rxdesc *rxd;
1399 struct rx_desc *desc;
1400 struct mbuf *mp, *m;
1401 uint32_t status, index, vtag;
1402 int count, nsegs, pktlen;
1403 int rx_cons;
1404
1405 status = le32toh(rxrd->flags);
1406 index = le32toh(rxrd->index);
1407 rx_cons = AGE_RX_CONS(index);
1408 nsegs = AGE_RX_NSEGS(index);
1409
1410 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1411 if ((status & AGE_RRD_ERROR) != 0 &&
1412 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1413 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1414 /*
1415 * We want to pass the following frames to upper
1416 * layer regardless of error status of Rx return
1417 * ring.
1418 *
1419 * o IP/TCP/UDP checksum is bad.
1420 * o frame length and protocol specific length
1421 * does not match.
1422 */
1423 sc->age_cdata.age_rx_cons += nsegs;
1424 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1425 return;
1426 }
1427
1428 pktlen = 0;
1429 for (count = 0; count < nsegs; count++,
1430 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1431 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1432 mp = rxd->rx_m;
1433 desc = rxd->rx_desc;
1434 /* Add a new receive buffer to the ring. */
1435 if (age_newbuf(sc, rxd, 0) != 0) {
1436 ifp->if_iqdrops++;
1437 /* Reuse Rx buffers. */
1438 if (sc->age_cdata.age_rxhead != NULL) {
1439 m_freem(sc->age_cdata.age_rxhead);
1440 AGE_RXCHAIN_RESET(sc);
1441 }
1442 break;
1443 }
1444
1445 /* The length of the first mbuf is computed last. */
1446 if (count != 0) {
1447 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1448 pktlen += mp->m_len;
1449 }
1450
1451 /* Chain received mbufs. */
1452 if (sc->age_cdata.age_rxhead == NULL) {
1453 sc->age_cdata.age_rxhead = mp;
1454 sc->age_cdata.age_rxtail = mp;
1455 } else {
1456 mp->m_flags &= ~M_PKTHDR;
1457 sc->age_cdata.age_rxprev_tail =
1458 sc->age_cdata.age_rxtail;
1459 sc->age_cdata.age_rxtail->m_next = mp;
1460 sc->age_cdata.age_rxtail = mp;
1461 }
1462
1463 if (count == nsegs - 1) {
1464 /*
1465 * It seems that L1 controller has no way
1466 * to tell hardware to strip CRC bytes.
1467 */
1468 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1469 if (nsegs > 1) {
1470 /* Remove the CRC bytes in chained mbufs. */
1471 pktlen -= ETHER_CRC_LEN;
1472 if (mp->m_len <= ETHER_CRC_LEN) {
1473 sc->age_cdata.age_rxtail =
1474 sc->age_cdata.age_rxprev_tail;
1475 sc->age_cdata.age_rxtail->m_len -=
1476 (ETHER_CRC_LEN - mp->m_len);
1477 sc->age_cdata.age_rxtail->m_next = NULL;
1478 m_freem(mp);
1479 } else {
1480 mp->m_len -= ETHER_CRC_LEN;
1481 }
1482 }
1483
1484 m = sc->age_cdata.age_rxhead;
1485 m->m_flags |= M_PKTHDR;
1486 m->m_pkthdr.rcvif = ifp;
1487 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1488 /* Set the first mbuf length. */
1489 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1490
1491 /*
1492 * Set checksum information.
1493 * It seems that L1 controller can compute partial
1494 * checksum. The partial checksum value can be used
1495 * to accelerate checksum computation for fragmented
1496 * TCP/UDP packets. Upper network stack already
1497 * takes advantage of the partial checksum value in
1498 * IP reassembly stage. But I'm not sure the
1499 * correctness of the partial hardware checksum
1500 * assistance due to lack of data sheet. If it is
1501 * proven to work on L1 I'll enable it.
1502 */
1503 if (status & AGE_RRD_IPV4) {
1504 if (!(status & AGE_RRD_IPCSUM_NOK))
1505 m->m_pkthdr.csum_flags |=
1506 M_CSUM_IPv4_BAD;
1507 if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1508 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
1509 m->m_pkthdr.csum_flags |=
1510 M_CSUM_TCP_UDP_BAD;
1511 }
1512 /*
1513 * Don't mark bad checksum for TCP/UDP frames
1514 * as fragmented frames may always have set
1515 * bad checksummed bit of descriptor status.
1516 */
1517 }
1518 #if NVLAN > 0
1519 /* Check for VLAN tagged frames. */
1520 if (status & AGE_RRD_VLAN) {
1521 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1522 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1523 continue);
1524 }
1525 #endif
1526
1527 #if NBPFILTER > 0
1528 if (ifp->if_bpf)
1529 bpf_mtap(ifp->if_bpf, m);
1530 #endif
1531 /* Pass it on. */
1532 ether_input(ifp, m);
1533
1534 /* Reset mbuf chains. */
1535 AGE_RXCHAIN_RESET(sc);
1536 }
1537 }
1538
1539 if (count != nsegs) {
1540 sc->age_cdata.age_rx_cons += nsegs;
1541 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1542 } else
1543 sc->age_cdata.age_rx_cons = rx_cons;
1544 }
1545
1546 static void
1547 age_rxintr(struct age_softc *sc, int rr_prod)
1548 {
1549 struct rx_rdesc *rxrd;
1550 int rr_cons, nsegs, pktlen, prog;
1551
1552 rr_cons = sc->age_cdata.age_rr_cons;
1553 if (rr_cons == rr_prod)
1554 return;
1555
1556 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1557 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1558 BUS_DMASYNC_POSTREAD);
1559
1560 for (prog = 0; rr_cons != rr_prod; prog++) {
1561 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1562 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1563 if (nsegs == 0)
1564 break;
1565 /*
1566 * Check number of segments against received bytes
1567 * Non-matching value would indicate that hardware
1568 * is still trying to update Rx return descriptors.
1569 * I'm not sure whether this check is really needed.
1570 */
1571 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1572 if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
1573 (MCLBYTES - ETHER_HDR_LEN)))
1574 break;
1575
1576 /* Received a frame. */
1577 age_rxeof(sc, rxrd);
1578
1579 /* Clear return ring. */
1580 rxrd->index = 0;
1581 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1582 }
1583
1584 if (prog > 0) {
1585 /* Update the consumer index. */
1586 sc->age_cdata.age_rr_cons = rr_cons;
1587
1588 /* Sync descriptors. */
1589 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1590 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1591 BUS_DMASYNC_PREWRITE);
1592
1593 /* Notify hardware availability of new Rx buffers. */
1594 AGE_COMMIT_MBOX(sc);
1595 }
1596 }
1597
1598 static void
1599 age_tick(void *xsc)
1600 {
1601 struct age_softc *sc = xsc;
1602 struct mii_data *mii = &sc->sc_miibus;
1603 int s;
1604
1605 s = splnet();
1606 mii_tick(mii);
1607 splx(s);
1608
1609 callout_schedule(&sc->sc_tick_ch, hz);
1610 }
1611
1612 static void
1613 age_reset(struct age_softc *sc)
1614 {
1615 uint32_t reg;
1616 int i;
1617
1618 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1619 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1620 DELAY(1);
1621 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1622 break;
1623 }
1624 if (i == 0)
1625 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1626
1627 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1628 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1629 break;
1630 DELAY(10);
1631 }
1632
1633 if (i == 0)
1634 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1635 reg);
1636
1637 /* Initialize PCIe module. From Linux. */
1638 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1639 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1640 }
1641
1642 static int
1643 age_init(struct ifnet *ifp)
1644 {
1645 struct age_softc *sc = ifp->if_softc;
1646 struct mii_data *mii;
1647 uint8_t eaddr[ETHER_ADDR_LEN];
1648 bus_addr_t paddr;
1649 uint32_t reg, fsize;
1650 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1651 int error;
1652
1653 /*
1654 * Cancel any pending I/O.
1655 */
1656 age_stop(sc);
1657
1658 /*
1659 * Reset the chip to a known state.
1660 */
1661 age_reset(sc);
1662
1663 /* Initialize descriptors. */
1664 error = age_init_rx_ring(sc);
1665 if (error != 0) {
1666 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1667 age_stop(sc);
1668 return (error);
1669 }
1670 age_init_rr_ring(sc);
1671 age_init_tx_ring(sc);
1672 age_init_cmb_block(sc);
1673 age_init_smb_block(sc);
1674
1675 /* Reprogram the station address. */
1676 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1677 CSR_WRITE_4(sc, AGE_PAR0,
1678 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1679 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1680
1681 /* Set descriptor base addresses. */
1682 paddr = sc->age_rdata.age_tx_ring_paddr;
1683 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1684 paddr = sc->age_rdata.age_rx_ring_paddr;
1685 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1686 paddr = sc->age_rdata.age_rr_ring_paddr;
1687 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1688 paddr = sc->age_rdata.age_tx_ring_paddr;
1689 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1690 paddr = sc->age_rdata.age_cmb_block_paddr;
1691 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1692 paddr = sc->age_rdata.age_smb_block_paddr;
1693 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1694
1695 /* Set Rx/Rx return descriptor counter. */
1696 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1697 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1698 DESC_RRD_CNT_MASK) |
1699 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1700
1701 /* Set Tx descriptor counter. */
1702 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1703 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1704
1705 /* Tell hardware that we're ready to load descriptors. */
1706 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1707
1708 /*
1709 * Initialize mailbox register.
1710 * Updated producer/consumer index information is exchanged
1711 * through this mailbox register. However Tx producer and
1712 * Rx return consumer/Rx producer are all shared such that
1713 * it's hard to separate code path between Tx and Rx without
1714 * locking. If L1 hardware have a separate mail box register
1715 * for Tx and Rx consumer/producer management we could have
1716 * indepent Tx/Rx handler which in turn Rx handler could have
1717 * been run without any locking.
1718 */
1719 AGE_COMMIT_MBOX(sc);
1720
1721 /* Configure IPG/IFG parameters. */
1722 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1723 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1724 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1725 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1726 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1727
1728 /* Set parameters for half-duplex media. */
1729 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1730 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1731 HDPX_CFG_LCOL_MASK) |
1732 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1733 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1734 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1735 HDPX_CFG_ABEBT_MASK) |
1736 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1737 HDPX_CFG_JAMIPG_MASK));
1738
1739 /* Configure interrupt moderation timer. */
1740 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1741 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1742 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1743 reg &= ~MASTER_MTIMER_ENB;
1744 if (AGE_USECS(sc->age_int_mod) == 0)
1745 reg &= ~MASTER_ITIMER_ENB;
1746 else
1747 reg |= MASTER_ITIMER_ENB;
1748 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1749 if (agedebug)
1750 printf("%s: interrupt moderation is %d us.\n",
1751 device_xname(sc->sc_dev), sc->age_int_mod);
1752 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1753
1754 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1755 if (ifp->if_mtu < ETHERMTU)
1756 sc->age_max_frame_size = ETHERMTU;
1757 else
1758 sc->age_max_frame_size = ifp->if_mtu;
1759 sc->age_max_frame_size += ETHER_HDR_LEN +
1760 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1761 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1762
1763 /* Configure jumbo frame. */
1764 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1765 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1766 (((fsize / sizeof(uint64_t)) <<
1767 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1768 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1769 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1770 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1771 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1772
1773 /* Configure flow-control parameters. From Linux. */
1774 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1775 /*
1776 * Magic workaround for old-L1.
1777 * Don't know which hw revision requires this magic.
1778 */
1779 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1780 /*
1781 * Another magic workaround for flow-control mode
1782 * change. From Linux.
1783 */
1784 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1785 }
1786 /*
1787 * TODO
1788 * Should understand pause parameter relationships between FIFO
1789 * size and number of Rx descriptors and Rx return descriptors.
1790 *
1791 * Magic parameters came from Linux.
1792 */
1793 switch (sc->age_chip_rev) {
1794 case 0x8001:
1795 case 0x9001:
1796 case 0x9002:
1797 case 0x9003:
1798 rxf_hi = AGE_RX_RING_CNT / 16;
1799 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1800 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1801 rrd_lo = AGE_RR_RING_CNT / 16;
1802 break;
1803 default:
1804 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1805 rxf_lo = reg / 16;
1806 if (rxf_lo < 192)
1807 rxf_lo = 192;
1808 rxf_hi = (reg * 7) / 8;
1809 if (rxf_hi < rxf_lo)
1810 rxf_hi = rxf_lo + 16;
1811 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1812 rrd_lo = reg / 8;
1813 rrd_hi = (reg * 7) / 8;
1814 if (rrd_lo < 2)
1815 rrd_lo = 2;
1816 if (rrd_hi < rrd_lo)
1817 rrd_hi = rrd_lo + 3;
1818 break;
1819 }
1820 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1821 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1822 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1823 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1824 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1825 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1826 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1827 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1828 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1829 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1830
1831 /* Configure RxQ. */
1832 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1833 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1834 RXQ_CFG_RD_BURST_MASK) |
1835 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1836 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1837 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1838 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1839 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1840
1841 /* Configure TxQ. */
1842 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1843 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1844 TXQ_CFG_TPD_BURST_MASK) |
1845 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1846 TXQ_CFG_TX_FIFO_BURST_MASK) |
1847 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1848 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1849 TXQ_CFG_ENB);
1850
1851 /* Configure DMA parameters. */
1852 CSR_WRITE_4(sc, AGE_DMA_CFG,
1853 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1854 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1855 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1856
1857 /* Configure CMB DMA write threshold. */
1858 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1859 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1860 CMB_WR_THRESH_RRD_MASK) |
1861 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1862 CMB_WR_THRESH_TPD_MASK));
1863
1864 /* Set CMB/SMB timer and enable them. */
1865 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1866 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1867 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1868
1869 /* Request SMB updates for every seconds. */
1870 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1871 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1872
1873 /*
1874 * Disable all WOL bits as WOL can interfere normal Rx
1875 * operation.
1876 */
1877 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1878
1879 /*
1880 * Configure Tx/Rx MACs.
1881 * - Auto-padding for short frames.
1882 * - Enable CRC generation.
1883 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1884 * of MAC is followed after link establishment.
1885 */
1886 CSR_WRITE_4(sc, AGE_MAC_CFG,
1887 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1888 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1889 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1890 MAC_CFG_PREAMBLE_MASK));
1891
1892 /* Set up the receive filter. */
1893 age_rxfilter(sc);
1894 age_rxvlan(sc);
1895
1896 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1897 reg |= MAC_CFG_RXCSUM_ENB;
1898
1899 /* Ack all pending interrupts and clear it. */
1900 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1901 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1902
1903 /* Finally enable Tx/Rx MAC. */
1904 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1905
1906 sc->age_flags &= ~AGE_FLAG_LINK;
1907
1908 /* Switch to the current media. */
1909 mii = &sc->sc_miibus;
1910 mii_mediachg(mii);
1911
1912 callout_schedule(&sc->sc_tick_ch, hz);
1913
1914 ifp->if_flags |= IFF_RUNNING;
1915 ifp->if_flags &= ~IFF_OACTIVE;
1916
1917 return (0);
1918 }
1919
1920 static void
1921 age_stop(struct age_softc *sc)
1922 {
1923 struct ifnet *ifp = &sc->sc_ec.ec_if;
1924 struct age_txdesc *txd;
1925 struct age_rxdesc *rxd;
1926 uint32_t reg;
1927 int i;
1928
1929 callout_stop(&sc->sc_tick_ch);
1930
1931 /*
1932 * Mark the interface down and cancel the watchdog timer.
1933 */
1934 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1935 ifp->if_timer = 0;
1936
1937 sc->age_flags &= ~AGE_FLAG_LINK;
1938
1939 /*
1940 * Disable interrupts.
1941 */
1942 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1943 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1944
1945 /* Stop CMB/SMB updates. */
1946 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1947
1948 /* Stop Rx/Tx MAC. */
1949 age_stop_rxmac(sc);
1950 age_stop_txmac(sc);
1951
1952 /* Stop DMA. */
1953 CSR_WRITE_4(sc, AGE_DMA_CFG,
1954 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1955
1956 /* Stop TxQ/RxQ. */
1957 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1958 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1959 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1960 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1961 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1962 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1963 break;
1964 DELAY(10);
1965 }
1966 if (i == 0)
1967 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1968 device_xname(sc->sc_dev), reg);
1969
1970 /* Reclaim Rx buffers that have been processed. */
1971 if (sc->age_cdata.age_rxhead != NULL)
1972 m_freem(sc->age_cdata.age_rxhead);
1973 AGE_RXCHAIN_RESET(sc);
1974
1975 /*
1976 * Free RX and TX mbufs still in the queues.
1977 */
1978 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1979 rxd = &sc->age_cdata.age_rxdesc[i];
1980 if (rxd->rx_m != NULL) {
1981 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1982 m_freem(rxd->rx_m);
1983 rxd->rx_m = NULL;
1984 }
1985 }
1986 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1987 txd = &sc->age_cdata.age_txdesc[i];
1988 if (txd->tx_m != NULL) {
1989 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1990 m_freem(txd->tx_m);
1991 txd->tx_m = NULL;
1992 }
1993 }
1994 }
1995
1996 static void
1997 age_stats_update(struct age_softc *sc)
1998 {
1999 struct ifnet *ifp = &sc->sc_ec.ec_if;
2000 struct age_stats *stat;
2001 struct smb *smb;
2002
2003 stat = &sc->age_stat;
2004
2005 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2006 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2007
2008 smb = sc->age_rdata.age_smb_block;
2009 if (smb->updated == 0)
2010 return;
2011
2012 /* Rx stats. */
2013 stat->rx_frames += smb->rx_frames;
2014 stat->rx_bcast_frames += smb->rx_bcast_frames;
2015 stat->rx_mcast_frames += smb->rx_mcast_frames;
2016 stat->rx_pause_frames += smb->rx_pause_frames;
2017 stat->rx_control_frames += smb->rx_control_frames;
2018 stat->rx_crcerrs += smb->rx_crcerrs;
2019 stat->rx_lenerrs += smb->rx_lenerrs;
2020 stat->rx_bytes += smb->rx_bytes;
2021 stat->rx_runts += smb->rx_runts;
2022 stat->rx_fragments += smb->rx_fragments;
2023 stat->rx_pkts_64 += smb->rx_pkts_64;
2024 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2025 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2026 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2027 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2028 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2029 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2030 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2031 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2032 stat->rx_desc_oflows += smb->rx_desc_oflows;
2033 stat->rx_alignerrs += smb->rx_alignerrs;
2034 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2035 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2036 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2037
2038 /* Tx stats. */
2039 stat->tx_frames += smb->tx_frames;
2040 stat->tx_bcast_frames += smb->tx_bcast_frames;
2041 stat->tx_mcast_frames += smb->tx_mcast_frames;
2042 stat->tx_pause_frames += smb->tx_pause_frames;
2043 stat->tx_excess_defer += smb->tx_excess_defer;
2044 stat->tx_control_frames += smb->tx_control_frames;
2045 stat->tx_deferred += smb->tx_deferred;
2046 stat->tx_bytes += smb->tx_bytes;
2047 stat->tx_pkts_64 += smb->tx_pkts_64;
2048 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2049 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2050 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2051 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2052 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2053 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2054 stat->tx_single_colls += smb->tx_single_colls;
2055 stat->tx_multi_colls += smb->tx_multi_colls;
2056 stat->tx_late_colls += smb->tx_late_colls;
2057 stat->tx_excess_colls += smb->tx_excess_colls;
2058 stat->tx_underrun += smb->tx_underrun;
2059 stat->tx_desc_underrun += smb->tx_desc_underrun;
2060 stat->tx_lenerrs += smb->tx_lenerrs;
2061 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2062 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2063 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2064
2065 /* Update counters in ifnet. */
2066 ifp->if_opackets += smb->tx_frames;
2067
2068 ifp->if_collisions += smb->tx_single_colls +
2069 smb->tx_multi_colls + smb->tx_late_colls +
2070 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2071
2072 ifp->if_oerrors += smb->tx_excess_colls +
2073 smb->tx_late_colls + smb->tx_underrun +
2074 smb->tx_pkts_truncated;
2075
2076 ifp->if_ipackets += smb->rx_frames;
2077
2078 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2079 smb->rx_runts + smb->rx_pkts_truncated +
2080 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2081 smb->rx_alignerrs;
2082
2083 /* Update done, clear. */
2084 smb->updated = 0;
2085
2086 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2087 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2088 }
2089
2090 static void
2091 age_stop_txmac(struct age_softc *sc)
2092 {
2093 uint32_t reg;
2094 int i;
2095
2096 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2097 if ((reg & MAC_CFG_TX_ENB) != 0) {
2098 reg &= ~MAC_CFG_TX_ENB;
2099 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2100 }
2101 /* Stop Tx DMA engine. */
2102 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2103 if ((reg & DMA_CFG_RD_ENB) != 0) {
2104 reg &= ~DMA_CFG_RD_ENB;
2105 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2106 }
2107 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2108 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2109 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2110 break;
2111 DELAY(10);
2112 }
2113 if (i == 0)
2114 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2115 }
2116
2117 static void
2118 age_stop_rxmac(struct age_softc *sc)
2119 {
2120 uint32_t reg;
2121 int i;
2122
2123 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2124 if ((reg & MAC_CFG_RX_ENB) != 0) {
2125 reg &= ~MAC_CFG_RX_ENB;
2126 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2127 }
2128 /* Stop Rx DMA engine. */
2129 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2130 if ((reg & DMA_CFG_WR_ENB) != 0) {
2131 reg &= ~DMA_CFG_WR_ENB;
2132 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2133 }
2134 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2135 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2136 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2137 break;
2138 DELAY(10);
2139 }
2140 if (i == 0)
2141 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2142 }
2143
2144 static void
2145 age_init_tx_ring(struct age_softc *sc)
2146 {
2147 struct age_ring_data *rd;
2148 struct age_txdesc *txd;
2149 int i;
2150
2151 sc->age_cdata.age_tx_prod = 0;
2152 sc->age_cdata.age_tx_cons = 0;
2153 sc->age_cdata.age_tx_cnt = 0;
2154
2155 rd = &sc->age_rdata;
2156 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2157 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2158 txd = &sc->age_cdata.age_txdesc[i];
2159 txd->tx_desc = &rd->age_tx_ring[i];
2160 txd->tx_m = NULL;
2161 }
2162 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2163 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2164 }
2165
2166 static int
2167 age_init_rx_ring(struct age_softc *sc)
2168 {
2169 struct age_ring_data *rd;
2170 struct age_rxdesc *rxd;
2171 int i;
2172
2173 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2174 rd = &sc->age_rdata;
2175 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2176 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2177 rxd = &sc->age_cdata.age_rxdesc[i];
2178 rxd->rx_m = NULL;
2179 rxd->rx_desc = &rd->age_rx_ring[i];
2180 if (age_newbuf(sc, rxd, 1) != 0)
2181 return (ENOBUFS);
2182 }
2183
2184 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2185 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2186
2187 return (0);
2188 }
2189
2190 static void
2191 age_init_rr_ring(struct age_softc *sc)
2192 {
2193 struct age_ring_data *rd;
2194
2195 sc->age_cdata.age_rr_cons = 0;
2196 AGE_RXCHAIN_RESET(sc);
2197
2198 rd = &sc->age_rdata;
2199 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2200 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2201 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2202 }
2203
2204 static void
2205 age_init_cmb_block(struct age_softc *sc)
2206 {
2207 struct age_ring_data *rd;
2208
2209 rd = &sc->age_rdata;
2210 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2211 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2212 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2213 }
2214
2215 static void
2216 age_init_smb_block(struct age_softc *sc)
2217 {
2218 struct age_ring_data *rd;
2219
2220 rd = &sc->age_rdata;
2221 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2222 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2223 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2224 }
2225
2226 static int
2227 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2228 {
2229 struct rx_desc *desc;
2230 struct mbuf *m;
2231 bus_dmamap_t map;
2232 int error;
2233
2234 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2235 if (m == NULL)
2236 return (ENOBUFS);
2237 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2238 if (!(m->m_flags & M_EXT)) {
2239 m_freem(m);
2240 return (ENOBUFS);
2241 }
2242
2243 m->m_len = m->m_pkthdr.len = MCLBYTES;
2244 m_adj(m, PAGE_SIZE);
2245
2246 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2247 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2248
2249 if (error != 0) {
2250 if (!error) {
2251 bus_dmamap_unload(sc->sc_dmat,
2252 sc->age_cdata.age_rx_sparemap);
2253 error = EFBIG;
2254 printf("%s: too many segments?!\n",
2255 device_xname(sc->sc_dev));
2256 }
2257 m_freem(m);
2258
2259 if (init)
2260 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2261 return (error);
2262 }
2263
2264 if (rxd->rx_m != NULL) {
2265 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2266 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2267 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2268 }
2269 map = rxd->rx_dmamap;
2270 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2271 sc->age_cdata.age_rx_sparemap = map;
2272 rxd->rx_m = m;
2273
2274 desc = rxd->rx_desc;
2275 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2276 desc->len =
2277 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2278 AGE_RD_LEN_SHIFT);
2279
2280 return (0);
2281 }
2282
2283 static void
2284 age_rxvlan(struct age_softc *sc)
2285 {
2286 uint32_t reg;
2287
2288 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2289 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2290 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2291 reg |= MAC_CFG_VLAN_TAG_STRIP;
2292 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2293 }
2294
2295 static void
2296 age_rxfilter(struct age_softc *sc)
2297 {
2298 struct ethercom *ec = &sc->sc_ec;
2299 struct ifnet *ifp = &sc->sc_ec.ec_if;
2300 struct ether_multi *enm;
2301 struct ether_multistep step;
2302 uint32_t crc;
2303 uint32_t mchash[2];
2304 uint32_t rxcfg;
2305
2306 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2307 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2308
2309 if (ifp->if_flags & IFF_BROADCAST)
2310 rxcfg |= MAC_CFG_BCAST;
2311 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2312 if (ifp->if_flags & IFF_PROMISC)
2313 rxcfg |= MAC_CFG_PROMISC;
2314 if (ifp->if_flags & IFF_ALLMULTI)
2315 rxcfg |= MAC_CFG_ALLMULTI;
2316 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2317 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2318 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2319 return;
2320 }
2321
2322 /* Program new filter. */
2323 memset(mchash, 0, sizeof(mchash));
2324
2325 ETHER_FIRST_MULTI(step, ec, enm);
2326 while (enm != NULL) {
2327 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2328 enm->enm_addrlo), ETHER_ADDR_LEN);
2329
2330 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2331 ETHER_NEXT_MULTI(step, enm);
2332 }
2333
2334 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2335 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2336 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2337 }
2338