if_age.c revision 1.69 1 /* $NetBSD: if_age.c,v 1.69 2020/03/01 02:51:42 thorpej Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.69 2020/03/01 02:51:42 thorpej Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/if_agereg.h>
76
77 static int age_match(device_t, cfdata_t, void *);
78 static void age_attach(device_t, device_t, void *);
79 static int age_detach(device_t, int);
80
81 static bool age_resume(device_t, const pmf_qual_t *);
82
83 static int age_miibus_readreg(device_t, int, int, uint16_t *);
84 static int age_miibus_writereg(device_t, int, int, uint16_t);
85 static void age_miibus_statchg(struct ifnet *);
86
87 static int age_init(struct ifnet *);
88 static int age_ioctl(struct ifnet *, u_long, void *);
89 static void age_start(struct ifnet *);
90 static void age_watchdog(struct ifnet *);
91 static bool age_shutdown(device_t, int);
92 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int age_mediachange(struct ifnet *);
94
95 static int age_intr(void *);
96 static int age_dma_alloc(struct age_softc *);
97 static void age_dma_free(struct age_softc *);
98 static void age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void age_phy_reset(struct age_softc *);
100
101 static int age_encap(struct age_softc *, struct mbuf **);
102 static void age_init_tx_ring(struct age_softc *);
103 static int age_init_rx_ring(struct age_softc *);
104 static void age_init_rr_ring(struct age_softc *);
105 static void age_init_cmb_block(struct age_softc *);
106 static void age_init_smb_block(struct age_softc *);
107 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void age_mac_config(struct age_softc *);
109 static void age_txintr(struct age_softc *, int);
110 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void age_rxintr(struct age_softc *, int);
112 static void age_tick(void *);
113 static void age_reset(struct age_softc *);
114 static void age_stop(struct ifnet *, int);
115 static void age_stats_update(struct age_softc *);
116 static void age_stop_txmac(struct age_softc *);
117 static void age_stop_rxmac(struct age_softc *);
118 static void age_rxvlan(struct age_softc *sc);
119 static void age_rxfilter(struct age_softc *);
120
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122 age_match, age_attach, age_detach, NULL);
123
124 int agedebug = 0;
125 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
126
127 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
128
129 static int
130 age_match(device_t dev, cfdata_t match, void *aux)
131 {
132 struct pci_attach_args *pa = aux;
133
134 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
136 }
137
138 static void
139 age_attach(device_t parent, device_t self, void *aux)
140 {
141 struct age_softc *sc = device_private(self);
142 struct pci_attach_args *pa = aux;
143 pci_intr_handle_t ih;
144 const char *intrstr;
145 struct ifnet *ifp = &sc->sc_ec.ec_if;
146 struct mii_data * const mii = &sc->sc_miibus;
147 pcireg_t memtype;
148 int error = 0;
149 char intrbuf[PCI_INTRSTR_LEN];
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_pct = pa->pa_pc;
156 sc->sc_pcitag = pa->pa_tag;
157
158 if (pci_dma64_available(pa))
159 sc->sc_dmat = pa->pa_dmat64;
160 else
161 sc->sc_dmat = pa->pa_dmat;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 goto fail;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
192 sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc, device_xname(self));
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 goto fail;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
259 IFCAP_CSUM_TCPv4_Rx |
260 IFCAP_CSUM_UDPv4_Rx;
261 #ifdef AGE_CHECKSUM
262 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
263 IFCAP_CSUM_TCPv4_Tx |
264 IFCAP_CSUM_UDPv4_Tx;
265 #endif
266
267 #if NVLAN > 0
268 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
269 sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
270 #endif
271
272 /* Set up MII bus. */
273 mii->mii_ifp = ifp;
274 mii->mii_readreg = age_miibus_readreg;
275 mii->mii_writereg = age_miibus_writereg;
276 mii->mii_statchg = age_miibus_statchg;
277
278 sc->sc_ec.ec_mii = mii;
279 ifmedia_init(&mii->mii_media, 0, age_mediachange, age_mediastatus);
280 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
281 MII_OFFSET_ANY, MIIF_DOPAUSE);
282
283 if (LIST_FIRST(&mii->mii_phys) == NULL) {
284 aprint_error_dev(self, "no PHY found!\n");
285 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
286 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
287 } else
288 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
289
290 if_attach(ifp);
291 if_deferred_start_init(ifp, NULL);
292 ether_ifattach(ifp, sc->sc_enaddr);
293
294 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
295 pmf_class_network_register(self, ifp);
296 else
297 aprint_error_dev(self, "couldn't establish power handler\n");
298
299 return;
300
301 fail:
302 age_dma_free(sc);
303 if (sc->sc_irq_handle != NULL) {
304 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
305 sc->sc_irq_handle = NULL;
306 }
307 if (sc->sc_mem_size) {
308 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
309 sc->sc_mem_size = 0;
310 }
311 }
312
313 static int
314 age_detach(device_t self, int flags)
315 {
316 struct age_softc *sc = device_private(self);
317 struct ifnet *ifp = &sc->sc_ec.ec_if;
318 int s;
319
320 pmf_device_deregister(self);
321 s = splnet();
322 age_stop(ifp, 0);
323 splx(s);
324
325 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 /* Delete all remaining media. */
332 ifmedia_fini(&sc->sc_miibus.mii_media);
333
334 if (sc->sc_irq_handle != NULL) {
335 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
336 sc->sc_irq_handle = NULL;
337 }
338 if (sc->sc_mem_size) {
339 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
340 sc->sc_mem_size = 0;
341 }
342 return 0;
343 }
344
345 /*
346 * Read a PHY register on the MII of the L1.
347 */
348 static int
349 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
350 {
351 struct age_softc *sc = device_private(dev);
352 uint32_t v;
353 int i;
354
355 if (phy != sc->age_phyaddr)
356 return -1;
357
358 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
359 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
360 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
361 DELAY(1);
362 v = CSR_READ_4(sc, AGE_MDIO);
363 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
364 break;
365 }
366
367 if (i == 0) {
368 printf("%s: phy read timeout: phy %d, reg %d\n",
369 device_xname(sc->sc_dev), phy, reg);
370 return ETIMEDOUT;
371 }
372
373 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
374 return 0;
375 }
376
377 /*
378 * Write a PHY register on the MII of the L1.
379 */
380 static int
381 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
382 {
383 struct age_softc *sc = device_private(dev);
384 uint32_t v;
385 int i;
386
387 if (phy != sc->age_phyaddr)
388 return -1;
389
390 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
391 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
392 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
393
394 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
395 DELAY(1);
396 v = CSR_READ_4(sc, AGE_MDIO);
397 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
398 break;
399 }
400
401 if (i == 0) {
402 printf("%s: phy write timeout: phy %d, reg %d\n",
403 device_xname(sc->sc_dev), phy, reg);
404 return ETIMEDOUT;
405 }
406
407 return 0;
408 }
409
410 /*
411 * Callback from MII layer when media changes.
412 */
413 static void
414 age_miibus_statchg(struct ifnet *ifp)
415 {
416 struct age_softc *sc = ifp->if_softc;
417 struct mii_data *mii = &sc->sc_miibus;
418
419 if ((ifp->if_flags & IFF_RUNNING) == 0)
420 return;
421
422 sc->age_flags &= ~AGE_FLAG_LINK;
423 if ((mii->mii_media_status & IFM_AVALID) != 0) {
424 switch (IFM_SUBTYPE(mii->mii_media_active)) {
425 case IFM_10_T:
426 case IFM_100_TX:
427 case IFM_1000_T:
428 sc->age_flags |= AGE_FLAG_LINK;
429 break;
430 default:
431 break;
432 }
433 }
434
435 /* Stop Rx/Tx MACs. */
436 age_stop_rxmac(sc);
437 age_stop_txmac(sc);
438
439 /* Program MACs with resolved speed/duplex/flow-control. */
440 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
441 uint32_t reg;
442
443 age_mac_config(sc);
444 reg = CSR_READ_4(sc, AGE_MAC_CFG);
445 /* Restart DMA engine and Tx/Rx MAC. */
446 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
447 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
448 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
449 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
450 }
451 }
452
453 /*
454 * Get the current interface media status.
455 */
456 static void
457 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
458 {
459 struct age_softc *sc = ifp->if_softc;
460 struct mii_data *mii = &sc->sc_miibus;
461
462 mii_pollstat(mii);
463 ifmr->ifm_status = mii->mii_media_status;
464 ifmr->ifm_active = mii->mii_media_active;
465 }
466
467 /*
468 * Set hardware to newly-selected media.
469 */
470 static int
471 age_mediachange(struct ifnet *ifp)
472 {
473 struct age_softc *sc = ifp->if_softc;
474 struct mii_data *mii = &sc->sc_miibus;
475 int error;
476
477 if (mii->mii_instance != 0) {
478 struct mii_softc *miisc;
479
480 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
481 mii_phy_reset(miisc);
482 }
483 error = mii_mediachg(mii);
484
485 return error;
486 }
487
488 static int
489 age_intr(void *arg)
490 {
491 struct age_softc *sc = arg;
492 struct ifnet *ifp = &sc->sc_ec.ec_if;
493 struct cmb *cmb;
494 uint32_t status;
495
496 status = CSR_READ_4(sc, AGE_INTR_STATUS);
497 if (status == 0 || (status & AGE_INTRS) == 0)
498 return 0;
499
500 cmb = sc->age_rdata.age_cmb_block;
501 if (cmb == NULL) {
502 /* Happens when bringing up the interface
503 * w/o having a carrier. Ack the interrupt.
504 */
505 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
506 return 0;
507 }
508
509 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
510 sc->age_cdata.age_cmb_block_map->dm_mapsize,
511 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
512 status = le32toh(cmb->intr_status);
513 /* ACK/reenable interrupts */
514 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
515 while ((status & AGE_INTRS) != 0) {
516 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 TPD_CONS_SHIFT;
518 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 RRD_PROD_SHIFT;
520
521 /* Let hardware know CMB was served. */
522 cmb->intr_status = 0;
523 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
526
527 if (ifp->if_flags & IFF_RUNNING) {
528 if (status & INTR_CMB_RX)
529 age_rxintr(sc, sc->age_rr_prod);
530
531 if (status & INTR_CMB_TX)
532 age_txintr(sc, sc->age_tpd_cons);
533
534 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 if (status & INTR_DMA_RD_TO_RST)
536 printf("%s: DMA read error! -- "
537 "resetting\n",
538 device_xname(sc->sc_dev));
539 if (status & INTR_DMA_WR_TO_RST)
540 printf("%s: DMA write error! -- "
541 "resetting\n",
542 device_xname(sc->sc_dev));
543 age_init(ifp);
544 }
545
546 if_schedule_deferred_start(ifp);
547
548 if (status & INTR_SMB)
549 age_stats_update(sc);
550 }
551 /* check if more interrupts did came in */
552 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
555 status = le32toh(cmb->intr_status);
556 }
557
558 return 1;
559 }
560
561 static void
562 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
563 {
564 uint32_t ea[2], reg;
565 int i, vpdc;
566
567 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
568 if ((reg & SPI_VPD_ENB) != 0) {
569 /* Get VPD stored in TWSI EEPROM. */
570 reg &= ~SPI_VPD_ENB;
571 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
572 }
573
574 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
575 PCI_CAP_VPD, &vpdc, NULL)) {
576 /*
577 * PCI VPD capability found, let TWSI reload EEPROM.
578 * This will set Ethernet address of controller.
579 */
580 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
581 TWSI_CTRL_SW_LD_START);
582 for (i = 100; i > 0; i--) {
583 DELAY(1000);
584 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
585 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
586 break;
587 }
588 if (i == 0)
589 printf("%s: reloading EEPROM timeout!\n",
590 device_xname(sc->sc_dev));
591 } else {
592 if (agedebug)
593 printf("%s: PCI VPD capability not found!\n",
594 device_xname(sc->sc_dev));
595 }
596
597 ea[0] = CSR_READ_4(sc, AGE_PAR0);
598 ea[1] = CSR_READ_4(sc, AGE_PAR1);
599
600 eaddr[0] = (ea[1] >> 8) & 0xFF;
601 eaddr[1] = (ea[1] >> 0) & 0xFF;
602 eaddr[2] = (ea[0] >> 24) & 0xFF;
603 eaddr[3] = (ea[0] >> 16) & 0xFF;
604 eaddr[4] = (ea[0] >> 8) & 0xFF;
605 eaddr[5] = (ea[0] >> 0) & 0xFF;
606 }
607
608 static void
609 age_phy_reset(struct age_softc *sc)
610 {
611 uint16_t reg, pn;
612 int i, linkup;
613
614 /* Reset PHY. */
615 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
616 DELAY(2000);
617 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
618 DELAY(2000);
619
620 #define ATPHY_DBG_ADDR 0x1D
621 #define ATPHY_DBG_DATA 0x1E
622 #define ATPHY_CDTC 0x16
623 #define PHY_CDTC_ENB 0x0001
624 #define PHY_CDTC_POFF 8
625 #define ATPHY_CDTS 0x1C
626 #define PHY_CDTS_STAT_OK 0x0000
627 #define PHY_CDTS_STAT_SHORT 0x0100
628 #define PHY_CDTS_STAT_OPEN 0x0200
629 #define PHY_CDTS_STAT_INVAL 0x0300
630 #define PHY_CDTS_STAT_MASK 0x0300
631
632 /* Check power saving mode. Magic from Linux. */
633 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
634 for (linkup = 0, pn = 0; pn < 4; pn++) {
635 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
636 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
637 for (i = 200; i > 0; i--) {
638 DELAY(1000);
639 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
640 ATPHY_CDTC, ®);
641 if ((reg & PHY_CDTC_ENB) == 0)
642 break;
643 }
644 DELAY(1000);
645 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
646 ATPHY_CDTS, ®);
647 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
648 linkup++;
649 break;
650 }
651 }
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
653 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
654 if (linkup == 0) {
655 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
656 ATPHY_DBG_ADDR, 0);
657 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 ATPHY_DBG_DATA, 0x124E);
659 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 ATPHY_DBG_ADDR, 1);
661 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
662 ATPHY_DBG_DATA, ®);
663 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
664 ATPHY_DBG_DATA, reg | 0x03);
665 /* XXX */
666 DELAY(1500 * 1000);
667 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
668 ATPHY_DBG_ADDR, 0);
669 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 ATPHY_DBG_DATA, 0x024E);
671 }
672
673 #undef ATPHY_DBG_ADDR
674 #undef ATPHY_DBG_DATA
675 #undef ATPHY_CDTC
676 #undef PHY_CDTC_ENB
677 #undef PHY_CDTC_POFF
678 #undef ATPHY_CDTS
679 #undef PHY_CDTS_STAT_OK
680 #undef PHY_CDTS_STAT_SHORT
681 #undef PHY_CDTS_STAT_OPEN
682 #undef PHY_CDTS_STAT_INVAL
683 #undef PHY_CDTS_STAT_MASK
684 }
685
686 static int
687 age_dma_alloc(struct age_softc *sc)
688 {
689 struct age_txdesc *txd;
690 struct age_rxdesc *rxd;
691 int nsegs, error, i;
692
693 /*
694 * Create DMA stuffs for TX ring
695 */
696 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
697 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
698 if (error) {
699 sc->age_cdata.age_tx_ring_map = NULL;
700 return ENOBUFS;
701 }
702
703 /* Allocate DMA'able memory for TX ring */
704 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
705 PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
706 &nsegs, BUS_DMA_NOWAIT);
707 if (error) {
708 printf("%s: could not allocate DMA'able memory for Tx ring, "
709 "error = %i\n", device_xname(sc->sc_dev), error);
710 return error;
711 }
712
713 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
714 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
715 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
716 if (error)
717 return ENOBUFS;
718
719 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
720
721 /* Load the DMA map for Tx ring. */
722 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
723 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
724 if (error) {
725 printf("%s: could not load DMA'able memory for Tx ring, "
726 "error = %i\n", device_xname(sc->sc_dev), error);
727 bus_dmamem_free(sc->sc_dmat,
728 &sc->age_rdata.age_tx_ring_seg, 1);
729 return error;
730 }
731
732 sc->age_rdata.age_tx_ring_paddr =
733 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
734
735 /*
736 * Create DMA stuffs for RX ring
737 */
738 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
739 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
740 if (error) {
741 sc->age_cdata.age_rx_ring_map = NULL;
742 return ENOBUFS;
743 }
744
745 /* Allocate DMA'able memory for RX ring */
746 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
747 PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
748 &nsegs, BUS_DMA_NOWAIT);
749 if (error) {
750 printf("%s: could not allocate DMA'able memory for Rx ring, "
751 "error = %i.\n", device_xname(sc->sc_dev), error);
752 return error;
753 }
754
755 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
756 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
757 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
758 if (error)
759 return ENOBUFS;
760
761 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
762
763 /* Load the DMA map for Rx ring. */
764 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
765 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
766 if (error) {
767 printf("%s: could not load DMA'able memory for Rx ring, "
768 "error = %i.\n", device_xname(sc->sc_dev), error);
769 bus_dmamem_free(sc->sc_dmat,
770 &sc->age_rdata.age_rx_ring_seg, 1);
771 return error;
772 }
773
774 sc->age_rdata.age_rx_ring_paddr =
775 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
776
777 /*
778 * Create DMA stuffs for RX return ring
779 */
780 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
781 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
782 if (error) {
783 sc->age_cdata.age_rr_ring_map = NULL;
784 return ENOBUFS;
785 }
786
787 /* Allocate DMA'able memory for RX return ring */
788 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
789 PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
790 &nsegs, BUS_DMA_NOWAIT);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for Rx "
793 "return ring, error = %i.\n",
794 device_xname(sc->sc_dev), error);
795 return error;
796 }
797
798 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
799 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
800 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
805
806 /* Load the DMA map for Rx return ring. */
807 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
808 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
809 if (error) {
810 printf("%s: could not load DMA'able memory for Rx return ring, "
811 "error = %i\n", device_xname(sc->sc_dev), error);
812 bus_dmamem_free(sc->sc_dmat,
813 &sc->age_rdata.age_rr_ring_seg, 1);
814 return error;
815 }
816
817 sc->age_rdata.age_rr_ring_paddr =
818 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
819
820 /*
821 * Create DMA stuffs for CMB block
822 */
823 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
824 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
825 &sc->age_cdata.age_cmb_block_map);
826 if (error) {
827 sc->age_cdata.age_cmb_block_map = NULL;
828 return ENOBUFS;
829 }
830
831 /* Allocate DMA'able memory for CMB block */
832 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
833 PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
834 &nsegs, BUS_DMA_NOWAIT);
835 if (error) {
836 printf("%s: could not allocate DMA'able memory for "
837 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
838 return error;
839 }
840
841 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
842 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
843 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
844 if (error)
845 return ENOBUFS;
846
847 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
848
849 /* Load the DMA map for CMB block. */
850 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
851 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
852 BUS_DMA_NOWAIT);
853 if (error) {
854 printf("%s: could not load DMA'able memory for CMB block, "
855 "error = %i\n", device_xname(sc->sc_dev), error);
856 bus_dmamem_free(sc->sc_dmat,
857 &sc->age_rdata.age_cmb_block_seg, 1);
858 return error;
859 }
860
861 sc->age_rdata.age_cmb_block_paddr =
862 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
863
864 /*
865 * Create DMA stuffs for SMB block
866 */
867 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
868 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
869 &sc->age_cdata.age_smb_block_map);
870 if (error) {
871 sc->age_cdata.age_smb_block_map = NULL;
872 return ENOBUFS;
873 }
874
875 /* Allocate DMA'able memory for SMB block */
876 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
877 PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
878 &nsegs, BUS_DMA_NOWAIT);
879 if (error) {
880 printf("%s: could not allocate DMA'able memory for "
881 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
882 return error;
883 }
884
885 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
886 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
887 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
888 if (error)
889 return ENOBUFS;
890
891 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
892
893 /* Load the DMA map for SMB block */
894 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
895 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
896 BUS_DMA_NOWAIT);
897 if (error) {
898 printf("%s: could not load DMA'able memory for SMB block, "
899 "error = %i\n", device_xname(sc->sc_dev), error);
900 bus_dmamem_free(sc->sc_dmat,
901 &sc->age_rdata.age_smb_block_seg, 1);
902 return error;
903 }
904
905 sc->age_rdata.age_smb_block_paddr =
906 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
907
908 /*
909 * All of the memory we allocated above needs to be within
910 * the same 4GB segment. Make sure this is so.
911 *
912 * XXX We don't care WHAT 4GB segment they're in, just that
913 * XXX they're all in the same one. Need some bus_dma API
914 * XXX help to make this easier to enforce when we actually
915 * XXX perform the allocation.
916 */
917 if (! (AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
918 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)
919
920 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
921 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)
922
923 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
924 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)
925
926 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
927 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) {
928 aprint_error_dev(sc->sc_dev,
929 "control data allocation constraints failed\n");
930 return ENOBUFS;
931 }
932
933 /* Create DMA maps for Tx buffers. */
934 for (i = 0; i < AGE_TX_RING_CNT; i++) {
935 txd = &sc->age_cdata.age_txdesc[i];
936 txd->tx_m = NULL;
937 txd->tx_dmamap = NULL;
938 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
939 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
940 &txd->tx_dmamap);
941 if (error) {
942 txd->tx_dmamap = NULL;
943 printf("%s: could not create Tx dmamap, error = %i.\n",
944 device_xname(sc->sc_dev), error);
945 return error;
946 }
947 }
948
949 /* Create DMA maps for Rx buffers. */
950 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
951 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
952 if (error) {
953 sc->age_cdata.age_rx_sparemap = NULL;
954 printf("%s: could not create spare Rx dmamap, error = %i.\n",
955 device_xname(sc->sc_dev), error);
956 return error;
957 }
958 for (i = 0; i < AGE_RX_RING_CNT; i++) {
959 rxd = &sc->age_cdata.age_rxdesc[i];
960 rxd->rx_m = NULL;
961 rxd->rx_dmamap = NULL;
962 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
963 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
964 if (error) {
965 rxd->rx_dmamap = NULL;
966 printf("%s: could not create Rx dmamap, error = %i.\n",
967 device_xname(sc->sc_dev), error);
968 return error;
969 }
970 }
971
972 return 0;
973 }
974
975 static void
976 age_dma_free(struct age_softc *sc)
977 {
978 struct age_txdesc *txd;
979 struct age_rxdesc *rxd;
980 int i;
981
982 /* Tx buffers */
983 for (i = 0; i < AGE_TX_RING_CNT; i++) {
984 txd = &sc->age_cdata.age_txdesc[i];
985 if (txd->tx_dmamap != NULL) {
986 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
987 txd->tx_dmamap = NULL;
988 }
989 }
990 /* Rx buffers */
991 for (i = 0; i < AGE_RX_RING_CNT; i++) {
992 rxd = &sc->age_cdata.age_rxdesc[i];
993 if (rxd->rx_dmamap != NULL) {
994 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
995 rxd->rx_dmamap = NULL;
996 }
997 }
998 if (sc->age_cdata.age_rx_sparemap != NULL) {
999 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
1000 sc->age_cdata.age_rx_sparemap = NULL;
1001 }
1002
1003 /* Tx ring. */
1004 if (sc->age_cdata.age_tx_ring_map != NULL)
1005 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
1006 if (sc->age_cdata.age_tx_ring_map != NULL &&
1007 sc->age_rdata.age_tx_ring != NULL)
1008 bus_dmamem_free(sc->sc_dmat,
1009 &sc->age_rdata.age_tx_ring_seg, 1);
1010 sc->age_rdata.age_tx_ring = NULL;
1011 sc->age_cdata.age_tx_ring_map = NULL;
1012
1013 /* Rx ring. */
1014 if (sc->age_cdata.age_rx_ring_map != NULL)
1015 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1016 if (sc->age_cdata.age_rx_ring_map != NULL &&
1017 sc->age_rdata.age_rx_ring != NULL)
1018 bus_dmamem_free(sc->sc_dmat,
1019 &sc->age_rdata.age_rx_ring_seg, 1);
1020 sc->age_rdata.age_rx_ring = NULL;
1021 sc->age_cdata.age_rx_ring_map = NULL;
1022
1023 /* Rx return ring. */
1024 if (sc->age_cdata.age_rr_ring_map != NULL)
1025 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1026 if (sc->age_cdata.age_rr_ring_map != NULL &&
1027 sc->age_rdata.age_rr_ring != NULL)
1028 bus_dmamem_free(sc->sc_dmat,
1029 &sc->age_rdata.age_rr_ring_seg, 1);
1030 sc->age_rdata.age_rr_ring = NULL;
1031 sc->age_cdata.age_rr_ring_map = NULL;
1032
1033 /* CMB block */
1034 if (sc->age_cdata.age_cmb_block_map != NULL)
1035 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1036 if (sc->age_cdata.age_cmb_block_map != NULL &&
1037 sc->age_rdata.age_cmb_block != NULL)
1038 bus_dmamem_free(sc->sc_dmat,
1039 &sc->age_rdata.age_cmb_block_seg, 1);
1040 sc->age_rdata.age_cmb_block = NULL;
1041 sc->age_cdata.age_cmb_block_map = NULL;
1042
1043 /* SMB block */
1044 if (sc->age_cdata.age_smb_block_map != NULL)
1045 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1046 if (sc->age_cdata.age_smb_block_map != NULL &&
1047 sc->age_rdata.age_smb_block != NULL)
1048 bus_dmamem_free(sc->sc_dmat,
1049 &sc->age_rdata.age_smb_block_seg, 1);
1050 sc->age_rdata.age_smb_block = NULL;
1051 sc->age_cdata.age_smb_block_map = NULL;
1052 }
1053
1054 static void
1055 age_start(struct ifnet *ifp)
1056 {
1057 struct age_softc *sc = ifp->if_softc;
1058 struct mbuf *m_head;
1059 int enq;
1060
1061 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1062 return;
1063 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1064 return;
1065 if (IFQ_IS_EMPTY(&ifp->if_snd))
1066 return;
1067
1068 enq = 0;
1069 for (;;) {
1070 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1071 if (m_head == NULL)
1072 break;
1073
1074 /*
1075 * Pack the data into the transmit ring. If we
1076 * don't have room, set the OACTIVE flag and wait
1077 * for the NIC to drain the ring.
1078 */
1079 if (age_encap(sc, &m_head)) {
1080 if (m_head == NULL)
1081 break;
1082 IF_PREPEND(&ifp->if_snd, m_head);
1083 ifp->if_flags |= IFF_OACTIVE;
1084 break;
1085 }
1086 enq = 1;
1087
1088 /*
1089 * If there's a BPF listener, bounce a copy of this frame
1090 * to him.
1091 */
1092 bpf_mtap(ifp, m_head, BPF_D_OUT);
1093 }
1094
1095 if (enq) {
1096 /* Update mbox. */
1097 AGE_COMMIT_MBOX(sc);
1098 /* Set a timeout in case the chip goes out to lunch. */
1099 ifp->if_timer = AGE_TX_TIMEOUT;
1100 }
1101 }
1102
1103 static void
1104 age_watchdog(struct ifnet *ifp)
1105 {
1106 struct age_softc *sc = ifp->if_softc;
1107
1108 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1109 printf("%s: watchdog timeout (missed link)\n",
1110 device_xname(sc->sc_dev));
1111 if_statinc(ifp, if_oerrors);
1112 age_init(ifp);
1113 return;
1114 }
1115
1116 if (sc->age_cdata.age_tx_cnt == 0) {
1117 printf("%s: watchdog timeout (missed Tx interrupts) "
1118 "-- recovering\n", device_xname(sc->sc_dev));
1119 age_start(ifp);
1120 return;
1121 }
1122
1123 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1124 if_statinc(ifp, if_oerrors);
1125 age_init(ifp);
1126 age_start(ifp);
1127 }
1128
1129 static bool
1130 age_shutdown(device_t self, int howto)
1131 {
1132 struct age_softc *sc;
1133 struct ifnet *ifp;
1134
1135 sc = device_private(self);
1136 ifp = &sc->sc_ec.ec_if;
1137 age_stop(ifp, 1);
1138
1139 return true;
1140 }
1141
1142 static int
1143 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1144 {
1145 struct age_softc *sc = ifp->if_softc;
1146 int s, error;
1147
1148 s = splnet();
1149
1150 error = ether_ioctl(ifp, cmd, data);
1151 if (error == ENETRESET) {
1152 if (ifp->if_flags & IFF_RUNNING)
1153 age_rxfilter(sc);
1154 error = 0;
1155 }
1156
1157 splx(s);
1158 return error;
1159 }
1160
1161 static void
1162 age_mac_config(struct age_softc *sc)
1163 {
1164 struct mii_data *mii;
1165 uint32_t reg;
1166
1167 mii = &sc->sc_miibus;
1168
1169 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1170 reg &= ~MAC_CFG_FULL_DUPLEX;
1171 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1172 reg &= ~MAC_CFG_SPEED_MASK;
1173
1174 /* Reprogram MAC with resolved speed/duplex. */
1175 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1176 case IFM_10_T:
1177 case IFM_100_TX:
1178 reg |= MAC_CFG_SPEED_10_100;
1179 break;
1180 case IFM_1000_T:
1181 reg |= MAC_CFG_SPEED_1000;
1182 break;
1183 }
1184 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1185 reg |= MAC_CFG_FULL_DUPLEX;
1186 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1187 reg |= MAC_CFG_TX_FC;
1188 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1189 reg |= MAC_CFG_RX_FC;
1190 }
1191
1192 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1193 }
1194
1195 static bool
1196 age_resume(device_t dv, const pmf_qual_t *qual)
1197 {
1198 struct age_softc *sc = device_private(dv);
1199 uint16_t cmd;
1200
1201 /*
1202 * Clear INTx emulation disable for hardware that
1203 * is set in resume event. From Linux.
1204 */
1205 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1206 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1207 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1208 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1209 PCI_COMMAND_STATUS_REG, cmd);
1210 }
1211
1212 return true;
1213 }
1214
1215 static int
1216 age_encap(struct age_softc *sc, struct mbuf **m_head)
1217 {
1218 struct age_txdesc *txd, *txd_last;
1219 struct tx_desc *desc;
1220 struct mbuf *m;
1221 bus_dmamap_t map;
1222 uint32_t cflags, poff, vtag;
1223 int error, i, nsegs, prod;
1224
1225 m = *m_head;
1226 cflags = vtag = 0;
1227 poff = 0;
1228
1229 prod = sc->age_cdata.age_tx_prod;
1230 txd = &sc->age_cdata.age_txdesc[prod];
1231 txd_last = txd;
1232 map = txd->tx_dmamap;
1233
1234 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1235
1236 if (error == EFBIG) {
1237 error = 0;
1238
1239 *m_head = m_pullup(*m_head, MHLEN);
1240 if (*m_head == NULL) {
1241 printf("%s: can't defrag TX mbuf\n",
1242 device_xname(sc->sc_dev));
1243 return ENOBUFS;
1244 }
1245
1246 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1247 BUS_DMA_NOWAIT);
1248
1249 if (error != 0) {
1250 printf("%s: could not load defragged TX mbuf\n",
1251 device_xname(sc->sc_dev));
1252 m_freem(*m_head);
1253 *m_head = NULL;
1254 return error;
1255 }
1256 } else if (error) {
1257 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1258 return error;
1259 }
1260
1261 nsegs = map->dm_nsegs;
1262
1263 if (nsegs == 0) {
1264 m_freem(*m_head);
1265 *m_head = NULL;
1266 return EIO;
1267 }
1268
1269 /* Check descriptor overrun. */
1270 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1271 bus_dmamap_unload(sc->sc_dmat, map);
1272 return ENOBUFS;
1273 }
1274 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1275 BUS_DMASYNC_PREWRITE);
1276
1277 m = *m_head;
1278 /* Configure Tx IP/TCP/UDP checksum offload. */
1279 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1280 cflags |= AGE_TD_CSUM;
1281 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1282 cflags |= AGE_TD_TCPCSUM;
1283 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1284 cflags |= AGE_TD_UDPCSUM;
1285 /* Set checksum start offset. */
1286 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1287 }
1288
1289 #if NVLAN > 0
1290 /* Configure VLAN hardware tag insertion. */
1291 if (vlan_has_tag(m)) {
1292 vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1293 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1294 cflags |= AGE_TD_INSERT_VLAN_TAG;
1295 }
1296 #endif
1297
1298 desc = NULL;
1299 KASSERT(nsegs > 0);
1300 for (i = 0; ; i++) {
1301 desc = &sc->age_rdata.age_tx_ring[prod];
1302 desc->addr = htole64(map->dm_segs[i].ds_addr);
1303 desc->len =
1304 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1305 desc->flags = htole32(cflags);
1306 sc->age_cdata.age_tx_cnt++;
1307 if (i == (nsegs - 1))
1308 break;
1309
1310 /* Sync this descriptor and go to the next one */
1311 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1312 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1313 BUS_DMASYNC_PREWRITE);
1314 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1315 }
1316
1317 /* Set EOP on the last descriptor and sync it. */
1318 desc->flags |= htole32(AGE_TD_EOP);
1319 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1320 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1321 BUS_DMASYNC_PREWRITE);
1322
1323 if (nsegs > 1) {
1324 /* Swap dmamap of the first and the last. */
1325 txd = &sc->age_cdata.age_txdesc[prod];
1326 map = txd_last->tx_dmamap;
1327 txd_last->tx_dmamap = txd->tx_dmamap;
1328 txd->tx_dmamap = map;
1329 txd->tx_m = m;
1330 KASSERT(txd_last->tx_m == NULL);
1331 } else {
1332 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1333 txd_last->tx_m = m;
1334 }
1335
1336 /* Update producer index. */
1337 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1338 sc->age_cdata.age_tx_prod = prod;
1339
1340 return 0;
1341 }
1342
1343 static void
1344 age_txintr(struct age_softc *sc, int tpd_cons)
1345 {
1346 struct ifnet *ifp = &sc->sc_ec.ec_if;
1347 struct age_txdesc *txd;
1348 int cons, prog;
1349
1350 if (sc->age_cdata.age_tx_cnt <= 0) {
1351 if (ifp->if_timer != 0)
1352 printf("timer running without packets\n");
1353 if (sc->age_cdata.age_tx_cnt)
1354 printf("age_tx_cnt corrupted\n");
1355 }
1356
1357 /*
1358 * Go through our Tx list and free mbufs for those
1359 * frames which have been transmitted.
1360 */
1361 cons = sc->age_cdata.age_tx_cons;
1362 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1363 if (sc->age_cdata.age_tx_cnt <= 0)
1364 break;
1365 prog++;
1366 ifp->if_flags &= ~IFF_OACTIVE;
1367 sc->age_cdata.age_tx_cnt--;
1368 txd = &sc->age_cdata.age_txdesc[cons];
1369 /*
1370 * Clear Tx descriptors, it's not required but would
1371 * help debugging in case of Tx issues.
1372 */
1373 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1374 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1375 BUS_DMASYNC_POSTWRITE);
1376 txd->tx_desc->addr = 0;
1377 txd->tx_desc->len = 0;
1378 txd->tx_desc->flags = 0;
1379
1380 if (txd->tx_m == NULL)
1381 continue;
1382 /* Reclaim transmitted mbufs. */
1383 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1384 m_freem(txd->tx_m);
1385 txd->tx_m = NULL;
1386 }
1387
1388 if (prog > 0) {
1389 sc->age_cdata.age_tx_cons = cons;
1390
1391 /*
1392 * Unarm watchdog timer only when there are no pending
1393 * Tx descriptors in queue.
1394 */
1395 if (sc->age_cdata.age_tx_cnt == 0)
1396 ifp->if_timer = 0;
1397 }
1398 }
1399
1400 /* Receive a frame. */
1401 static void
1402 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1403 {
1404 struct ifnet *ifp = &sc->sc_ec.ec_if;
1405 struct age_rxdesc *rxd;
1406 struct rx_desc *desc;
1407 struct mbuf *mp, *m;
1408 uint32_t status, index;
1409 int count, nsegs, pktlen;
1410 int rx_cons;
1411
1412 status = le32toh(rxrd->flags);
1413 index = le32toh(rxrd->index);
1414 rx_cons = AGE_RX_CONS(index);
1415 nsegs = AGE_RX_NSEGS(index);
1416
1417 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1418 if ((status & AGE_RRD_ERROR) != 0 &&
1419 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1420 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1421 /*
1422 * We want to pass the following frames to upper
1423 * layer regardless of error status of Rx return
1424 * ring.
1425 *
1426 * o IP/TCP/UDP checksum is bad.
1427 * o frame length and protocol specific length
1428 * does not match.
1429 */
1430 sc->age_cdata.age_rx_cons += nsegs;
1431 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1432 return;
1433 }
1434
1435 pktlen = 0;
1436 for (count = 0; count < nsegs; count++,
1437 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1438 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1439 mp = rxd->rx_m;
1440 desc = rxd->rx_desc;
1441 /* Add a new receive buffer to the ring. */
1442 if (age_newbuf(sc, rxd, 0) != 0) {
1443 if_statinc(ifp, if_iqdrops);
1444 /* Reuse Rx buffers. */
1445 if (sc->age_cdata.age_rxhead != NULL) {
1446 m_freem(sc->age_cdata.age_rxhead);
1447 AGE_RXCHAIN_RESET(sc);
1448 }
1449 break;
1450 }
1451
1452 /* The length of the first mbuf is computed last. */
1453 if (count != 0) {
1454 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1455 pktlen += mp->m_len;
1456 }
1457
1458 /* Chain received mbufs. */
1459 if (sc->age_cdata.age_rxhead == NULL) {
1460 sc->age_cdata.age_rxhead = mp;
1461 sc->age_cdata.age_rxtail = mp;
1462 } else {
1463 m_remove_pkthdr(mp);
1464 sc->age_cdata.age_rxprev_tail =
1465 sc->age_cdata.age_rxtail;
1466 sc->age_cdata.age_rxtail->m_next = mp;
1467 sc->age_cdata.age_rxtail = mp;
1468 }
1469
1470 if (count == nsegs - 1) {
1471 /*
1472 * It seems that L1 controller has no way
1473 * to tell hardware to strip CRC bytes.
1474 */
1475 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1476 if (nsegs > 1) {
1477 /* Remove the CRC bytes in chained mbufs. */
1478 pktlen -= ETHER_CRC_LEN;
1479 if (mp->m_len <= ETHER_CRC_LEN) {
1480 sc->age_cdata.age_rxtail =
1481 sc->age_cdata.age_rxprev_tail;
1482 sc->age_cdata.age_rxtail->m_len -=
1483 (ETHER_CRC_LEN - mp->m_len);
1484 sc->age_cdata.age_rxtail->m_next = NULL;
1485 m_freem(mp);
1486 } else {
1487 mp->m_len -= ETHER_CRC_LEN;
1488 }
1489 }
1490
1491 m = sc->age_cdata.age_rxhead;
1492 KASSERT(m->m_flags & M_PKTHDR);
1493 m_set_rcvif(m, ifp);
1494 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1495 /* Set the first mbuf length. */
1496 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1497
1498 /*
1499 * Set checksum information.
1500 * It seems that L1 controller can compute partial
1501 * checksum. The partial checksum value can be used
1502 * to accelerate checksum computation for fragmented
1503 * TCP/UDP packets. Upper network stack already
1504 * takes advantage of the partial checksum value in
1505 * IP reassembly stage. But I'm not sure the
1506 * correctness of the partial hardware checksum
1507 * assistance due to lack of data sheet. If it is
1508 * proven to work on L1 I'll enable it.
1509 */
1510 if (status & AGE_RRD_IPV4) {
1511 if (status & AGE_RRD_IPCSUM_NOK)
1512 m->m_pkthdr.csum_flags |=
1513 M_CSUM_IPv4_BAD;
1514 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1515 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1516 m->m_pkthdr.csum_flags |=
1517 M_CSUM_TCP_UDP_BAD;
1518 }
1519 /*
1520 * Don't mark bad checksum for TCP/UDP frames
1521 * as fragmented frames may always have set
1522 * bad checksummed bit of descriptor status.
1523 */
1524 }
1525 #if NVLAN > 0
1526 /* Check for VLAN tagged frames. */
1527 if (status & AGE_RRD_VLAN) {
1528 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1529 vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
1530 }
1531 #endif
1532
1533 /* Pass it on. */
1534 if_percpuq_enqueue(ifp->if_percpuq, m);
1535
1536 /* Reset mbuf chains. */
1537 AGE_RXCHAIN_RESET(sc);
1538 }
1539 }
1540
1541 if (count != nsegs) {
1542 sc->age_cdata.age_rx_cons += nsegs;
1543 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1544 } else
1545 sc->age_cdata.age_rx_cons = rx_cons;
1546 }
1547
1548 static void
1549 age_rxintr(struct age_softc *sc, int rr_prod)
1550 {
1551 struct rx_rdesc *rxrd;
1552 int rr_cons, nsegs, pktlen, prog;
1553
1554 rr_cons = sc->age_cdata.age_rr_cons;
1555 if (rr_cons == rr_prod)
1556 return;
1557
1558 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1559 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1560 BUS_DMASYNC_POSTREAD);
1561
1562 for (prog = 0; rr_cons != rr_prod; prog++) {
1563 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1564 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1565 if (nsegs == 0)
1566 break;
1567 /*
1568 * Check number of segments against received bytes
1569 * Non-matching value would indicate that hardware
1570 * is still trying to update Rx return descriptors.
1571 * I'm not sure whether this check is really needed.
1572 */
1573 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1574 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1575 (MCLBYTES - ETHER_ALIGN)))
1576 break;
1577
1578 /* Received a frame. */
1579 age_rxeof(sc, rxrd);
1580
1581 /* Clear return ring. */
1582 rxrd->index = 0;
1583 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1584 }
1585
1586 if (prog > 0) {
1587 /* Update the consumer index. */
1588 sc->age_cdata.age_rr_cons = rr_cons;
1589
1590 /* Sync descriptors. */
1591 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1592 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1593 BUS_DMASYNC_PREWRITE);
1594
1595 /* Notify hardware availability of new Rx buffers. */
1596 AGE_COMMIT_MBOX(sc);
1597 }
1598 }
1599
1600 static void
1601 age_tick(void *xsc)
1602 {
1603 struct age_softc *sc = xsc;
1604 struct mii_data *mii = &sc->sc_miibus;
1605 int s;
1606
1607 s = splnet();
1608 mii_tick(mii);
1609 splx(s);
1610
1611 callout_schedule(&sc->sc_tick_ch, hz);
1612 }
1613
1614 static void
1615 age_reset(struct age_softc *sc)
1616 {
1617 uint32_t reg;
1618 int i;
1619
1620 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1621 CSR_READ_4(sc, AGE_MASTER_CFG);
1622 DELAY(1000);
1623 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1624 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1625 break;
1626 DELAY(10);
1627 }
1628
1629 if (i == 0)
1630 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1631 reg);
1632
1633 /* Initialize PCIe module. From Linux. */
1634 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1635 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1636 }
1637
1638 static int
1639 age_init(struct ifnet *ifp)
1640 {
1641 struct age_softc *sc = ifp->if_softc;
1642 struct mii_data *mii;
1643 uint8_t eaddr[ETHER_ADDR_LEN];
1644 bus_addr_t paddr;
1645 uint32_t reg, fsize;
1646 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1647 int error;
1648
1649 /*
1650 * Cancel any pending I/O.
1651 */
1652 age_stop(ifp, 0);
1653
1654 /*
1655 * Reset the chip to a known state.
1656 */
1657 age_reset(sc);
1658
1659 /* Initialize descriptors. */
1660 error = age_init_rx_ring(sc);
1661 if (error != 0) {
1662 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1663 age_stop(ifp, 0);
1664 return error;
1665 }
1666 age_init_rr_ring(sc);
1667 age_init_tx_ring(sc);
1668 age_init_cmb_block(sc);
1669 age_init_smb_block(sc);
1670
1671 /* Reprogram the station address. */
1672 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1673 CSR_WRITE_4(sc, AGE_PAR0,
1674 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1675 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1676
1677 /* Set descriptor base addresses. */
1678 paddr = sc->age_rdata.age_tx_ring_paddr;
1679 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1680 paddr = sc->age_rdata.age_rx_ring_paddr;
1681 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1682 paddr = sc->age_rdata.age_rr_ring_paddr;
1683 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1684 paddr = sc->age_rdata.age_tx_ring_paddr;
1685 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1686 paddr = sc->age_rdata.age_cmb_block_paddr;
1687 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1688 paddr = sc->age_rdata.age_smb_block_paddr;
1689 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1690
1691 /* Set Rx/Rx return descriptor counter. */
1692 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1693 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1694 DESC_RRD_CNT_MASK) |
1695 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1696
1697 /* Set Tx descriptor counter. */
1698 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1699 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1700
1701 /* Tell hardware that we're ready to load descriptors. */
1702 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1703
1704 /*
1705 * Initialize mailbox register.
1706 * Updated producer/consumer index information is exchanged
1707 * through this mailbox register. However Tx producer and
1708 * Rx return consumer/Rx producer are all shared such that
1709 * it's hard to separate code path between Tx and Rx without
1710 * locking. If L1 hardware have a separate mail box register
1711 * for Tx and Rx consumer/producer management we could have
1712 * indepent Tx/Rx handler which in turn Rx handler could have
1713 * been run without any locking.
1714 */
1715 AGE_COMMIT_MBOX(sc);
1716
1717 /* Configure IPG/IFG parameters. */
1718 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1719 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1720 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1721 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1722 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1723
1724 /* Set parameters for half-duplex media. */
1725 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1726 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1727 HDPX_CFG_LCOL_MASK) |
1728 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1729 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1730 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1731 HDPX_CFG_ABEBT_MASK) |
1732 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1733 HDPX_CFG_JAMIPG_MASK));
1734
1735 /* Configure interrupt moderation timer. */
1736 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1737 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1738 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1739 reg &= ~MASTER_MTIMER_ENB;
1740 if (AGE_USECS(sc->age_int_mod) == 0)
1741 reg &= ~MASTER_ITIMER_ENB;
1742 else
1743 reg |= MASTER_ITIMER_ENB;
1744 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1745 if (agedebug)
1746 printf("%s: interrupt moderation is %d us.\n",
1747 device_xname(sc->sc_dev), sc->age_int_mod);
1748 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1749
1750 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1751 if (ifp->if_mtu < ETHERMTU)
1752 sc->age_max_frame_size = ETHERMTU;
1753 else
1754 sc->age_max_frame_size = ifp->if_mtu;
1755 sc->age_max_frame_size += ETHER_HDR_LEN +
1756 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1757 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1758
1759 /* Configure jumbo frame. */
1760 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1761 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1762 (((fsize / sizeof(uint64_t)) <<
1763 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1764 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1765 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1766 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1767 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1768
1769 /* Configure flow-control parameters. From Linux. */
1770 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1771 /*
1772 * Magic workaround for old-L1.
1773 * Don't know which hw revision requires this magic.
1774 */
1775 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1776 /*
1777 * Another magic workaround for flow-control mode
1778 * change. From Linux.
1779 */
1780 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1781 }
1782 /*
1783 * TODO
1784 * Should understand pause parameter relationships between FIFO
1785 * size and number of Rx descriptors and Rx return descriptors.
1786 *
1787 * Magic parameters came from Linux.
1788 */
1789 switch (sc->age_chip_rev) {
1790 case 0x8001:
1791 case 0x9001:
1792 case 0x9002:
1793 case 0x9003:
1794 rxf_hi = AGE_RX_RING_CNT / 16;
1795 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1796 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1797 rrd_lo = AGE_RR_RING_CNT / 16;
1798 break;
1799 default:
1800 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1801 rxf_lo = reg / 16;
1802 if (rxf_lo < 192)
1803 rxf_lo = 192;
1804 rxf_hi = (reg * 7) / 8;
1805 if (rxf_hi < rxf_lo)
1806 rxf_hi = rxf_lo + 16;
1807 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1808 rrd_lo = reg / 8;
1809 rrd_hi = (reg * 7) / 8;
1810 if (rrd_lo < 2)
1811 rrd_lo = 2;
1812 if (rrd_hi < rrd_lo)
1813 rrd_hi = rrd_lo + 3;
1814 break;
1815 }
1816 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1817 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1818 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1819 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1820 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1821 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1822 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1823 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1824 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1825 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1826
1827 /* Configure RxQ. */
1828 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1829 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1830 RXQ_CFG_RD_BURST_MASK) |
1831 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1832 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1833 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1834 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1835 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1836
1837 /* Configure TxQ. */
1838 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1839 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1840 TXQ_CFG_TPD_BURST_MASK) |
1841 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1842 TXQ_CFG_TX_FIFO_BURST_MASK) |
1843 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1844 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1845 TXQ_CFG_ENB);
1846
1847 /* Configure DMA parameters. */
1848 CSR_WRITE_4(sc, AGE_DMA_CFG,
1849 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1850 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1851 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1852
1853 /* Configure CMB DMA write threshold. */
1854 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1855 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1856 CMB_WR_THRESH_RRD_MASK) |
1857 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1858 CMB_WR_THRESH_TPD_MASK));
1859
1860 /* Set CMB/SMB timer and enable them. */
1861 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1862 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1863 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1864
1865 /* Request SMB updates for every seconds. */
1866 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1867 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1868
1869 /*
1870 * Disable all WOL bits as WOL can interfere normal Rx
1871 * operation.
1872 */
1873 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1874
1875 /*
1876 * Configure Tx/Rx MACs.
1877 * - Auto-padding for short frames.
1878 * - Enable CRC generation.
1879 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1880 * of MAC is followed after link establishment.
1881 */
1882 CSR_WRITE_4(sc, AGE_MAC_CFG,
1883 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1884 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1885 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1886 MAC_CFG_PREAMBLE_MASK));
1887
1888 /* Set up the receive filter. */
1889 age_rxfilter(sc);
1890 age_rxvlan(sc);
1891
1892 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1893 reg |= MAC_CFG_RXCSUM_ENB;
1894
1895 /* Ack all pending interrupts and clear it. */
1896 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1897 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1898
1899 /* Finally enable Tx/Rx MAC. */
1900 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1901
1902 sc->age_flags &= ~AGE_FLAG_LINK;
1903
1904 /* Switch to the current media. */
1905 mii = &sc->sc_miibus;
1906 mii_mediachg(mii);
1907
1908 callout_schedule(&sc->sc_tick_ch, hz);
1909
1910 ifp->if_flags |= IFF_RUNNING;
1911 ifp->if_flags &= ~IFF_OACTIVE;
1912
1913 return 0;
1914 }
1915
1916 static void
1917 age_stop(struct ifnet *ifp, int disable)
1918 {
1919 struct age_softc *sc = ifp->if_softc;
1920 struct age_txdesc *txd;
1921 struct age_rxdesc *rxd;
1922 uint32_t reg;
1923 int i;
1924
1925 callout_stop(&sc->sc_tick_ch);
1926
1927 /*
1928 * Mark the interface down and cancel the watchdog timer.
1929 */
1930 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1931 ifp->if_timer = 0;
1932
1933 sc->age_flags &= ~AGE_FLAG_LINK;
1934
1935 mii_down(&sc->sc_miibus);
1936
1937 /*
1938 * Disable interrupts.
1939 */
1940 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1941 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1942
1943 /* Stop CMB/SMB updates. */
1944 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1945
1946 /* Stop Rx/Tx MAC. */
1947 age_stop_rxmac(sc);
1948 age_stop_txmac(sc);
1949
1950 /* Stop DMA. */
1951 CSR_WRITE_4(sc, AGE_DMA_CFG,
1952 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1953
1954 /* Stop TxQ/RxQ. */
1955 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1956 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1957 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1958 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1959 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1960 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1961 break;
1962 DELAY(10);
1963 }
1964 if (i == 0)
1965 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1966 device_xname(sc->sc_dev), reg);
1967
1968 /* Reclaim Rx buffers that have been processed. */
1969 if (sc->age_cdata.age_rxhead != NULL)
1970 m_freem(sc->age_cdata.age_rxhead);
1971 AGE_RXCHAIN_RESET(sc);
1972
1973 /*
1974 * Free RX and TX mbufs still in the queues.
1975 */
1976 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1977 rxd = &sc->age_cdata.age_rxdesc[i];
1978 if (rxd->rx_m != NULL) {
1979 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1980 m_freem(rxd->rx_m);
1981 rxd->rx_m = NULL;
1982 }
1983 }
1984 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1985 txd = &sc->age_cdata.age_txdesc[i];
1986 if (txd->tx_m != NULL) {
1987 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1988 m_freem(txd->tx_m);
1989 txd->tx_m = NULL;
1990 }
1991 }
1992 }
1993
1994 static void
1995 age_stats_update(struct age_softc *sc)
1996 {
1997 struct ifnet *ifp = &sc->sc_ec.ec_if;
1998 struct age_stats *stat;
1999 struct smb *smb;
2000
2001 stat = &sc->age_stat;
2002
2003 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2004 sc->age_cdata.age_smb_block_map->dm_mapsize,
2005 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2006
2007 smb = sc->age_rdata.age_smb_block;
2008 if (smb->updated == 0)
2009 return;
2010
2011 /* Rx stats. */
2012 stat->rx_frames += smb->rx_frames;
2013 stat->rx_bcast_frames += smb->rx_bcast_frames;
2014 stat->rx_mcast_frames += smb->rx_mcast_frames;
2015 stat->rx_pause_frames += smb->rx_pause_frames;
2016 stat->rx_control_frames += smb->rx_control_frames;
2017 stat->rx_crcerrs += smb->rx_crcerrs;
2018 stat->rx_lenerrs += smb->rx_lenerrs;
2019 stat->rx_bytes += smb->rx_bytes;
2020 stat->rx_runts += smb->rx_runts;
2021 stat->rx_fragments += smb->rx_fragments;
2022 stat->rx_pkts_64 += smb->rx_pkts_64;
2023 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2024 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2025 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2026 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2027 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2028 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2029 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2030 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2031 stat->rx_desc_oflows += smb->rx_desc_oflows;
2032 stat->rx_alignerrs += smb->rx_alignerrs;
2033 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2034 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2035 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2036
2037 /* Tx stats. */
2038 stat->tx_frames += smb->tx_frames;
2039 stat->tx_bcast_frames += smb->tx_bcast_frames;
2040 stat->tx_mcast_frames += smb->tx_mcast_frames;
2041 stat->tx_pause_frames += smb->tx_pause_frames;
2042 stat->tx_excess_defer += smb->tx_excess_defer;
2043 stat->tx_control_frames += smb->tx_control_frames;
2044 stat->tx_deferred += smb->tx_deferred;
2045 stat->tx_bytes += smb->tx_bytes;
2046 stat->tx_pkts_64 += smb->tx_pkts_64;
2047 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2048 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2049 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2050 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2051 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2052 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2053 stat->tx_single_colls += smb->tx_single_colls;
2054 stat->tx_multi_colls += smb->tx_multi_colls;
2055 stat->tx_late_colls += smb->tx_late_colls;
2056 stat->tx_excess_colls += smb->tx_excess_colls;
2057 stat->tx_underrun += smb->tx_underrun;
2058 stat->tx_desc_underrun += smb->tx_desc_underrun;
2059 stat->tx_lenerrs += smb->tx_lenerrs;
2060 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2061 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2062 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2063
2064 /* Update counters in ifnet. */
2065 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2066
2067 if_statadd_ref(nsr, if_opackets, smb->tx_frames);
2068
2069 if_statadd_ref(nsr, if_collisions,
2070 smb->tx_single_colls +
2071 smb->tx_multi_colls + smb->tx_late_colls +
2072 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2073
2074 if_statadd_ref(nsr, if_oerrors,
2075 smb->tx_excess_colls +
2076 smb->tx_late_colls + smb->tx_underrun +
2077 smb->tx_pkts_truncated);
2078
2079 if_statadd_ref(nsr, if_ierrors,
2080 smb->rx_crcerrs + smb->rx_lenerrs +
2081 smb->rx_runts + smb->rx_pkts_truncated +
2082 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2083 smb->rx_alignerrs);
2084
2085 IF_STAT_PUTREF(ifp);
2086
2087 /* Update done, clear. */
2088 smb->updated = 0;
2089
2090 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2091 sc->age_cdata.age_smb_block_map->dm_mapsize,
2092 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2093 }
2094
2095 static void
2096 age_stop_txmac(struct age_softc *sc)
2097 {
2098 uint32_t reg;
2099 int i;
2100
2101 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2102 if ((reg & MAC_CFG_TX_ENB) != 0) {
2103 reg &= ~MAC_CFG_TX_ENB;
2104 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2105 }
2106 /* Stop Tx DMA engine. */
2107 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2108 if ((reg & DMA_CFG_RD_ENB) != 0) {
2109 reg &= ~DMA_CFG_RD_ENB;
2110 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2111 }
2112 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2113 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2114 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2115 break;
2116 DELAY(10);
2117 }
2118 if (i == 0)
2119 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2120 }
2121
2122 static void
2123 age_stop_rxmac(struct age_softc *sc)
2124 {
2125 uint32_t reg;
2126 int i;
2127
2128 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2129 if ((reg & MAC_CFG_RX_ENB) != 0) {
2130 reg &= ~MAC_CFG_RX_ENB;
2131 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2132 }
2133 /* Stop Rx DMA engine. */
2134 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2135 if ((reg & DMA_CFG_WR_ENB) != 0) {
2136 reg &= ~DMA_CFG_WR_ENB;
2137 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2138 }
2139 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2140 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2141 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2142 break;
2143 DELAY(10);
2144 }
2145 if (i == 0)
2146 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2147 }
2148
2149 static void
2150 age_init_tx_ring(struct age_softc *sc)
2151 {
2152 struct age_ring_data *rd;
2153 struct age_txdesc *txd;
2154 int i;
2155
2156 sc->age_cdata.age_tx_prod = 0;
2157 sc->age_cdata.age_tx_cons = 0;
2158 sc->age_cdata.age_tx_cnt = 0;
2159
2160 rd = &sc->age_rdata;
2161 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2162 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2163 txd = &sc->age_cdata.age_txdesc[i];
2164 txd->tx_desc = &rd->age_tx_ring[i];
2165 txd->tx_m = NULL;
2166 }
2167 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2168 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2169 }
2170
2171 static int
2172 age_init_rx_ring(struct age_softc *sc)
2173 {
2174 struct age_ring_data *rd;
2175 struct age_rxdesc *rxd;
2176 int i;
2177
2178 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2179 rd = &sc->age_rdata;
2180 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2181 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2182 rxd = &sc->age_cdata.age_rxdesc[i];
2183 rxd->rx_m = NULL;
2184 rxd->rx_desc = &rd->age_rx_ring[i];
2185 if (age_newbuf(sc, rxd, 1) != 0)
2186 return ENOBUFS;
2187 }
2188
2189 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2190 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2191
2192 return 0;
2193 }
2194
2195 static void
2196 age_init_rr_ring(struct age_softc *sc)
2197 {
2198 struct age_ring_data *rd;
2199
2200 sc->age_cdata.age_rr_cons = 0;
2201 AGE_RXCHAIN_RESET(sc);
2202
2203 rd = &sc->age_rdata;
2204 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2205 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2206 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2207 }
2208
2209 static void
2210 age_init_cmb_block(struct age_softc *sc)
2211 {
2212 struct age_ring_data *rd;
2213
2214 rd = &sc->age_rdata;
2215 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2216 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2217 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2218 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2219 }
2220
2221 static void
2222 age_init_smb_block(struct age_softc *sc)
2223 {
2224 struct age_ring_data *rd;
2225
2226 rd = &sc->age_rdata;
2227 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2228 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2229 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2230 }
2231
2232 static int
2233 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2234 {
2235 struct rx_desc *desc;
2236 struct mbuf *m;
2237 bus_dmamap_t map;
2238 int error;
2239
2240 MGETHDR(m, M_DONTWAIT, MT_DATA);
2241 if (m == NULL)
2242 return ENOBUFS;
2243 MCLGET(m, M_DONTWAIT);
2244 if (!(m->m_flags & M_EXT)) {
2245 m_freem(m);
2246 return ENOBUFS;
2247 }
2248
2249 m->m_len = m->m_pkthdr.len = MCLBYTES;
2250 m_adj(m, ETHER_ALIGN);
2251
2252 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2253 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2254
2255 if (error != 0) {
2256 m_freem(m);
2257
2258 if (init)
2259 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2260 return error;
2261 }
2262
2263 if (rxd->rx_m != NULL) {
2264 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2265 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2266 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2267 }
2268 map = rxd->rx_dmamap;
2269 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2270 sc->age_cdata.age_rx_sparemap = map;
2271 rxd->rx_m = m;
2272
2273 desc = rxd->rx_desc;
2274 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2275 desc->len =
2276 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2277 AGE_RD_LEN_SHIFT);
2278
2279 return 0;
2280 }
2281
2282 static void
2283 age_rxvlan(struct age_softc *sc)
2284 {
2285 uint32_t reg;
2286
2287 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2288 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2289 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2290 reg |= MAC_CFG_VLAN_TAG_STRIP;
2291 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2292 }
2293
2294 static void
2295 age_rxfilter(struct age_softc *sc)
2296 {
2297 struct ethercom *ec = &sc->sc_ec;
2298 struct ifnet *ifp = &sc->sc_ec.ec_if;
2299 struct ether_multi *enm;
2300 struct ether_multistep step;
2301 uint32_t crc;
2302 uint32_t mchash[2];
2303 uint32_t rxcfg;
2304
2305 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2306 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2307 ifp->if_flags &= ~IFF_ALLMULTI;
2308
2309 /*
2310 * Always accept broadcast frames.
2311 */
2312 rxcfg |= MAC_CFG_BCAST;
2313
2314 /* Program new filter. */
2315 if ((ifp->if_flags & IFF_PROMISC) != 0)
2316 goto update;
2317
2318 memset(mchash, 0, sizeof(mchash));
2319
2320 ETHER_LOCK(ec);
2321 ETHER_FIRST_MULTI(step, ec, enm);
2322 while (enm != NULL) {
2323 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2324 /* XXX Use ETHER_F_ALLMULTI in future. */
2325 ifp->if_flags |= IFF_ALLMULTI;
2326 ETHER_UNLOCK(ec);
2327 goto update;
2328 }
2329 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2330 mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
2331 ETHER_NEXT_MULTI(step, enm);
2332 }
2333 ETHER_UNLOCK(ec);
2334
2335 update:
2336 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2337 if (ifp->if_flags & IFF_PROMISC) {
2338 rxcfg |= MAC_CFG_PROMISC;
2339 /* XXX Use ETHER_F_ALLMULTI in future. */
2340 ifp->if_flags |= IFF_ALLMULTI;
2341 } else
2342 rxcfg |= MAC_CFG_ALLMULTI;
2343 mchash[0] = mchash[1] = 0xFFFFFFFF;
2344 }
2345 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2346 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2347 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2348 }
2349