if_age.c revision 1.71 1 /* $NetBSD: if_age.c,v 1.71 2022/08/22 16:14:31 thorpej Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.71 2022/08/22 16:14:31 thorpej Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/if_agereg.h>
76
77 static int age_match(device_t, cfdata_t, void *);
78 static void age_attach(device_t, device_t, void *);
79 static int age_detach(device_t, int);
80
81 static bool age_resume(device_t, const pmf_qual_t *);
82
83 static int age_miibus_readreg(device_t, int, int, uint16_t *);
84 static int age_miibus_writereg(device_t, int, int, uint16_t);
85 static void age_miibus_statchg(struct ifnet *);
86
87 static int age_init(struct ifnet *);
88 static int age_ioctl(struct ifnet *, u_long, void *);
89 static void age_start(struct ifnet *);
90 static void age_watchdog(struct ifnet *);
91 static bool age_shutdown(device_t, int);
92 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int age_mediachange(struct ifnet *);
94
95 static int age_intr(void *);
96 static int age_dma_alloc(struct age_softc *);
97 static void age_dma_free(struct age_softc *);
98 static void age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void age_phy_reset(struct age_softc *);
100
101 static int age_encap(struct age_softc *, struct mbuf *);
102 static void age_init_tx_ring(struct age_softc *);
103 static int age_init_rx_ring(struct age_softc *);
104 static void age_init_rr_ring(struct age_softc *);
105 static void age_init_cmb_block(struct age_softc *);
106 static void age_init_smb_block(struct age_softc *);
107 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void age_mac_config(struct age_softc *);
109 static void age_txintr(struct age_softc *, int);
110 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void age_rxintr(struct age_softc *, int);
112 static void age_tick(void *);
113 static void age_reset(struct age_softc *);
114 static void age_stop(struct ifnet *, int);
115 static void age_stats_update(struct age_softc *);
116 static void age_stop_txmac(struct age_softc *);
117 static void age_stop_rxmac(struct age_softc *);
118 static void age_rxvlan(struct age_softc *sc);
119 static void age_rxfilter(struct age_softc *);
120
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122 age_match, age_attach, age_detach, NULL);
123
124 int agedebug = 0;
125 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
126
127 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
128
129 static int
130 age_match(device_t dev, cfdata_t match, void *aux)
131 {
132 struct pci_attach_args *pa = aux;
133
134 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
136 }
137
138 static void
139 age_attach(device_t parent, device_t self, void *aux)
140 {
141 struct age_softc *sc = device_private(self);
142 struct pci_attach_args *pa = aux;
143 pci_intr_handle_t ih;
144 const char *intrstr;
145 struct ifnet *ifp = &sc->sc_ec.ec_if;
146 struct mii_data * const mii = &sc->sc_miibus;
147 pcireg_t memtype;
148 int error = 0;
149 char intrbuf[PCI_INTRSTR_LEN];
150
151 aprint_naive("\n");
152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153
154 sc->sc_dev = self;
155 sc->sc_pct = pa->pa_pc;
156 sc->sc_pcitag = pa->pa_tag;
157
158 if (pci_dma64_available(pa))
159 sc->sc_dmat = pa->pa_dmat64;
160 else
161 sc->sc_dmat = pa->pa_dmat;
162
163 /*
164 * Allocate IO memory
165 */
166 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 switch (memtype) {
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 break;
172 default:
173 aprint_error_dev(self, "invalid base address register\n");
174 break;
175 }
176
177 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 aprint_error_dev(self, "could not map mem space\n");
180 return;
181 }
182
183 if (pci_intr_map(pa, &ih) != 0) {
184 aprint_error_dev(self, "could not map interrupt\n");
185 goto fail;
186 }
187
188 /*
189 * Allocate IRQ
190 */
191 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
192 sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
193 age_intr, sc, device_xname(self));
194 if (sc->sc_irq_handle == NULL) {
195 aprint_error_dev(self, "could not establish interrupt");
196 if (intrstr != NULL)
197 aprint_error(" at %s", intrstr);
198 aprint_error("\n");
199 goto fail;
200 }
201 aprint_normal_dev(self, "%s\n", intrstr);
202
203 /* Set PHY address. */
204 sc->age_phyaddr = AGE_PHY_ADDR;
205
206 /* Reset PHY. */
207 age_phy_reset(sc);
208
209 /* Reset the ethernet controller. */
210 age_reset(sc);
211
212 /* Get PCI and chip id/revision. */
213 sc->age_rev = PCI_REVISION(pa->pa_class);
214 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 MASTER_CHIP_REV_SHIFT;
216
217 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219
220 if (agedebug) {
221 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 }
225
226 /* Set max allowable DMA size. */
227 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229
230 /* Allocate DMA stuffs */
231 error = age_dma_alloc(sc);
232 if (error)
233 goto fail;
234
235 callout_init(&sc->sc_tick_ch, 0);
236 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237
238 /* Load station address. */
239 age_get_macaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = age_init;
247 ifp->if_ioctl = age_ioctl;
248 ifp->if_start = age_start;
249 ifp->if_stop = age_stop;
250 ifp->if_watchdog = age_watchdog;
251 ifp->if_baudrate = IF_Gbps(1);
252 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 IFQ_SET_READY(&ifp->if_snd);
254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255
256 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257
258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
259 IFCAP_CSUM_TCPv4_Rx |
260 IFCAP_CSUM_UDPv4_Rx;
261 #ifdef AGE_CHECKSUM
262 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
263 IFCAP_CSUM_TCPv4_Tx |
264 IFCAP_CSUM_UDPv4_Tx;
265 #endif
266
267 #if NVLAN > 0
268 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
269 sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
270 #endif
271
272 /* Set up MII bus. */
273 mii->mii_ifp = ifp;
274 mii->mii_readreg = age_miibus_readreg;
275 mii->mii_writereg = age_miibus_writereg;
276 mii->mii_statchg = age_miibus_statchg;
277
278 sc->sc_ec.ec_mii = mii;
279 ifmedia_init(&mii->mii_media, 0, age_mediachange, age_mediastatus);
280 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
281 MII_OFFSET_ANY, MIIF_DOPAUSE);
282
283 if (LIST_FIRST(&mii->mii_phys) == NULL) {
284 aprint_error_dev(self, "no PHY found!\n");
285 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
286 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
287 } else
288 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
289
290 if_attach(ifp);
291 if_deferred_start_init(ifp, NULL);
292 ether_ifattach(ifp, sc->sc_enaddr);
293
294 if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
295 pmf_class_network_register(self, ifp);
296 else
297 aprint_error_dev(self, "couldn't establish power handler\n");
298
299 return;
300
301 fail:
302 age_dma_free(sc);
303 if (sc->sc_irq_handle != NULL) {
304 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
305 sc->sc_irq_handle = NULL;
306 }
307 if (sc->sc_mem_size) {
308 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
309 sc->sc_mem_size = 0;
310 }
311 }
312
313 static int
314 age_detach(device_t self, int flags)
315 {
316 struct age_softc *sc = device_private(self);
317 struct ifnet *ifp = &sc->sc_ec.ec_if;
318 int s;
319
320 pmf_device_deregister(self);
321 s = splnet();
322 age_stop(ifp, 0);
323 splx(s);
324
325 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
326
327 ether_ifdetach(ifp);
328 if_detach(ifp);
329 age_dma_free(sc);
330
331 /* Delete all remaining media. */
332 ifmedia_fini(&sc->sc_miibus.mii_media);
333
334 if (sc->sc_irq_handle != NULL) {
335 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
336 sc->sc_irq_handle = NULL;
337 }
338 if (sc->sc_mem_size) {
339 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
340 sc->sc_mem_size = 0;
341 }
342 return 0;
343 }
344
345 /*
346 * Read a PHY register on the MII of the L1.
347 */
348 static int
349 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
350 {
351 struct age_softc *sc = device_private(dev);
352 uint32_t v;
353 int i;
354
355 if (phy != sc->age_phyaddr)
356 return -1;
357
358 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
359 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
360 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
361 DELAY(1);
362 v = CSR_READ_4(sc, AGE_MDIO);
363 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
364 break;
365 }
366
367 if (i == 0) {
368 printf("%s: phy read timeout: phy %d, reg %d\n",
369 device_xname(sc->sc_dev), phy, reg);
370 return ETIMEDOUT;
371 }
372
373 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
374 return 0;
375 }
376
377 /*
378 * Write a PHY register on the MII of the L1.
379 */
380 static int
381 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
382 {
383 struct age_softc *sc = device_private(dev);
384 uint32_t v;
385 int i;
386
387 if (phy != sc->age_phyaddr)
388 return -1;
389
390 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
391 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
392 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
393
394 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
395 DELAY(1);
396 v = CSR_READ_4(sc, AGE_MDIO);
397 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
398 break;
399 }
400
401 if (i == 0) {
402 printf("%s: phy write timeout: phy %d, reg %d\n",
403 device_xname(sc->sc_dev), phy, reg);
404 return ETIMEDOUT;
405 }
406
407 return 0;
408 }
409
410 /*
411 * Callback from MII layer when media changes.
412 */
413 static void
414 age_miibus_statchg(struct ifnet *ifp)
415 {
416 struct age_softc *sc = ifp->if_softc;
417 struct mii_data *mii = &sc->sc_miibus;
418
419 if ((ifp->if_flags & IFF_RUNNING) == 0)
420 return;
421
422 sc->age_flags &= ~AGE_FLAG_LINK;
423 if ((mii->mii_media_status & IFM_AVALID) != 0) {
424 switch (IFM_SUBTYPE(mii->mii_media_active)) {
425 case IFM_10_T:
426 case IFM_100_TX:
427 case IFM_1000_T:
428 sc->age_flags |= AGE_FLAG_LINK;
429 break;
430 default:
431 break;
432 }
433 }
434
435 /* Stop Rx/Tx MACs. */
436 age_stop_rxmac(sc);
437 age_stop_txmac(sc);
438
439 /* Program MACs with resolved speed/duplex/flow-control. */
440 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
441 uint32_t reg;
442
443 age_mac_config(sc);
444 reg = CSR_READ_4(sc, AGE_MAC_CFG);
445 /* Restart DMA engine and Tx/Rx MAC. */
446 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
447 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
448 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
449 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
450 }
451 }
452
453 /*
454 * Get the current interface media status.
455 */
456 static void
457 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
458 {
459 struct age_softc *sc = ifp->if_softc;
460 struct mii_data *mii = &sc->sc_miibus;
461
462 mii_pollstat(mii);
463 ifmr->ifm_status = mii->mii_media_status;
464 ifmr->ifm_active = mii->mii_media_active;
465 }
466
467 /*
468 * Set hardware to newly-selected media.
469 */
470 static int
471 age_mediachange(struct ifnet *ifp)
472 {
473 struct age_softc *sc = ifp->if_softc;
474 struct mii_data *mii = &sc->sc_miibus;
475 int error;
476
477 if (mii->mii_instance != 0) {
478 struct mii_softc *miisc;
479
480 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
481 mii_phy_reset(miisc);
482 }
483 error = mii_mediachg(mii);
484
485 return error;
486 }
487
488 static int
489 age_intr(void *arg)
490 {
491 struct age_softc *sc = arg;
492 struct ifnet *ifp = &sc->sc_ec.ec_if;
493 struct cmb *cmb;
494 uint32_t status;
495
496 status = CSR_READ_4(sc, AGE_INTR_STATUS);
497 if (status == 0 || (status & AGE_INTRS) == 0)
498 return 0;
499
500 cmb = sc->age_rdata.age_cmb_block;
501 if (cmb == NULL) {
502 /* Happens when bringing up the interface
503 * w/o having a carrier. Ack the interrupt.
504 */
505 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
506 return 0;
507 }
508
509 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
510 sc->age_cdata.age_cmb_block_map->dm_mapsize,
511 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
512 status = le32toh(cmb->intr_status);
513 /* ACK/reenable interrupts */
514 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
515 while ((status & AGE_INTRS) != 0) {
516 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 TPD_CONS_SHIFT;
518 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 RRD_PROD_SHIFT;
520
521 /* Let hardware know CMB was served. */
522 cmb->intr_status = 0;
523 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
526
527 if (ifp->if_flags & IFF_RUNNING) {
528 if (status & INTR_CMB_RX)
529 age_rxintr(sc, sc->age_rr_prod);
530
531 if (status & INTR_CMB_TX)
532 age_txintr(sc, sc->age_tpd_cons);
533
534 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 if (status & INTR_DMA_RD_TO_RST)
536 printf("%s: DMA read error! -- "
537 "resetting\n",
538 device_xname(sc->sc_dev));
539 if (status & INTR_DMA_WR_TO_RST)
540 printf("%s: DMA write error! -- "
541 "resetting\n",
542 device_xname(sc->sc_dev));
543 age_init(ifp);
544 }
545
546 if_schedule_deferred_start(ifp);
547
548 if (status & INTR_SMB)
549 age_stats_update(sc);
550 }
551 /* check if more interrupts did came in */
552 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
555 status = le32toh(cmb->intr_status);
556 }
557
558 return 1;
559 }
560
561 static void
562 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
563 {
564 uint32_t ea[2], reg;
565 int i, vpdc;
566
567 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
568 if ((reg & SPI_VPD_ENB) != 0) {
569 /* Get VPD stored in TWSI EEPROM. */
570 reg &= ~SPI_VPD_ENB;
571 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
572 }
573
574 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
575 PCI_CAP_VPD, &vpdc, NULL)) {
576 /*
577 * PCI VPD capability found, let TWSI reload EEPROM.
578 * This will set Ethernet address of controller.
579 */
580 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
581 TWSI_CTRL_SW_LD_START);
582 for (i = 100; i > 0; i--) {
583 DELAY(1000);
584 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
585 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
586 break;
587 }
588 if (i == 0)
589 printf("%s: reloading EEPROM timeout!\n",
590 device_xname(sc->sc_dev));
591 } else {
592 if (agedebug)
593 printf("%s: PCI VPD capability not found!\n",
594 device_xname(sc->sc_dev));
595 }
596
597 ea[0] = CSR_READ_4(sc, AGE_PAR0);
598 ea[1] = CSR_READ_4(sc, AGE_PAR1);
599
600 eaddr[0] = (ea[1] >> 8) & 0xFF;
601 eaddr[1] = (ea[1] >> 0) & 0xFF;
602 eaddr[2] = (ea[0] >> 24) & 0xFF;
603 eaddr[3] = (ea[0] >> 16) & 0xFF;
604 eaddr[4] = (ea[0] >> 8) & 0xFF;
605 eaddr[5] = (ea[0] >> 0) & 0xFF;
606 }
607
608 static void
609 age_phy_reset(struct age_softc *sc)
610 {
611 uint16_t reg, pn;
612 int i, linkup;
613
614 /* Reset PHY. */
615 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
616 DELAY(2000);
617 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
618 DELAY(2000);
619
620 #define ATPHY_DBG_ADDR 0x1D
621 #define ATPHY_DBG_DATA 0x1E
622 #define ATPHY_CDTC 0x16
623 #define PHY_CDTC_ENB 0x0001
624 #define PHY_CDTC_POFF 8
625 #define ATPHY_CDTS 0x1C
626 #define PHY_CDTS_STAT_OK 0x0000
627 #define PHY_CDTS_STAT_SHORT 0x0100
628 #define PHY_CDTS_STAT_OPEN 0x0200
629 #define PHY_CDTS_STAT_INVAL 0x0300
630 #define PHY_CDTS_STAT_MASK 0x0300
631
632 /* Check power saving mode. Magic from Linux. */
633 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
634 for (linkup = 0, pn = 0; pn < 4; pn++) {
635 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
636 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
637 for (i = 200; i > 0; i--) {
638 DELAY(1000);
639 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
640 ATPHY_CDTC, ®);
641 if ((reg & PHY_CDTC_ENB) == 0)
642 break;
643 }
644 DELAY(1000);
645 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
646 ATPHY_CDTS, ®);
647 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
648 linkup++;
649 break;
650 }
651 }
652 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
653 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
654 if (linkup == 0) {
655 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
656 ATPHY_DBG_ADDR, 0);
657 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 ATPHY_DBG_DATA, 0x124E);
659 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 ATPHY_DBG_ADDR, 1);
661 age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
662 ATPHY_DBG_DATA, ®);
663 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
664 ATPHY_DBG_DATA, reg | 0x03);
665 /* XXX */
666 DELAY(1500 * 1000);
667 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
668 ATPHY_DBG_ADDR, 0);
669 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 ATPHY_DBG_DATA, 0x024E);
671 }
672
673 #undef ATPHY_DBG_ADDR
674 #undef ATPHY_DBG_DATA
675 #undef ATPHY_CDTC
676 #undef PHY_CDTC_ENB
677 #undef PHY_CDTC_POFF
678 #undef ATPHY_CDTS
679 #undef PHY_CDTS_STAT_OK
680 #undef PHY_CDTS_STAT_SHORT
681 #undef PHY_CDTS_STAT_OPEN
682 #undef PHY_CDTS_STAT_INVAL
683 #undef PHY_CDTS_STAT_MASK
684 }
685
686 static int
687 age_dma_alloc(struct age_softc *sc)
688 {
689 struct age_txdesc *txd;
690 struct age_rxdesc *rxd;
691 int nsegs, error, i;
692
693 /*
694 * Create DMA stuffs for TX ring
695 */
696 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
697 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
698 if (error) {
699 sc->age_cdata.age_tx_ring_map = NULL;
700 return ENOBUFS;
701 }
702
703 /* Allocate DMA'able memory for TX ring */
704 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
705 PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
706 &nsegs, BUS_DMA_NOWAIT);
707 if (error) {
708 printf("%s: could not allocate DMA'able memory for Tx ring, "
709 "error = %i\n", device_xname(sc->sc_dev), error);
710 return error;
711 }
712
713 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
714 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
715 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
716 if (error)
717 return ENOBUFS;
718
719 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
720
721 /* Load the DMA map for Tx ring. */
722 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
723 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
724 if (error) {
725 printf("%s: could not load DMA'able memory for Tx ring, "
726 "error = %i\n", device_xname(sc->sc_dev), error);
727 bus_dmamem_free(sc->sc_dmat,
728 &sc->age_rdata.age_tx_ring_seg, 1);
729 return error;
730 }
731
732 sc->age_rdata.age_tx_ring_paddr =
733 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
734
735 /*
736 * Create DMA stuffs for RX ring
737 */
738 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
739 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
740 if (error) {
741 sc->age_cdata.age_rx_ring_map = NULL;
742 return ENOBUFS;
743 }
744
745 /* Allocate DMA'able memory for RX ring */
746 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
747 PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
748 &nsegs, BUS_DMA_NOWAIT);
749 if (error) {
750 printf("%s: could not allocate DMA'able memory for Rx ring, "
751 "error = %i.\n", device_xname(sc->sc_dev), error);
752 return error;
753 }
754
755 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
756 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
757 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
758 if (error)
759 return ENOBUFS;
760
761 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
762
763 /* Load the DMA map for Rx ring. */
764 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
765 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
766 if (error) {
767 printf("%s: could not load DMA'able memory for Rx ring, "
768 "error = %i.\n", device_xname(sc->sc_dev), error);
769 bus_dmamem_free(sc->sc_dmat,
770 &sc->age_rdata.age_rx_ring_seg, 1);
771 return error;
772 }
773
774 sc->age_rdata.age_rx_ring_paddr =
775 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
776
777 /*
778 * Create DMA stuffs for RX return ring
779 */
780 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
781 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
782 if (error) {
783 sc->age_cdata.age_rr_ring_map = NULL;
784 return ENOBUFS;
785 }
786
787 /* Allocate DMA'able memory for RX return ring */
788 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
789 PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
790 &nsegs, BUS_DMA_NOWAIT);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for Rx "
793 "return ring, error = %i.\n",
794 device_xname(sc->sc_dev), error);
795 return error;
796 }
797
798 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
799 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
800 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
805
806 /* Load the DMA map for Rx return ring. */
807 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
808 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
809 if (error) {
810 printf("%s: could not load DMA'able memory for Rx return ring, "
811 "error = %i\n", device_xname(sc->sc_dev), error);
812 bus_dmamem_free(sc->sc_dmat,
813 &sc->age_rdata.age_rr_ring_seg, 1);
814 return error;
815 }
816
817 sc->age_rdata.age_rr_ring_paddr =
818 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
819
820 /*
821 * Create DMA stuffs for CMB block
822 */
823 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
824 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
825 &sc->age_cdata.age_cmb_block_map);
826 if (error) {
827 sc->age_cdata.age_cmb_block_map = NULL;
828 return ENOBUFS;
829 }
830
831 /* Allocate DMA'able memory for CMB block */
832 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
833 PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
834 &nsegs, BUS_DMA_NOWAIT);
835 if (error) {
836 printf("%s: could not allocate DMA'able memory for "
837 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
838 return error;
839 }
840
841 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
842 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
843 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
844 if (error)
845 return ENOBUFS;
846
847 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
848
849 /* Load the DMA map for CMB block. */
850 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
851 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
852 BUS_DMA_NOWAIT);
853 if (error) {
854 printf("%s: could not load DMA'able memory for CMB block, "
855 "error = %i\n", device_xname(sc->sc_dev), error);
856 bus_dmamem_free(sc->sc_dmat,
857 &sc->age_rdata.age_cmb_block_seg, 1);
858 return error;
859 }
860
861 sc->age_rdata.age_cmb_block_paddr =
862 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
863
864 /*
865 * Create DMA stuffs for SMB block
866 */
867 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
868 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
869 &sc->age_cdata.age_smb_block_map);
870 if (error) {
871 sc->age_cdata.age_smb_block_map = NULL;
872 return ENOBUFS;
873 }
874
875 /* Allocate DMA'able memory for SMB block */
876 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
877 PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
878 &nsegs, BUS_DMA_NOWAIT);
879 if (error) {
880 printf("%s: could not allocate DMA'able memory for "
881 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
882 return error;
883 }
884
885 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
886 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
887 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
888 if (error)
889 return ENOBUFS;
890
891 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
892
893 /* Load the DMA map for SMB block */
894 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
895 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
896 BUS_DMA_NOWAIT);
897 if (error) {
898 printf("%s: could not load DMA'able memory for SMB block, "
899 "error = %i\n", device_xname(sc->sc_dev), error);
900 bus_dmamem_free(sc->sc_dmat,
901 &sc->age_rdata.age_smb_block_seg, 1);
902 return error;
903 }
904
905 sc->age_rdata.age_smb_block_paddr =
906 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
907
908 /*
909 * All of the memory we allocated above needs to be within
910 * the same 4GB segment. Make sure this is so.
911 *
912 * XXX We don't care WHAT 4GB segment they're in, just that
913 * XXX they're all in the same one. Need some bus_dma API
914 * XXX help to make this easier to enforce when we actually
915 * XXX perform the allocation.
916 */
917 if (! (AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
918 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)
919
920 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
921 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)
922
923 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
924 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)
925
926 && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
927 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) {
928 aprint_error_dev(sc->sc_dev,
929 "control data allocation constraints failed\n");
930 return ENOBUFS;
931 }
932
933 /* Create DMA maps for Tx buffers. */
934 for (i = 0; i < AGE_TX_RING_CNT; i++) {
935 txd = &sc->age_cdata.age_txdesc[i];
936 txd->tx_m = NULL;
937 txd->tx_dmamap = NULL;
938 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
939 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
940 &txd->tx_dmamap);
941 if (error) {
942 txd->tx_dmamap = NULL;
943 printf("%s: could not create Tx dmamap, error = %i.\n",
944 device_xname(sc->sc_dev), error);
945 return error;
946 }
947 }
948
949 /* Create DMA maps for Rx buffers. */
950 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
951 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
952 if (error) {
953 sc->age_cdata.age_rx_sparemap = NULL;
954 printf("%s: could not create spare Rx dmamap, error = %i.\n",
955 device_xname(sc->sc_dev), error);
956 return error;
957 }
958 for (i = 0; i < AGE_RX_RING_CNT; i++) {
959 rxd = &sc->age_cdata.age_rxdesc[i];
960 rxd->rx_m = NULL;
961 rxd->rx_dmamap = NULL;
962 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
963 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
964 if (error) {
965 rxd->rx_dmamap = NULL;
966 printf("%s: could not create Rx dmamap, error = %i.\n",
967 device_xname(sc->sc_dev), error);
968 return error;
969 }
970 }
971
972 return 0;
973 }
974
975 static void
976 age_dma_free(struct age_softc *sc)
977 {
978 struct age_txdesc *txd;
979 struct age_rxdesc *rxd;
980 int i;
981
982 /* Tx buffers */
983 for (i = 0; i < AGE_TX_RING_CNT; i++) {
984 txd = &sc->age_cdata.age_txdesc[i];
985 if (txd->tx_dmamap != NULL) {
986 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
987 txd->tx_dmamap = NULL;
988 }
989 }
990 /* Rx buffers */
991 for (i = 0; i < AGE_RX_RING_CNT; i++) {
992 rxd = &sc->age_cdata.age_rxdesc[i];
993 if (rxd->rx_dmamap != NULL) {
994 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
995 rxd->rx_dmamap = NULL;
996 }
997 }
998 if (sc->age_cdata.age_rx_sparemap != NULL) {
999 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
1000 sc->age_cdata.age_rx_sparemap = NULL;
1001 }
1002
1003 /* Tx ring. */
1004 if (sc->age_cdata.age_tx_ring_map != NULL)
1005 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
1006 if (sc->age_cdata.age_tx_ring_map != NULL &&
1007 sc->age_rdata.age_tx_ring != NULL)
1008 bus_dmamem_free(sc->sc_dmat,
1009 &sc->age_rdata.age_tx_ring_seg, 1);
1010 sc->age_rdata.age_tx_ring = NULL;
1011 sc->age_cdata.age_tx_ring_map = NULL;
1012
1013 /* Rx ring. */
1014 if (sc->age_cdata.age_rx_ring_map != NULL)
1015 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1016 if (sc->age_cdata.age_rx_ring_map != NULL &&
1017 sc->age_rdata.age_rx_ring != NULL)
1018 bus_dmamem_free(sc->sc_dmat,
1019 &sc->age_rdata.age_rx_ring_seg, 1);
1020 sc->age_rdata.age_rx_ring = NULL;
1021 sc->age_cdata.age_rx_ring_map = NULL;
1022
1023 /* Rx return ring. */
1024 if (sc->age_cdata.age_rr_ring_map != NULL)
1025 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1026 if (sc->age_cdata.age_rr_ring_map != NULL &&
1027 sc->age_rdata.age_rr_ring != NULL)
1028 bus_dmamem_free(sc->sc_dmat,
1029 &sc->age_rdata.age_rr_ring_seg, 1);
1030 sc->age_rdata.age_rr_ring = NULL;
1031 sc->age_cdata.age_rr_ring_map = NULL;
1032
1033 /* CMB block */
1034 if (sc->age_cdata.age_cmb_block_map != NULL)
1035 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1036 if (sc->age_cdata.age_cmb_block_map != NULL &&
1037 sc->age_rdata.age_cmb_block != NULL)
1038 bus_dmamem_free(sc->sc_dmat,
1039 &sc->age_rdata.age_cmb_block_seg, 1);
1040 sc->age_rdata.age_cmb_block = NULL;
1041 sc->age_cdata.age_cmb_block_map = NULL;
1042
1043 /* SMB block */
1044 if (sc->age_cdata.age_smb_block_map != NULL)
1045 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1046 if (sc->age_cdata.age_smb_block_map != NULL &&
1047 sc->age_rdata.age_smb_block != NULL)
1048 bus_dmamem_free(sc->sc_dmat,
1049 &sc->age_rdata.age_smb_block_seg, 1);
1050 sc->age_rdata.age_smb_block = NULL;
1051 sc->age_cdata.age_smb_block_map = NULL;
1052 }
1053
1054 static void
1055 age_start(struct ifnet *ifp)
1056 {
1057 struct age_softc *sc = ifp->if_softc;
1058 struct mbuf *m_head;
1059 int enq, error;
1060
1061 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1062 return;
1063 if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1064 return;
1065 if (IFQ_IS_EMPTY(&ifp->if_snd))
1066 return;
1067
1068 enq = 0;
1069 for (;;) {
1070 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1071 if (m_head == NULL)
1072 break;
1073
1074 /*
1075 * Pack the data into the transmit ring. If we
1076 * don't have room, set the OACTIVE flag and wait
1077 * for the NIC to drain the ring.
1078 */
1079 if ((error = age_encap(sc, m_head)) != 0) {
1080 if (error == EFBIG) {
1081 /* This is fatal for the packet. */
1082 m_freem(m_head);
1083 if_statinc(ifp, if_oerrors);
1084 continue;
1085 }
1086 IF_PREPEND(&ifp->if_snd, m_head);
1087 ifp->if_flags |= IFF_OACTIVE;
1088 break;
1089 }
1090 enq = 1;
1091
1092 /*
1093 * If there's a BPF listener, bounce a copy of this frame
1094 * to him.
1095 */
1096 bpf_mtap(ifp, m_head, BPF_D_OUT);
1097 }
1098
1099 if (enq) {
1100 /* Update mbox. */
1101 AGE_COMMIT_MBOX(sc);
1102 /* Set a timeout in case the chip goes out to lunch. */
1103 ifp->if_timer = AGE_TX_TIMEOUT;
1104 }
1105 }
1106
1107 static void
1108 age_watchdog(struct ifnet *ifp)
1109 {
1110 struct age_softc *sc = ifp->if_softc;
1111
1112 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1113 printf("%s: watchdog timeout (missed link)\n",
1114 device_xname(sc->sc_dev));
1115 if_statinc(ifp, if_oerrors);
1116 age_init(ifp);
1117 return;
1118 }
1119
1120 if (sc->age_cdata.age_tx_cnt == 0) {
1121 printf("%s: watchdog timeout (missed Tx interrupts) "
1122 "-- recovering\n", device_xname(sc->sc_dev));
1123 age_start(ifp);
1124 return;
1125 }
1126
1127 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1128 if_statinc(ifp, if_oerrors);
1129 age_init(ifp);
1130 age_start(ifp);
1131 }
1132
1133 static bool
1134 age_shutdown(device_t self, int howto)
1135 {
1136 struct age_softc *sc;
1137 struct ifnet *ifp;
1138
1139 sc = device_private(self);
1140 ifp = &sc->sc_ec.ec_if;
1141 age_stop(ifp, 1);
1142
1143 return true;
1144 }
1145
1146 static int
1147 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1148 {
1149 struct age_softc *sc = ifp->if_softc;
1150 int s, error;
1151
1152 s = splnet();
1153
1154 error = ether_ioctl(ifp, cmd, data);
1155 if (error == ENETRESET) {
1156 if (ifp->if_flags & IFF_RUNNING)
1157 age_rxfilter(sc);
1158 error = 0;
1159 }
1160
1161 splx(s);
1162 return error;
1163 }
1164
1165 static void
1166 age_mac_config(struct age_softc *sc)
1167 {
1168 struct mii_data *mii;
1169 uint32_t reg;
1170
1171 mii = &sc->sc_miibus;
1172
1173 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1174 reg &= ~MAC_CFG_FULL_DUPLEX;
1175 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1176 reg &= ~MAC_CFG_SPEED_MASK;
1177
1178 /* Reprogram MAC with resolved speed/duplex. */
1179 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1180 case IFM_10_T:
1181 case IFM_100_TX:
1182 reg |= MAC_CFG_SPEED_10_100;
1183 break;
1184 case IFM_1000_T:
1185 reg |= MAC_CFG_SPEED_1000;
1186 break;
1187 }
1188 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1189 reg |= MAC_CFG_FULL_DUPLEX;
1190 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1191 reg |= MAC_CFG_TX_FC;
1192 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1193 reg |= MAC_CFG_RX_FC;
1194 }
1195
1196 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1197 }
1198
1199 static bool
1200 age_resume(device_t dv, const pmf_qual_t *qual)
1201 {
1202 struct age_softc *sc = device_private(dv);
1203 uint16_t cmd;
1204
1205 /*
1206 * Clear INTx emulation disable for hardware that
1207 * is set in resume event. From Linux.
1208 */
1209 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1210 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1211 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1212 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1213 PCI_COMMAND_STATUS_REG, cmd);
1214 }
1215
1216 return true;
1217 }
1218
1219 static int
1220 age_encap(struct age_softc *sc, struct mbuf * const m)
1221 {
1222 struct age_txdesc *txd, *txd_last;
1223 struct tx_desc *desc;
1224 bus_dmamap_t map;
1225 uint32_t cflags, poff, vtag;
1226 int error, i, nsegs, prod;
1227
1228 cflags = vtag = 0;
1229 poff = 0;
1230
1231 prod = sc->age_cdata.age_tx_prod;
1232 txd = &sc->age_cdata.age_txdesc[prod];
1233 txd_last = txd;
1234 map = txd->tx_dmamap;
1235
1236 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1237 if (error == EFBIG) {
1238 struct mbuf *mnew = m_defrag(m, M_NOWAIT);
1239 if (mnew != NULL) {
1240 KASSERT(m == mnew);
1241 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, mnew,
1242 BUS_DMA_NOWAIT);
1243 } else {
1244 /* Just drop if we can't defrag. */
1245 error = EFBIG;
1246 }
1247 if (error) {
1248 if (error == EFBIG) {
1249 printf("%s: Tx packet consumes too many "
1250 "DMA segments, dropping...\n",
1251 device_xname(sc->sc_dev));
1252 }
1253 return error;
1254 }
1255 } else if (error) {
1256 return error;
1257 }
1258
1259 nsegs = map->dm_nsegs;
1260 KASSERT(nsegs != 0);
1261
1262 /* Check descriptor overrun. */
1263 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1264 bus_dmamap_unload(sc->sc_dmat, map);
1265 return ENOBUFS;
1266 }
1267 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1268 BUS_DMASYNC_PREWRITE);
1269
1270 /* Configure Tx IP/TCP/UDP checksum offload. */
1271 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1272 cflags |= AGE_TD_CSUM;
1273 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1274 cflags |= AGE_TD_TCPCSUM;
1275 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1276 cflags |= AGE_TD_UDPCSUM;
1277 /* Set checksum start offset. */
1278 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1279 }
1280
1281 #if NVLAN > 0
1282 /* Configure VLAN hardware tag insertion. */
1283 if (vlan_has_tag(m)) {
1284 vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1285 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1286 cflags |= AGE_TD_INSERT_VLAN_TAG;
1287 }
1288 #endif
1289
1290 desc = NULL;
1291 KASSERT(nsegs > 0);
1292 for (i = 0; ; i++) {
1293 desc = &sc->age_rdata.age_tx_ring[prod];
1294 desc->addr = htole64(map->dm_segs[i].ds_addr);
1295 desc->len =
1296 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1297 desc->flags = htole32(cflags);
1298 sc->age_cdata.age_tx_cnt++;
1299 if (i == (nsegs - 1))
1300 break;
1301
1302 /* Sync this descriptor and go to the next one */
1303 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1304 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1305 BUS_DMASYNC_PREWRITE);
1306 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1307 }
1308
1309 /* Set EOP on the last descriptor and sync it. */
1310 desc->flags |= htole32(AGE_TD_EOP);
1311 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1312 prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1313 BUS_DMASYNC_PREWRITE);
1314
1315 if (nsegs > 1) {
1316 /* Swap dmamap of the first and the last. */
1317 txd = &sc->age_cdata.age_txdesc[prod];
1318 map = txd_last->tx_dmamap;
1319 txd_last->tx_dmamap = txd->tx_dmamap;
1320 txd->tx_dmamap = map;
1321 txd->tx_m = m;
1322 KASSERT(txd_last->tx_m == NULL);
1323 } else {
1324 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1325 txd_last->tx_m = m;
1326 }
1327
1328 /* Update producer index. */
1329 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1330 sc->age_cdata.age_tx_prod = prod;
1331
1332 return 0;
1333 }
1334
1335 static void
1336 age_txintr(struct age_softc *sc, int tpd_cons)
1337 {
1338 struct ifnet *ifp = &sc->sc_ec.ec_if;
1339 struct age_txdesc *txd;
1340 int cons, prog;
1341
1342 if (sc->age_cdata.age_tx_cnt <= 0) {
1343 if (ifp->if_timer != 0)
1344 printf("timer running without packets\n");
1345 if (sc->age_cdata.age_tx_cnt)
1346 printf("age_tx_cnt corrupted\n");
1347 }
1348
1349 /*
1350 * Go through our Tx list and free mbufs for those
1351 * frames which have been transmitted.
1352 */
1353 cons = sc->age_cdata.age_tx_cons;
1354 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1355 if (sc->age_cdata.age_tx_cnt <= 0)
1356 break;
1357 prog++;
1358 ifp->if_flags &= ~IFF_OACTIVE;
1359 sc->age_cdata.age_tx_cnt--;
1360 txd = &sc->age_cdata.age_txdesc[cons];
1361 /*
1362 * Clear Tx descriptors, it's not required but would
1363 * help debugging in case of Tx issues.
1364 */
1365 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1366 cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1367 BUS_DMASYNC_POSTWRITE);
1368 txd->tx_desc->addr = 0;
1369 txd->tx_desc->len = 0;
1370 txd->tx_desc->flags = 0;
1371
1372 if (txd->tx_m == NULL)
1373 continue;
1374 /* Reclaim transmitted mbufs. */
1375 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1376 m_freem(txd->tx_m);
1377 txd->tx_m = NULL;
1378 }
1379
1380 if (prog > 0) {
1381 sc->age_cdata.age_tx_cons = cons;
1382
1383 /*
1384 * Unarm watchdog timer only when there are no pending
1385 * Tx descriptors in queue.
1386 */
1387 if (sc->age_cdata.age_tx_cnt == 0)
1388 ifp->if_timer = 0;
1389 }
1390 }
1391
1392 /* Receive a frame. */
1393 static void
1394 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1395 {
1396 struct ifnet *ifp = &sc->sc_ec.ec_if;
1397 struct age_rxdesc *rxd;
1398 struct rx_desc *desc;
1399 struct mbuf *mp, *m;
1400 uint32_t status, index;
1401 int count, nsegs, pktlen;
1402 int rx_cons;
1403
1404 status = le32toh(rxrd->flags);
1405 index = le32toh(rxrd->index);
1406 rx_cons = AGE_RX_CONS(index);
1407 nsegs = AGE_RX_NSEGS(index);
1408
1409 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1410 if ((status & AGE_RRD_ERROR) != 0 &&
1411 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1412 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1413 /*
1414 * We want to pass the following frames to upper
1415 * layer regardless of error status of Rx return
1416 * ring.
1417 *
1418 * o IP/TCP/UDP checksum is bad.
1419 * o frame length and protocol specific length
1420 * does not match.
1421 */
1422 sc->age_cdata.age_rx_cons += nsegs;
1423 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1424 return;
1425 }
1426
1427 pktlen = 0;
1428 for (count = 0; count < nsegs; count++,
1429 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1430 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1431 mp = rxd->rx_m;
1432 desc = rxd->rx_desc;
1433 /* Add a new receive buffer to the ring. */
1434 if (age_newbuf(sc, rxd, 0) != 0) {
1435 if_statinc(ifp, if_iqdrops);
1436 /* Reuse Rx buffers. */
1437 if (sc->age_cdata.age_rxhead != NULL) {
1438 m_freem(sc->age_cdata.age_rxhead);
1439 AGE_RXCHAIN_RESET(sc);
1440 }
1441 break;
1442 }
1443
1444 /* The length of the first mbuf is computed last. */
1445 if (count != 0) {
1446 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1447 pktlen += mp->m_len;
1448 }
1449
1450 /* Chain received mbufs. */
1451 if (sc->age_cdata.age_rxhead == NULL) {
1452 sc->age_cdata.age_rxhead = mp;
1453 sc->age_cdata.age_rxtail = mp;
1454 } else {
1455 m_remove_pkthdr(mp);
1456 sc->age_cdata.age_rxprev_tail =
1457 sc->age_cdata.age_rxtail;
1458 sc->age_cdata.age_rxtail->m_next = mp;
1459 sc->age_cdata.age_rxtail = mp;
1460 }
1461
1462 if (count == nsegs - 1) {
1463 /*
1464 * It seems that L1 controller has no way
1465 * to tell hardware to strip CRC bytes.
1466 */
1467 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1468 if (nsegs > 1) {
1469 /* Remove the CRC bytes in chained mbufs. */
1470 pktlen -= ETHER_CRC_LEN;
1471 if (mp->m_len <= ETHER_CRC_LEN) {
1472 sc->age_cdata.age_rxtail =
1473 sc->age_cdata.age_rxprev_tail;
1474 sc->age_cdata.age_rxtail->m_len -=
1475 (ETHER_CRC_LEN - mp->m_len);
1476 sc->age_cdata.age_rxtail->m_next = NULL;
1477 m_freem(mp);
1478 } else {
1479 mp->m_len -= ETHER_CRC_LEN;
1480 }
1481 }
1482
1483 m = sc->age_cdata.age_rxhead;
1484 KASSERT(m->m_flags & M_PKTHDR);
1485 m_set_rcvif(m, ifp);
1486 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1487 /* Set the first mbuf length. */
1488 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1489
1490 /*
1491 * Set checksum information.
1492 * It seems that L1 controller can compute partial
1493 * checksum. The partial checksum value can be used
1494 * to accelerate checksum computation for fragmented
1495 * TCP/UDP packets. Upper network stack already
1496 * takes advantage of the partial checksum value in
1497 * IP reassembly stage. But I'm not sure the
1498 * correctness of the partial hardware checksum
1499 * assistance due to lack of data sheet. If it is
1500 * proven to work on L1 I'll enable it.
1501 */
1502 if (status & AGE_RRD_IPV4) {
1503 if (status & AGE_RRD_IPCSUM_NOK)
1504 m->m_pkthdr.csum_flags |=
1505 M_CSUM_IPv4_BAD;
1506 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1507 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1508 m->m_pkthdr.csum_flags |=
1509 M_CSUM_TCP_UDP_BAD;
1510 }
1511 /*
1512 * Don't mark bad checksum for TCP/UDP frames
1513 * as fragmented frames may always have set
1514 * bad checksummed bit of descriptor status.
1515 */
1516 }
1517 #if NVLAN > 0
1518 /* Check for VLAN tagged frames. */
1519 if (status & AGE_RRD_VLAN) {
1520 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1521 vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
1522 }
1523 #endif
1524
1525 /* Pass it on. */
1526 if_percpuq_enqueue(ifp->if_percpuq, m);
1527
1528 /* Reset mbuf chains. */
1529 AGE_RXCHAIN_RESET(sc);
1530 }
1531 }
1532
1533 if (count != nsegs) {
1534 sc->age_cdata.age_rx_cons += nsegs;
1535 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1536 } else
1537 sc->age_cdata.age_rx_cons = rx_cons;
1538 }
1539
1540 static void
1541 age_rxintr(struct age_softc *sc, int rr_prod)
1542 {
1543 struct rx_rdesc *rxrd;
1544 int rr_cons, nsegs, pktlen, prog;
1545
1546 rr_cons = sc->age_cdata.age_rr_cons;
1547 if (rr_cons == rr_prod)
1548 return;
1549
1550 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1551 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1552 BUS_DMASYNC_POSTREAD);
1553
1554 for (prog = 0; rr_cons != rr_prod; prog++) {
1555 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1556 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1557 if (nsegs == 0)
1558 break;
1559 /*
1560 * Check number of segments against received bytes
1561 * Non-matching value would indicate that hardware
1562 * is still trying to update Rx return descriptors.
1563 * I'm not sure whether this check is really needed.
1564 */
1565 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1566 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1567 (MCLBYTES - ETHER_ALIGN)))
1568 break;
1569
1570 /* Received a frame. */
1571 age_rxeof(sc, rxrd);
1572
1573 /* Clear return ring. */
1574 rxrd->index = 0;
1575 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1576 }
1577
1578 if (prog > 0) {
1579 /* Update the consumer index. */
1580 sc->age_cdata.age_rr_cons = rr_cons;
1581
1582 /* Sync descriptors. */
1583 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1584 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1585 BUS_DMASYNC_PREWRITE);
1586
1587 /* Notify hardware availability of new Rx buffers. */
1588 AGE_COMMIT_MBOX(sc);
1589 }
1590 }
1591
1592 static void
1593 age_tick(void *xsc)
1594 {
1595 struct age_softc *sc = xsc;
1596 struct mii_data *mii = &sc->sc_miibus;
1597 int s;
1598
1599 s = splnet();
1600 mii_tick(mii);
1601 splx(s);
1602
1603 callout_schedule(&sc->sc_tick_ch, hz);
1604 }
1605
1606 static void
1607 age_reset(struct age_softc *sc)
1608 {
1609 uint32_t reg;
1610 int i;
1611
1612 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1613 CSR_READ_4(sc, AGE_MASTER_CFG);
1614 DELAY(1000);
1615 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1616 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1617 break;
1618 DELAY(10);
1619 }
1620
1621 if (i == 0)
1622 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1623 reg);
1624
1625 /* Initialize PCIe module. From Linux. */
1626 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1627 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1628 }
1629
1630 static int
1631 age_init(struct ifnet *ifp)
1632 {
1633 struct age_softc *sc = ifp->if_softc;
1634 struct mii_data *mii;
1635 uint8_t eaddr[ETHER_ADDR_LEN];
1636 bus_addr_t paddr;
1637 uint32_t reg, fsize;
1638 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1639 int error;
1640
1641 /*
1642 * Cancel any pending I/O.
1643 */
1644 age_stop(ifp, 0);
1645
1646 /*
1647 * Reset the chip to a known state.
1648 */
1649 age_reset(sc);
1650
1651 /* Initialize descriptors. */
1652 error = age_init_rx_ring(sc);
1653 if (error != 0) {
1654 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1655 age_stop(ifp, 0);
1656 return error;
1657 }
1658 age_init_rr_ring(sc);
1659 age_init_tx_ring(sc);
1660 age_init_cmb_block(sc);
1661 age_init_smb_block(sc);
1662
1663 /* Reprogram the station address. */
1664 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1665 CSR_WRITE_4(sc, AGE_PAR0,
1666 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1667 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1668
1669 /* Set descriptor base addresses. */
1670 paddr = sc->age_rdata.age_tx_ring_paddr;
1671 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1672 paddr = sc->age_rdata.age_rx_ring_paddr;
1673 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1674 paddr = sc->age_rdata.age_rr_ring_paddr;
1675 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1676 paddr = sc->age_rdata.age_tx_ring_paddr;
1677 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1678 paddr = sc->age_rdata.age_cmb_block_paddr;
1679 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1680 paddr = sc->age_rdata.age_smb_block_paddr;
1681 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1682
1683 /* Set Rx/Rx return descriptor counter. */
1684 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1685 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1686 DESC_RRD_CNT_MASK) |
1687 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1688
1689 /* Set Tx descriptor counter. */
1690 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1691 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1692
1693 /* Tell hardware that we're ready to load descriptors. */
1694 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1695
1696 /*
1697 * Initialize mailbox register.
1698 * Updated producer/consumer index information is exchanged
1699 * through this mailbox register. However Tx producer and
1700 * Rx return consumer/Rx producer are all shared such that
1701 * it's hard to separate code path between Tx and Rx without
1702 * locking. If L1 hardware have a separate mail box register
1703 * for Tx and Rx consumer/producer management we could have
1704 * independent Tx/Rx handler which in turn Rx handler could have
1705 * been run without any locking.
1706 */
1707 AGE_COMMIT_MBOX(sc);
1708
1709 /* Configure IPG/IFG parameters. */
1710 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1711 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1712 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1713 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1714 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1715
1716 /* Set parameters for half-duplex media. */
1717 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1718 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1719 HDPX_CFG_LCOL_MASK) |
1720 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1721 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1722 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1723 HDPX_CFG_ABEBT_MASK) |
1724 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1725 HDPX_CFG_JAMIPG_MASK));
1726
1727 /* Configure interrupt moderation timer. */
1728 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1729 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1730 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1731 reg &= ~MASTER_MTIMER_ENB;
1732 if (AGE_USECS(sc->age_int_mod) == 0)
1733 reg &= ~MASTER_ITIMER_ENB;
1734 else
1735 reg |= MASTER_ITIMER_ENB;
1736 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1737 if (agedebug)
1738 printf("%s: interrupt moderation is %d us.\n",
1739 device_xname(sc->sc_dev), sc->age_int_mod);
1740 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1741
1742 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1743 if (ifp->if_mtu < ETHERMTU)
1744 sc->age_max_frame_size = ETHERMTU;
1745 else
1746 sc->age_max_frame_size = ifp->if_mtu;
1747 sc->age_max_frame_size += ETHER_HDR_LEN +
1748 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1749 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1750
1751 /* Configure jumbo frame. */
1752 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1753 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1754 (((fsize / sizeof(uint64_t)) <<
1755 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1756 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1757 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1758 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1759 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1760
1761 /* Configure flow-control parameters. From Linux. */
1762 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1763 /*
1764 * Magic workaround for old-L1.
1765 * Don't know which hw revision requires this magic.
1766 */
1767 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1768 /*
1769 * Another magic workaround for flow-control mode
1770 * change. From Linux.
1771 */
1772 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1773 }
1774 /*
1775 * TODO
1776 * Should understand pause parameter relationships between FIFO
1777 * size and number of Rx descriptors and Rx return descriptors.
1778 *
1779 * Magic parameters came from Linux.
1780 */
1781 switch (sc->age_chip_rev) {
1782 case 0x8001:
1783 case 0x9001:
1784 case 0x9002:
1785 case 0x9003:
1786 rxf_hi = AGE_RX_RING_CNT / 16;
1787 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1788 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1789 rrd_lo = AGE_RR_RING_CNT / 16;
1790 break;
1791 default:
1792 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1793 rxf_lo = reg / 16;
1794 if (rxf_lo < 192)
1795 rxf_lo = 192;
1796 rxf_hi = (reg * 7) / 8;
1797 if (rxf_hi < rxf_lo)
1798 rxf_hi = rxf_lo + 16;
1799 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1800 rrd_lo = reg / 8;
1801 rrd_hi = (reg * 7) / 8;
1802 if (rrd_lo < 2)
1803 rrd_lo = 2;
1804 if (rrd_hi < rrd_lo)
1805 rrd_hi = rrd_lo + 3;
1806 break;
1807 }
1808 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1809 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1810 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1811 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1812 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1813 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1814 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1815 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1816 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1817 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1818
1819 /* Configure RxQ. */
1820 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1821 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1822 RXQ_CFG_RD_BURST_MASK) |
1823 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1824 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1825 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1826 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1827 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1828
1829 /* Configure TxQ. */
1830 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1831 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1832 TXQ_CFG_TPD_BURST_MASK) |
1833 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1834 TXQ_CFG_TX_FIFO_BURST_MASK) |
1835 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1836 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1837 TXQ_CFG_ENB);
1838
1839 /* Configure DMA parameters. */
1840 CSR_WRITE_4(sc, AGE_DMA_CFG,
1841 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1842 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1843 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1844
1845 /* Configure CMB DMA write threshold. */
1846 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1847 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1848 CMB_WR_THRESH_RRD_MASK) |
1849 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1850 CMB_WR_THRESH_TPD_MASK));
1851
1852 /* Set CMB/SMB timer and enable them. */
1853 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1854 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1855 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1856
1857 /* Request SMB updates for every seconds. */
1858 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1859 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1860
1861 /*
1862 * Disable all WOL bits as WOL can interfere normal Rx
1863 * operation.
1864 */
1865 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1866
1867 /*
1868 * Configure Tx/Rx MACs.
1869 * - Auto-padding for short frames.
1870 * - Enable CRC generation.
1871 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1872 * of MAC is followed after link establishment.
1873 */
1874 CSR_WRITE_4(sc, AGE_MAC_CFG,
1875 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1876 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1877 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1878 MAC_CFG_PREAMBLE_MASK));
1879
1880 /* Set up the receive filter. */
1881 age_rxfilter(sc);
1882 age_rxvlan(sc);
1883
1884 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1885 reg |= MAC_CFG_RXCSUM_ENB;
1886
1887 /* Ack all pending interrupts and clear it. */
1888 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1889 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1890
1891 /* Finally enable Tx/Rx MAC. */
1892 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1893
1894 sc->age_flags &= ~AGE_FLAG_LINK;
1895
1896 /* Switch to the current media. */
1897 mii = &sc->sc_miibus;
1898 mii_mediachg(mii);
1899
1900 callout_schedule(&sc->sc_tick_ch, hz);
1901
1902 ifp->if_flags |= IFF_RUNNING;
1903 ifp->if_flags &= ~IFF_OACTIVE;
1904
1905 return 0;
1906 }
1907
1908 static void
1909 age_stop(struct ifnet *ifp, int disable)
1910 {
1911 struct age_softc *sc = ifp->if_softc;
1912 struct age_txdesc *txd;
1913 struct age_rxdesc *rxd;
1914 uint32_t reg;
1915 int i;
1916
1917 callout_stop(&sc->sc_tick_ch);
1918
1919 /*
1920 * Mark the interface down and cancel the watchdog timer.
1921 */
1922 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1923 ifp->if_timer = 0;
1924
1925 sc->age_flags &= ~AGE_FLAG_LINK;
1926
1927 mii_down(&sc->sc_miibus);
1928
1929 /*
1930 * Disable interrupts.
1931 */
1932 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1933 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1934
1935 /* Stop CMB/SMB updates. */
1936 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1937
1938 /* Stop Rx/Tx MAC. */
1939 age_stop_rxmac(sc);
1940 age_stop_txmac(sc);
1941
1942 /* Stop DMA. */
1943 CSR_WRITE_4(sc, AGE_DMA_CFG,
1944 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1945
1946 /* Stop TxQ/RxQ. */
1947 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1948 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1949 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1950 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1951 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1952 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1953 break;
1954 DELAY(10);
1955 }
1956 if (i == 0)
1957 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1958 device_xname(sc->sc_dev), reg);
1959
1960 /* Reclaim Rx buffers that have been processed. */
1961 if (sc->age_cdata.age_rxhead != NULL)
1962 m_freem(sc->age_cdata.age_rxhead);
1963 AGE_RXCHAIN_RESET(sc);
1964
1965 /*
1966 * Free RX and TX mbufs still in the queues.
1967 */
1968 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1969 rxd = &sc->age_cdata.age_rxdesc[i];
1970 if (rxd->rx_m != NULL) {
1971 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1972 m_freem(rxd->rx_m);
1973 rxd->rx_m = NULL;
1974 }
1975 }
1976 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1977 txd = &sc->age_cdata.age_txdesc[i];
1978 if (txd->tx_m != NULL) {
1979 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1980 m_freem(txd->tx_m);
1981 txd->tx_m = NULL;
1982 }
1983 }
1984 }
1985
1986 static void
1987 age_stats_update(struct age_softc *sc)
1988 {
1989 struct ifnet *ifp = &sc->sc_ec.ec_if;
1990 struct age_stats *stat;
1991 struct smb *smb;
1992
1993 stat = &sc->age_stat;
1994
1995 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1996 sc->age_cdata.age_smb_block_map->dm_mapsize,
1997 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1998
1999 smb = sc->age_rdata.age_smb_block;
2000 if (smb->updated == 0)
2001 return;
2002
2003 /* Rx stats. */
2004 stat->rx_frames += smb->rx_frames;
2005 stat->rx_bcast_frames += smb->rx_bcast_frames;
2006 stat->rx_mcast_frames += smb->rx_mcast_frames;
2007 stat->rx_pause_frames += smb->rx_pause_frames;
2008 stat->rx_control_frames += smb->rx_control_frames;
2009 stat->rx_crcerrs += smb->rx_crcerrs;
2010 stat->rx_lenerrs += smb->rx_lenerrs;
2011 stat->rx_bytes += smb->rx_bytes;
2012 stat->rx_runts += smb->rx_runts;
2013 stat->rx_fragments += smb->rx_fragments;
2014 stat->rx_pkts_64 += smb->rx_pkts_64;
2015 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2016 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2017 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2018 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2019 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2020 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2021 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2022 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2023 stat->rx_desc_oflows += smb->rx_desc_oflows;
2024 stat->rx_alignerrs += smb->rx_alignerrs;
2025 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2026 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2027 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2028
2029 /* Tx stats. */
2030 stat->tx_frames += smb->tx_frames;
2031 stat->tx_bcast_frames += smb->tx_bcast_frames;
2032 stat->tx_mcast_frames += smb->tx_mcast_frames;
2033 stat->tx_pause_frames += smb->tx_pause_frames;
2034 stat->tx_excess_defer += smb->tx_excess_defer;
2035 stat->tx_control_frames += smb->tx_control_frames;
2036 stat->tx_deferred += smb->tx_deferred;
2037 stat->tx_bytes += smb->tx_bytes;
2038 stat->tx_pkts_64 += smb->tx_pkts_64;
2039 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2040 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2041 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2042 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2043 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2044 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2045 stat->tx_single_colls += smb->tx_single_colls;
2046 stat->tx_multi_colls += smb->tx_multi_colls;
2047 stat->tx_late_colls += smb->tx_late_colls;
2048 stat->tx_excess_colls += smb->tx_excess_colls;
2049 stat->tx_underrun += smb->tx_underrun;
2050 stat->tx_desc_underrun += smb->tx_desc_underrun;
2051 stat->tx_lenerrs += smb->tx_lenerrs;
2052 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2053 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2054 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2055
2056 /* Update counters in ifnet. */
2057 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2058
2059 if_statadd_ref(nsr, if_opackets, smb->tx_frames);
2060
2061 if_statadd_ref(nsr, if_collisions,
2062 smb->tx_single_colls +
2063 smb->tx_multi_colls + smb->tx_late_colls +
2064 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2065
2066 if_statadd_ref(nsr, if_oerrors,
2067 smb->tx_excess_colls +
2068 smb->tx_late_colls + smb->tx_underrun +
2069 smb->tx_pkts_truncated);
2070
2071 if_statadd_ref(nsr, if_ierrors,
2072 smb->rx_crcerrs + smb->rx_lenerrs +
2073 smb->rx_runts + smb->rx_pkts_truncated +
2074 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2075 smb->rx_alignerrs);
2076
2077 IF_STAT_PUTREF(ifp);
2078
2079 /* Update done, clear. */
2080 smb->updated = 0;
2081
2082 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2083 sc->age_cdata.age_smb_block_map->dm_mapsize,
2084 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2085 }
2086
2087 static void
2088 age_stop_txmac(struct age_softc *sc)
2089 {
2090 uint32_t reg;
2091 int i;
2092
2093 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2094 if ((reg & MAC_CFG_TX_ENB) != 0) {
2095 reg &= ~MAC_CFG_TX_ENB;
2096 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2097 }
2098 /* Stop Tx DMA engine. */
2099 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2100 if ((reg & DMA_CFG_RD_ENB) != 0) {
2101 reg &= ~DMA_CFG_RD_ENB;
2102 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2103 }
2104 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2105 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2106 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2107 break;
2108 DELAY(10);
2109 }
2110 if (i == 0)
2111 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2112 }
2113
2114 static void
2115 age_stop_rxmac(struct age_softc *sc)
2116 {
2117 uint32_t reg;
2118 int i;
2119
2120 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2121 if ((reg & MAC_CFG_RX_ENB) != 0) {
2122 reg &= ~MAC_CFG_RX_ENB;
2123 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2124 }
2125 /* Stop Rx DMA engine. */
2126 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2127 if ((reg & DMA_CFG_WR_ENB) != 0) {
2128 reg &= ~DMA_CFG_WR_ENB;
2129 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2130 }
2131 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2132 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2133 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2134 break;
2135 DELAY(10);
2136 }
2137 if (i == 0)
2138 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2139 }
2140
2141 static void
2142 age_init_tx_ring(struct age_softc *sc)
2143 {
2144 struct age_ring_data *rd;
2145 struct age_txdesc *txd;
2146 int i;
2147
2148 sc->age_cdata.age_tx_prod = 0;
2149 sc->age_cdata.age_tx_cons = 0;
2150 sc->age_cdata.age_tx_cnt = 0;
2151
2152 rd = &sc->age_rdata;
2153 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2154 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2155 txd = &sc->age_cdata.age_txdesc[i];
2156 txd->tx_desc = &rd->age_tx_ring[i];
2157 txd->tx_m = NULL;
2158 }
2159 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2160 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161 }
2162
2163 static int
2164 age_init_rx_ring(struct age_softc *sc)
2165 {
2166 struct age_ring_data *rd;
2167 struct age_rxdesc *rxd;
2168 int i;
2169
2170 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2171 rd = &sc->age_rdata;
2172 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2173 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2174 rxd = &sc->age_cdata.age_rxdesc[i];
2175 rxd->rx_m = NULL;
2176 rxd->rx_desc = &rd->age_rx_ring[i];
2177 if (age_newbuf(sc, rxd, 1) != 0)
2178 return ENOBUFS;
2179 }
2180
2181 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2182 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2183
2184 return 0;
2185 }
2186
2187 static void
2188 age_init_rr_ring(struct age_softc *sc)
2189 {
2190 struct age_ring_data *rd;
2191
2192 sc->age_cdata.age_rr_cons = 0;
2193 AGE_RXCHAIN_RESET(sc);
2194
2195 rd = &sc->age_rdata;
2196 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2197 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2198 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 }
2200
2201 static void
2202 age_init_cmb_block(struct age_softc *sc)
2203 {
2204 struct age_ring_data *rd;
2205
2206 rd = &sc->age_rdata;
2207 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2208 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2209 sc->age_cdata.age_cmb_block_map->dm_mapsize,
2210 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2211 }
2212
2213 static void
2214 age_init_smb_block(struct age_softc *sc)
2215 {
2216 struct age_ring_data *rd;
2217
2218 rd = &sc->age_rdata;
2219 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2220 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2221 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2222 }
2223
2224 static int
2225 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2226 {
2227 struct rx_desc *desc;
2228 struct mbuf *m;
2229 bus_dmamap_t map;
2230 int error;
2231
2232 MGETHDR(m, M_DONTWAIT, MT_DATA);
2233 if (m == NULL)
2234 return ENOBUFS;
2235 MCLGET(m, M_DONTWAIT);
2236 if (!(m->m_flags & M_EXT)) {
2237 m_freem(m);
2238 return ENOBUFS;
2239 }
2240
2241 m->m_len = m->m_pkthdr.len = MCLBYTES;
2242 m_adj(m, ETHER_ALIGN);
2243
2244 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2245 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2246
2247 if (error != 0) {
2248 m_freem(m);
2249
2250 if (init)
2251 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2252 return error;
2253 }
2254
2255 if (rxd->rx_m != NULL) {
2256 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2257 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2258 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2259 }
2260 map = rxd->rx_dmamap;
2261 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2262 sc->age_cdata.age_rx_sparemap = map;
2263 rxd->rx_m = m;
2264
2265 desc = rxd->rx_desc;
2266 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2267 desc->len =
2268 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2269 AGE_RD_LEN_SHIFT);
2270
2271 return 0;
2272 }
2273
2274 static void
2275 age_rxvlan(struct age_softc *sc)
2276 {
2277 uint32_t reg;
2278
2279 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2280 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2281 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2282 reg |= MAC_CFG_VLAN_TAG_STRIP;
2283 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2284 }
2285
2286 static void
2287 age_rxfilter(struct age_softc *sc)
2288 {
2289 struct ethercom *ec = &sc->sc_ec;
2290 struct ifnet *ifp = &sc->sc_ec.ec_if;
2291 struct ether_multi *enm;
2292 struct ether_multistep step;
2293 uint32_t crc;
2294 uint32_t mchash[2];
2295 uint32_t rxcfg;
2296
2297 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2298 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2299 ifp->if_flags &= ~IFF_ALLMULTI;
2300
2301 /*
2302 * Always accept broadcast frames.
2303 */
2304 rxcfg |= MAC_CFG_BCAST;
2305
2306 /* Program new filter. */
2307 if ((ifp->if_flags & IFF_PROMISC) != 0)
2308 goto update;
2309
2310 memset(mchash, 0, sizeof(mchash));
2311
2312 ETHER_LOCK(ec);
2313 ETHER_FIRST_MULTI(step, ec, enm);
2314 while (enm != NULL) {
2315 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2316 /* XXX Use ETHER_F_ALLMULTI in future. */
2317 ifp->if_flags |= IFF_ALLMULTI;
2318 ETHER_UNLOCK(ec);
2319 goto update;
2320 }
2321 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2322 mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
2323 ETHER_NEXT_MULTI(step, enm);
2324 }
2325 ETHER_UNLOCK(ec);
2326
2327 update:
2328 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2329 if (ifp->if_flags & IFF_PROMISC) {
2330 rxcfg |= MAC_CFG_PROMISC;
2331 /* XXX Use ETHER_F_ALLMULTI in future. */
2332 ifp->if_flags |= IFF_ALLMULTI;
2333 } else
2334 rxcfg |= MAC_CFG_ALLMULTI;
2335 mchash[0] = mchash[1] = 0xFFFFFFFF;
2336 }
2337 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2338 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2339 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2340 }
2341