Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.8.2.2
      1 /*	$NetBSD: if_age.c,v 1.8.2.2 2009/01/19 13:18:25 skrll Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.8.2.2 2009/01/19 13:18:25 skrll Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101 static int	age_dma_alloc(struct age_softc *);
    102 static void	age_dma_free(struct age_softc *);
    103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104 static void	age_phy_reset(struct age_softc *);
    105 
    106 static int	age_encap(struct age_softc *, struct mbuf **);
    107 static void	age_init_tx_ring(struct age_softc *);
    108 static int	age_init_rx_ring(struct age_softc *);
    109 static void	age_init_rr_ring(struct age_softc *);
    110 static void	age_init_cmb_block(struct age_softc *);
    111 static void	age_init_smb_block(struct age_softc *);
    112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113 static void	age_mac_config(struct age_softc *);
    114 static void	age_txintr(struct age_softc *, int);
    115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116 static void	age_rxintr(struct age_softc *, int);
    117 static void	age_tick(void *);
    118 static void	age_reset(struct age_softc *);
    119 static void	age_stop(struct age_softc *);
    120 static void	age_stats_update(struct age_softc *);
    121 static void	age_stop_txmac(struct age_softc *);
    122 static void	age_stop_rxmac(struct age_softc *);
    123 static void	age_rxvlan(struct age_softc *sc);
    124 static void	age_rxfilter(struct age_softc *);
    125 
    126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127     age_match, age_attach, age_detach, NULL);
    128 
    129 int agedebug = 0;
    130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131 
    132 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    133 
    134 static int
    135 age_match(device_t dev, cfdata_t match, void *aux)
    136 {
    137 	struct pci_attach_args *pa = aux;
    138 
    139 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    140 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    141 }
    142 
    143 static void
    144 age_attach(device_t parent, device_t self, void *aux)
    145 {
    146 	struct age_softc *sc = device_private(self);
    147 	struct pci_attach_args *pa = aux;
    148 	pci_intr_handle_t ih;
    149 	const char *intrstr;
    150 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    151 	pcireg_t memtype;
    152 	int error = 0;
    153 
    154 	aprint_naive("\n");
    155 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    156 
    157 	sc->sc_dev = self;
    158 	sc->sc_dmat = pa->pa_dmat;
    159 	sc->sc_pct = pa->pa_pc;
    160 	sc->sc_pcitag = pa->pa_tag;
    161 
    162 	/*
    163 	 * Allocate IO memory
    164 	 */
    165 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    166 	switch (memtype) {
    167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    170 		break;
    171         default:
    172 		aprint_error_dev(self, "invalid base address register\n");
    173 		break;
    174 	}
    175 
    176 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    177 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    178 		aprint_error_dev(self, "could not map mem space\n");
    179 		return;
    180 	}
    181 
    182 	if (pci_intr_map(pa, &ih) != 0) {
    183 		aprint_error_dev(self, "could not map interrupt\n");
    184 		return;
    185 	}
    186 
    187 	/*
    188 	 * Allocate IRQ
    189 	 */
    190 	intrstr = pci_intr_string(sc->sc_pct, ih);
    191 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    192 	    age_intr, sc);
    193 	if (sc->sc_irq_handle == NULL) {
    194 		aprint_error_dev(self, "could not establish interrupt");
    195 		if (intrstr != NULL)
    196 			aprint_error(" at %s", intrstr);
    197 		aprint_error("\n");
    198 		return;
    199 	}
    200 	aprint_normal_dev(self, "%s\n", intrstr);
    201 
    202 	/* Set PHY address. */
    203 	sc->age_phyaddr = AGE_PHY_ADDR;
    204 
    205 	/* Reset PHY. */
    206 	age_phy_reset(sc);
    207 
    208 	/* Reset the ethernet controller. */
    209 	age_reset(sc);
    210 
    211 	/* Get PCI and chip id/revision. */
    212 	sc->age_rev = PCI_REVISION(pa->pa_class);
    213 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    214 	    MASTER_CHIP_REV_SHIFT;
    215 
    216 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    217 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    218 
    219 	if (agedebug) {
    220 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    221 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    222 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    223 	}
    224 
    225 	/* Set max allowable DMA size. */
    226 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    227 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    228 
    229 	/* Allocate DMA stuffs */
    230 	error = age_dma_alloc(sc);
    231 	if (error)
    232 		goto fail;
    233 
    234 	callout_init(&sc->sc_tick_ch, 0);
    235 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    236 
    237 	/* Load station address. */
    238 	age_get_macaddr(sc, sc->sc_enaddr);
    239 
    240 	aprint_normal_dev(self, "Ethernet address %s\n",
    241 	    ether_sprintf(sc->sc_enaddr));
    242 
    243 	ifp->if_softc = sc;
    244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    245 	ifp->if_init = age_init;
    246 	ifp->if_ioctl = age_ioctl;
    247 	ifp->if_start = age_start;
    248 	ifp->if_watchdog = age_watchdog;
    249 	ifp->if_baudrate = IF_Gbps(1);
    250 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    251 	IFQ_SET_READY(&ifp->if_snd);
    252 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    253 
    254 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    255 
    256 #ifdef AGE_CHECKSUM
    257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    258 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    259 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    260 #endif
    261 
    262 #if NVLAN > 0
    263 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    264 #endif
    265 
    266 	/* Set up MII bus. */
    267 	sc->sc_miibus.mii_ifp = ifp;
    268 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    269 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    270 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    271 
    272 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    273 	    age_mediastatus);
    274 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    275 	   MII_OFFSET_ANY, 0);
    276 
    277 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    278 		aprint_error_dev(self, "no PHY found!\n");
    279 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    280 		    0, NULL);
    281 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    282 	} else
    283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    284 
    285 	if_attach(ifp);
    286 	ether_ifattach(ifp, sc->sc_enaddr);
    287 
    288 	if (!pmf_device_register(self, NULL, age_resume))
    289 		aprint_error_dev(self, "couldn't establish power handler\n");
    290 	else
    291 		pmf_class_network_register(self, ifp);
    292 
    293 	return;
    294 fail:
    295 	age_detach(sc->sc_dev, 0);
    296 }
    297 
    298 static int
    299 age_detach(device_t self, int flags)
    300 {
    301 	struct age_softc *sc = device_private(self);
    302 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    303 	int s;
    304 
    305 	s = splnet();
    306 	age_stop(sc);
    307 	splx(s);
    308 
    309 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    310 
    311 	/* Delete all remaining media. */
    312 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    313 
    314 	ether_ifdetach(ifp);
    315 	if_detach(ifp);
    316 	age_dma_free(sc);
    317 
    318 	if (sc->sc_irq_handle != NULL) {
    319 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    320 		sc->sc_irq_handle = NULL;
    321 	}
    322 
    323 	return (0);
    324 }
    325 
    326 /*
    327  *	Read a PHY register on the MII of the L1.
    328  */
    329 static int
    330 age_miibus_readreg(struct device *dev, int phy, int reg)
    331 {
    332 	struct age_softc *sc = device_private(dev);
    333 	uint32_t v;
    334 	int i;
    335 
    336 	if (phy != sc->age_phyaddr)
    337 		return (0);
    338 
    339 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    340 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    341 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    342 		DELAY(1);
    343 		v = CSR_READ_4(sc, AGE_MDIO);
    344 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    345 			break;
    346 	}
    347 
    348 	if (i == 0) {
    349 		printf("%s: phy read timeout: phy %d, reg %d\n",
    350 			device_xname(sc->sc_dev), phy, reg);
    351 		return (0);
    352 	}
    353 
    354 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    355 }
    356 
    357 /*
    358  * 	Write a PHY register on the MII of the L1.
    359  */
    360 static void
    361 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
    362 {
    363 	struct age_softc *sc = device_private(dev);
    364 	uint32_t v;
    365 	int i;
    366 
    367 	if (phy != sc->age_phyaddr)
    368 		return;
    369 
    370 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    371 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    372 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    373 
    374 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    375 		DELAY(1);
    376 		v = CSR_READ_4(sc, AGE_MDIO);
    377 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    378 			break;
    379 	}
    380 
    381 	if (i == 0) {
    382 		printf("%s: phy write timeout: phy %d, reg %d\n",
    383 		    device_xname(sc->sc_dev), phy, reg);
    384 	}
    385 }
    386 
    387 /*
    388  *	Callback from MII layer when media changes.
    389  */
    390 static void
    391 age_miibus_statchg(device_t dev)
    392 {
    393 	struct age_softc *sc = device_private(dev);
    394 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    395 	struct mii_data *mii;
    396 
    397 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    398 		return;
    399 
    400 	mii = &sc->sc_miibus;
    401 
    402 	sc->age_flags &= ~AGE_FLAG_LINK;
    403 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    404 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    405 		case IFM_10_T:
    406 		case IFM_100_TX:
    407 		case IFM_1000_T:
    408 			sc->age_flags |= AGE_FLAG_LINK;
    409 			break;
    410 		default:
    411 			break;
    412 		}
    413 	}
    414 
    415 	/* Stop Rx/Tx MACs. */
    416 	age_stop_rxmac(sc);
    417 	age_stop_txmac(sc);
    418 
    419 	/* Program MACs with resolved speed/duplex/flow-control. */
    420 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    421 		uint32_t reg;
    422 
    423 		age_mac_config(sc);
    424 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    425 		/* Restart DMA engine and Tx/Rx MAC. */
    426 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    427 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    428 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    429 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    430 	}
    431 }
    432 
    433 /*
    434  *	Get the current interface media status.
    435  */
    436 static void
    437 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    438 {
    439 	struct age_softc *sc = ifp->if_softc;
    440 	struct mii_data *mii = &sc->sc_miibus;
    441 
    442 	mii_pollstat(mii);
    443 	ifmr->ifm_status = mii->mii_media_status;
    444 	ifmr->ifm_active = mii->mii_media_active;
    445 }
    446 
    447 /*
    448  *	Set hardware to newly-selected media.
    449  */
    450 static int
    451 age_mediachange(struct ifnet *ifp)
    452 {
    453 	struct age_softc *sc = ifp->if_softc;
    454 	struct mii_data *mii = &sc->sc_miibus;
    455 	int error;
    456 
    457 	if (mii->mii_instance != 0) {
    458 		struct mii_softc *miisc;
    459 
    460 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    461 			mii_phy_reset(miisc);
    462 	}
    463 	error = mii_mediachg(mii);
    464 
    465 	return (error);
    466 }
    467 
    468 static int
    469 age_intr(void *arg)
    470 {
    471         struct age_softc *sc = arg;
    472         struct ifnet *ifp = &sc->sc_ec.ec_if;
    473 	struct cmb *cmb;
    474         uint32_t status;
    475 
    476 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    477 	if (status == 0 || (status & AGE_INTRS) == 0)
    478 		return (0);
    479 
    480 	/* Disable interrupts. */
    481 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    482 
    483 	cmb = sc->age_rdata.age_cmb_block;
    484 
    485 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    486 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    487 	status = le32toh(cmb->intr_status);
    488 	if ((status & AGE_INTRS) == 0)
    489 		goto back;
    490 
    491 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    492 	    TPD_CONS_SHIFT;
    493 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    494 	    RRD_PROD_SHIFT;
    495 
    496 	/* Let hardware know CMB was served. */
    497 	cmb->intr_status = 0;
    498 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    499 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    500 	    BUS_DMASYNC_PREWRITE);
    501 
    502 	if (ifp->if_flags & IFF_RUNNING) {
    503 		if (status & INTR_CMB_RX)
    504 			age_rxintr(sc, sc->age_rr_prod);
    505 
    506 		if (status & INTR_CMB_TX)
    507 			age_txintr(sc, sc->age_tpd_cons);
    508 
    509 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    510 			if (status & INTR_DMA_RD_TO_RST)
    511 				printf("%s: DMA read error! -- resetting\n",
    512 				    device_xname(sc->sc_dev));
    513 			if (status & INTR_DMA_WR_TO_RST)
    514 				printf("%s: DMA write error! -- resetting\n",
    515 				    device_xname(sc->sc_dev));
    516 			age_init(ifp);
    517 		}
    518 
    519 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    520 			age_start(ifp);
    521 
    522 		if (status & INTR_SMB)
    523 			age_stats_update(sc);
    524 	}
    525 
    526 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    527 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    528 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    529 	    BUS_DMASYNC_POSTREAD);
    530 
    531 back:
    532 	/* Re-enable interrupts. */
    533 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    534 
    535 	return (1);
    536 }
    537 
    538 static int
    539 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    540     uint32_t *word)
    541 {
    542 	int i;
    543 	pcireg_t rv;
    544 
    545 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    546 	    offset << PCI_VPD_ADDRESS_SHIFT);
    547 	for (i = AGE_TIMEOUT; i > 0; i--) {
    548 		DELAY(10);
    549 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    550 		    PCI_VPD_ADDRESS(vpdc));
    551 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    552 			break;
    553 	}
    554 	if (i == 0) {
    555 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    556 		*word = 0;
    557 		return ETIMEDOUT;
    558 	}
    559 
    560 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    561 	return 0;
    562 }
    563 
    564 static void
    565 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    566 {
    567 	uint32_t ea[2], off, reg, word;
    568 	int vpd_error, match, vpdc;
    569 
    570 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    571 	if ((reg & SPI_VPD_ENB) != 0) {
    572 		/* Get VPD stored in TWSI EEPROM. */
    573 		reg &= ~SPI_VPD_ENB;
    574 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    575 	}
    576 
    577 	vpd_error = 0;
    578 	ea[0] = ea[1] = 0;
    579 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    580 	    PCI_CAP_VPD, &vpdc, NULL))) {
    581 		/*
    582 		 * PCI VPD capability exists, but it seems that it's
    583 		 * not in the standard form as stated in PCI VPD
    584 		 * specification such that driver could not use
    585 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    586 		 * Search VPD data starting at address 0x0100. The data
    587 		 * should be used as initializers to set AGE_PAR0,
    588 		 * AGE_PAR1 register including other PCI configuration
    589 		 * registers.
    590 		 */
    591 		word = 0;
    592 		match = 0;
    593 		reg = 0;
    594 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    595 		    off += sizeof(uint32_t)) {
    596 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    597 			if (vpd_error != 0)
    598 				break;
    599 			if (match != 0) {
    600 				switch (reg) {
    601 				case AGE_PAR0:
    602 					ea[0] = word;
    603 					break;
    604 				case AGE_PAR1:
    605 					ea[1] = word;
    606 					break;
    607 				default:
    608 					break;
    609 				}
    610 				match = 0;
    611 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    612 				match = 1;
    613 				reg = word >> 16;
    614 			} else
    615 				break;
    616 		}
    617 		if (off >= AGE_VPD_REG_CONF_END)
    618 			vpd_error = ENOENT;
    619 		if (vpd_error == 0) {
    620 			/*
    621 			 * Don't blindly trust ethernet address obtained
    622 			 * from VPD. Check whether ethernet address is
    623 			 * valid one. Otherwise fall-back to reading
    624 			 * PAR register.
    625 			 */
    626 			ea[1] &= 0xFFFF;
    627 			if ((ea[0] == 0 && ea[1] == 0) ||
    628 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    629 				if (agedebug)
    630 					printf("%s: invalid ethernet address "
    631 				    	    "returned from VPD.\n",
    632 				    	    device_xname(sc->sc_dev));
    633 				vpd_error = EINVAL;
    634 			}
    635 		}
    636 		if (vpd_error != 0 && (agedebug))
    637 			printf("%s: VPD access failure!\n",
    638 			    device_xname(sc->sc_dev));
    639 	} else {
    640 		if (agedebug)
    641 			printf("%s: PCI VPD capability not found!\n",
    642 			    device_xname(sc->sc_dev));
    643 	}
    644 
    645 	/*
    646 	 * It seems that L1 also provides a way to extract ethernet
    647 	 * address via SPI flash interface. Because SPI flash memory
    648 	 * device of different vendors vary in their instruction
    649 	 * codes for read ID instruction, it's very hard to get
    650 	 * instructions codes without detailed information for the
    651 	 * flash memory device used on ethernet controller. To simplify
    652 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    653 	 * address which is supposed to be set by hardware during
    654 	 * power on reset.
    655 	 */
    656 	if (vpd_error != 0) {
    657 		/*
    658 		 * VPD is mapped to SPI flash memory or BIOS set it.
    659 		 */
    660 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    661 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    662 	}
    663 
    664 	ea[1] &= 0xFFFF;
    665 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    666 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    667 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    668 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    669 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    670 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    671 }
    672 
    673 static void
    674 age_phy_reset(struct age_softc *sc)
    675 {
    676 	/* Reset PHY. */
    677 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    678 	DELAY(1000);
    679 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    680 	DELAY(1000);
    681 }
    682 
    683 static int
    684 age_dma_alloc(struct age_softc *sc)
    685 {
    686 	struct age_txdesc *txd;
    687 	struct age_rxdesc *rxd;
    688 	int nsegs, error, i;
    689 
    690 	/*
    691 	 * Create DMA stuffs for TX ring
    692 	 */
    693 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    694 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    695 	if (error)
    696 		return (ENOBUFS);
    697 
    698 	/* Allocate DMA'able memory for TX ring */
    699 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    700 	    PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    701 	    &nsegs, BUS_DMA_WAITOK);
    702 	if (error) {
    703 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    704 		    device_xname(sc->sc_dev));
    705 		return error;
    706 	}
    707 
    708 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    709 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    710 	    BUS_DMA_NOWAIT);
    711 	if (error)
    712 		return (ENOBUFS);
    713 
    714 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    715 
    716 	/*  Load the DMA map for Tx ring. */
    717 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    718 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    719 	if (error) {
    720 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    721 		    device_xname(sc->sc_dev));
    722 		bus_dmamem_free(sc->sc_dmat,
    723 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
    724 		return error;
    725 	}
    726 
    727 	sc->age_rdata.age_tx_ring_paddr =
    728 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    729 
    730 	/*
    731 	 * Create DMA stuffs for RX ring
    732 	 */
    733 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    734 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    735 	if (error)
    736 		return (ENOBUFS);
    737 
    738 	/* Allocate DMA'able memory for RX ring */
    739 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    740 	    PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    741 	    &nsegs, BUS_DMA_WAITOK);
    742 	if (error) {
    743 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
    744 		    device_xname(sc->sc_dev));
    745 		return error;
    746 	}
    747 
    748 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    749 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    750 	    BUS_DMA_NOWAIT);
    751 	if (error)
    752 		return (ENOBUFS);
    753 
    754 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    755 
    756 	/* Load the DMA map for Rx ring. */
    757 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    758 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    759 	if (error) {
    760 		printf("%s: could not load DMA'able memory for Rx ring.\n",
    761 		    device_xname(sc->sc_dev));
    762 		bus_dmamem_free(sc->sc_dmat,
    763 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    764 		return error;
    765 	}
    766 
    767 	sc->age_rdata.age_rx_ring_paddr =
    768 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    769 
    770 	/*
    771 	 * Create DMA stuffs for RX return ring
    772 	 */
    773 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    774 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    775 	if (error)
    776 		return (ENOBUFS);
    777 
    778 	/* Allocate DMA'able memory for RX return ring */
    779 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    780 	    PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    781 	    &nsegs, BUS_DMA_WAITOK);
    782 	if (error) {
    783 		printf("%s: could not allocate DMA'able memory for Rx "
    784 		    "return ring.\n", device_xname(sc->sc_dev));
    785 		return error;
    786 	}
    787 
    788 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    789 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    790 	    BUS_DMA_NOWAIT);
    791 	if (error)
    792 		return (ENOBUFS);
    793 
    794 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    795 
    796 	/*  Load the DMA map for Rx return ring. */
    797 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    798 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    799 	if (error) {
    800 		printf("%s: could not load DMA'able memory for Rx return ring."
    801 		    "\n", device_xname(sc->sc_dev));
    802 		bus_dmamem_free(sc->sc_dmat,
    803 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
    804 		return error;
    805 	}
    806 
    807 	sc->age_rdata.age_rr_ring_paddr =
    808 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    809 
    810 	/*
    811 	 * Create DMA stuffs for CMB block
    812 	 */
    813 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    814 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    815 	    &sc->age_cdata.age_cmb_block_map);
    816 	if (error)
    817 		return (ENOBUFS);
    818 
    819 	/* Allocate DMA'able memory for CMB block */
    820 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    821 	    PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    822 	    &nsegs, BUS_DMA_WAITOK);
    823 	if (error) {
    824 		printf("%s: could not allocate DMA'able memory for "
    825 		    "CMB block\n", device_xname(sc->sc_dev));
    826 		return error;
    827 	}
    828 
    829 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    830 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    831 	    BUS_DMA_NOWAIT);
    832 	if (error)
    833 		return (ENOBUFS);
    834 
    835 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    836 
    837 	/*  Load the DMA map for CMB block. */
    838 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    839 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    840 	    BUS_DMA_WAITOK);
    841 	if (error) {
    842 		printf("%s: could not load DMA'able memory for CMB block\n",
    843 		    device_xname(sc->sc_dev));
    844 		bus_dmamem_free(sc->sc_dmat,
    845 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
    846 		return error;
    847 	}
    848 
    849 	sc->age_rdata.age_cmb_block_paddr =
    850 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    851 
    852 	/*
    853 	 * Create DMA stuffs for SMB block
    854 	 */
    855 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    856 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    857 	    &sc->age_cdata.age_smb_block_map);
    858 	if (error)
    859 		return (ENOBUFS);
    860 
    861 	/* Allocate DMA'able memory for SMB block */
    862 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    863 	    PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
    864 	    &nsegs, BUS_DMA_WAITOK);
    865 	if (error) {
    866 		printf("%s: could not allocate DMA'able memory for "
    867 		    "SMB block\n", device_xname(sc->sc_dev));
    868 		return error;
    869 	}
    870 
    871 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    872 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    873 	    BUS_DMA_NOWAIT);
    874 	if (error)
    875 		return (ENOBUFS);
    876 
    877 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    878 
    879 	/*  Load the DMA map for SMB block */
    880 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    881 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    882 	    BUS_DMA_WAITOK);
    883 	if (error) {
    884 		printf("%s: could not load DMA'able memory for SMB block\n",
    885 		    device_xname(sc->sc_dev));
    886 		bus_dmamem_free(sc->sc_dmat,
    887 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
    888 		return error;
    889 	}
    890 
    891 	sc->age_rdata.age_smb_block_paddr =
    892 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    893 
    894 	/* Create DMA maps for Tx buffers. */
    895 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    896 		txd = &sc->age_cdata.age_txdesc[i];
    897 		txd->tx_m = NULL;
    898 		txd->tx_dmamap = NULL;
    899 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    900 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    901 		    &txd->tx_dmamap);
    902 		if (error) {
    903 			printf("%s: could not create Tx dmamap.\n",
    904 			    device_xname(sc->sc_dev));
    905 			return error;
    906 		}
    907 	}
    908 
    909 	/* Create DMA maps for Rx buffers. */
    910 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    911 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    912 	if (error) {
    913 		printf("%s: could not create spare Rx dmamap.\n",
    914 		    device_xname(sc->sc_dev));
    915 		return error;
    916 	}
    917 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    918 		rxd = &sc->age_cdata.age_rxdesc[i];
    919 		rxd->rx_m = NULL;
    920 		rxd->rx_dmamap = NULL;
    921 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    922 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    923 		if (error) {
    924 			printf("%s: could not create Rx dmamap.\n",
    925 			    device_xname(sc->sc_dev));
    926 			return error;
    927 		}
    928 	}
    929 
    930 	return (0);
    931 }
    932 
    933 static void
    934 age_dma_free(struct age_softc *sc)
    935 {
    936 	struct age_txdesc *txd;
    937 	struct age_rxdesc *rxd;
    938 	int i;
    939 
    940 	/* Tx buffers */
    941 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    942 		txd = &sc->age_cdata.age_txdesc[i];
    943 		if (txd->tx_dmamap != NULL) {
    944 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    945 			txd->tx_dmamap = NULL;
    946 		}
    947 	}
    948 	/* Rx buffers */
    949 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    950 		rxd = &sc->age_cdata.age_rxdesc[i];
    951 		if (rxd->rx_dmamap != NULL) {
    952 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    953 			rxd->rx_dmamap = NULL;
    954 		}
    955 	}
    956 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    957 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    958 		sc->age_cdata.age_rx_sparemap = NULL;
    959 	}
    960 
    961 	/* Tx ring. */
    962 	if (sc->age_cdata.age_tx_ring_map != NULL)
    963 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    964 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    965 	    sc->age_rdata.age_tx_ring != NULL)
    966 		bus_dmamem_free(sc->sc_dmat,
    967 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
    968 	sc->age_rdata.age_tx_ring = NULL;
    969 	sc->age_cdata.age_tx_ring_map = NULL;
    970 
    971 	/* Rx ring. */
    972 	if (sc->age_cdata.age_rx_ring_map != NULL)
    973 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    974 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    975 	    sc->age_rdata.age_rx_ring != NULL)
    976 		bus_dmamem_free(sc->sc_dmat,
    977 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    978 	sc->age_rdata.age_rx_ring = NULL;
    979 	sc->age_cdata.age_rx_ring_map = NULL;
    980 
    981 	/* Rx return ring. */
    982 	if (sc->age_cdata.age_rr_ring_map != NULL)
    983 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    984 	if (sc->age_cdata.age_rr_ring_map != NULL &&
    985 	    sc->age_rdata.age_rr_ring != NULL)
    986 		bus_dmamem_free(sc->sc_dmat,
    987 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
    988 	sc->age_rdata.age_rr_ring = NULL;
    989 	sc->age_cdata.age_rr_ring_map = NULL;
    990 
    991 	/* CMB block */
    992 	if (sc->age_cdata.age_cmb_block_map != NULL)
    993 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
    994 	if (sc->age_cdata.age_cmb_block_map != NULL &&
    995 	    sc->age_rdata.age_cmb_block != NULL)
    996 		bus_dmamem_free(sc->sc_dmat,
    997 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
    998 	sc->age_rdata.age_cmb_block = NULL;
    999 	sc->age_cdata.age_cmb_block_map = NULL;
   1000 
   1001 	/* SMB block */
   1002 	if (sc->age_cdata.age_smb_block_map != NULL)
   1003 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1004 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1005 	    sc->age_rdata.age_smb_block != NULL)
   1006 		bus_dmamem_free(sc->sc_dmat,
   1007 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
   1008 }
   1009 
   1010 static void
   1011 age_start(struct ifnet *ifp)
   1012 {
   1013         struct age_softc *sc = ifp->if_softc;
   1014         struct mbuf *m_head;
   1015 	int enq;
   1016 
   1017 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1018 		return;
   1019 
   1020 	enq = 0;
   1021 	for (;;) {
   1022 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1023 		if (m_head == NULL)
   1024 			break;
   1025 
   1026 		/*
   1027 		 * Pack the data into the transmit ring. If we
   1028 		 * don't have room, set the OACTIVE flag and wait
   1029 		 * for the NIC to drain the ring.
   1030 		 */
   1031 		if (age_encap(sc, &m_head)) {
   1032 			if (m_head == NULL)
   1033 				break;
   1034 			ifp->if_flags |= IFF_OACTIVE;
   1035 			break;
   1036 		}
   1037 		enq = 1;
   1038 
   1039 #if NBPFILTER > 0
   1040 		/*
   1041 		 * If there's a BPF listener, bounce a copy of this frame
   1042 		 * to him.
   1043 		 */
   1044 		if (ifp->if_bpf != NULL)
   1045 			bpf_mtap(ifp->if_bpf, m_head);
   1046 #endif
   1047 	}
   1048 
   1049 	if (enq) {
   1050 		/* Update mbox. */
   1051 		AGE_COMMIT_MBOX(sc);
   1052 		/* Set a timeout in case the chip goes out to lunch. */
   1053 		ifp->if_timer = AGE_TX_TIMEOUT;
   1054 	}
   1055 }
   1056 
   1057 static void
   1058 age_watchdog(struct ifnet *ifp)
   1059 {
   1060 	struct age_softc *sc = ifp->if_softc;
   1061 
   1062 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1063 		printf("%s: watchdog timeout (missed link)\n",
   1064 		    device_xname(sc->sc_dev));
   1065 		ifp->if_oerrors++;
   1066 		age_init(ifp);
   1067 		return;
   1068 	}
   1069 
   1070 	if (sc->age_cdata.age_tx_cnt == 0) {
   1071 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1072 		    "-- recovering\n", device_xname(sc->sc_dev));
   1073 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1074 			age_start(ifp);
   1075 		return;
   1076 	}
   1077 
   1078 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1079 	ifp->if_oerrors++;
   1080 	age_init(ifp);
   1081 
   1082 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1083 		age_start(ifp);
   1084 }
   1085 
   1086 static int
   1087 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1088 {
   1089 	struct age_softc *sc = ifp->if_softc;
   1090 	struct mii_data *mii = &sc->sc_miibus;
   1091 	struct ifreq *ifr = (struct ifreq *)data;
   1092 	int s, error = 0;
   1093 
   1094 	s = splnet();
   1095 
   1096 	switch (cmd) {
   1097 	case SIOCSIFMEDIA:
   1098 	case SIOCGIFMEDIA:
   1099 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
   1100 		break;
   1101 	default:
   1102 		error = ether_ioctl(ifp, cmd, data);
   1103 		if (error == ENETRESET) {
   1104 			if (ifp->if_flags & IFF_RUNNING)
   1105 				age_rxfilter(sc);
   1106 			error = 0;
   1107 		}
   1108 		break;
   1109 	}
   1110 
   1111 	splx(s);
   1112 	return error;
   1113 }
   1114 
   1115 static void
   1116 age_mac_config(struct age_softc *sc)
   1117 {
   1118 	struct mii_data *mii;
   1119 	uint32_t reg;
   1120 
   1121 	mii = &sc->sc_miibus;
   1122 
   1123 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1124 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1125 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1126 	reg &= ~MAC_CFG_SPEED_MASK;
   1127 
   1128 	/* Reprogram MAC with resolved speed/duplex. */
   1129 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1130 	case IFM_10_T:
   1131 	case IFM_100_TX:
   1132 		reg |= MAC_CFG_SPEED_10_100;
   1133 		break;
   1134 	case IFM_1000_T:
   1135 		reg |= MAC_CFG_SPEED_1000;
   1136 		break;
   1137 	}
   1138 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1139 		reg |= MAC_CFG_FULL_DUPLEX;
   1140 #ifdef notyet
   1141 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1142 			reg |= MAC_CFG_TX_FC;
   1143 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1144 			reg |= MAC_CFG_RX_FC;
   1145 #endif
   1146 	}
   1147 
   1148 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1149 }
   1150 
   1151 static bool
   1152 age_resume(device_t dv PMF_FN_ARGS)
   1153 {
   1154 	struct age_softc *sc = device_private(dv);
   1155 	uint16_t cmd;
   1156 
   1157 	/*
   1158 	 * Clear INTx emulation disable for hardware that
   1159 	 * is set in resume event. From Linux.
   1160 	 */
   1161 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1162 	if ((cmd & 0x0400) != 0) {
   1163 		cmd &= ~0x0400;
   1164 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1165 		    PCI_COMMAND_STATUS_REG, cmd);
   1166 	}
   1167 
   1168 	return true;
   1169 }
   1170 
   1171 static int
   1172 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1173 {
   1174 	struct age_txdesc *txd, *txd_last;
   1175 	struct tx_desc *desc;
   1176 	struct mbuf *m;
   1177 	bus_dmamap_t map;
   1178 	uint32_t cflags, poff, vtag;
   1179 	int error, i, nsegs, prod;
   1180 	struct m_tag *mtag;
   1181 
   1182 	m = *m_head;
   1183 	cflags = vtag = 0;
   1184 	poff = 0;
   1185 
   1186 	prod = sc->age_cdata.age_tx_prod;
   1187 	txd = &sc->age_cdata.age_txdesc[prod];
   1188 	txd_last = txd;
   1189 	map = txd->tx_dmamap;
   1190 
   1191 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1192 
   1193 	if (error != 0) {
   1194 		bus_dmamap_unload(sc->sc_dmat, map);
   1195 		error = EFBIG;
   1196 	}
   1197 	if (error == EFBIG) {
   1198 		error = 0;
   1199 
   1200 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1201 		if (m == NULL) {
   1202 			printf("%s: can't defrag TX mbuf\n",
   1203 			    device_xname(sc->sc_dev));
   1204 			m_freem(*m_head);
   1205 			*m_head = NULL;
   1206 			return (ENOBUFS);
   1207 		}
   1208 
   1209 		MCLGET(m, M_DONTWAIT);
   1210 		if (!(m->m_flags & M_EXT)) {
   1211 			m_freem(m);
   1212 			*m_head = NULL;
   1213 			return (ENOBUFS);
   1214 		}
   1215 		m->m_len = m->m_pkthdr.len;
   1216 		*m_head = m;
   1217 
   1218 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1219 		  	    BUS_DMA_NOWAIT);
   1220 
   1221 		if (error != 0) {
   1222 			printf("%s: could not load defragged TX mbuf\n",
   1223 			    device_xname(sc->sc_dev));
   1224 			if (!error) {
   1225 				bus_dmamap_unload(sc->sc_dmat, map);
   1226 				error = EFBIG;
   1227 			}
   1228 			m_freem(*m_head);
   1229 			*m_head = NULL;
   1230 			return (error);
   1231 		}
   1232 	} else if (error) {
   1233 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1234 		return (error);
   1235 	}
   1236 
   1237 	nsegs = map->dm_nsegs;
   1238 
   1239 	if (nsegs == 0) {
   1240 		m_freem(*m_head);
   1241 		*m_head = NULL;
   1242 		return (EIO);
   1243 	}
   1244 
   1245 	/* Check descriptor overrun. */
   1246 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1247 		bus_dmamap_unload(sc->sc_dmat, map);
   1248 		return (ENOBUFS);
   1249 	}
   1250 
   1251 	m = *m_head;
   1252 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1253 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1254 		cflags |= AGE_TD_CSUM;
   1255 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1256 			cflags |= AGE_TD_TCPCSUM;
   1257 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1258 			cflags |= AGE_TD_UDPCSUM;
   1259 		/* Set checksum start offset. */
   1260 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1261 	}
   1262 
   1263 #if NVLAN > 0
   1264 	/* Configure VLAN hardware tag insertion. */
   1265 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1266 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1267 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1268 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1269 	}
   1270 #endif
   1271 
   1272 	desc = NULL;
   1273 	for (i = 0; i < nsegs; i++) {
   1274 		desc = &sc->age_rdata.age_tx_ring[prod];
   1275 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1276 		desc->len =
   1277 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1278 		desc->flags = htole32(cflags);
   1279 		sc->age_cdata.age_tx_cnt++;
   1280 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1281 	}
   1282 
   1283 	/* Update producer index. */
   1284 	sc->age_cdata.age_tx_prod = prod;
   1285 
   1286 	/* Set EOP on the last descriptor. */
   1287 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1288 	desc = &sc->age_rdata.age_tx_ring[prod];
   1289 	desc->flags |= htole32(AGE_TD_EOP);
   1290 
   1291 	/* Swap dmamap of the first and the last. */
   1292 	txd = &sc->age_cdata.age_txdesc[prod];
   1293 	map = txd_last->tx_dmamap;
   1294 	txd_last->tx_dmamap = txd->tx_dmamap;
   1295 	txd->tx_dmamap = map;
   1296 	txd->tx_m = m;
   1297 
   1298 	/* Sync descriptors. */
   1299 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1300 	    BUS_DMASYNC_PREWRITE);
   1301 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1302 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1303 
   1304 	return (0);
   1305 }
   1306 
   1307 static void
   1308 age_txintr(struct age_softc *sc, int tpd_cons)
   1309 {
   1310 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1311 	struct age_txdesc *txd;
   1312 	int cons, prog;
   1313 
   1314 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1315 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1316 
   1317 	/*
   1318 	 * Go through our Tx list and free mbufs for those
   1319 	 * frames which have been transmitted.
   1320 	 */
   1321 	cons = sc->age_cdata.age_tx_cons;
   1322 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1323 		if (sc->age_cdata.age_tx_cnt <= 0)
   1324 			break;
   1325 		prog++;
   1326 		ifp->if_flags &= ~IFF_OACTIVE;
   1327 		sc->age_cdata.age_tx_cnt--;
   1328 		txd = &sc->age_cdata.age_txdesc[cons];
   1329 		/*
   1330 		 * Clear Tx descriptors, it's not required but would
   1331 		 * help debugging in case of Tx issues.
   1332 		 */
   1333 		txd->tx_desc->addr = 0;
   1334 		txd->tx_desc->len = 0;
   1335 		txd->tx_desc->flags = 0;
   1336 
   1337 		if (txd->tx_m == NULL)
   1338 			continue;
   1339 		/* Reclaim transmitted mbufs. */
   1340 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1341 		m_freem(txd->tx_m);
   1342 		txd->tx_m = NULL;
   1343 	}
   1344 
   1345 	if (prog > 0) {
   1346 		sc->age_cdata.age_tx_cons = cons;
   1347 
   1348 		/*
   1349 		 * Unarm watchdog timer only when there are no pending
   1350 		 * Tx descriptors in queue.
   1351 		 */
   1352 		if (sc->age_cdata.age_tx_cnt == 0)
   1353 			ifp->if_timer = 0;
   1354 
   1355 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1356 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1357 		    BUS_DMASYNC_PREWRITE);
   1358 	}
   1359 }
   1360 
   1361 /* Receive a frame. */
   1362 static void
   1363 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1364 {
   1365 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1366 	struct age_rxdesc *rxd;
   1367 	struct rx_desc *desc;
   1368 	struct mbuf *mp, *m;
   1369 	uint32_t status, index, vtag;
   1370 	int count, nsegs, pktlen;
   1371 	int rx_cons;
   1372 
   1373 	status = le32toh(rxrd->flags);
   1374 	index = le32toh(rxrd->index);
   1375 	rx_cons = AGE_RX_CONS(index);
   1376 	nsegs = AGE_RX_NSEGS(index);
   1377 
   1378 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1379 	if ((status & AGE_RRD_ERROR) != 0 &&
   1380 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1381 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1382 		/*
   1383 		 * We want to pass the following frames to upper
   1384 		 * layer regardless of error status of Rx return
   1385 		 * ring.
   1386 		 *
   1387 		 *  o IP/TCP/UDP checksum is bad.
   1388 		 *  o frame length and protocol specific length
   1389 		 *     does not match.
   1390 		 */
   1391 		sc->age_cdata.age_rx_cons += nsegs;
   1392 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1393 		return;
   1394 	}
   1395 
   1396 	pktlen = 0;
   1397 	for (count = 0; count < nsegs; count++,
   1398 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1399 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1400 		mp = rxd->rx_m;
   1401 		desc = rxd->rx_desc;
   1402 		/* Add a new receive buffer to the ring. */
   1403 		if (age_newbuf(sc, rxd, 0) != 0) {
   1404 			ifp->if_iqdrops++;
   1405 			/* Reuse Rx buffers. */
   1406 			if (sc->age_cdata.age_rxhead != NULL) {
   1407 				m_freem(sc->age_cdata.age_rxhead);
   1408 				AGE_RXCHAIN_RESET(sc);
   1409 			}
   1410 			break;
   1411 		}
   1412 
   1413 		/* The length of the first mbuf is computed last. */
   1414 		if (count != 0) {
   1415 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1416 			pktlen += mp->m_len;
   1417 		}
   1418 
   1419 		/* Chain received mbufs. */
   1420 		if (sc->age_cdata.age_rxhead == NULL) {
   1421 			sc->age_cdata.age_rxhead = mp;
   1422 			sc->age_cdata.age_rxtail = mp;
   1423 		} else {
   1424 			mp->m_flags &= ~M_PKTHDR;
   1425 			sc->age_cdata.age_rxprev_tail =
   1426 			    sc->age_cdata.age_rxtail;
   1427 			sc->age_cdata.age_rxtail->m_next = mp;
   1428 			sc->age_cdata.age_rxtail = mp;
   1429 		}
   1430 
   1431 		if (count == nsegs - 1) {
   1432 			/*
   1433 			 * It seems that L1 controller has no way
   1434 			 * to tell hardware to strip CRC bytes.
   1435 			 */
   1436 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1437 			if (nsegs > 1) {
   1438 				/* Remove the CRC bytes in chained mbufs. */
   1439 				pktlen -= ETHER_CRC_LEN;
   1440 				if (mp->m_len <= ETHER_CRC_LEN) {
   1441 					sc->age_cdata.age_rxtail =
   1442 					    sc->age_cdata.age_rxprev_tail;
   1443 					sc->age_cdata.age_rxtail->m_len -=
   1444 					    (ETHER_CRC_LEN - mp->m_len);
   1445 					sc->age_cdata.age_rxtail->m_next = NULL;
   1446 					m_freem(mp);
   1447 				} else {
   1448 					mp->m_len -= ETHER_CRC_LEN;
   1449 				}
   1450 			}
   1451 
   1452 			m = sc->age_cdata.age_rxhead;
   1453 			m->m_flags |= M_PKTHDR;
   1454 			m->m_pkthdr.rcvif = ifp;
   1455 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1456 			/* Set the first mbuf length. */
   1457 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1458 
   1459 			/*
   1460 			 * Set checksum information.
   1461 			 * It seems that L1 controller can compute partial
   1462 			 * checksum. The partial checksum value can be used
   1463 			 * to accelerate checksum computation for fragmented
   1464 			 * TCP/UDP packets. Upper network stack already
   1465 			 * takes advantage of the partial checksum value in
   1466 			 * IP reassembly stage. But I'm not sure the
   1467 			 * correctness of the partial hardware checksum
   1468 			 * assistance due to lack of data sheet. If it is
   1469 			 * proven to work on L1 I'll enable it.
   1470 			 */
   1471 			if (status & AGE_RRD_IPV4) {
   1472 				if (!(status & AGE_RRD_IPCSUM_NOK))
   1473 					m->m_pkthdr.csum_flags |=
   1474 					    M_CSUM_IPv4_BAD;
   1475 				if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1476 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
   1477 					m->m_pkthdr.csum_flags |=
   1478 					    M_CSUM_TCP_UDP_BAD;
   1479 				}
   1480 				/*
   1481 				 * Don't mark bad checksum for TCP/UDP frames
   1482 				 * as fragmented frames may always have set
   1483 				 * bad checksummed bit of descriptor status.
   1484 				 */
   1485 			}
   1486 #if NVLAN > 0
   1487 			/* Check for VLAN tagged frames. */
   1488 			if (status & AGE_RRD_VLAN) {
   1489 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1490 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1491 					continue);
   1492 			}
   1493 #endif
   1494 
   1495 #if NBPFILTER > 0
   1496 			if (ifp->if_bpf)
   1497 				bpf_mtap(ifp->if_bpf, m);
   1498 #endif
   1499 			/* Pass it on. */
   1500 			ether_input(ifp, m);
   1501 
   1502 			/* Reset mbuf chains. */
   1503 			AGE_RXCHAIN_RESET(sc);
   1504 		}
   1505 	}
   1506 
   1507 	if (count != nsegs) {
   1508 		sc->age_cdata.age_rx_cons += nsegs;
   1509 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1510 	} else
   1511 		sc->age_cdata.age_rx_cons = rx_cons;
   1512 }
   1513 
   1514 static void
   1515 age_rxintr(struct age_softc *sc, int rr_prod)
   1516 {
   1517 	struct rx_rdesc *rxrd;
   1518 	int rr_cons, nsegs, pktlen, prog;
   1519 
   1520 	rr_cons = sc->age_cdata.age_rr_cons;
   1521 	if (rr_cons == rr_prod)
   1522 		return;
   1523 
   1524 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1525 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1526 	    BUS_DMASYNC_POSTREAD);
   1527 
   1528 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1529 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1530 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1531 		if (nsegs == 0)
   1532 			break;
   1533 		/*
   1534 		 * Check number of segments against received bytes
   1535 		 * Non-matching value would indicate that hardware
   1536 		 * is still trying to update Rx return descriptors.
   1537 		 * I'm not sure whether this check is really needed.
   1538 		 */
   1539 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1540 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) /
   1541 		    (MCLBYTES - ETHER_HDR_LEN)))
   1542 			break;
   1543 
   1544 		/* Received a frame. */
   1545 		age_rxeof(sc, rxrd);
   1546 
   1547 		/* Clear return ring. */
   1548 		rxrd->index = 0;
   1549 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1550 	}
   1551 
   1552 	if (prog > 0) {
   1553 		/* Update the consumer index. */
   1554 		sc->age_cdata.age_rr_cons = rr_cons;
   1555 
   1556 		/* Sync descriptors. */
   1557 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1558 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1559 		    BUS_DMASYNC_PREWRITE);
   1560 
   1561 		/* Notify hardware availability of new Rx buffers. */
   1562 		AGE_COMMIT_MBOX(sc);
   1563 	}
   1564 }
   1565 
   1566 static void
   1567 age_tick(void *xsc)
   1568 {
   1569 	struct age_softc *sc = xsc;
   1570 	struct mii_data *mii = &sc->sc_miibus;
   1571 	int s;
   1572 
   1573 	s = splnet();
   1574 	mii_tick(mii);
   1575 	splx(s);
   1576 
   1577 	callout_schedule(&sc->sc_tick_ch, hz);
   1578 }
   1579 
   1580 static void
   1581 age_reset(struct age_softc *sc)
   1582 {
   1583 	uint32_t reg;
   1584 	int i;
   1585 
   1586 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1587 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1588 		DELAY(1);
   1589 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1590 			break;
   1591 	}
   1592 	if (i == 0)
   1593 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1594 
   1595 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1596 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1597 			break;
   1598 		DELAY(10);
   1599 	}
   1600 
   1601 	if (i == 0)
   1602 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1603 		    reg);
   1604 
   1605 	/* Initialize PCIe module. From Linux. */
   1606 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1607 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1608 }
   1609 
   1610 static int
   1611 age_init(struct ifnet *ifp)
   1612 {
   1613 	struct age_softc *sc = ifp->if_softc;
   1614 	struct mii_data *mii;
   1615 	uint8_t eaddr[ETHER_ADDR_LEN];
   1616 	bus_addr_t paddr;
   1617 	uint32_t reg, fsize;
   1618 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1619 	int error;
   1620 
   1621 	/*
   1622 	 * Cancel any pending I/O.
   1623 	 */
   1624 	age_stop(sc);
   1625 
   1626 	/*
   1627 	 * Reset the chip to a known state.
   1628 	 */
   1629 	age_reset(sc);
   1630 
   1631 	/* Initialize descriptors. */
   1632 	error = age_init_rx_ring(sc);
   1633         if (error != 0) {
   1634 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1635                 age_stop(sc);
   1636 		return (error);
   1637         }
   1638 	age_init_rr_ring(sc);
   1639 	age_init_tx_ring(sc);
   1640 	age_init_cmb_block(sc);
   1641 	age_init_smb_block(sc);
   1642 
   1643 	/* Reprogram the station address. */
   1644 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1645 	CSR_WRITE_4(sc, AGE_PAR0,
   1646 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1647 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1648 
   1649 	/* Set descriptor base addresses. */
   1650 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1651 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1652 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1653 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1654 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1655 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1656 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1657 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1658 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1659 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1660 	paddr = sc->age_rdata.age_smb_block_paddr;
   1661 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1662 
   1663 	/* Set Rx/Rx return descriptor counter. */
   1664 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1665 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1666 	    DESC_RRD_CNT_MASK) |
   1667 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1668 
   1669 	/* Set Tx descriptor counter. */
   1670 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1671 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1672 
   1673 	/* Tell hardware that we're ready to load descriptors. */
   1674 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1675 
   1676         /*
   1677 	 * Initialize mailbox register.
   1678 	 * Updated producer/consumer index information is exchanged
   1679 	 * through this mailbox register. However Tx producer and
   1680 	 * Rx return consumer/Rx producer are all shared such that
   1681 	 * it's hard to separate code path between Tx and Rx without
   1682 	 * locking. If L1 hardware have a separate mail box register
   1683 	 * for Tx and Rx consumer/producer management we could have
   1684 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1685 	 * been run without any locking.
   1686 	*/
   1687 	AGE_COMMIT_MBOX(sc);
   1688 
   1689 	/* Configure IPG/IFG parameters. */
   1690 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1691 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1692 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1693 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1694 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1695 
   1696 	/* Set parameters for half-duplex media. */
   1697 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1698 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1699 	    HDPX_CFG_LCOL_MASK) |
   1700 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1701 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1702 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1703 	    HDPX_CFG_ABEBT_MASK) |
   1704 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1705 	     HDPX_CFG_JAMIPG_MASK));
   1706 
   1707 	/* Configure interrupt moderation timer. */
   1708 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1709 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1710 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1711 	reg &= ~MASTER_MTIMER_ENB;
   1712 	if (AGE_USECS(sc->age_int_mod) == 0)
   1713 		reg &= ~MASTER_ITIMER_ENB;
   1714 	else
   1715 		reg |= MASTER_ITIMER_ENB;
   1716 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1717 	if (agedebug)
   1718 		printf("%s: interrupt moderation is %d us.\n",
   1719 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1720 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1721 
   1722 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1723 	if (ifp->if_mtu < ETHERMTU)
   1724 		sc->age_max_frame_size = ETHERMTU;
   1725 	else
   1726 		sc->age_max_frame_size = ifp->if_mtu;
   1727 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1728 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1729 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1730 
   1731 	/* Configure jumbo frame. */
   1732 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1733 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1734 	    (((fsize / sizeof(uint64_t)) <<
   1735 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1736 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1737 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1738 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1739 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1740 
   1741 	/* Configure flow-control parameters. From Linux. */
   1742 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1743 		/*
   1744 		 * Magic workaround for old-L1.
   1745 		 * Don't know which hw revision requires this magic.
   1746 		 */
   1747 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1748 		/*
   1749 		 * Another magic workaround for flow-control mode
   1750 		 * change. From Linux.
   1751 		 */
   1752 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1753 	}
   1754 	/*
   1755 	 * TODO
   1756 	 *  Should understand pause parameter relationships between FIFO
   1757 	 *  size and number of Rx descriptors and Rx return descriptors.
   1758 	 *
   1759 	 *  Magic parameters came from Linux.
   1760 	 */
   1761 	switch (sc->age_chip_rev) {
   1762 	case 0x8001:
   1763 	case 0x9001:
   1764 	case 0x9002:
   1765 	case 0x9003:
   1766 		rxf_hi = AGE_RX_RING_CNT / 16;
   1767 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1768 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1769 		rrd_lo = AGE_RR_RING_CNT / 16;
   1770 		break;
   1771 	default:
   1772 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1773 		rxf_lo = reg / 16;
   1774 		if (rxf_lo < 192)
   1775 			rxf_lo = 192;
   1776 		rxf_hi = (reg * 7) / 8;
   1777 		if (rxf_hi < rxf_lo)
   1778 			rxf_hi = rxf_lo + 16;
   1779 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1780 		rrd_lo = reg / 8;
   1781 		rrd_hi = (reg * 7) / 8;
   1782 		if (rrd_lo < 2)
   1783 			rrd_lo = 2;
   1784 		if (rrd_hi < rrd_lo)
   1785 			rrd_hi = rrd_lo + 3;
   1786 		break;
   1787 	}
   1788 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1789 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1790 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1791 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1792 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1793 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1794 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1795 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1796 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1797 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1798 
   1799 	/* Configure RxQ. */
   1800 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1801 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1802 	    RXQ_CFG_RD_BURST_MASK) |
   1803 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1804 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1805 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1806 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1807 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1808 
   1809 	/* Configure TxQ. */
   1810 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1811 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1812 	    TXQ_CFG_TPD_BURST_MASK) |
   1813 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1814 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1815 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1816 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1817 	    TXQ_CFG_ENB);
   1818 
   1819 	/* Configure DMA parameters. */
   1820 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1821 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1822 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1823 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1824 
   1825 	/* Configure CMB DMA write threshold. */
   1826 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1827 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1828 	    CMB_WR_THRESH_RRD_MASK) |
   1829 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1830 	    CMB_WR_THRESH_TPD_MASK));
   1831 
   1832 	/* Set CMB/SMB timer and enable them. */
   1833 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1834 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1835 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1836 
   1837 	/* Request SMB updates for every seconds. */
   1838 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1839 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1840 
   1841 	/*
   1842 	 * Disable all WOL bits as WOL can interfere normal Rx
   1843 	 * operation.
   1844 	 */
   1845 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1846 
   1847         /*
   1848 	 * Configure Tx/Rx MACs.
   1849 	 *  - Auto-padding for short frames.
   1850 	 *  - Enable CRC generation.
   1851 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1852 	 *  of MAC is followed after link establishment.
   1853 	 */
   1854 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1855 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1856 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1857 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1858 	    MAC_CFG_PREAMBLE_MASK));
   1859 
   1860 	/* Set up the receive filter. */
   1861 	age_rxfilter(sc);
   1862 	age_rxvlan(sc);
   1863 
   1864 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1865 	reg |= MAC_CFG_RXCSUM_ENB;
   1866 
   1867 	/* Ack all pending interrupts and clear it. */
   1868 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1869 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1870 
   1871 	/* Finally enable Tx/Rx MAC. */
   1872 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1873 
   1874 	sc->age_flags &= ~AGE_FLAG_LINK;
   1875 
   1876 	/* Switch to the current media. */
   1877 	mii = &sc->sc_miibus;
   1878 	mii_mediachg(mii);
   1879 
   1880 	callout_schedule(&sc->sc_tick_ch, hz);
   1881 
   1882 	ifp->if_flags |= IFF_RUNNING;
   1883 	ifp->if_flags &= ~IFF_OACTIVE;
   1884 
   1885 	return (0);
   1886 }
   1887 
   1888 static void
   1889 age_stop(struct age_softc *sc)
   1890 {
   1891 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1892 	struct age_txdesc *txd;
   1893 	struct age_rxdesc *rxd;
   1894 	uint32_t reg;
   1895 	int i;
   1896 
   1897 	callout_stop(&sc->sc_tick_ch);
   1898 
   1899 	/*
   1900 	 * Mark the interface down and cancel the watchdog timer.
   1901 	 */
   1902 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1903 	ifp->if_timer = 0;
   1904 
   1905 	sc->age_flags &= ~AGE_FLAG_LINK;
   1906 
   1907 	/*
   1908 	 * Disable interrupts.
   1909 	 */
   1910 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1911 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1912 
   1913 	/* Stop CMB/SMB updates. */
   1914 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1915 
   1916 	/* Stop Rx/Tx MAC. */
   1917 	age_stop_rxmac(sc);
   1918 	age_stop_txmac(sc);
   1919 
   1920 	/* Stop DMA. */
   1921 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1922 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1923 
   1924 	/* Stop TxQ/RxQ. */
   1925 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1926 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1927 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1928 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1929 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1930 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1931 			break;
   1932 		DELAY(10);
   1933 	}
   1934 	if (i == 0)
   1935 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1936 		    device_xname(sc->sc_dev), reg);
   1937 
   1938 	/* Reclaim Rx buffers that have been processed. */
   1939 	if (sc->age_cdata.age_rxhead != NULL)
   1940 		m_freem(sc->age_cdata.age_rxhead);
   1941 	AGE_RXCHAIN_RESET(sc);
   1942 
   1943 	/*
   1944 	 * Free RX and TX mbufs still in the queues.
   1945 	 */
   1946 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1947 		rxd = &sc->age_cdata.age_rxdesc[i];
   1948 		if (rxd->rx_m != NULL) {
   1949 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1950 			m_freem(rxd->rx_m);
   1951 			rxd->rx_m = NULL;
   1952 		}
   1953 	}
   1954 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1955 		txd = &sc->age_cdata.age_txdesc[i];
   1956 		if (txd->tx_m != NULL) {
   1957 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1958 			m_freem(txd->tx_m);
   1959 			txd->tx_m = NULL;
   1960 		}
   1961 	}
   1962 }
   1963 
   1964 static void
   1965 age_stats_update(struct age_softc *sc)
   1966 {
   1967 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1968 	struct age_stats *stat;
   1969 	struct smb *smb;
   1970 
   1971 	stat = &sc->age_stat;
   1972 
   1973 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1974 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1975 
   1976 	smb = sc->age_rdata.age_smb_block;
   1977 	if (smb->updated == 0)
   1978 		return;
   1979 
   1980 	/* Rx stats. */
   1981 	stat->rx_frames += smb->rx_frames;
   1982 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1983 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1984 	stat->rx_pause_frames += smb->rx_pause_frames;
   1985 	stat->rx_control_frames += smb->rx_control_frames;
   1986 	stat->rx_crcerrs += smb->rx_crcerrs;
   1987 	stat->rx_lenerrs += smb->rx_lenerrs;
   1988 	stat->rx_bytes += smb->rx_bytes;
   1989 	stat->rx_runts += smb->rx_runts;
   1990 	stat->rx_fragments += smb->rx_fragments;
   1991 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1992 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1993 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1994 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1995 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1996 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1997 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1998 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1999 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2000 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2001 	stat->rx_alignerrs += smb->rx_alignerrs;
   2002 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2003 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2004 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2005 
   2006 	/* Tx stats. */
   2007 	stat->tx_frames += smb->tx_frames;
   2008 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2009 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2010 	stat->tx_pause_frames += smb->tx_pause_frames;
   2011 	stat->tx_excess_defer += smb->tx_excess_defer;
   2012 	stat->tx_control_frames += smb->tx_control_frames;
   2013 	stat->tx_deferred += smb->tx_deferred;
   2014 	stat->tx_bytes += smb->tx_bytes;
   2015 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2016 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2017 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2018 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2019 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2020 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2021 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2022 	stat->tx_single_colls += smb->tx_single_colls;
   2023 	stat->tx_multi_colls += smb->tx_multi_colls;
   2024 	stat->tx_late_colls += smb->tx_late_colls;
   2025 	stat->tx_excess_colls += smb->tx_excess_colls;
   2026 	stat->tx_underrun += smb->tx_underrun;
   2027 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2028 	stat->tx_lenerrs += smb->tx_lenerrs;
   2029 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2030 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2031 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2032 
   2033 	/* Update counters in ifnet. */
   2034 	ifp->if_opackets += smb->tx_frames;
   2035 
   2036 	ifp->if_collisions += smb->tx_single_colls +
   2037 	    smb->tx_multi_colls + smb->tx_late_colls +
   2038 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2039 
   2040 	ifp->if_oerrors += smb->tx_excess_colls +
   2041 	    smb->tx_late_colls + smb->tx_underrun +
   2042 	    smb->tx_pkts_truncated;
   2043 
   2044 	ifp->if_ipackets += smb->rx_frames;
   2045 
   2046 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2047 	    smb->rx_runts + smb->rx_pkts_truncated +
   2048 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2049 	    smb->rx_alignerrs;
   2050 
   2051 	/* Update done, clear. */
   2052 	smb->updated = 0;
   2053 
   2054 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2055 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2056 }
   2057 
   2058 static void
   2059 age_stop_txmac(struct age_softc *sc)
   2060 {
   2061 	uint32_t reg;
   2062 	int i;
   2063 
   2064 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2065 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2066 		reg &= ~MAC_CFG_TX_ENB;
   2067 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2068 	}
   2069 	/* Stop Tx DMA engine. */
   2070 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2071 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2072 		reg &= ~DMA_CFG_RD_ENB;
   2073 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2074 	}
   2075 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2076 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2077 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2078 			break;
   2079 		DELAY(10);
   2080 	}
   2081 	if (i == 0)
   2082 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2083 }
   2084 
   2085 static void
   2086 age_stop_rxmac(struct age_softc *sc)
   2087 {
   2088 	uint32_t reg;
   2089 	int i;
   2090 
   2091 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2092 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2093 		reg &= ~MAC_CFG_RX_ENB;
   2094 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2095 	}
   2096 	/* Stop Rx DMA engine. */
   2097 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2098 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2099 		reg &= ~DMA_CFG_WR_ENB;
   2100 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2101 	}
   2102 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2103 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2104 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2105 			break;
   2106 		DELAY(10);
   2107 	}
   2108 	if (i == 0)
   2109 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2110 }
   2111 
   2112 static void
   2113 age_init_tx_ring(struct age_softc *sc)
   2114 {
   2115 	struct age_ring_data *rd;
   2116 	struct age_txdesc *txd;
   2117 	int i;
   2118 
   2119 	sc->age_cdata.age_tx_prod = 0;
   2120 	sc->age_cdata.age_tx_cons = 0;
   2121 	sc->age_cdata.age_tx_cnt = 0;
   2122 
   2123 	rd = &sc->age_rdata;
   2124 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2125 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2126 		txd = &sc->age_cdata.age_txdesc[i];
   2127 		txd->tx_desc = &rd->age_tx_ring[i];
   2128 		txd->tx_m = NULL;
   2129 	}
   2130 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2131 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2132 }
   2133 
   2134 static int
   2135 age_init_rx_ring(struct age_softc *sc)
   2136 {
   2137 	struct age_ring_data *rd;
   2138 	struct age_rxdesc *rxd;
   2139 	int i;
   2140 
   2141 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2142 	rd = &sc->age_rdata;
   2143 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2144 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2145 		rxd = &sc->age_cdata.age_rxdesc[i];
   2146 		rxd->rx_m = NULL;
   2147 		rxd->rx_desc = &rd->age_rx_ring[i];
   2148 		if (age_newbuf(sc, rxd, 1) != 0)
   2149 			return (ENOBUFS);
   2150 	}
   2151 
   2152 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2153 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2154 
   2155 	return (0);
   2156 }
   2157 
   2158 static void
   2159 age_init_rr_ring(struct age_softc *sc)
   2160 {
   2161 	struct age_ring_data *rd;
   2162 
   2163 	sc->age_cdata.age_rr_cons = 0;
   2164 	AGE_RXCHAIN_RESET(sc);
   2165 
   2166 	rd = &sc->age_rdata;
   2167 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2168 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2169 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2170 }
   2171 
   2172 static void
   2173 age_init_cmb_block(struct age_softc *sc)
   2174 {
   2175 	struct age_ring_data *rd;
   2176 
   2177 	rd = &sc->age_rdata;
   2178 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2179 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2180 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2181 }
   2182 
   2183 static void
   2184 age_init_smb_block(struct age_softc *sc)
   2185 {
   2186 	struct age_ring_data *rd;
   2187 
   2188 	rd = &sc->age_rdata;
   2189 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2190 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2191 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2192 }
   2193 
   2194 static int
   2195 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2196 {
   2197 	struct rx_desc *desc;
   2198 	struct mbuf *m;
   2199 	bus_dmamap_t map;
   2200 	int error;
   2201 
   2202 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2203 	if (m == NULL)
   2204 		return (ENOBUFS);
   2205 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2206 	if (!(m->m_flags & M_EXT)) {
   2207 		 m_freem(m);
   2208 		 return (ENOBUFS);
   2209 	}
   2210 
   2211 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2212 	m_adj(m, PAGE_SIZE);
   2213 
   2214 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2215 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2216 
   2217 	if (error != 0) {
   2218 		if (!error) {
   2219 			bus_dmamap_unload(sc->sc_dmat,
   2220 			    sc->age_cdata.age_rx_sparemap);
   2221 			error = EFBIG;
   2222 			printf("%s: too many segments?!\n",
   2223 			    device_xname(sc->sc_dev));
   2224 		}
   2225 		m_freem(m);
   2226 
   2227 		if (init)
   2228 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2229 		return (error);
   2230 	}
   2231 
   2232 	if (rxd->rx_m != NULL) {
   2233 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2234 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2235 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2236 	}
   2237 	map = rxd->rx_dmamap;
   2238 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2239 	sc->age_cdata.age_rx_sparemap = map;
   2240 	rxd->rx_m = m;
   2241 
   2242 	desc = rxd->rx_desc;
   2243 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2244 	desc->len =
   2245 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2246 	    AGE_RD_LEN_SHIFT);
   2247 
   2248 	return (0);
   2249 }
   2250 
   2251 static void
   2252 age_rxvlan(struct age_softc *sc)
   2253 {
   2254 	uint32_t reg;
   2255 
   2256 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2257 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2258 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2259 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2260 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2261 }
   2262 
   2263 static void
   2264 age_rxfilter(struct age_softc *sc)
   2265 {
   2266 	struct ethercom *ec = &sc->sc_ec;
   2267 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2268 	struct ether_multi *enm;
   2269 	struct ether_multistep step;
   2270 	uint32_t crc;
   2271 	uint32_t mchash[2];
   2272 	uint32_t rxcfg;
   2273 
   2274 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2275 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2276 
   2277 	if (ifp->if_flags & IFF_BROADCAST)
   2278 		rxcfg |= MAC_CFG_BCAST;
   2279 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
   2280 		if (ifp->if_flags & IFF_PROMISC)
   2281 			rxcfg |= MAC_CFG_PROMISC;
   2282 		if (ifp->if_flags & IFF_ALLMULTI)
   2283 			rxcfg |= MAC_CFG_ALLMULTI;
   2284 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
   2285 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
   2286 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2287 		return;
   2288 	}
   2289 
   2290 	/* Program new filter. */
   2291 	memset(mchash, 0, sizeof(mchash));
   2292 
   2293 	ETHER_FIRST_MULTI(step, ec, enm);
   2294 	while (enm != NULL) {
   2295 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
   2296 		    enm->enm_addrlo), ETHER_ADDR_LEN);
   2297 
   2298 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2299 		ETHER_NEXT_MULTI(step, enm);
   2300 	}
   2301 
   2302 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2303 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2304 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2305 }
   2306