Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.8.2.3
      1 /*	$NetBSD: if_age.c,v 1.8.2.3 2009/03/03 18:31:07 skrll Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.8.2.3 2009/03/03 18:31:07 skrll Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101 static int	age_dma_alloc(struct age_softc *);
    102 static void	age_dma_free(struct age_softc *);
    103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104 static void	age_phy_reset(struct age_softc *);
    105 
    106 static int	age_encap(struct age_softc *, struct mbuf **);
    107 static void	age_init_tx_ring(struct age_softc *);
    108 static int	age_init_rx_ring(struct age_softc *);
    109 static void	age_init_rr_ring(struct age_softc *);
    110 static void	age_init_cmb_block(struct age_softc *);
    111 static void	age_init_smb_block(struct age_softc *);
    112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113 static void	age_mac_config(struct age_softc *);
    114 static void	age_txintr(struct age_softc *, int);
    115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116 static void	age_rxintr(struct age_softc *, int);
    117 static void	age_tick(void *);
    118 static void	age_reset(struct age_softc *);
    119 static void	age_stop(struct ifnet *, int);
    120 static void	age_stats_update(struct age_softc *);
    121 static void	age_stop_txmac(struct age_softc *);
    122 static void	age_stop_rxmac(struct age_softc *);
    123 static void	age_rxvlan(struct age_softc *sc);
    124 static void	age_rxfilter(struct age_softc *);
    125 
    126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127     age_match, age_attach, age_detach, NULL);
    128 
    129 int agedebug = 0;
    130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131 
    132 #define ETHER_ALIGN 2
    133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134 
    135 static int
    136 age_match(device_t dev, cfdata_t match, void *aux)
    137 {
    138 	struct pci_attach_args *pa = aux;
    139 
    140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142 }
    143 
    144 static void
    145 age_attach(device_t parent, device_t self, void *aux)
    146 {
    147 	struct age_softc *sc = device_private(self);
    148 	struct pci_attach_args *pa = aux;
    149 	pci_intr_handle_t ih;
    150 	const char *intrstr;
    151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152 	pcireg_t memtype;
    153 	int error = 0;
    154 
    155 	aprint_naive("\n");
    156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157 
    158 	sc->sc_dev = self;
    159 	sc->sc_dmat = pa->pa_dmat;
    160 	sc->sc_pct = pa->pa_pc;
    161 	sc->sc_pcitag = pa->pa_tag;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172         default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		goto fail;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc);
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		goto fail;
    200 	}
    201 	aprint_normal_dev(self, "%s\n", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_stop = age_stop;
    250 	ifp->if_watchdog = age_watchdog;
    251 	ifp->if_baudrate = IF_Gbps(1);
    252 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    253 	IFQ_SET_READY(&ifp->if_snd);
    254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    255 
    256 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    257 
    258 #ifdef AGE_CHECKSUM
    259 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    260 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    261 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    262 #endif
    263 
    264 #if NVLAN > 0
    265 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    266 #endif
    267 
    268 	/* Set up MII bus. */
    269 	sc->sc_miibus.mii_ifp = ifp;
    270 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    271 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    272 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    273 
    274 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    275 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    276 	    age_mediastatus);
    277 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    278 	   MII_OFFSET_ANY, 0);
    279 
    280 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    281 		aprint_error_dev(self, "no PHY found!\n");
    282 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    283 		    0, NULL);
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    285 	} else
    286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    287 
    288 	if_attach(ifp);
    289 	ether_ifattach(ifp, sc->sc_enaddr);
    290 
    291 	if (!pmf_device_register(self, NULL, age_resume))
    292 		aprint_error_dev(self, "couldn't establish power handler\n");
    293 	else
    294 		pmf_class_network_register(self, ifp);
    295 
    296 	return;
    297 
    298 fail:
    299 	age_dma_free(sc);
    300 	if (sc->sc_irq_handle != NULL) {
    301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302 		sc->sc_irq_handle = NULL;
    303 	}
    304 	if (sc->sc_mem_size) {
    305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306 		sc->sc_mem_size = 0;
    307 	}
    308 }
    309 
    310 static int
    311 age_detach(device_t self, int flags)
    312 {
    313 	struct age_softc *sc = device_private(self);
    314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315 	int s;
    316 
    317 	s = splnet();
    318 	age_stop(ifp, 0);
    319 	splx(s);
    320 
    321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    322 
    323 	/* Delete all remaining media. */
    324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    325 
    326 	ether_ifdetach(ifp);
    327 	if_detach(ifp);
    328 	age_dma_free(sc);
    329 
    330 	if (sc->sc_irq_handle != NULL) {
    331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    332 		sc->sc_irq_handle = NULL;
    333 	}
    334 
    335 	return 0;
    336 }
    337 
    338 /*
    339  *	Read a PHY register on the MII of the L1.
    340  */
    341 static int
    342 age_miibus_readreg(device_t dev, int phy, int reg)
    343 {
    344 	struct age_softc *sc = device_private(dev);
    345 	uint32_t v;
    346 	int i;
    347 
    348 	if (phy != sc->age_phyaddr)
    349 		return 0;
    350 
    351 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    352 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    353 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    354 		DELAY(1);
    355 		v = CSR_READ_4(sc, AGE_MDIO);
    356 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    357 			break;
    358 	}
    359 
    360 	if (i == 0) {
    361 		printf("%s: phy read timeout: phy %d, reg %d\n",
    362 			device_xname(sc->sc_dev), phy, reg);
    363 		return 0;
    364 	}
    365 
    366 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    367 }
    368 
    369 /*
    370  * 	Write a PHY register on the MII of the L1.
    371  */
    372 static void
    373 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    374 {
    375 	struct age_softc *sc = device_private(dev);
    376 	uint32_t v;
    377 	int i;
    378 
    379 	if (phy != sc->age_phyaddr)
    380 		return;
    381 
    382 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    383 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    384 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    385 
    386 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    387 		DELAY(1);
    388 		v = CSR_READ_4(sc, AGE_MDIO);
    389 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == 0) {
    394 		printf("%s: phy write timeout: phy %d, reg %d\n",
    395 		    device_xname(sc->sc_dev), phy, reg);
    396 	}
    397 }
    398 
    399 /*
    400  *	Callback from MII layer when media changes.
    401  */
    402 static void
    403 age_miibus_statchg(device_t dev)
    404 {
    405 	struct age_softc *sc = device_private(dev);
    406 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    407 	struct mii_data *mii;
    408 
    409 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    410 		return;
    411 
    412 	mii = &sc->sc_miibus;
    413 
    414 	sc->age_flags &= ~AGE_FLAG_LINK;
    415 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    416 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    417 		case IFM_10_T:
    418 		case IFM_100_TX:
    419 		case IFM_1000_T:
    420 			sc->age_flags |= AGE_FLAG_LINK;
    421 			break;
    422 		default:
    423 			break;
    424 		}
    425 	}
    426 
    427 	/* Stop Rx/Tx MACs. */
    428 	age_stop_rxmac(sc);
    429 	age_stop_txmac(sc);
    430 
    431 	/* Program MACs with resolved speed/duplex/flow-control. */
    432 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    433 		uint32_t reg;
    434 
    435 		age_mac_config(sc);
    436 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    437 		/* Restart DMA engine and Tx/Rx MAC. */
    438 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    439 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    440 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    441 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    442 	}
    443 }
    444 
    445 /*
    446  *	Get the current interface media status.
    447  */
    448 static void
    449 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    450 {
    451 	struct age_softc *sc = ifp->if_softc;
    452 	struct mii_data *mii = &sc->sc_miibus;
    453 
    454 	mii_pollstat(mii);
    455 	ifmr->ifm_status = mii->mii_media_status;
    456 	ifmr->ifm_active = mii->mii_media_active;
    457 }
    458 
    459 /*
    460  *	Set hardware to newly-selected media.
    461  */
    462 static int
    463 age_mediachange(struct ifnet *ifp)
    464 {
    465 	struct age_softc *sc = ifp->if_softc;
    466 	struct mii_data *mii = &sc->sc_miibus;
    467 	int error;
    468 
    469 	if (mii->mii_instance != 0) {
    470 		struct mii_softc *miisc;
    471 
    472 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    473 			mii_phy_reset(miisc);
    474 	}
    475 	error = mii_mediachg(mii);
    476 
    477 	return error;
    478 }
    479 
    480 static int
    481 age_intr(void *arg)
    482 {
    483         struct age_softc *sc = arg;
    484         struct ifnet *ifp = &sc->sc_ec.ec_if;
    485 	struct cmb *cmb;
    486         uint32_t status;
    487 
    488 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    489 	if (status == 0 || (status & AGE_INTRS) == 0)
    490 		return 0;
    491 
    492 	cmb = sc->age_rdata.age_cmb_block;
    493 	if (cmb == NULL)
    494 		return 0;
    495 
    496 	/* Disable interrupts. */
    497 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    498 
    499 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    500 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    501 	status = le32toh(cmb->intr_status);
    502 	if ((status & AGE_INTRS) == 0)
    503 		goto back;
    504 
    505 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    506 	    TPD_CONS_SHIFT;
    507 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    508 	    RRD_PROD_SHIFT;
    509 
    510 	/* Let hardware know CMB was served. */
    511 	cmb->intr_status = 0;
    512 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    513 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    514 	    BUS_DMASYNC_PREWRITE);
    515 
    516 	if (ifp->if_flags & IFF_RUNNING) {
    517 		if (status & INTR_CMB_RX)
    518 			age_rxintr(sc, sc->age_rr_prod);
    519 
    520 		if (status & INTR_CMB_TX)
    521 			age_txintr(sc, sc->age_tpd_cons);
    522 
    523 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    524 			if (status & INTR_DMA_RD_TO_RST)
    525 				printf("%s: DMA read error! -- resetting\n",
    526 				    device_xname(sc->sc_dev));
    527 			if (status & INTR_DMA_WR_TO_RST)
    528 				printf("%s: DMA write error! -- resetting\n",
    529 				    device_xname(sc->sc_dev));
    530 			age_init(ifp);
    531 		}
    532 
    533 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    534 			age_start(ifp);
    535 
    536 		if (status & INTR_SMB)
    537 			age_stats_update(sc);
    538 	}
    539 
    540 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    541 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    542 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    543 	    BUS_DMASYNC_POSTREAD);
    544 
    545 back:
    546 	/* Re-enable interrupts. */
    547 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    548 
    549 	return 1;
    550 }
    551 
    552 static int
    553 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    554     uint32_t *word)
    555 {
    556 	int i;
    557 	pcireg_t rv;
    558 
    559 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    560 	    offset << PCI_VPD_ADDRESS_SHIFT);
    561 	for (i = AGE_TIMEOUT; i > 0; i--) {
    562 		DELAY(10);
    563 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    564 		    PCI_VPD_ADDRESS(vpdc));
    565 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    566 			break;
    567 	}
    568 	if (i == 0) {
    569 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    570 		*word = 0;
    571 		return ETIMEDOUT;
    572 	}
    573 
    574 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    575 	return 0;
    576 }
    577 
    578 static void
    579 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    580 {
    581 	uint32_t ea[2], off, reg, word;
    582 	int vpd_error, match, vpdc;
    583 
    584 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    585 	if ((reg & SPI_VPD_ENB) != 0) {
    586 		/* Get VPD stored in TWSI EEPROM. */
    587 		reg &= ~SPI_VPD_ENB;
    588 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    589 	}
    590 
    591 	vpd_error = 0;
    592 	ea[0] = ea[1] = 0;
    593 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    594 	    PCI_CAP_VPD, &vpdc, NULL))) {
    595 		/*
    596 		 * PCI VPD capability exists, but it seems that it's
    597 		 * not in the standard form as stated in PCI VPD
    598 		 * specification such that driver could not use
    599 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    600 		 * Search VPD data starting at address 0x0100. The data
    601 		 * should be used as initializers to set AGE_PAR0,
    602 		 * AGE_PAR1 register including other PCI configuration
    603 		 * registers.
    604 		 */
    605 		word = 0;
    606 		match = 0;
    607 		reg = 0;
    608 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    609 		    off += sizeof(uint32_t)) {
    610 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    611 			if (vpd_error != 0)
    612 				break;
    613 			if (match != 0) {
    614 				switch (reg) {
    615 				case AGE_PAR0:
    616 					ea[0] = word;
    617 					break;
    618 				case AGE_PAR1:
    619 					ea[1] = word;
    620 					break;
    621 				default:
    622 					break;
    623 				}
    624 				match = 0;
    625 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    626 				match = 1;
    627 				reg = word >> 16;
    628 			} else
    629 				break;
    630 		}
    631 		if (off >= AGE_VPD_REG_CONF_END)
    632 			vpd_error = ENOENT;
    633 		if (vpd_error == 0) {
    634 			/*
    635 			 * Don't blindly trust ethernet address obtained
    636 			 * from VPD. Check whether ethernet address is
    637 			 * valid one. Otherwise fall-back to reading
    638 			 * PAR register.
    639 			 */
    640 			ea[1] &= 0xFFFF;
    641 			if ((ea[0] == 0 && ea[1] == 0) ||
    642 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    643 				if (agedebug)
    644 					printf("%s: invalid ethernet address "
    645 				    	    "returned from VPD.\n",
    646 				    	    device_xname(sc->sc_dev));
    647 				vpd_error = EINVAL;
    648 			}
    649 		}
    650 		if (vpd_error != 0 && (agedebug))
    651 			printf("%s: VPD access failure!\n",
    652 			    device_xname(sc->sc_dev));
    653 	} else {
    654 		if (agedebug)
    655 			printf("%s: PCI VPD capability not found!\n",
    656 			    device_xname(sc->sc_dev));
    657 	}
    658 
    659 	/*
    660 	 * It seems that L1 also provides a way to extract ethernet
    661 	 * address via SPI flash interface. Because SPI flash memory
    662 	 * device of different vendors vary in their instruction
    663 	 * codes for read ID instruction, it's very hard to get
    664 	 * instructions codes without detailed information for the
    665 	 * flash memory device used on ethernet controller. To simplify
    666 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    667 	 * address which is supposed to be set by hardware during
    668 	 * power on reset.
    669 	 */
    670 	if (vpd_error != 0) {
    671 		/*
    672 		 * VPD is mapped to SPI flash memory or BIOS set it.
    673 		 */
    674 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    675 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    676 	}
    677 
    678 	ea[1] &= 0xFFFF;
    679 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    680 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    681 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    682 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    683 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    684 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    685 }
    686 
    687 static void
    688 age_phy_reset(struct age_softc *sc)
    689 {
    690 	/* Reset PHY. */
    691 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    692 	DELAY(1000);
    693 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    694 	DELAY(1000);
    695 }
    696 
    697 static int
    698 age_dma_alloc(struct age_softc *sc)
    699 {
    700 	struct age_txdesc *txd;
    701 	struct age_rxdesc *rxd;
    702 	int nsegs, error, i;
    703 
    704 	/*
    705 	 * Create DMA stuffs for TX ring
    706 	 */
    707 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    708 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    709 	if (error)
    710 		return ENOBUFS;
    711 
    712 	/* Allocate DMA'able memory for TX ring */
    713 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    714 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    715 	    &nsegs, BUS_DMA_WAITOK);
    716 	if (error) {
    717 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    718 		    "error = %i\n", device_xname(sc->sc_dev), error);
    719 		return error;
    720 	}
    721 
    722 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    723 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    724 	    BUS_DMA_NOWAIT);
    725 	if (error)
    726 		return ENOBUFS;
    727 
    728 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    729 
    730 	/*  Load the DMA map for Tx ring. */
    731 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    732 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    733 	if (error) {
    734 		printf("%s: could not load DMA'able memory for Tx ring, "
    735 		    "error = %i\n", device_xname(sc->sc_dev), error);
    736 		bus_dmamem_free(sc->sc_dmat,
    737 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
    738 		return error;
    739 	}
    740 
    741 	sc->age_rdata.age_tx_ring_paddr =
    742 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    743 
    744 	/*
    745 	 * Create DMA stuffs for RX ring
    746 	 */
    747 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    748 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    749 	if (error)
    750 		return ENOBUFS;
    751 
    752 	/* Allocate DMA'able memory for RX ring */
    753 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    754 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    755 	    &nsegs, BUS_DMA_WAITOK);
    756 	if (error) {
    757 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    758 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    759 		return error;
    760 	}
    761 
    762 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    763 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    764 	    BUS_DMA_NOWAIT);
    765 	if (error)
    766 		return ENOBUFS;
    767 
    768 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    769 
    770 	/* Load the DMA map for Rx ring. */
    771 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    772 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    773 	if (error) {
    774 		printf("%s: could not load DMA'able memory for Rx ring, "
    775 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    776 		bus_dmamem_free(sc->sc_dmat,
    777 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    778 		return error;
    779 	}
    780 
    781 	sc->age_rdata.age_rx_ring_paddr =
    782 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    783 
    784 	/*
    785 	 * Create DMA stuffs for RX return ring
    786 	 */
    787 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    788 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    789 	if (error)
    790 		return ENOBUFS;
    791 
    792 	/* Allocate DMA'able memory for RX return ring */
    793 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    794 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    795 	    &nsegs, BUS_DMA_WAITOK);
    796 	if (error) {
    797 		printf("%s: could not allocate DMA'able memory for Rx "
    798 		    "return ring, error = %i.\n",
    799 		    device_xname(sc->sc_dev), error);
    800 		return error;
    801 	}
    802 
    803 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    804 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    805 	    BUS_DMA_NOWAIT);
    806 	if (error)
    807 		return ENOBUFS;
    808 
    809 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    810 
    811 	/*  Load the DMA map for Rx return ring. */
    812 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    813 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    814 	if (error) {
    815 		printf("%s: could not load DMA'able memory for Rx return ring, "
    816 		    "error = %i\n", device_xname(sc->sc_dev), error);
    817 		bus_dmamem_free(sc->sc_dmat,
    818 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
    819 		return error;
    820 	}
    821 
    822 	sc->age_rdata.age_rr_ring_paddr =
    823 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    824 
    825 	/*
    826 	 * Create DMA stuffs for CMB block
    827 	 */
    828 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    829 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    830 	    &sc->age_cdata.age_cmb_block_map);
    831 	if (error)
    832 		return ENOBUFS;
    833 
    834 	/* Allocate DMA'able memory for CMB block */
    835 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    836 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    837 	    &nsegs, BUS_DMA_WAITOK);
    838 	if (error) {
    839 		printf("%s: could not allocate DMA'able memory for "
    840 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    841 		return error;
    842 	}
    843 
    844 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    845 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    846 	    BUS_DMA_NOWAIT);
    847 	if (error)
    848 		return ENOBUFS;
    849 
    850 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    851 
    852 	/*  Load the DMA map for CMB block. */
    853 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    854 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    855 	    BUS_DMA_WAITOK);
    856 	if (error) {
    857 		printf("%s: could not load DMA'able memory for CMB block, "
    858 		    "error = %i\n", device_xname(sc->sc_dev), error);
    859 		bus_dmamem_free(sc->sc_dmat,
    860 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
    861 		return error;
    862 	}
    863 
    864 	sc->age_rdata.age_cmb_block_paddr =
    865 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    866 
    867 	/*
    868 	 * Create DMA stuffs for SMB block
    869 	 */
    870 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    871 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    872 	    &sc->age_cdata.age_smb_block_map);
    873 	if (error)
    874 		return ENOBUFS;
    875 
    876 	/* Allocate DMA'able memory for SMB block */
    877 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    878 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    879 	    &nsegs, BUS_DMA_WAITOK);
    880 	if (error) {
    881 		printf("%s: could not allocate DMA'able memory for "
    882 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    883 		return error;
    884 	}
    885 
    886 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    887 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    888 	    BUS_DMA_NOWAIT);
    889 	if (error)
    890 		return ENOBUFS;
    891 
    892 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    893 
    894 	/*  Load the DMA map for SMB block */
    895 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    896 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    897 	    BUS_DMA_WAITOK);
    898 	if (error) {
    899 		printf("%s: could not load DMA'able memory for SMB block, "
    900 		    "error = %i\n", device_xname(sc->sc_dev), error);
    901 		bus_dmamem_free(sc->sc_dmat,
    902 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
    903 		return error;
    904 	}
    905 
    906 	sc->age_rdata.age_smb_block_paddr =
    907 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    908 
    909 	/* Create DMA maps for Tx buffers. */
    910 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    911 		txd = &sc->age_cdata.age_txdesc[i];
    912 		txd->tx_m = NULL;
    913 		txd->tx_dmamap = NULL;
    914 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    915 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    916 		    &txd->tx_dmamap);
    917 		if (error) {
    918 			printf("%s: could not create Tx dmamap, error = %i.\n",
    919 			    device_xname(sc->sc_dev), error);
    920 			return error;
    921 		}
    922 	}
    923 
    924 	/* Create DMA maps for Rx buffers. */
    925 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    926 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    927 	if (error) {
    928 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    929 		    device_xname(sc->sc_dev), error);
    930 		return error;
    931 	}
    932 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    933 		rxd = &sc->age_cdata.age_rxdesc[i];
    934 		rxd->rx_m = NULL;
    935 		rxd->rx_dmamap = NULL;
    936 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    937 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    938 		if (error) {
    939 			printf("%s: could not create Rx dmamap, error = %i.\n",
    940 			    device_xname(sc->sc_dev), error);
    941 			return error;
    942 		}
    943 	}
    944 
    945 	return 0;
    946 }
    947 
    948 static void
    949 age_dma_free(struct age_softc *sc)
    950 {
    951 	struct age_txdesc *txd;
    952 	struct age_rxdesc *rxd;
    953 	int i;
    954 
    955 	/* Tx buffers */
    956 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    957 		txd = &sc->age_cdata.age_txdesc[i];
    958 		if (txd->tx_dmamap != NULL) {
    959 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    960 			txd->tx_dmamap = NULL;
    961 		}
    962 	}
    963 	/* Rx buffers */
    964 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    965 		rxd = &sc->age_cdata.age_rxdesc[i];
    966 		if (rxd->rx_dmamap != NULL) {
    967 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    968 			rxd->rx_dmamap = NULL;
    969 		}
    970 	}
    971 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    972 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    973 		sc->age_cdata.age_rx_sparemap = NULL;
    974 	}
    975 
    976 	/* Tx ring. */
    977 	if (sc->age_cdata.age_tx_ring_map != NULL)
    978 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    979 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    980 	    sc->age_rdata.age_tx_ring != NULL)
    981 		bus_dmamem_free(sc->sc_dmat,
    982 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
    983 	sc->age_rdata.age_tx_ring = NULL;
    984 	sc->age_cdata.age_tx_ring_map = NULL;
    985 
    986 	/* Rx ring. */
    987 	if (sc->age_cdata.age_rx_ring_map != NULL)
    988 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
    989 	if (sc->age_cdata.age_rx_ring_map != NULL &&
    990 	    sc->age_rdata.age_rx_ring != NULL)
    991 		bus_dmamem_free(sc->sc_dmat,
    992 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
    993 	sc->age_rdata.age_rx_ring = NULL;
    994 	sc->age_cdata.age_rx_ring_map = NULL;
    995 
    996 	/* Rx return ring. */
    997 	if (sc->age_cdata.age_rr_ring_map != NULL)
    998 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
    999 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1000 	    sc->age_rdata.age_rr_ring != NULL)
   1001 		bus_dmamem_free(sc->sc_dmat,
   1002 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
   1003 	sc->age_rdata.age_rr_ring = NULL;
   1004 	sc->age_cdata.age_rr_ring_map = NULL;
   1005 
   1006 	/* CMB block */
   1007 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1008 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1009 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1010 	    sc->age_rdata.age_cmb_block != NULL)
   1011 		bus_dmamem_free(sc->sc_dmat,
   1012 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
   1013 	sc->age_rdata.age_cmb_block = NULL;
   1014 	sc->age_cdata.age_cmb_block_map = NULL;
   1015 
   1016 	/* SMB block */
   1017 	if (sc->age_cdata.age_smb_block_map != NULL)
   1018 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1019 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1020 	    sc->age_rdata.age_smb_block != NULL)
   1021 		bus_dmamem_free(sc->sc_dmat,
   1022 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
   1023 	sc->age_rdata.age_smb_block = NULL;
   1024 	sc->age_cdata.age_smb_block_map = NULL;
   1025 }
   1026 
   1027 static void
   1028 age_start(struct ifnet *ifp)
   1029 {
   1030         struct age_softc *sc = ifp->if_softc;
   1031         struct mbuf *m_head;
   1032 	int enq;
   1033 
   1034 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1035 		return;
   1036 
   1037 	enq = 0;
   1038 	for (;;) {
   1039 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1040 		if (m_head == NULL)
   1041 			break;
   1042 
   1043 		/*
   1044 		 * Pack the data into the transmit ring. If we
   1045 		 * don't have room, set the OACTIVE flag and wait
   1046 		 * for the NIC to drain the ring.
   1047 		 */
   1048 		if (age_encap(sc, &m_head)) {
   1049 			if (m_head == NULL)
   1050 				break;
   1051 			ifp->if_flags |= IFF_OACTIVE;
   1052 			break;
   1053 		}
   1054 		enq = 1;
   1055 
   1056 #if NBPFILTER > 0
   1057 		/*
   1058 		 * If there's a BPF listener, bounce a copy of this frame
   1059 		 * to him.
   1060 		 */
   1061 		if (ifp->if_bpf != NULL)
   1062 			bpf_mtap(ifp->if_bpf, m_head);
   1063 #endif
   1064 	}
   1065 
   1066 	if (enq) {
   1067 		/* Update mbox. */
   1068 		AGE_COMMIT_MBOX(sc);
   1069 		/* Set a timeout in case the chip goes out to lunch. */
   1070 		ifp->if_timer = AGE_TX_TIMEOUT;
   1071 	}
   1072 }
   1073 
   1074 static void
   1075 age_watchdog(struct ifnet *ifp)
   1076 {
   1077 	struct age_softc *sc = ifp->if_softc;
   1078 
   1079 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1080 		printf("%s: watchdog timeout (missed link)\n",
   1081 		    device_xname(sc->sc_dev));
   1082 		ifp->if_oerrors++;
   1083 		age_init(ifp);
   1084 		return;
   1085 	}
   1086 
   1087 	if (sc->age_cdata.age_tx_cnt == 0) {
   1088 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1089 		    "-- recovering\n", device_xname(sc->sc_dev));
   1090 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1091 			age_start(ifp);
   1092 		return;
   1093 	}
   1094 
   1095 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1096 	ifp->if_oerrors++;
   1097 	age_init(ifp);
   1098 
   1099 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1100 		age_start(ifp);
   1101 }
   1102 
   1103 static int
   1104 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1105 {
   1106 	struct age_softc *sc = ifp->if_softc;
   1107 	int s, error;
   1108 
   1109 	s = splnet();
   1110 
   1111 	error = ether_ioctl(ifp, cmd, data);
   1112 	if (error == ENETRESET) {
   1113 		if (ifp->if_flags & IFF_RUNNING)
   1114 			age_rxfilter(sc);
   1115 		error = 0;
   1116 	}
   1117 
   1118 	splx(s);
   1119 	return error;
   1120 }
   1121 
   1122 static void
   1123 age_mac_config(struct age_softc *sc)
   1124 {
   1125 	struct mii_data *mii;
   1126 	uint32_t reg;
   1127 
   1128 	mii = &sc->sc_miibus;
   1129 
   1130 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1131 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1132 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1133 	reg &= ~MAC_CFG_SPEED_MASK;
   1134 
   1135 	/* Reprogram MAC with resolved speed/duplex. */
   1136 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1137 	case IFM_10_T:
   1138 	case IFM_100_TX:
   1139 		reg |= MAC_CFG_SPEED_10_100;
   1140 		break;
   1141 	case IFM_1000_T:
   1142 		reg |= MAC_CFG_SPEED_1000;
   1143 		break;
   1144 	}
   1145 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1146 		reg |= MAC_CFG_FULL_DUPLEX;
   1147 #ifdef notyet
   1148 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1149 			reg |= MAC_CFG_TX_FC;
   1150 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1151 			reg |= MAC_CFG_RX_FC;
   1152 #endif
   1153 	}
   1154 
   1155 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1156 }
   1157 
   1158 static bool
   1159 age_resume(device_t dv PMF_FN_ARGS)
   1160 {
   1161 	struct age_softc *sc = device_private(dv);
   1162 	uint16_t cmd;
   1163 
   1164 	/*
   1165 	 * Clear INTx emulation disable for hardware that
   1166 	 * is set in resume event. From Linux.
   1167 	 */
   1168 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1169 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1170 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1171 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1172 		    PCI_COMMAND_STATUS_REG, cmd);
   1173 	}
   1174 
   1175 	return true;
   1176 }
   1177 
   1178 static int
   1179 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1180 {
   1181 	struct age_txdesc *txd, *txd_last;
   1182 	struct tx_desc *desc;
   1183 	struct mbuf *m;
   1184 	bus_dmamap_t map;
   1185 	uint32_t cflags, poff, vtag;
   1186 	int error, i, nsegs, prod;
   1187 #if NVLAN > 0
   1188 	struct m_tag *mtag;
   1189 #endif
   1190 
   1191 	m = *m_head;
   1192 	cflags = vtag = 0;
   1193 	poff = 0;
   1194 
   1195 	prod = sc->age_cdata.age_tx_prod;
   1196 	txd = &sc->age_cdata.age_txdesc[prod];
   1197 	txd_last = txd;
   1198 	map = txd->tx_dmamap;
   1199 
   1200 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1201 
   1202 	if (error == EFBIG) {
   1203 		error = 0;
   1204 
   1205 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1206 		if (m == NULL) {
   1207 			printf("%s: can't defrag TX mbuf\n",
   1208 			    device_xname(sc->sc_dev));
   1209 			m_freem(*m_head);
   1210 			*m_head = NULL;
   1211 			return ENOBUFS;
   1212 		}
   1213 
   1214 		M_COPY_PKTHDR(m, *m_head);
   1215 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1216 			MCLGET(m, M_DONTWAIT);
   1217 			if (!(m->m_flags & M_EXT)) {
   1218 				m_freem(*m_head);
   1219 				m_freem(m);
   1220 				*m_head = NULL;
   1221 				return ENOBUFS;
   1222 			}
   1223 		}
   1224 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1225 		    mtod(m, void *));
   1226 		m_freem(*m_head);
   1227 		m->m_len = m->m_pkthdr.len;
   1228 		*m_head = m;
   1229 
   1230 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1231 		  	    BUS_DMA_NOWAIT);
   1232 
   1233 		if (error != 0) {
   1234 			printf("%s: could not load defragged TX mbuf\n",
   1235 			    device_xname(sc->sc_dev));
   1236 			if (!error) {
   1237 				bus_dmamap_unload(sc->sc_dmat, map);
   1238 				error = EFBIG;
   1239 			}
   1240 			m_freem(*m_head);
   1241 			*m_head = NULL;
   1242 			return error;
   1243 		}
   1244 	} else if (error) {
   1245 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1246 		return error;
   1247 	}
   1248 
   1249 	nsegs = map->dm_nsegs;
   1250 
   1251 	if (nsegs == 0) {
   1252 		m_freem(*m_head);
   1253 		*m_head = NULL;
   1254 		return EIO;
   1255 	}
   1256 
   1257 	/* Check descriptor overrun. */
   1258 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1259 		bus_dmamap_unload(sc->sc_dmat, map);
   1260 		return ENOBUFS;
   1261 	}
   1262 
   1263 	m = *m_head;
   1264 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1265 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1266 		cflags |= AGE_TD_CSUM;
   1267 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1268 			cflags |= AGE_TD_TCPCSUM;
   1269 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1270 			cflags |= AGE_TD_UDPCSUM;
   1271 		/* Set checksum start offset. */
   1272 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1273 	}
   1274 
   1275 #if NVLAN > 0
   1276 	/* Configure VLAN hardware tag insertion. */
   1277 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1278 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1279 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1280 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1281 	}
   1282 #endif
   1283 
   1284 	desc = NULL;
   1285 	for (i = 0; i < nsegs; i++) {
   1286 		desc = &sc->age_rdata.age_tx_ring[prod];
   1287 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1288 		desc->len =
   1289 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1290 		desc->flags = htole32(cflags);
   1291 		sc->age_cdata.age_tx_cnt++;
   1292 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1293 	}
   1294 
   1295 	/* Update producer index. */
   1296 	sc->age_cdata.age_tx_prod = prod;
   1297 
   1298 	/* Set EOP on the last descriptor. */
   1299 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1300 	desc = &sc->age_rdata.age_tx_ring[prod];
   1301 	desc->flags |= htole32(AGE_TD_EOP);
   1302 
   1303 	/* Swap dmamap of the first and the last. */
   1304 	txd = &sc->age_cdata.age_txdesc[prod];
   1305 	map = txd_last->tx_dmamap;
   1306 	txd_last->tx_dmamap = txd->tx_dmamap;
   1307 	txd->tx_dmamap = map;
   1308 	txd->tx_m = m;
   1309 
   1310 	/* Sync descriptors. */
   1311 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1312 	    BUS_DMASYNC_PREWRITE);
   1313 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1314 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1315 
   1316 	return 0;
   1317 }
   1318 
   1319 static void
   1320 age_txintr(struct age_softc *sc, int tpd_cons)
   1321 {
   1322 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1323 	struct age_txdesc *txd;
   1324 	int cons, prog;
   1325 
   1326 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1327 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1328 
   1329 	/*
   1330 	 * Go through our Tx list and free mbufs for those
   1331 	 * frames which have been transmitted.
   1332 	 */
   1333 	cons = sc->age_cdata.age_tx_cons;
   1334 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1335 		if (sc->age_cdata.age_tx_cnt <= 0)
   1336 			break;
   1337 		prog++;
   1338 		ifp->if_flags &= ~IFF_OACTIVE;
   1339 		sc->age_cdata.age_tx_cnt--;
   1340 		txd = &sc->age_cdata.age_txdesc[cons];
   1341 		/*
   1342 		 * Clear Tx descriptors, it's not required but would
   1343 		 * help debugging in case of Tx issues.
   1344 		 */
   1345 		txd->tx_desc->addr = 0;
   1346 		txd->tx_desc->len = 0;
   1347 		txd->tx_desc->flags = 0;
   1348 
   1349 		if (txd->tx_m == NULL)
   1350 			continue;
   1351 		/* Reclaim transmitted mbufs. */
   1352 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1353 		m_freem(txd->tx_m);
   1354 		txd->tx_m = NULL;
   1355 	}
   1356 
   1357 	if (prog > 0) {
   1358 		sc->age_cdata.age_tx_cons = cons;
   1359 
   1360 		/*
   1361 		 * Unarm watchdog timer only when there are no pending
   1362 		 * Tx descriptors in queue.
   1363 		 */
   1364 		if (sc->age_cdata.age_tx_cnt == 0)
   1365 			ifp->if_timer = 0;
   1366 
   1367 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1368 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1369 		    BUS_DMASYNC_PREWRITE);
   1370 	}
   1371 }
   1372 
   1373 /* Receive a frame. */
   1374 static void
   1375 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1376 {
   1377 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1378 	struct age_rxdesc *rxd;
   1379 	struct rx_desc *desc;
   1380 	struct mbuf *mp, *m;
   1381 	uint32_t status, index;
   1382 	int count, nsegs, pktlen;
   1383 	int rx_cons;
   1384 
   1385 	status = le32toh(rxrd->flags);
   1386 	index = le32toh(rxrd->index);
   1387 	rx_cons = AGE_RX_CONS(index);
   1388 	nsegs = AGE_RX_NSEGS(index);
   1389 
   1390 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1391 	if ((status & AGE_RRD_ERROR) != 0 &&
   1392 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1393 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1394 		/*
   1395 		 * We want to pass the following frames to upper
   1396 		 * layer regardless of error status of Rx return
   1397 		 * ring.
   1398 		 *
   1399 		 *  o IP/TCP/UDP checksum is bad.
   1400 		 *  o frame length and protocol specific length
   1401 		 *     does not match.
   1402 		 */
   1403 		sc->age_cdata.age_rx_cons += nsegs;
   1404 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1405 		return;
   1406 	}
   1407 
   1408 	pktlen = 0;
   1409 	for (count = 0; count < nsegs; count++,
   1410 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1411 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1412 		mp = rxd->rx_m;
   1413 		desc = rxd->rx_desc;
   1414 		/* Add a new receive buffer to the ring. */
   1415 		if (age_newbuf(sc, rxd, 0) != 0) {
   1416 			ifp->if_iqdrops++;
   1417 			/* Reuse Rx buffers. */
   1418 			if (sc->age_cdata.age_rxhead != NULL) {
   1419 				m_freem(sc->age_cdata.age_rxhead);
   1420 				AGE_RXCHAIN_RESET(sc);
   1421 			}
   1422 			break;
   1423 		}
   1424 
   1425 		/* The length of the first mbuf is computed last. */
   1426 		if (count != 0) {
   1427 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1428 			pktlen += mp->m_len;
   1429 		}
   1430 
   1431 		/* Chain received mbufs. */
   1432 		if (sc->age_cdata.age_rxhead == NULL) {
   1433 			sc->age_cdata.age_rxhead = mp;
   1434 			sc->age_cdata.age_rxtail = mp;
   1435 		} else {
   1436 			mp->m_flags &= ~M_PKTHDR;
   1437 			sc->age_cdata.age_rxprev_tail =
   1438 			    sc->age_cdata.age_rxtail;
   1439 			sc->age_cdata.age_rxtail->m_next = mp;
   1440 			sc->age_cdata.age_rxtail = mp;
   1441 		}
   1442 
   1443 		if (count == nsegs - 1) {
   1444 			/*
   1445 			 * It seems that L1 controller has no way
   1446 			 * to tell hardware to strip CRC bytes.
   1447 			 */
   1448 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1449 			if (nsegs > 1) {
   1450 				/* Remove the CRC bytes in chained mbufs. */
   1451 				pktlen -= ETHER_CRC_LEN;
   1452 				if (mp->m_len <= ETHER_CRC_LEN) {
   1453 					sc->age_cdata.age_rxtail =
   1454 					    sc->age_cdata.age_rxprev_tail;
   1455 					sc->age_cdata.age_rxtail->m_len -=
   1456 					    (ETHER_CRC_LEN - mp->m_len);
   1457 					sc->age_cdata.age_rxtail->m_next = NULL;
   1458 					m_freem(mp);
   1459 				} else {
   1460 					mp->m_len -= ETHER_CRC_LEN;
   1461 				}
   1462 			}
   1463 
   1464 			m = sc->age_cdata.age_rxhead;
   1465 			m->m_flags |= M_PKTHDR;
   1466 			m->m_pkthdr.rcvif = ifp;
   1467 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1468 			/* Set the first mbuf length. */
   1469 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1470 
   1471 			/*
   1472 			 * Set checksum information.
   1473 			 * It seems that L1 controller can compute partial
   1474 			 * checksum. The partial checksum value can be used
   1475 			 * to accelerate checksum computation for fragmented
   1476 			 * TCP/UDP packets. Upper network stack already
   1477 			 * takes advantage of the partial checksum value in
   1478 			 * IP reassembly stage. But I'm not sure the
   1479 			 * correctness of the partial hardware checksum
   1480 			 * assistance due to lack of data sheet. If it is
   1481 			 * proven to work on L1 I'll enable it.
   1482 			 */
   1483 			if (status & AGE_RRD_IPV4) {
   1484 				if (status & AGE_RRD_IPCSUM_NOK)
   1485 					m->m_pkthdr.csum_flags |=
   1486 					    M_CSUM_IPv4_BAD;
   1487 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1488 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1489 					m->m_pkthdr.csum_flags |=
   1490 					    M_CSUM_TCP_UDP_BAD;
   1491 				}
   1492 				/*
   1493 				 * Don't mark bad checksum for TCP/UDP frames
   1494 				 * as fragmented frames may always have set
   1495 				 * bad checksummed bit of descriptor status.
   1496 				 */
   1497 			}
   1498 #if NVLAN > 0
   1499 			/* Check for VLAN tagged frames. */
   1500 			if (status & AGE_RRD_VLAN) {
   1501 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1502 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1503 					continue);
   1504 			}
   1505 #endif
   1506 
   1507 #if NBPFILTER > 0
   1508 			if (ifp->if_bpf)
   1509 				bpf_mtap(ifp->if_bpf, m);
   1510 #endif
   1511 			/* Pass it on. */
   1512 			ether_input(ifp, m);
   1513 
   1514 			/* Reset mbuf chains. */
   1515 			AGE_RXCHAIN_RESET(sc);
   1516 		}
   1517 	}
   1518 
   1519 	if (count != nsegs) {
   1520 		sc->age_cdata.age_rx_cons += nsegs;
   1521 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1522 	} else
   1523 		sc->age_cdata.age_rx_cons = rx_cons;
   1524 }
   1525 
   1526 static void
   1527 age_rxintr(struct age_softc *sc, int rr_prod)
   1528 {
   1529 	struct rx_rdesc *rxrd;
   1530 	int rr_cons, nsegs, pktlen, prog;
   1531 
   1532 	rr_cons = sc->age_cdata.age_rr_cons;
   1533 	if (rr_cons == rr_prod)
   1534 		return;
   1535 
   1536 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1537 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1538 	    BUS_DMASYNC_POSTREAD);
   1539 
   1540 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1541 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1542 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1543 		if (nsegs == 0)
   1544 			break;
   1545 		/*
   1546 		 * Check number of segments against received bytes
   1547 		 * Non-matching value would indicate that hardware
   1548 		 * is still trying to update Rx return descriptors.
   1549 		 * I'm not sure whether this check is really needed.
   1550 		 */
   1551 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1552 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1553 		    (MCLBYTES - ETHER_ALIGN)))
   1554 			break;
   1555 
   1556 		/* Received a frame. */
   1557 		age_rxeof(sc, rxrd);
   1558 
   1559 		/* Clear return ring. */
   1560 		rxrd->index = 0;
   1561 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1562 	}
   1563 
   1564 	if (prog > 0) {
   1565 		/* Update the consumer index. */
   1566 		sc->age_cdata.age_rr_cons = rr_cons;
   1567 
   1568 		/* Sync descriptors. */
   1569 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1570 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1571 		    BUS_DMASYNC_PREWRITE);
   1572 
   1573 		/* Notify hardware availability of new Rx buffers. */
   1574 		AGE_COMMIT_MBOX(sc);
   1575 	}
   1576 }
   1577 
   1578 static void
   1579 age_tick(void *xsc)
   1580 {
   1581 	struct age_softc *sc = xsc;
   1582 	struct mii_data *mii = &sc->sc_miibus;
   1583 	int s;
   1584 
   1585 	s = splnet();
   1586 	mii_tick(mii);
   1587 	splx(s);
   1588 
   1589 	callout_schedule(&sc->sc_tick_ch, hz);
   1590 }
   1591 
   1592 static void
   1593 age_reset(struct age_softc *sc)
   1594 {
   1595 	uint32_t reg;
   1596 	int i;
   1597 
   1598 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1599 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1600 		DELAY(1);
   1601 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1602 			break;
   1603 	}
   1604 	if (i == 0)
   1605 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1606 
   1607 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1608 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1609 			break;
   1610 		DELAY(10);
   1611 	}
   1612 
   1613 	if (i == 0)
   1614 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1615 		    reg);
   1616 
   1617 	/* Initialize PCIe module. From Linux. */
   1618 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1619 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1620 }
   1621 
   1622 static int
   1623 age_init(struct ifnet *ifp)
   1624 {
   1625 	struct age_softc *sc = ifp->if_softc;
   1626 	struct mii_data *mii;
   1627 	uint8_t eaddr[ETHER_ADDR_LEN];
   1628 	bus_addr_t paddr;
   1629 	uint32_t reg, fsize;
   1630 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1631 	int error;
   1632 
   1633 	/*
   1634 	 * Cancel any pending I/O.
   1635 	 */
   1636 	age_stop(ifp, 0);
   1637 
   1638 	/*
   1639 	 * Reset the chip to a known state.
   1640 	 */
   1641 	age_reset(sc);
   1642 
   1643 	/* Initialize descriptors. */
   1644 	error = age_init_rx_ring(sc);
   1645         if (error != 0) {
   1646 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1647 		age_stop(ifp, 0);
   1648 		return error;
   1649         }
   1650 	age_init_rr_ring(sc);
   1651 	age_init_tx_ring(sc);
   1652 	age_init_cmb_block(sc);
   1653 	age_init_smb_block(sc);
   1654 
   1655 	/* Reprogram the station address. */
   1656 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1657 	CSR_WRITE_4(sc, AGE_PAR0,
   1658 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1659 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1660 
   1661 	/* Set descriptor base addresses. */
   1662 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1663 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1664 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1665 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1666 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1667 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1668 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1669 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1670 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1671 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1672 	paddr = sc->age_rdata.age_smb_block_paddr;
   1673 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1674 
   1675 	/* Set Rx/Rx return descriptor counter. */
   1676 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1677 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1678 	    DESC_RRD_CNT_MASK) |
   1679 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1680 
   1681 	/* Set Tx descriptor counter. */
   1682 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1683 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1684 
   1685 	/* Tell hardware that we're ready to load descriptors. */
   1686 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1687 
   1688         /*
   1689 	 * Initialize mailbox register.
   1690 	 * Updated producer/consumer index information is exchanged
   1691 	 * through this mailbox register. However Tx producer and
   1692 	 * Rx return consumer/Rx producer are all shared such that
   1693 	 * it's hard to separate code path between Tx and Rx without
   1694 	 * locking. If L1 hardware have a separate mail box register
   1695 	 * for Tx and Rx consumer/producer management we could have
   1696 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1697 	 * been run without any locking.
   1698 	*/
   1699 	AGE_COMMIT_MBOX(sc);
   1700 
   1701 	/* Configure IPG/IFG parameters. */
   1702 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1703 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1704 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1705 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1706 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1707 
   1708 	/* Set parameters for half-duplex media. */
   1709 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1710 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1711 	    HDPX_CFG_LCOL_MASK) |
   1712 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1713 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1714 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1715 	    HDPX_CFG_ABEBT_MASK) |
   1716 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1717 	     HDPX_CFG_JAMIPG_MASK));
   1718 
   1719 	/* Configure interrupt moderation timer. */
   1720 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1721 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1722 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1723 	reg &= ~MASTER_MTIMER_ENB;
   1724 	if (AGE_USECS(sc->age_int_mod) == 0)
   1725 		reg &= ~MASTER_ITIMER_ENB;
   1726 	else
   1727 		reg |= MASTER_ITIMER_ENB;
   1728 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1729 	if (agedebug)
   1730 		printf("%s: interrupt moderation is %d us.\n",
   1731 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1732 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1733 
   1734 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1735 	if (ifp->if_mtu < ETHERMTU)
   1736 		sc->age_max_frame_size = ETHERMTU;
   1737 	else
   1738 		sc->age_max_frame_size = ifp->if_mtu;
   1739 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1740 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1741 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1742 
   1743 	/* Configure jumbo frame. */
   1744 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1745 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1746 	    (((fsize / sizeof(uint64_t)) <<
   1747 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1748 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1749 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1750 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1751 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1752 
   1753 	/* Configure flow-control parameters. From Linux. */
   1754 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1755 		/*
   1756 		 * Magic workaround for old-L1.
   1757 		 * Don't know which hw revision requires this magic.
   1758 		 */
   1759 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1760 		/*
   1761 		 * Another magic workaround for flow-control mode
   1762 		 * change. From Linux.
   1763 		 */
   1764 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1765 	}
   1766 	/*
   1767 	 * TODO
   1768 	 *  Should understand pause parameter relationships between FIFO
   1769 	 *  size and number of Rx descriptors and Rx return descriptors.
   1770 	 *
   1771 	 *  Magic parameters came from Linux.
   1772 	 */
   1773 	switch (sc->age_chip_rev) {
   1774 	case 0x8001:
   1775 	case 0x9001:
   1776 	case 0x9002:
   1777 	case 0x9003:
   1778 		rxf_hi = AGE_RX_RING_CNT / 16;
   1779 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1780 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1781 		rrd_lo = AGE_RR_RING_CNT / 16;
   1782 		break;
   1783 	default:
   1784 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1785 		rxf_lo = reg / 16;
   1786 		if (rxf_lo < 192)
   1787 			rxf_lo = 192;
   1788 		rxf_hi = (reg * 7) / 8;
   1789 		if (rxf_hi < rxf_lo)
   1790 			rxf_hi = rxf_lo + 16;
   1791 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1792 		rrd_lo = reg / 8;
   1793 		rrd_hi = (reg * 7) / 8;
   1794 		if (rrd_lo < 2)
   1795 			rrd_lo = 2;
   1796 		if (rrd_hi < rrd_lo)
   1797 			rrd_hi = rrd_lo + 3;
   1798 		break;
   1799 	}
   1800 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1801 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1802 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1803 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1804 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1805 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1806 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1807 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1808 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1809 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1810 
   1811 	/* Configure RxQ. */
   1812 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1813 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1814 	    RXQ_CFG_RD_BURST_MASK) |
   1815 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1816 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1817 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1818 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1819 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1820 
   1821 	/* Configure TxQ. */
   1822 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1823 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1824 	    TXQ_CFG_TPD_BURST_MASK) |
   1825 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1826 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1827 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1828 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1829 	    TXQ_CFG_ENB);
   1830 
   1831 	/* Configure DMA parameters. */
   1832 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1833 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1834 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1835 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1836 
   1837 	/* Configure CMB DMA write threshold. */
   1838 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1839 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1840 	    CMB_WR_THRESH_RRD_MASK) |
   1841 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1842 	    CMB_WR_THRESH_TPD_MASK));
   1843 
   1844 	/* Set CMB/SMB timer and enable them. */
   1845 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1846 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1847 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1848 
   1849 	/* Request SMB updates for every seconds. */
   1850 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1851 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1852 
   1853 	/*
   1854 	 * Disable all WOL bits as WOL can interfere normal Rx
   1855 	 * operation.
   1856 	 */
   1857 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1858 
   1859         /*
   1860 	 * Configure Tx/Rx MACs.
   1861 	 *  - Auto-padding for short frames.
   1862 	 *  - Enable CRC generation.
   1863 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1864 	 *  of MAC is followed after link establishment.
   1865 	 */
   1866 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1867 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1868 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1869 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1870 	    MAC_CFG_PREAMBLE_MASK));
   1871 
   1872 	/* Set up the receive filter. */
   1873 	age_rxfilter(sc);
   1874 	age_rxvlan(sc);
   1875 
   1876 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1877 	reg |= MAC_CFG_RXCSUM_ENB;
   1878 
   1879 	/* Ack all pending interrupts and clear it. */
   1880 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1881 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1882 
   1883 	/* Finally enable Tx/Rx MAC. */
   1884 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1885 
   1886 	sc->age_flags &= ~AGE_FLAG_LINK;
   1887 
   1888 	/* Switch to the current media. */
   1889 	mii = &sc->sc_miibus;
   1890 	mii_mediachg(mii);
   1891 
   1892 	callout_schedule(&sc->sc_tick_ch, hz);
   1893 
   1894 	ifp->if_flags |= IFF_RUNNING;
   1895 	ifp->if_flags &= ~IFF_OACTIVE;
   1896 
   1897 	return 0;
   1898 }
   1899 
   1900 static void
   1901 age_stop(struct ifnet *ifp, int disable)
   1902 {
   1903 	struct age_softc *sc = ifp->if_softc;
   1904 	struct age_txdesc *txd;
   1905 	struct age_rxdesc *rxd;
   1906 	uint32_t reg;
   1907 	int i;
   1908 
   1909 	callout_stop(&sc->sc_tick_ch);
   1910 
   1911 	/*
   1912 	 * Mark the interface down and cancel the watchdog timer.
   1913 	 */
   1914 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1915 	ifp->if_timer = 0;
   1916 
   1917 	sc->age_flags &= ~AGE_FLAG_LINK;
   1918 
   1919 	mii_down(&sc->sc_miibus);
   1920 
   1921 	/*
   1922 	 * Disable interrupts.
   1923 	 */
   1924 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1925 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1926 
   1927 	/* Stop CMB/SMB updates. */
   1928 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1929 
   1930 	/* Stop Rx/Tx MAC. */
   1931 	age_stop_rxmac(sc);
   1932 	age_stop_txmac(sc);
   1933 
   1934 	/* Stop DMA. */
   1935 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1936 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1937 
   1938 	/* Stop TxQ/RxQ. */
   1939 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1940 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1941 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1942 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1943 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1944 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1945 			break;
   1946 		DELAY(10);
   1947 	}
   1948 	if (i == 0)
   1949 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1950 		    device_xname(sc->sc_dev), reg);
   1951 
   1952 	/* Reclaim Rx buffers that have been processed. */
   1953 	if (sc->age_cdata.age_rxhead != NULL)
   1954 		m_freem(sc->age_cdata.age_rxhead);
   1955 	AGE_RXCHAIN_RESET(sc);
   1956 
   1957 	/*
   1958 	 * Free RX and TX mbufs still in the queues.
   1959 	 */
   1960 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1961 		rxd = &sc->age_cdata.age_rxdesc[i];
   1962 		if (rxd->rx_m != NULL) {
   1963 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1964 			m_freem(rxd->rx_m);
   1965 			rxd->rx_m = NULL;
   1966 		}
   1967 	}
   1968 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1969 		txd = &sc->age_cdata.age_txdesc[i];
   1970 		if (txd->tx_m != NULL) {
   1971 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1972 			m_freem(txd->tx_m);
   1973 			txd->tx_m = NULL;
   1974 		}
   1975 	}
   1976 }
   1977 
   1978 static void
   1979 age_stats_update(struct age_softc *sc)
   1980 {
   1981 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1982 	struct age_stats *stat;
   1983 	struct smb *smb;
   1984 
   1985 	stat = &sc->age_stat;
   1986 
   1987 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1988 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1989 
   1990 	smb = sc->age_rdata.age_smb_block;
   1991 	if (smb->updated == 0)
   1992 		return;
   1993 
   1994 	/* Rx stats. */
   1995 	stat->rx_frames += smb->rx_frames;
   1996 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1997 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1998 	stat->rx_pause_frames += smb->rx_pause_frames;
   1999 	stat->rx_control_frames += smb->rx_control_frames;
   2000 	stat->rx_crcerrs += smb->rx_crcerrs;
   2001 	stat->rx_lenerrs += smb->rx_lenerrs;
   2002 	stat->rx_bytes += smb->rx_bytes;
   2003 	stat->rx_runts += smb->rx_runts;
   2004 	stat->rx_fragments += smb->rx_fragments;
   2005 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2006 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2007 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2008 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2009 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2010 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2011 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2012 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2013 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2014 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2015 	stat->rx_alignerrs += smb->rx_alignerrs;
   2016 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2017 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2018 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2019 
   2020 	/* Tx stats. */
   2021 	stat->tx_frames += smb->tx_frames;
   2022 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2023 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2024 	stat->tx_pause_frames += smb->tx_pause_frames;
   2025 	stat->tx_excess_defer += smb->tx_excess_defer;
   2026 	stat->tx_control_frames += smb->tx_control_frames;
   2027 	stat->tx_deferred += smb->tx_deferred;
   2028 	stat->tx_bytes += smb->tx_bytes;
   2029 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2030 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2031 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2032 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2033 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2034 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2035 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2036 	stat->tx_single_colls += smb->tx_single_colls;
   2037 	stat->tx_multi_colls += smb->tx_multi_colls;
   2038 	stat->tx_late_colls += smb->tx_late_colls;
   2039 	stat->tx_excess_colls += smb->tx_excess_colls;
   2040 	stat->tx_underrun += smb->tx_underrun;
   2041 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2042 	stat->tx_lenerrs += smb->tx_lenerrs;
   2043 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2044 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2045 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2046 
   2047 	/* Update counters in ifnet. */
   2048 	ifp->if_opackets += smb->tx_frames;
   2049 
   2050 	ifp->if_collisions += smb->tx_single_colls +
   2051 	    smb->tx_multi_colls + smb->tx_late_colls +
   2052 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2053 
   2054 	ifp->if_oerrors += smb->tx_excess_colls +
   2055 	    smb->tx_late_colls + smb->tx_underrun +
   2056 	    smb->tx_pkts_truncated;
   2057 
   2058 	ifp->if_ipackets += smb->rx_frames;
   2059 
   2060 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2061 	    smb->rx_runts + smb->rx_pkts_truncated +
   2062 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2063 	    smb->rx_alignerrs;
   2064 
   2065 	/* Update done, clear. */
   2066 	smb->updated = 0;
   2067 
   2068 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2069 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2070 }
   2071 
   2072 static void
   2073 age_stop_txmac(struct age_softc *sc)
   2074 {
   2075 	uint32_t reg;
   2076 	int i;
   2077 
   2078 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2079 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2080 		reg &= ~MAC_CFG_TX_ENB;
   2081 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2082 	}
   2083 	/* Stop Tx DMA engine. */
   2084 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2085 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2086 		reg &= ~DMA_CFG_RD_ENB;
   2087 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2088 	}
   2089 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2090 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2091 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2092 			break;
   2093 		DELAY(10);
   2094 	}
   2095 	if (i == 0)
   2096 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2097 }
   2098 
   2099 static void
   2100 age_stop_rxmac(struct age_softc *sc)
   2101 {
   2102 	uint32_t reg;
   2103 	int i;
   2104 
   2105 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2106 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2107 		reg &= ~MAC_CFG_RX_ENB;
   2108 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2109 	}
   2110 	/* Stop Rx DMA engine. */
   2111 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2112 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2113 		reg &= ~DMA_CFG_WR_ENB;
   2114 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2115 	}
   2116 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2117 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2118 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2119 			break;
   2120 		DELAY(10);
   2121 	}
   2122 	if (i == 0)
   2123 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2124 }
   2125 
   2126 static void
   2127 age_init_tx_ring(struct age_softc *sc)
   2128 {
   2129 	struct age_ring_data *rd;
   2130 	struct age_txdesc *txd;
   2131 	int i;
   2132 
   2133 	sc->age_cdata.age_tx_prod = 0;
   2134 	sc->age_cdata.age_tx_cons = 0;
   2135 	sc->age_cdata.age_tx_cnt = 0;
   2136 
   2137 	rd = &sc->age_rdata;
   2138 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2139 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2140 		txd = &sc->age_cdata.age_txdesc[i];
   2141 		txd->tx_desc = &rd->age_tx_ring[i];
   2142 		txd->tx_m = NULL;
   2143 	}
   2144 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2145 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2146 }
   2147 
   2148 static int
   2149 age_init_rx_ring(struct age_softc *sc)
   2150 {
   2151 	struct age_ring_data *rd;
   2152 	struct age_rxdesc *rxd;
   2153 	int i;
   2154 
   2155 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2156 	rd = &sc->age_rdata;
   2157 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2158 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2159 		rxd = &sc->age_cdata.age_rxdesc[i];
   2160 		rxd->rx_m = NULL;
   2161 		rxd->rx_desc = &rd->age_rx_ring[i];
   2162 		if (age_newbuf(sc, rxd, 1) != 0)
   2163 			return ENOBUFS;
   2164 	}
   2165 
   2166 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2167 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2168 
   2169 	return 0;
   2170 }
   2171 
   2172 static void
   2173 age_init_rr_ring(struct age_softc *sc)
   2174 {
   2175 	struct age_ring_data *rd;
   2176 
   2177 	sc->age_cdata.age_rr_cons = 0;
   2178 	AGE_RXCHAIN_RESET(sc);
   2179 
   2180 	rd = &sc->age_rdata;
   2181 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2182 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2183 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2184 }
   2185 
   2186 static void
   2187 age_init_cmb_block(struct age_softc *sc)
   2188 {
   2189 	struct age_ring_data *rd;
   2190 
   2191 	rd = &sc->age_rdata;
   2192 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2193 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2194 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2195 }
   2196 
   2197 static void
   2198 age_init_smb_block(struct age_softc *sc)
   2199 {
   2200 	struct age_ring_data *rd;
   2201 
   2202 	rd = &sc->age_rdata;
   2203 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2204 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2205 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2206 }
   2207 
   2208 static int
   2209 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2210 {
   2211 	struct rx_desc *desc;
   2212 	struct mbuf *m;
   2213 	bus_dmamap_t map;
   2214 	int error;
   2215 
   2216 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2217 	if (m == NULL)
   2218 		return ENOBUFS;
   2219 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2220 	if (!(m->m_flags & M_EXT)) {
   2221 		 m_freem(m);
   2222 		 return ENOBUFS;
   2223 	}
   2224 
   2225 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2226 	m_adj(m, ETHER_ALIGN);
   2227 
   2228 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2229 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2230 
   2231 	if (error != 0) {
   2232 		if (!error) {
   2233 			bus_dmamap_unload(sc->sc_dmat,
   2234 			    sc->age_cdata.age_rx_sparemap);
   2235 			error = EFBIG;
   2236 			printf("%s: too many segments?!\n",
   2237 			    device_xname(sc->sc_dev));
   2238 		}
   2239 		m_freem(m);
   2240 
   2241 		if (init)
   2242 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2243 		return error;
   2244 	}
   2245 
   2246 	if (rxd->rx_m != NULL) {
   2247 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2248 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2249 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2250 	}
   2251 	map = rxd->rx_dmamap;
   2252 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2253 	sc->age_cdata.age_rx_sparemap = map;
   2254 	rxd->rx_m = m;
   2255 
   2256 	desc = rxd->rx_desc;
   2257 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2258 	desc->len =
   2259 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2260 	    AGE_RD_LEN_SHIFT);
   2261 
   2262 	return 0;
   2263 }
   2264 
   2265 static void
   2266 age_rxvlan(struct age_softc *sc)
   2267 {
   2268 	uint32_t reg;
   2269 
   2270 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2271 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2272 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2273 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2274 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2275 }
   2276 
   2277 static void
   2278 age_rxfilter(struct age_softc *sc)
   2279 {
   2280 	struct ethercom *ec = &sc->sc_ec;
   2281 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2282 	struct ether_multi *enm;
   2283 	struct ether_multistep step;
   2284 	uint32_t crc;
   2285 	uint32_t mchash[2];
   2286 	uint32_t rxcfg;
   2287 
   2288 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2289 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2290 
   2291 	if (ifp->if_flags & IFF_BROADCAST)
   2292 		rxcfg |= MAC_CFG_BCAST;
   2293 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
   2294 		if (ifp->if_flags & IFF_PROMISC)
   2295 			rxcfg |= MAC_CFG_PROMISC;
   2296 		if (ifp->if_flags & IFF_ALLMULTI)
   2297 			rxcfg |= MAC_CFG_ALLMULTI;
   2298 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
   2299 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
   2300 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2301 		return;
   2302 	}
   2303 
   2304 	/* Program new filter. */
   2305 	memset(mchash, 0, sizeof(mchash));
   2306 
   2307 	ETHER_FIRST_MULTI(step, ec, enm);
   2308 	while (enm != NULL) {
   2309 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
   2310 		    enm->enm_addrlo), ETHER_ADDR_LEN);
   2311 
   2312 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2313 		ETHER_NEXT_MULTI(step, enm);
   2314 	}
   2315 
   2316 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2317 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2318 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2319 }
   2320