Home | History | Annotate | Line # | Download | only in pci
if_age.c revision 1.8.2.4
      1 /*	$NetBSD: if_age.c,v 1.8.2.4 2009/04/28 07:35:56 skrll Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.8.2.4 2009/04/28 07:35:56 skrll Exp $");
     35 
     36 #include "bpfilter.h"
     37 #include "vlan.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/proc.h>
     41 #include <sys/endian.h>
     42 #include <sys/systm.h>
     43 #include <sys/types.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/queue.h>
     47 #include <sys/kernel.h>
     48 #include <sys/device.h>
     49 #include <sys/callout.h>
     50 #include <sys/socket.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/in_systm.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/ip.h>
     62 #endif
     63 
     64 #include <net/if_types.h>
     65 #include <net/if_vlanvar.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_agereg.h>
     81 
     82 static int	age_match(device_t, cfdata_t, void *);
     83 static void	age_attach(device_t, device_t, void *);
     84 static int	age_detach(device_t, int);
     85 
     86 static bool	age_resume(device_t PMF_FN_PROTO);
     87 
     88 static int	age_miibus_readreg(device_t, int, int);
     89 static void	age_miibus_writereg(device_t, int, int, int);
     90 static void	age_miibus_statchg(device_t);
     91 
     92 static int	age_init(struct ifnet *);
     93 static int	age_ioctl(struct ifnet *, u_long, void *);
     94 static void	age_start(struct ifnet *);
     95 static void	age_watchdog(struct ifnet *);
     96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     97 static int	age_mediachange(struct ifnet *);
     98 
     99 static int	age_intr(void *);
    100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
    101 static int	age_dma_alloc(struct age_softc *);
    102 static void	age_dma_free(struct age_softc *);
    103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
    104 static void	age_phy_reset(struct age_softc *);
    105 
    106 static int	age_encap(struct age_softc *, struct mbuf **);
    107 static void	age_init_tx_ring(struct age_softc *);
    108 static int	age_init_rx_ring(struct age_softc *);
    109 static void	age_init_rr_ring(struct age_softc *);
    110 static void	age_init_cmb_block(struct age_softc *);
    111 static void	age_init_smb_block(struct age_softc *);
    112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    113 static void	age_mac_config(struct age_softc *);
    114 static void	age_txintr(struct age_softc *, int);
    115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    116 static void	age_rxintr(struct age_softc *, int);
    117 static void	age_tick(void *);
    118 static void	age_reset(struct age_softc *);
    119 static void	age_stop(struct ifnet *, int);
    120 static void	age_stats_update(struct age_softc *);
    121 static void	age_stop_txmac(struct age_softc *);
    122 static void	age_stop_rxmac(struct age_softc *);
    123 static void	age_rxvlan(struct age_softc *sc);
    124 static void	age_rxfilter(struct age_softc *);
    125 
    126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    127     age_match, age_attach, age_detach, NULL);
    128 
    129 int agedebug = 0;
    130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    131 
    132 #define ETHER_ALIGN 2
    133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    134 
    135 static int
    136 age_match(device_t dev, cfdata_t match, void *aux)
    137 {
    138 	struct pci_attach_args *pa = aux;
    139 
    140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    142 }
    143 
    144 static void
    145 age_attach(device_t parent, device_t self, void *aux)
    146 {
    147 	struct age_softc *sc = device_private(self);
    148 	struct pci_attach_args *pa = aux;
    149 	pci_intr_handle_t ih;
    150 	const char *intrstr;
    151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    152 	pcireg_t memtype;
    153 	int error = 0;
    154 
    155 	aprint_naive("\n");
    156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    157 
    158 	sc->sc_dev = self;
    159 	sc->sc_dmat = pa->pa_dmat;
    160 	sc->sc_pct = pa->pa_pc;
    161 	sc->sc_pcitag = pa->pa_tag;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172         default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		goto fail;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih);
    192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc);
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		goto fail;
    200 	}
    201 	aprint_normal_dev(self, "%s\n", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_stop = age_stop;
    250 	ifp->if_watchdog = age_watchdog;
    251 	ifp->if_baudrate = IF_Gbps(1);
    252 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    253 	IFQ_SET_READY(&ifp->if_snd);
    254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    255 
    256 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    257 
    258 #ifdef AGE_CHECKSUM
    259 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    260 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    261 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    262 #endif
    263 
    264 #if NVLAN > 0
    265 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    266 #endif
    267 
    268 	/* Set up MII bus. */
    269 	sc->sc_miibus.mii_ifp = ifp;
    270 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
    271 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
    272 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
    273 
    274 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    275 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
    276 	    age_mediastatus);
    277 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    278 	   MII_OFFSET_ANY, 0);
    279 
    280 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    281 		aprint_error_dev(self, "no PHY found!\n");
    282 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    283 		    0, NULL);
    284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    285 	} else
    286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    287 
    288 	if_attach(ifp);
    289 	ether_ifattach(ifp, sc->sc_enaddr);
    290 
    291 	if (!pmf_device_register(self, NULL, age_resume))
    292 		aprint_error_dev(self, "couldn't establish power handler\n");
    293 	else
    294 		pmf_class_network_register(self, ifp);
    295 
    296 	return;
    297 
    298 fail:
    299 	age_dma_free(sc);
    300 	if (sc->sc_irq_handle != NULL) {
    301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    302 		sc->sc_irq_handle = NULL;
    303 	}
    304 	if (sc->sc_mem_size) {
    305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    306 		sc->sc_mem_size = 0;
    307 	}
    308 }
    309 
    310 static int
    311 age_detach(device_t self, int flags)
    312 {
    313 	struct age_softc *sc = device_private(self);
    314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    315 	int s;
    316 
    317 	s = splnet();
    318 	age_stop(ifp, 0);
    319 	splx(s);
    320 
    321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    322 
    323 	/* Delete all remaining media. */
    324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    325 
    326 	ether_ifdetach(ifp);
    327 	if_detach(ifp);
    328 	age_dma_free(sc);
    329 
    330 	if (sc->sc_irq_handle != NULL) {
    331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    332 		sc->sc_irq_handle = NULL;
    333 	}
    334 
    335 	return 0;
    336 }
    337 
    338 /*
    339  *	Read a PHY register on the MII of the L1.
    340  */
    341 static int
    342 age_miibus_readreg(device_t dev, int phy, int reg)
    343 {
    344 	struct age_softc *sc = device_private(dev);
    345 	uint32_t v;
    346 	int i;
    347 
    348 	if (phy != sc->age_phyaddr)
    349 		return 0;
    350 
    351 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    352 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    353 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    354 		DELAY(1);
    355 		v = CSR_READ_4(sc, AGE_MDIO);
    356 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    357 			break;
    358 	}
    359 
    360 	if (i == 0) {
    361 		printf("%s: phy read timeout: phy %d, reg %d\n",
    362 			device_xname(sc->sc_dev), phy, reg);
    363 		return 0;
    364 	}
    365 
    366 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    367 }
    368 
    369 /*
    370  * 	Write a PHY register on the MII of the L1.
    371  */
    372 static void
    373 age_miibus_writereg(device_t dev, int phy, int reg, int val)
    374 {
    375 	struct age_softc *sc = device_private(dev);
    376 	uint32_t v;
    377 	int i;
    378 
    379 	if (phy != sc->age_phyaddr)
    380 		return;
    381 
    382 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    383 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    384 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    385 
    386 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    387 		DELAY(1);
    388 		v = CSR_READ_4(sc, AGE_MDIO);
    389 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == 0) {
    394 		printf("%s: phy write timeout: phy %d, reg %d\n",
    395 		    device_xname(sc->sc_dev), phy, reg);
    396 	}
    397 }
    398 
    399 /*
    400  *	Callback from MII layer when media changes.
    401  */
    402 static void
    403 age_miibus_statchg(device_t dev)
    404 {
    405 	struct age_softc *sc = device_private(dev);
    406 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    407 	struct mii_data *mii;
    408 
    409 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    410 		return;
    411 
    412 	mii = &sc->sc_miibus;
    413 
    414 	sc->age_flags &= ~AGE_FLAG_LINK;
    415 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    416 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    417 		case IFM_10_T:
    418 		case IFM_100_TX:
    419 		case IFM_1000_T:
    420 			sc->age_flags |= AGE_FLAG_LINK;
    421 			break;
    422 		default:
    423 			break;
    424 		}
    425 	}
    426 
    427 	/* Stop Rx/Tx MACs. */
    428 	age_stop_rxmac(sc);
    429 	age_stop_txmac(sc);
    430 
    431 	/* Program MACs with resolved speed/duplex/flow-control. */
    432 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    433 		uint32_t reg;
    434 
    435 		age_mac_config(sc);
    436 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    437 		/* Restart DMA engine and Tx/Rx MAC. */
    438 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    439 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    440 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    441 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    442 	}
    443 }
    444 
    445 /*
    446  *	Get the current interface media status.
    447  */
    448 static void
    449 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    450 {
    451 	struct age_softc *sc = ifp->if_softc;
    452 	struct mii_data *mii = &sc->sc_miibus;
    453 
    454 	mii_pollstat(mii);
    455 	ifmr->ifm_status = mii->mii_media_status;
    456 	ifmr->ifm_active = mii->mii_media_active;
    457 }
    458 
    459 /*
    460  *	Set hardware to newly-selected media.
    461  */
    462 static int
    463 age_mediachange(struct ifnet *ifp)
    464 {
    465 	struct age_softc *sc = ifp->if_softc;
    466 	struct mii_data *mii = &sc->sc_miibus;
    467 	int error;
    468 
    469 	if (mii->mii_instance != 0) {
    470 		struct mii_softc *miisc;
    471 
    472 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    473 			mii_phy_reset(miisc);
    474 	}
    475 	error = mii_mediachg(mii);
    476 
    477 	return error;
    478 }
    479 
    480 static int
    481 age_intr(void *arg)
    482 {
    483         struct age_softc *sc = arg;
    484         struct ifnet *ifp = &sc->sc_ec.ec_if;
    485 	struct cmb *cmb;
    486         uint32_t status;
    487 
    488 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    489 	if (status == 0 || (status & AGE_INTRS) == 0)
    490 		return 0;
    491 
    492 	cmb = sc->age_rdata.age_cmb_block;
    493 	if (cmb == NULL) {
    494 		/* Happens when bringing up the interface
    495 		 * w/o having a carrier. Ack. the interrupt.
    496 		 */
    497 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    498 		return 0;
    499 	}
    500 
    501 	/* Disable interrupts. */
    502 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
    503 
    504 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    505 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    506 	status = le32toh(cmb->intr_status);
    507 	if ((status & AGE_INTRS) == 0)
    508 		goto back;
    509 
    510 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    511 	    TPD_CONS_SHIFT;
    512 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    513 	    RRD_PROD_SHIFT;
    514 
    515 	/* Let hardware know CMB was served. */
    516 	cmb->intr_status = 0;
    517 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    518 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    519 	    BUS_DMASYNC_PREWRITE);
    520 
    521 	if (ifp->if_flags & IFF_RUNNING) {
    522 		if (status & INTR_CMB_RX)
    523 			age_rxintr(sc, sc->age_rr_prod);
    524 
    525 		if (status & INTR_CMB_TX)
    526 			age_txintr(sc, sc->age_tpd_cons);
    527 
    528 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    529 			if (status & INTR_DMA_RD_TO_RST)
    530 				printf("%s: DMA read error! -- resetting\n",
    531 				    device_xname(sc->sc_dev));
    532 			if (status & INTR_DMA_WR_TO_RST)
    533 				printf("%s: DMA write error! -- resetting\n",
    534 				    device_xname(sc->sc_dev));
    535 			age_init(ifp);
    536 		}
    537 
    538 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    539 			age_start(ifp);
    540 
    541 		if (status & INTR_SMB)
    542 			age_stats_update(sc);
    543 	}
    544 
    545 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
    546 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    547 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    548 	    BUS_DMASYNC_POSTREAD);
    549 
    550 back:
    551 	/* Re-enable interrupts. */
    552 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
    553 
    554 	return 1;
    555 }
    556 
    557 static int
    558 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
    559     uint32_t *word)
    560 {
    561 	int i;
    562 	pcireg_t rv;
    563 
    564 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
    565 	    offset << PCI_VPD_ADDRESS_SHIFT);
    566 	for (i = AGE_TIMEOUT; i > 0; i--) {
    567 		DELAY(10);
    568 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    569 		    PCI_VPD_ADDRESS(vpdc));
    570 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
    571 			break;
    572 	}
    573 	if (i == 0) {
    574 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
    575 		*word = 0;
    576 		return ETIMEDOUT;
    577 	}
    578 
    579 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
    580 	return 0;
    581 }
    582 
    583 static void
    584 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    585 {
    586 	uint32_t ea[2], off, reg, word;
    587 	int vpd_error, match, vpdc;
    588 
    589 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    590 	if ((reg & SPI_VPD_ENB) != 0) {
    591 		/* Get VPD stored in TWSI EEPROM. */
    592 		reg &= ~SPI_VPD_ENB;
    593 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    594 	}
    595 
    596 	vpd_error = 0;
    597 	ea[0] = ea[1] = 0;
    598 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    599 	    PCI_CAP_VPD, &vpdc, NULL))) {
    600 		/*
    601 		 * PCI VPD capability exists, but it seems that it's
    602 		 * not in the standard form as stated in PCI VPD
    603 		 * specification such that driver could not use
    604 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
    605 		 * Search VPD data starting at address 0x0100. The data
    606 		 * should be used as initializers to set AGE_PAR0,
    607 		 * AGE_PAR1 register including other PCI configuration
    608 		 * registers.
    609 		 */
    610 		word = 0;
    611 		match = 0;
    612 		reg = 0;
    613 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
    614 		    off += sizeof(uint32_t)) {
    615 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
    616 			if (vpd_error != 0)
    617 				break;
    618 			if (match != 0) {
    619 				switch (reg) {
    620 				case AGE_PAR0:
    621 					ea[0] = word;
    622 					break;
    623 				case AGE_PAR1:
    624 					ea[1] = word;
    625 					break;
    626 				default:
    627 					break;
    628 				}
    629 				match = 0;
    630 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
    631 				match = 1;
    632 				reg = word >> 16;
    633 			} else
    634 				break;
    635 		}
    636 		if (off >= AGE_VPD_REG_CONF_END)
    637 			vpd_error = ENOENT;
    638 		if (vpd_error == 0) {
    639 			/*
    640 			 * Don't blindly trust ethernet address obtained
    641 			 * from VPD. Check whether ethernet address is
    642 			 * valid one. Otherwise fall-back to reading
    643 			 * PAR register.
    644 			 */
    645 			ea[1] &= 0xFFFF;
    646 			if ((ea[0] == 0 && ea[1] == 0) ||
    647 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
    648 				if (agedebug)
    649 					printf("%s: invalid ethernet address "
    650 				    	    "returned from VPD.\n",
    651 				    	    device_xname(sc->sc_dev));
    652 				vpd_error = EINVAL;
    653 			}
    654 		}
    655 		if (vpd_error != 0 && (agedebug))
    656 			printf("%s: VPD access failure!\n",
    657 			    device_xname(sc->sc_dev));
    658 	} else {
    659 		if (agedebug)
    660 			printf("%s: PCI VPD capability not found!\n",
    661 			    device_xname(sc->sc_dev));
    662 	}
    663 
    664 	/*
    665 	 * It seems that L1 also provides a way to extract ethernet
    666 	 * address via SPI flash interface. Because SPI flash memory
    667 	 * device of different vendors vary in their instruction
    668 	 * codes for read ID instruction, it's very hard to get
    669 	 * instructions codes without detailed information for the
    670 	 * flash memory device used on ethernet controller. To simplify
    671 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
    672 	 * address which is supposed to be set by hardware during
    673 	 * power on reset.
    674 	 */
    675 	if (vpd_error != 0) {
    676 		/*
    677 		 * VPD is mapped to SPI flash memory or BIOS set it.
    678 		 */
    679 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
    680 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
    681 	}
    682 
    683 	ea[1] &= 0xFFFF;
    684 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    685 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    686 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    687 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    688 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    689 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    690 }
    691 
    692 static void
    693 age_phy_reset(struct age_softc *sc)
    694 {
    695 	/* Reset PHY. */
    696 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    697 	DELAY(1000);
    698 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    699 	DELAY(1000);
    700 }
    701 
    702 static int
    703 age_dma_alloc(struct age_softc *sc)
    704 {
    705 	struct age_txdesc *txd;
    706 	struct age_rxdesc *rxd;
    707 	int nsegs, error, i;
    708 
    709 	/*
    710 	 * Create DMA stuffs for TX ring
    711 	 */
    712 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    713 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    714 	if (error) {
    715 		sc->age_cdata.age_tx_ring_map = NULL;
    716 		return ENOBUFS;
    717 	}
    718 
    719 	/* Allocate DMA'able memory for TX ring */
    720 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    721 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    722 	    &nsegs, BUS_DMA_WAITOK);
    723 	if (error) {
    724 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    725 		    "error = %i\n", device_xname(sc->sc_dev), error);
    726 		return error;
    727 	}
    728 
    729 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    730 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    731 	    BUS_DMA_NOWAIT);
    732 	if (error)
    733 		return ENOBUFS;
    734 
    735 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    736 
    737 	/*  Load the DMA map for Tx ring. */
    738 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    739 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    740 	if (error) {
    741 		printf("%s: could not load DMA'able memory for Tx ring, "
    742 		    "error = %i\n", device_xname(sc->sc_dev), error);
    743 		bus_dmamem_free(sc->sc_dmat,
    744 		    &sc->age_rdata.age_tx_ring_seg, 1);
    745 		return error;
    746 	}
    747 
    748 	sc->age_rdata.age_tx_ring_paddr =
    749 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    750 
    751 	/*
    752 	 * Create DMA stuffs for RX ring
    753 	 */
    754 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    755 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    756 	if (error) {
    757 		sc->age_cdata.age_rx_ring_map = NULL;
    758 		return ENOBUFS;
    759 	}
    760 
    761 	/* Allocate DMA'able memory for RX ring */
    762 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    763 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    764 	    &nsegs, BUS_DMA_WAITOK);
    765 	if (error) {
    766 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    767 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    768 		return error;
    769 	}
    770 
    771 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    772 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    773 	    BUS_DMA_NOWAIT);
    774 	if (error)
    775 		return ENOBUFS;
    776 
    777 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    778 
    779 	/* Load the DMA map for Rx ring. */
    780 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    781 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
    782 	if (error) {
    783 		printf("%s: could not load DMA'able memory for Rx ring, "
    784 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    785 		bus_dmamem_free(sc->sc_dmat,
    786 		    &sc->age_rdata.age_rx_ring_seg, 1);
    787 		return error;
    788 	}
    789 
    790 	sc->age_rdata.age_rx_ring_paddr =
    791 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    792 
    793 	/*
    794 	 * Create DMA stuffs for RX return ring
    795 	 */
    796 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    797 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    798 	if (error) {
    799 		sc->age_cdata.age_rr_ring_map = NULL;
    800 		return ENOBUFS;
    801 	}
    802 
    803 	/* Allocate DMA'able memory for RX return ring */
    804 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    805 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    806 	    &nsegs, BUS_DMA_WAITOK);
    807 	if (error) {
    808 		printf("%s: could not allocate DMA'able memory for Rx "
    809 		    "return ring, error = %i.\n",
    810 		    device_xname(sc->sc_dev), error);
    811 		return error;
    812 	}
    813 
    814 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    815 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    816 	    BUS_DMA_NOWAIT);
    817 	if (error)
    818 		return ENOBUFS;
    819 
    820 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    821 
    822 	/*  Load the DMA map for Rx return ring. */
    823 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    824 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
    825 	if (error) {
    826 		printf("%s: could not load DMA'able memory for Rx return ring, "
    827 		    "error = %i\n", device_xname(sc->sc_dev), error);
    828 		bus_dmamem_free(sc->sc_dmat,
    829 		    &sc->age_rdata.age_rr_ring_seg, 1);
    830 		return error;
    831 	}
    832 
    833 	sc->age_rdata.age_rr_ring_paddr =
    834 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    835 
    836 	/*
    837 	 * Create DMA stuffs for CMB block
    838 	 */
    839 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    840 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    841 	    &sc->age_cdata.age_cmb_block_map);
    842 	if (error) {
    843 		sc->age_cdata.age_cmb_block_map = NULL;
    844 		return ENOBUFS;
    845 	}
    846 
    847 	/* Allocate DMA'able memory for CMB block */
    848 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    849 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    850 	    &nsegs, BUS_DMA_WAITOK);
    851 	if (error) {
    852 		printf("%s: could not allocate DMA'able memory for "
    853 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    854 		return error;
    855 	}
    856 
    857 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    858 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    859 	    BUS_DMA_NOWAIT);
    860 	if (error)
    861 		return ENOBUFS;
    862 
    863 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    864 
    865 	/*  Load the DMA map for CMB block. */
    866 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    867 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    868 	    BUS_DMA_WAITOK);
    869 	if (error) {
    870 		printf("%s: could not load DMA'able memory for CMB block, "
    871 		    "error = %i\n", device_xname(sc->sc_dev), error);
    872 		bus_dmamem_free(sc->sc_dmat,
    873 		    &sc->age_rdata.age_cmb_block_seg, 1);
    874 		return error;
    875 	}
    876 
    877 	sc->age_rdata.age_cmb_block_paddr =
    878 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    879 
    880 	/*
    881 	 * Create DMA stuffs for SMB block
    882 	 */
    883 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    884 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    885 	    &sc->age_cdata.age_smb_block_map);
    886 	if (error) {
    887 		sc->age_cdata.age_smb_block_map = NULL;
    888 		return ENOBUFS;
    889 	}
    890 
    891 	/* Allocate DMA'able memory for SMB block */
    892 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    893 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
    894 	    &nsegs, BUS_DMA_WAITOK);
    895 	if (error) {
    896 		printf("%s: could not allocate DMA'able memory for "
    897 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    898 		return error;
    899 	}
    900 
    901 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    902 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    903 	    BUS_DMA_NOWAIT);
    904 	if (error)
    905 		return ENOBUFS;
    906 
    907 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    908 
    909 	/*  Load the DMA map for SMB block */
    910 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    911 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    912 	    BUS_DMA_WAITOK);
    913 	if (error) {
    914 		printf("%s: could not load DMA'able memory for SMB block, "
    915 		    "error = %i\n", device_xname(sc->sc_dev), error);
    916 		bus_dmamem_free(sc->sc_dmat,
    917 		    &sc->age_rdata.age_smb_block_seg, 1);
    918 		return error;
    919 	}
    920 
    921 	sc->age_rdata.age_smb_block_paddr =
    922 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    923 
    924 	/* Create DMA maps for Tx buffers. */
    925 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    926 		txd = &sc->age_cdata.age_txdesc[i];
    927 		txd->tx_m = NULL;
    928 		txd->tx_dmamap = NULL;
    929 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    930 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    931 		    &txd->tx_dmamap);
    932 		if (error) {
    933 			txd->tx_dmamap = NULL;
    934 			printf("%s: could not create Tx dmamap, error = %i.\n",
    935 			    device_xname(sc->sc_dev), error);
    936 			return error;
    937 		}
    938 	}
    939 
    940 	/* Create DMA maps for Rx buffers. */
    941 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    942 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    943 	if (error) {
    944 		sc->age_cdata.age_rx_sparemap = NULL;
    945 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    946 		    device_xname(sc->sc_dev), error);
    947 		return error;
    948 	}
    949 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    950 		rxd = &sc->age_cdata.age_rxdesc[i];
    951 		rxd->rx_m = NULL;
    952 		rxd->rx_dmamap = NULL;
    953 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    954 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    955 		if (error) {
    956 			rxd->rx_dmamap = NULL;
    957 			printf("%s: could not create Rx dmamap, error = %i.\n",
    958 			    device_xname(sc->sc_dev), error);
    959 			return error;
    960 		}
    961 	}
    962 
    963 	return 0;
    964 }
    965 
    966 static void
    967 age_dma_free(struct age_softc *sc)
    968 {
    969 	struct age_txdesc *txd;
    970 	struct age_rxdesc *rxd;
    971 	int i;
    972 
    973 	/* Tx buffers */
    974 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    975 		txd = &sc->age_cdata.age_txdesc[i];
    976 		if (txd->tx_dmamap != NULL) {
    977 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    978 			txd->tx_dmamap = NULL;
    979 		}
    980 	}
    981 	/* Rx buffers */
    982 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    983 		rxd = &sc->age_cdata.age_rxdesc[i];
    984 		if (rxd->rx_dmamap != NULL) {
    985 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    986 			rxd->rx_dmamap = NULL;
    987 		}
    988 	}
    989 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    990 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
    991 		sc->age_cdata.age_rx_sparemap = NULL;
    992 	}
    993 
    994 	/* Tx ring. */
    995 	if (sc->age_cdata.age_tx_ring_map != NULL)
    996 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
    997 	if (sc->age_cdata.age_tx_ring_map != NULL &&
    998 	    sc->age_rdata.age_tx_ring != NULL)
    999 		bus_dmamem_free(sc->sc_dmat,
   1000 		    &sc->age_rdata.age_tx_ring_seg, 1);
   1001 	sc->age_rdata.age_tx_ring = NULL;
   1002 	sc->age_cdata.age_tx_ring_map = NULL;
   1003 
   1004 	/* Rx ring. */
   1005 	if (sc->age_cdata.age_rx_ring_map != NULL)
   1006 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
   1007 	if (sc->age_cdata.age_rx_ring_map != NULL &&
   1008 	    sc->age_rdata.age_rx_ring != NULL)
   1009 		bus_dmamem_free(sc->sc_dmat,
   1010 		    &sc->age_rdata.age_rx_ring_seg, 1);
   1011 	sc->age_rdata.age_rx_ring = NULL;
   1012 	sc->age_cdata.age_rx_ring_map = NULL;
   1013 
   1014 	/* Rx return ring. */
   1015 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1016 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1017 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1018 	    sc->age_rdata.age_rr_ring != NULL)
   1019 		bus_dmamem_free(sc->sc_dmat,
   1020 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1021 	sc->age_rdata.age_rr_ring = NULL;
   1022 	sc->age_cdata.age_rr_ring_map = NULL;
   1023 
   1024 	/* CMB block */
   1025 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1026 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1027 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1028 	    sc->age_rdata.age_cmb_block != NULL)
   1029 		bus_dmamem_free(sc->sc_dmat,
   1030 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1031 	sc->age_rdata.age_cmb_block = NULL;
   1032 	sc->age_cdata.age_cmb_block_map = NULL;
   1033 
   1034 	/* SMB block */
   1035 	if (sc->age_cdata.age_smb_block_map != NULL)
   1036 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1037 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1038 	    sc->age_rdata.age_smb_block != NULL)
   1039 		bus_dmamem_free(sc->sc_dmat,
   1040 		    &sc->age_rdata.age_smb_block_seg, 1);
   1041 	sc->age_rdata.age_smb_block = NULL;
   1042 	sc->age_cdata.age_smb_block_map = NULL;
   1043 }
   1044 
   1045 static void
   1046 age_start(struct ifnet *ifp)
   1047 {
   1048         struct age_softc *sc = ifp->if_softc;
   1049         struct mbuf *m_head;
   1050 	int enq;
   1051 
   1052 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1053 		return;
   1054 
   1055 	enq = 0;
   1056 	for (;;) {
   1057 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1058 		if (m_head == NULL)
   1059 			break;
   1060 
   1061 		/*
   1062 		 * Pack the data into the transmit ring. If we
   1063 		 * don't have room, set the OACTIVE flag and wait
   1064 		 * for the NIC to drain the ring.
   1065 		 */
   1066 		if (age_encap(sc, &m_head)) {
   1067 			if (m_head == NULL)
   1068 				break;
   1069 			ifp->if_flags |= IFF_OACTIVE;
   1070 			break;
   1071 		}
   1072 		enq = 1;
   1073 
   1074 #if NBPFILTER > 0
   1075 		/*
   1076 		 * If there's a BPF listener, bounce a copy of this frame
   1077 		 * to him.
   1078 		 */
   1079 		if (ifp->if_bpf != NULL)
   1080 			bpf_mtap(ifp->if_bpf, m_head);
   1081 #endif
   1082 	}
   1083 
   1084 	if (enq) {
   1085 		/* Update mbox. */
   1086 		AGE_COMMIT_MBOX(sc);
   1087 		/* Set a timeout in case the chip goes out to lunch. */
   1088 		ifp->if_timer = AGE_TX_TIMEOUT;
   1089 	}
   1090 }
   1091 
   1092 static void
   1093 age_watchdog(struct ifnet *ifp)
   1094 {
   1095 	struct age_softc *sc = ifp->if_softc;
   1096 
   1097 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1098 		printf("%s: watchdog timeout (missed link)\n",
   1099 		    device_xname(sc->sc_dev));
   1100 		ifp->if_oerrors++;
   1101 		age_init(ifp);
   1102 		return;
   1103 	}
   1104 
   1105 	if (sc->age_cdata.age_tx_cnt == 0) {
   1106 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1107 		    "-- recovering\n", device_xname(sc->sc_dev));
   1108 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1109 			age_start(ifp);
   1110 		return;
   1111 	}
   1112 
   1113 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1114 	ifp->if_oerrors++;
   1115 	age_init(ifp);
   1116 
   1117 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1118 		age_start(ifp);
   1119 }
   1120 
   1121 static int
   1122 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1123 {
   1124 	struct age_softc *sc = ifp->if_softc;
   1125 	int s, error;
   1126 
   1127 	s = splnet();
   1128 
   1129 	error = ether_ioctl(ifp, cmd, data);
   1130 	if (error == ENETRESET) {
   1131 		if (ifp->if_flags & IFF_RUNNING)
   1132 			age_rxfilter(sc);
   1133 		error = 0;
   1134 	}
   1135 
   1136 	splx(s);
   1137 	return error;
   1138 }
   1139 
   1140 static void
   1141 age_mac_config(struct age_softc *sc)
   1142 {
   1143 	struct mii_data *mii;
   1144 	uint32_t reg;
   1145 
   1146 	mii = &sc->sc_miibus;
   1147 
   1148 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1149 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1150 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1151 	reg &= ~MAC_CFG_SPEED_MASK;
   1152 
   1153 	/* Reprogram MAC with resolved speed/duplex. */
   1154 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1155 	case IFM_10_T:
   1156 	case IFM_100_TX:
   1157 		reg |= MAC_CFG_SPEED_10_100;
   1158 		break;
   1159 	case IFM_1000_T:
   1160 		reg |= MAC_CFG_SPEED_1000;
   1161 		break;
   1162 	}
   1163 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1164 		reg |= MAC_CFG_FULL_DUPLEX;
   1165 #ifdef notyet
   1166 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1167 			reg |= MAC_CFG_TX_FC;
   1168 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1169 			reg |= MAC_CFG_RX_FC;
   1170 #endif
   1171 	}
   1172 
   1173 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1174 }
   1175 
   1176 static bool
   1177 age_resume(device_t dv PMF_FN_ARGS)
   1178 {
   1179 	struct age_softc *sc = device_private(dv);
   1180 	uint16_t cmd;
   1181 
   1182 	/*
   1183 	 * Clear INTx emulation disable for hardware that
   1184 	 * is set in resume event. From Linux.
   1185 	 */
   1186 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1187 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1188 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1189 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1190 		    PCI_COMMAND_STATUS_REG, cmd);
   1191 	}
   1192 
   1193 	return true;
   1194 }
   1195 
   1196 static int
   1197 age_encap(struct age_softc *sc, struct mbuf **m_head)
   1198 {
   1199 	struct age_txdesc *txd, *txd_last;
   1200 	struct tx_desc *desc;
   1201 	struct mbuf *m;
   1202 	bus_dmamap_t map;
   1203 	uint32_t cflags, poff, vtag;
   1204 	int error, i, nsegs, prod;
   1205 #if NVLAN > 0
   1206 	struct m_tag *mtag;
   1207 #endif
   1208 
   1209 	m = *m_head;
   1210 	cflags = vtag = 0;
   1211 	poff = 0;
   1212 
   1213 	prod = sc->age_cdata.age_tx_prod;
   1214 	txd = &sc->age_cdata.age_txdesc[prod];
   1215 	txd_last = txd;
   1216 	map = txd->tx_dmamap;
   1217 
   1218 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1219 
   1220 	if (error == EFBIG) {
   1221 		error = 0;
   1222 
   1223 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1224 		if (m == NULL) {
   1225 			printf("%s: can't defrag TX mbuf\n",
   1226 			    device_xname(sc->sc_dev));
   1227 			m_freem(*m_head);
   1228 			*m_head = NULL;
   1229 			return ENOBUFS;
   1230 		}
   1231 
   1232 		M_COPY_PKTHDR(m, *m_head);
   1233 		if ((*m_head)->m_pkthdr.len > MHLEN) {
   1234 			MCLGET(m, M_DONTWAIT);
   1235 			if (!(m->m_flags & M_EXT)) {
   1236 				m_freem(*m_head);
   1237 				m_freem(m);
   1238 				*m_head = NULL;
   1239 				return ENOBUFS;
   1240 			}
   1241 		}
   1242 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
   1243 		    mtod(m, void *));
   1244 		m_freem(*m_head);
   1245 		m->m_len = m->m_pkthdr.len;
   1246 		*m_head = m;
   1247 
   1248 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1249 		  	    BUS_DMA_NOWAIT);
   1250 
   1251 		if (error != 0) {
   1252 			printf("%s: could not load defragged TX mbuf\n",
   1253 			    device_xname(sc->sc_dev));
   1254 			if (!error) {
   1255 				bus_dmamap_unload(sc->sc_dmat, map);
   1256 				error = EFBIG;
   1257 			}
   1258 			m_freem(*m_head);
   1259 			*m_head = NULL;
   1260 			return error;
   1261 		}
   1262 	} else if (error) {
   1263 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1264 		return error;
   1265 	}
   1266 
   1267 	nsegs = map->dm_nsegs;
   1268 
   1269 	if (nsegs == 0) {
   1270 		m_freem(*m_head);
   1271 		*m_head = NULL;
   1272 		return EIO;
   1273 	}
   1274 
   1275 	/* Check descriptor overrun. */
   1276 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1277 		bus_dmamap_unload(sc->sc_dmat, map);
   1278 		return ENOBUFS;
   1279 	}
   1280 
   1281 	m = *m_head;
   1282 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1283 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1284 		cflags |= AGE_TD_CSUM;
   1285 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1286 			cflags |= AGE_TD_TCPCSUM;
   1287 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1288 			cflags |= AGE_TD_UDPCSUM;
   1289 		/* Set checksum start offset. */
   1290 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1291 	}
   1292 
   1293 #if NVLAN > 0
   1294 	/* Configure VLAN hardware tag insertion. */
   1295 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1296 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
   1297 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1298 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1299 	}
   1300 #endif
   1301 
   1302 	desc = NULL;
   1303 	for (i = 0; i < nsegs; i++) {
   1304 		desc = &sc->age_rdata.age_tx_ring[prod];
   1305 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1306 		desc->len =
   1307 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1308 		desc->flags = htole32(cflags);
   1309 		sc->age_cdata.age_tx_cnt++;
   1310 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1311 	}
   1312 
   1313 	/* Update producer index. */
   1314 	sc->age_cdata.age_tx_prod = prod;
   1315 
   1316 	/* Set EOP on the last descriptor. */
   1317 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
   1318 	desc = &sc->age_rdata.age_tx_ring[prod];
   1319 	desc->flags |= htole32(AGE_TD_EOP);
   1320 
   1321 	/* Swap dmamap of the first and the last. */
   1322 	txd = &sc->age_cdata.age_txdesc[prod];
   1323 	map = txd_last->tx_dmamap;
   1324 	txd_last->tx_dmamap = txd->tx_dmamap;
   1325 	txd->tx_dmamap = map;
   1326 	txd->tx_m = m;
   1327 
   1328 	/* Sync descriptors. */
   1329 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1330 	    BUS_DMASYNC_PREWRITE);
   1331 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1332 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1333 
   1334 	return 0;
   1335 }
   1336 
   1337 static void
   1338 age_txintr(struct age_softc *sc, int tpd_cons)
   1339 {
   1340 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1341 	struct age_txdesc *txd;
   1342 	int cons, prog;
   1343 
   1344 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1345 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1346 
   1347 	/*
   1348 	 * Go through our Tx list and free mbufs for those
   1349 	 * frames which have been transmitted.
   1350 	 */
   1351 	cons = sc->age_cdata.age_tx_cons;
   1352 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1353 		if (sc->age_cdata.age_tx_cnt <= 0)
   1354 			break;
   1355 		prog++;
   1356 		ifp->if_flags &= ~IFF_OACTIVE;
   1357 		sc->age_cdata.age_tx_cnt--;
   1358 		txd = &sc->age_cdata.age_txdesc[cons];
   1359 		/*
   1360 		 * Clear Tx descriptors, it's not required but would
   1361 		 * help debugging in case of Tx issues.
   1362 		 */
   1363 		txd->tx_desc->addr = 0;
   1364 		txd->tx_desc->len = 0;
   1365 		txd->tx_desc->flags = 0;
   1366 
   1367 		if (txd->tx_m == NULL)
   1368 			continue;
   1369 		/* Reclaim transmitted mbufs. */
   1370 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1371 		m_freem(txd->tx_m);
   1372 		txd->tx_m = NULL;
   1373 	}
   1374 
   1375 	if (prog > 0) {
   1376 		sc->age_cdata.age_tx_cons = cons;
   1377 
   1378 		/*
   1379 		 * Unarm watchdog timer only when there are no pending
   1380 		 * Tx descriptors in queue.
   1381 		 */
   1382 		if (sc->age_cdata.age_tx_cnt == 0)
   1383 			ifp->if_timer = 0;
   1384 
   1385 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   1386 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
   1387 		    BUS_DMASYNC_PREWRITE);
   1388 	}
   1389 }
   1390 
   1391 /* Receive a frame. */
   1392 static void
   1393 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1394 {
   1395 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1396 	struct age_rxdesc *rxd;
   1397 	struct rx_desc *desc;
   1398 	struct mbuf *mp, *m;
   1399 	uint32_t status, index;
   1400 	int count, nsegs, pktlen;
   1401 	int rx_cons;
   1402 
   1403 	status = le32toh(rxrd->flags);
   1404 	index = le32toh(rxrd->index);
   1405 	rx_cons = AGE_RX_CONS(index);
   1406 	nsegs = AGE_RX_NSEGS(index);
   1407 
   1408 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1409 	if ((status & AGE_RRD_ERROR) != 0 &&
   1410 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1411 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1412 		/*
   1413 		 * We want to pass the following frames to upper
   1414 		 * layer regardless of error status of Rx return
   1415 		 * ring.
   1416 		 *
   1417 		 *  o IP/TCP/UDP checksum is bad.
   1418 		 *  o frame length and protocol specific length
   1419 		 *     does not match.
   1420 		 */
   1421 		sc->age_cdata.age_rx_cons += nsegs;
   1422 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1423 		return;
   1424 	}
   1425 
   1426 	pktlen = 0;
   1427 	for (count = 0; count < nsegs; count++,
   1428 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1429 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1430 		mp = rxd->rx_m;
   1431 		desc = rxd->rx_desc;
   1432 		/* Add a new receive buffer to the ring. */
   1433 		if (age_newbuf(sc, rxd, 0) != 0) {
   1434 			ifp->if_iqdrops++;
   1435 			/* Reuse Rx buffers. */
   1436 			if (sc->age_cdata.age_rxhead != NULL) {
   1437 				m_freem(sc->age_cdata.age_rxhead);
   1438 				AGE_RXCHAIN_RESET(sc);
   1439 			}
   1440 			break;
   1441 		}
   1442 
   1443 		/* The length of the first mbuf is computed last. */
   1444 		if (count != 0) {
   1445 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1446 			pktlen += mp->m_len;
   1447 		}
   1448 
   1449 		/* Chain received mbufs. */
   1450 		if (sc->age_cdata.age_rxhead == NULL) {
   1451 			sc->age_cdata.age_rxhead = mp;
   1452 			sc->age_cdata.age_rxtail = mp;
   1453 		} else {
   1454 			mp->m_flags &= ~M_PKTHDR;
   1455 			sc->age_cdata.age_rxprev_tail =
   1456 			    sc->age_cdata.age_rxtail;
   1457 			sc->age_cdata.age_rxtail->m_next = mp;
   1458 			sc->age_cdata.age_rxtail = mp;
   1459 		}
   1460 
   1461 		if (count == nsegs - 1) {
   1462 			/*
   1463 			 * It seems that L1 controller has no way
   1464 			 * to tell hardware to strip CRC bytes.
   1465 			 */
   1466 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1467 			if (nsegs > 1) {
   1468 				/* Remove the CRC bytes in chained mbufs. */
   1469 				pktlen -= ETHER_CRC_LEN;
   1470 				if (mp->m_len <= ETHER_CRC_LEN) {
   1471 					sc->age_cdata.age_rxtail =
   1472 					    sc->age_cdata.age_rxprev_tail;
   1473 					sc->age_cdata.age_rxtail->m_len -=
   1474 					    (ETHER_CRC_LEN - mp->m_len);
   1475 					sc->age_cdata.age_rxtail->m_next = NULL;
   1476 					m_freem(mp);
   1477 				} else {
   1478 					mp->m_len -= ETHER_CRC_LEN;
   1479 				}
   1480 			}
   1481 
   1482 			m = sc->age_cdata.age_rxhead;
   1483 			m->m_flags |= M_PKTHDR;
   1484 			m->m_pkthdr.rcvif = ifp;
   1485 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1486 			/* Set the first mbuf length. */
   1487 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1488 
   1489 			/*
   1490 			 * Set checksum information.
   1491 			 * It seems that L1 controller can compute partial
   1492 			 * checksum. The partial checksum value can be used
   1493 			 * to accelerate checksum computation for fragmented
   1494 			 * TCP/UDP packets. Upper network stack already
   1495 			 * takes advantage of the partial checksum value in
   1496 			 * IP reassembly stage. But I'm not sure the
   1497 			 * correctness of the partial hardware checksum
   1498 			 * assistance due to lack of data sheet. If it is
   1499 			 * proven to work on L1 I'll enable it.
   1500 			 */
   1501 			if (status & AGE_RRD_IPV4) {
   1502 				if (status & AGE_RRD_IPCSUM_NOK)
   1503 					m->m_pkthdr.csum_flags |=
   1504 					    M_CSUM_IPv4_BAD;
   1505 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1506 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1507 					m->m_pkthdr.csum_flags |=
   1508 					    M_CSUM_TCP_UDP_BAD;
   1509 				}
   1510 				/*
   1511 				 * Don't mark bad checksum for TCP/UDP frames
   1512 				 * as fragmented frames may always have set
   1513 				 * bad checksummed bit of descriptor status.
   1514 				 */
   1515 			}
   1516 #if NVLAN > 0
   1517 			/* Check for VLAN tagged frames. */
   1518 			if (status & AGE_RRD_VLAN) {
   1519 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1520 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
   1521 					continue);
   1522 			}
   1523 #endif
   1524 
   1525 #if NBPFILTER > 0
   1526 			if (ifp->if_bpf)
   1527 				bpf_mtap(ifp->if_bpf, m);
   1528 #endif
   1529 			/* Pass it on. */
   1530 			ether_input(ifp, m);
   1531 
   1532 			/* Reset mbuf chains. */
   1533 			AGE_RXCHAIN_RESET(sc);
   1534 		}
   1535 	}
   1536 
   1537 	if (count != nsegs) {
   1538 		sc->age_cdata.age_rx_cons += nsegs;
   1539 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1540 	} else
   1541 		sc->age_cdata.age_rx_cons = rx_cons;
   1542 }
   1543 
   1544 static void
   1545 age_rxintr(struct age_softc *sc, int rr_prod)
   1546 {
   1547 	struct rx_rdesc *rxrd;
   1548 	int rr_cons, nsegs, pktlen, prog;
   1549 
   1550 	rr_cons = sc->age_cdata.age_rr_cons;
   1551 	if (rr_cons == rr_prod)
   1552 		return;
   1553 
   1554 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1555 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1556 	    BUS_DMASYNC_POSTREAD);
   1557 
   1558 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1559 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1560 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1561 		if (nsegs == 0)
   1562 			break;
   1563 		/*
   1564 		 * Check number of segments against received bytes
   1565 		 * Non-matching value would indicate that hardware
   1566 		 * is still trying to update Rx return descriptors.
   1567 		 * I'm not sure whether this check is really needed.
   1568 		 */
   1569 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1570 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1571 		    (MCLBYTES - ETHER_ALIGN)))
   1572 			break;
   1573 
   1574 		/* Received a frame. */
   1575 		age_rxeof(sc, rxrd);
   1576 
   1577 		/* Clear return ring. */
   1578 		rxrd->index = 0;
   1579 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1580 	}
   1581 
   1582 	if (prog > 0) {
   1583 		/* Update the consumer index. */
   1584 		sc->age_cdata.age_rr_cons = rr_cons;
   1585 
   1586 		/* Sync descriptors. */
   1587 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1588 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1589 		    BUS_DMASYNC_PREWRITE);
   1590 
   1591 		/* Notify hardware availability of new Rx buffers. */
   1592 		AGE_COMMIT_MBOX(sc);
   1593 	}
   1594 }
   1595 
   1596 static void
   1597 age_tick(void *xsc)
   1598 {
   1599 	struct age_softc *sc = xsc;
   1600 	struct mii_data *mii = &sc->sc_miibus;
   1601 	int s;
   1602 
   1603 	s = splnet();
   1604 	mii_tick(mii);
   1605 	splx(s);
   1606 
   1607 	callout_schedule(&sc->sc_tick_ch, hz);
   1608 }
   1609 
   1610 static void
   1611 age_reset(struct age_softc *sc)
   1612 {
   1613 	uint32_t reg;
   1614 	int i;
   1615 
   1616 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1617 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1618 		DELAY(1);
   1619 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
   1620 			break;
   1621 	}
   1622 	if (i == 0)
   1623 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   1624 
   1625 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1626 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1627 			break;
   1628 		DELAY(10);
   1629 	}
   1630 
   1631 	if (i == 0)
   1632 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1633 		    reg);
   1634 
   1635 	/* Initialize PCIe module. From Linux. */
   1636 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1637 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1638 }
   1639 
   1640 static int
   1641 age_init(struct ifnet *ifp)
   1642 {
   1643 	struct age_softc *sc = ifp->if_softc;
   1644 	struct mii_data *mii;
   1645 	uint8_t eaddr[ETHER_ADDR_LEN];
   1646 	bus_addr_t paddr;
   1647 	uint32_t reg, fsize;
   1648 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1649 	int error;
   1650 
   1651 	/*
   1652 	 * Cancel any pending I/O.
   1653 	 */
   1654 	age_stop(ifp, 0);
   1655 
   1656 	/*
   1657 	 * Reset the chip to a known state.
   1658 	 */
   1659 	age_reset(sc);
   1660 
   1661 	/* Initialize descriptors. */
   1662 	error = age_init_rx_ring(sc);
   1663         if (error != 0) {
   1664 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1665 		age_stop(ifp, 0);
   1666 		return error;
   1667         }
   1668 	age_init_rr_ring(sc);
   1669 	age_init_tx_ring(sc);
   1670 	age_init_cmb_block(sc);
   1671 	age_init_smb_block(sc);
   1672 
   1673 	/* Reprogram the station address. */
   1674 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1675 	CSR_WRITE_4(sc, AGE_PAR0,
   1676 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1677 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1678 
   1679 	/* Set descriptor base addresses. */
   1680 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1681 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1682 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1683 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1684 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1685 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1686 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1687 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1688 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1689 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1690 	paddr = sc->age_rdata.age_smb_block_paddr;
   1691 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1692 
   1693 	/* Set Rx/Rx return descriptor counter. */
   1694 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1695 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1696 	    DESC_RRD_CNT_MASK) |
   1697 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1698 
   1699 	/* Set Tx descriptor counter. */
   1700 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1701 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1702 
   1703 	/* Tell hardware that we're ready to load descriptors. */
   1704 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1705 
   1706         /*
   1707 	 * Initialize mailbox register.
   1708 	 * Updated producer/consumer index information is exchanged
   1709 	 * through this mailbox register. However Tx producer and
   1710 	 * Rx return consumer/Rx producer are all shared such that
   1711 	 * it's hard to separate code path between Tx and Rx without
   1712 	 * locking. If L1 hardware have a separate mail box register
   1713 	 * for Tx and Rx consumer/producer management we could have
   1714 	 * indepent Tx/Rx handler which in turn Rx handler could have
   1715 	 * been run without any locking.
   1716 	*/
   1717 	AGE_COMMIT_MBOX(sc);
   1718 
   1719 	/* Configure IPG/IFG parameters. */
   1720 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1721 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1722 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1723 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1724 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1725 
   1726 	/* Set parameters for half-duplex media. */
   1727 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1728 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1729 	    HDPX_CFG_LCOL_MASK) |
   1730 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1731 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1732 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1733 	    HDPX_CFG_ABEBT_MASK) |
   1734 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1735 	     HDPX_CFG_JAMIPG_MASK));
   1736 
   1737 	/* Configure interrupt moderation timer. */
   1738 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1739 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1740 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1741 	reg &= ~MASTER_MTIMER_ENB;
   1742 	if (AGE_USECS(sc->age_int_mod) == 0)
   1743 		reg &= ~MASTER_ITIMER_ENB;
   1744 	else
   1745 		reg |= MASTER_ITIMER_ENB;
   1746 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1747 	if (agedebug)
   1748 		printf("%s: interrupt moderation is %d us.\n",
   1749 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1750 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1751 
   1752 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1753 	if (ifp->if_mtu < ETHERMTU)
   1754 		sc->age_max_frame_size = ETHERMTU;
   1755 	else
   1756 		sc->age_max_frame_size = ifp->if_mtu;
   1757 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1758 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1759 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1760 
   1761 	/* Configure jumbo frame. */
   1762 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1763 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1764 	    (((fsize / sizeof(uint64_t)) <<
   1765 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1766 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1767 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1768 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1769 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1770 
   1771 	/* Configure flow-control parameters. From Linux. */
   1772 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1773 		/*
   1774 		 * Magic workaround for old-L1.
   1775 		 * Don't know which hw revision requires this magic.
   1776 		 */
   1777 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1778 		/*
   1779 		 * Another magic workaround for flow-control mode
   1780 		 * change. From Linux.
   1781 		 */
   1782 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1783 	}
   1784 	/*
   1785 	 * TODO
   1786 	 *  Should understand pause parameter relationships between FIFO
   1787 	 *  size and number of Rx descriptors and Rx return descriptors.
   1788 	 *
   1789 	 *  Magic parameters came from Linux.
   1790 	 */
   1791 	switch (sc->age_chip_rev) {
   1792 	case 0x8001:
   1793 	case 0x9001:
   1794 	case 0x9002:
   1795 	case 0x9003:
   1796 		rxf_hi = AGE_RX_RING_CNT / 16;
   1797 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1798 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1799 		rrd_lo = AGE_RR_RING_CNT / 16;
   1800 		break;
   1801 	default:
   1802 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1803 		rxf_lo = reg / 16;
   1804 		if (rxf_lo < 192)
   1805 			rxf_lo = 192;
   1806 		rxf_hi = (reg * 7) / 8;
   1807 		if (rxf_hi < rxf_lo)
   1808 			rxf_hi = rxf_lo + 16;
   1809 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1810 		rrd_lo = reg / 8;
   1811 		rrd_hi = (reg * 7) / 8;
   1812 		if (rrd_lo < 2)
   1813 			rrd_lo = 2;
   1814 		if (rrd_hi < rrd_lo)
   1815 			rrd_hi = rrd_lo + 3;
   1816 		break;
   1817 	}
   1818 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1819 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1820 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1821 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1822 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1823 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1824 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1825 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1826 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1827 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1828 
   1829 	/* Configure RxQ. */
   1830 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1831 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1832 	    RXQ_CFG_RD_BURST_MASK) |
   1833 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1834 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1835 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1836 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1837 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1838 
   1839 	/* Configure TxQ. */
   1840 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1841 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1842 	    TXQ_CFG_TPD_BURST_MASK) |
   1843 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1844 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1845 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1846 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1847 	    TXQ_CFG_ENB);
   1848 
   1849 	/* Configure DMA parameters. */
   1850 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1851 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1852 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1853 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1854 
   1855 	/* Configure CMB DMA write threshold. */
   1856 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1857 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1858 	    CMB_WR_THRESH_RRD_MASK) |
   1859 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1860 	    CMB_WR_THRESH_TPD_MASK));
   1861 
   1862 	/* Set CMB/SMB timer and enable them. */
   1863 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1864 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1865 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1866 
   1867 	/* Request SMB updates for every seconds. */
   1868 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1869 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1870 
   1871 	/*
   1872 	 * Disable all WOL bits as WOL can interfere normal Rx
   1873 	 * operation.
   1874 	 */
   1875 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1876 
   1877         /*
   1878 	 * Configure Tx/Rx MACs.
   1879 	 *  - Auto-padding for short frames.
   1880 	 *  - Enable CRC generation.
   1881 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1882 	 *  of MAC is followed after link establishment.
   1883 	 */
   1884 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1885 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1886 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1887 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1888 	    MAC_CFG_PREAMBLE_MASK));
   1889 
   1890 	/* Set up the receive filter. */
   1891 	age_rxfilter(sc);
   1892 	age_rxvlan(sc);
   1893 
   1894 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1895 	reg |= MAC_CFG_RXCSUM_ENB;
   1896 
   1897 	/* Ack all pending interrupts and clear it. */
   1898 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1899 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1900 
   1901 	/* Finally enable Tx/Rx MAC. */
   1902 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1903 
   1904 	sc->age_flags &= ~AGE_FLAG_LINK;
   1905 
   1906 	/* Switch to the current media. */
   1907 	mii = &sc->sc_miibus;
   1908 	mii_mediachg(mii);
   1909 
   1910 	callout_schedule(&sc->sc_tick_ch, hz);
   1911 
   1912 	ifp->if_flags |= IFF_RUNNING;
   1913 	ifp->if_flags &= ~IFF_OACTIVE;
   1914 
   1915 	return 0;
   1916 }
   1917 
   1918 static void
   1919 age_stop(struct ifnet *ifp, int disable)
   1920 {
   1921 	struct age_softc *sc = ifp->if_softc;
   1922 	struct age_txdesc *txd;
   1923 	struct age_rxdesc *rxd;
   1924 	uint32_t reg;
   1925 	int i;
   1926 
   1927 	callout_stop(&sc->sc_tick_ch);
   1928 
   1929 	/*
   1930 	 * Mark the interface down and cancel the watchdog timer.
   1931 	 */
   1932 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1933 	ifp->if_timer = 0;
   1934 
   1935 	sc->age_flags &= ~AGE_FLAG_LINK;
   1936 
   1937 	mii_down(&sc->sc_miibus);
   1938 
   1939 	/*
   1940 	 * Disable interrupts.
   1941 	 */
   1942 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1943 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1944 
   1945 	/* Stop CMB/SMB updates. */
   1946 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1947 
   1948 	/* Stop Rx/Tx MAC. */
   1949 	age_stop_rxmac(sc);
   1950 	age_stop_txmac(sc);
   1951 
   1952 	/* Stop DMA. */
   1953 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1954 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1955 
   1956 	/* Stop TxQ/RxQ. */
   1957 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1958 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1959 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1960 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1961 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1962 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1963 			break;
   1964 		DELAY(10);
   1965 	}
   1966 	if (i == 0)
   1967 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1968 		    device_xname(sc->sc_dev), reg);
   1969 
   1970 	/* Reclaim Rx buffers that have been processed. */
   1971 	if (sc->age_cdata.age_rxhead != NULL)
   1972 		m_freem(sc->age_cdata.age_rxhead);
   1973 	AGE_RXCHAIN_RESET(sc);
   1974 
   1975 	/*
   1976 	 * Free RX and TX mbufs still in the queues.
   1977 	 */
   1978 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1979 		rxd = &sc->age_cdata.age_rxdesc[i];
   1980 		if (rxd->rx_m != NULL) {
   1981 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1982 			m_freem(rxd->rx_m);
   1983 			rxd->rx_m = NULL;
   1984 		}
   1985 	}
   1986 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1987 		txd = &sc->age_cdata.age_txdesc[i];
   1988 		if (txd->tx_m != NULL) {
   1989 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1990 			m_freem(txd->tx_m);
   1991 			txd->tx_m = NULL;
   1992 		}
   1993 	}
   1994 }
   1995 
   1996 static void
   1997 age_stats_update(struct age_softc *sc)
   1998 {
   1999 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2000 	struct age_stats *stat;
   2001 	struct smb *smb;
   2002 
   2003 	stat = &sc->age_stat;
   2004 
   2005 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2006 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2007 
   2008 	smb = sc->age_rdata.age_smb_block;
   2009 	if (smb->updated == 0)
   2010 		return;
   2011 
   2012 	/* Rx stats. */
   2013 	stat->rx_frames += smb->rx_frames;
   2014 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   2015 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   2016 	stat->rx_pause_frames += smb->rx_pause_frames;
   2017 	stat->rx_control_frames += smb->rx_control_frames;
   2018 	stat->rx_crcerrs += smb->rx_crcerrs;
   2019 	stat->rx_lenerrs += smb->rx_lenerrs;
   2020 	stat->rx_bytes += smb->rx_bytes;
   2021 	stat->rx_runts += smb->rx_runts;
   2022 	stat->rx_fragments += smb->rx_fragments;
   2023 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2024 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2025 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2026 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2027 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2028 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2029 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2030 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2031 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2032 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2033 	stat->rx_alignerrs += smb->rx_alignerrs;
   2034 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2035 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2036 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2037 
   2038 	/* Tx stats. */
   2039 	stat->tx_frames += smb->tx_frames;
   2040 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2041 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2042 	stat->tx_pause_frames += smb->tx_pause_frames;
   2043 	stat->tx_excess_defer += smb->tx_excess_defer;
   2044 	stat->tx_control_frames += smb->tx_control_frames;
   2045 	stat->tx_deferred += smb->tx_deferred;
   2046 	stat->tx_bytes += smb->tx_bytes;
   2047 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2048 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2049 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2050 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2051 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2052 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2053 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2054 	stat->tx_single_colls += smb->tx_single_colls;
   2055 	stat->tx_multi_colls += smb->tx_multi_colls;
   2056 	stat->tx_late_colls += smb->tx_late_colls;
   2057 	stat->tx_excess_colls += smb->tx_excess_colls;
   2058 	stat->tx_underrun += smb->tx_underrun;
   2059 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2060 	stat->tx_lenerrs += smb->tx_lenerrs;
   2061 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2062 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2063 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2064 
   2065 	/* Update counters in ifnet. */
   2066 	ifp->if_opackets += smb->tx_frames;
   2067 
   2068 	ifp->if_collisions += smb->tx_single_colls +
   2069 	    smb->tx_multi_colls + smb->tx_late_colls +
   2070 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
   2071 
   2072 	ifp->if_oerrors += smb->tx_excess_colls +
   2073 	    smb->tx_late_colls + smb->tx_underrun +
   2074 	    smb->tx_pkts_truncated;
   2075 
   2076 	ifp->if_ipackets += smb->rx_frames;
   2077 
   2078 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   2079 	    smb->rx_runts + smb->rx_pkts_truncated +
   2080 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2081 	    smb->rx_alignerrs;
   2082 
   2083 	/* Update done, clear. */
   2084 	smb->updated = 0;
   2085 
   2086 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2087 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2088 }
   2089 
   2090 static void
   2091 age_stop_txmac(struct age_softc *sc)
   2092 {
   2093 	uint32_t reg;
   2094 	int i;
   2095 
   2096 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2097 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2098 		reg &= ~MAC_CFG_TX_ENB;
   2099 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2100 	}
   2101 	/* Stop Tx DMA engine. */
   2102 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2103 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2104 		reg &= ~DMA_CFG_RD_ENB;
   2105 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2106 	}
   2107 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2108 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2109 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2110 			break;
   2111 		DELAY(10);
   2112 	}
   2113 	if (i == 0)
   2114 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2115 }
   2116 
   2117 static void
   2118 age_stop_rxmac(struct age_softc *sc)
   2119 {
   2120 	uint32_t reg;
   2121 	int i;
   2122 
   2123 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2124 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2125 		reg &= ~MAC_CFG_RX_ENB;
   2126 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2127 	}
   2128 	/* Stop Rx DMA engine. */
   2129 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2130 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2131 		reg &= ~DMA_CFG_WR_ENB;
   2132 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2133 	}
   2134 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2135 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2136 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2137 			break;
   2138 		DELAY(10);
   2139 	}
   2140 	if (i == 0)
   2141 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2142 }
   2143 
   2144 static void
   2145 age_init_tx_ring(struct age_softc *sc)
   2146 {
   2147 	struct age_ring_data *rd;
   2148 	struct age_txdesc *txd;
   2149 	int i;
   2150 
   2151 	sc->age_cdata.age_tx_prod = 0;
   2152 	sc->age_cdata.age_tx_cons = 0;
   2153 	sc->age_cdata.age_tx_cnt = 0;
   2154 
   2155 	rd = &sc->age_rdata;
   2156 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2157 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2158 		txd = &sc->age_cdata.age_txdesc[i];
   2159 		txd->tx_desc = &rd->age_tx_ring[i];
   2160 		txd->tx_m = NULL;
   2161 	}
   2162 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2163 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2164 }
   2165 
   2166 static int
   2167 age_init_rx_ring(struct age_softc *sc)
   2168 {
   2169 	struct age_ring_data *rd;
   2170 	struct age_rxdesc *rxd;
   2171 	int i;
   2172 
   2173 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2174 	rd = &sc->age_rdata;
   2175 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2176 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2177 		rxd = &sc->age_cdata.age_rxdesc[i];
   2178 		rxd->rx_m = NULL;
   2179 		rxd->rx_desc = &rd->age_rx_ring[i];
   2180 		if (age_newbuf(sc, rxd, 1) != 0)
   2181 			return ENOBUFS;
   2182 	}
   2183 
   2184 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2185 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2186 
   2187 	return 0;
   2188 }
   2189 
   2190 static void
   2191 age_init_rr_ring(struct age_softc *sc)
   2192 {
   2193 	struct age_ring_data *rd;
   2194 
   2195 	sc->age_cdata.age_rr_cons = 0;
   2196 	AGE_RXCHAIN_RESET(sc);
   2197 
   2198 	rd = &sc->age_rdata;
   2199 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2200 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2201 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2202 }
   2203 
   2204 static void
   2205 age_init_cmb_block(struct age_softc *sc)
   2206 {
   2207 	struct age_ring_data *rd;
   2208 
   2209 	rd = &sc->age_rdata;
   2210 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2211 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2212 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2213 }
   2214 
   2215 static void
   2216 age_init_smb_block(struct age_softc *sc)
   2217 {
   2218 	struct age_ring_data *rd;
   2219 
   2220 	rd = &sc->age_rdata;
   2221 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2222 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2223 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2224 }
   2225 
   2226 static int
   2227 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2228 {
   2229 	struct rx_desc *desc;
   2230 	struct mbuf *m;
   2231 	bus_dmamap_t map;
   2232 	int error;
   2233 
   2234 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   2235 	if (m == NULL)
   2236 		return ENOBUFS;
   2237 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   2238 	if (!(m->m_flags & M_EXT)) {
   2239 		 m_freem(m);
   2240 		 return ENOBUFS;
   2241 	}
   2242 
   2243 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2244 	m_adj(m, ETHER_ALIGN);
   2245 
   2246 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2247 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2248 
   2249 	if (error != 0) {
   2250 		if (!error) {
   2251 			bus_dmamap_unload(sc->sc_dmat,
   2252 			    sc->age_cdata.age_rx_sparemap);
   2253 			error = EFBIG;
   2254 			printf("%s: too many segments?!\n",
   2255 			    device_xname(sc->sc_dev));
   2256 		}
   2257 		m_freem(m);
   2258 
   2259 		if (init)
   2260 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2261 		return error;
   2262 	}
   2263 
   2264 	if (rxd->rx_m != NULL) {
   2265 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2266 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2267 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2268 	}
   2269 	map = rxd->rx_dmamap;
   2270 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2271 	sc->age_cdata.age_rx_sparemap = map;
   2272 	rxd->rx_m = m;
   2273 
   2274 	desc = rxd->rx_desc;
   2275 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2276 	desc->len =
   2277 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2278 	    AGE_RD_LEN_SHIFT);
   2279 
   2280 	return 0;
   2281 }
   2282 
   2283 static void
   2284 age_rxvlan(struct age_softc *sc)
   2285 {
   2286 	uint32_t reg;
   2287 
   2288 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2289 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2290 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   2291 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2292 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2293 }
   2294 
   2295 static void
   2296 age_rxfilter(struct age_softc *sc)
   2297 {
   2298 	struct ethercom *ec = &sc->sc_ec;
   2299 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2300 	struct ether_multi *enm;
   2301 	struct ether_multistep step;
   2302 	uint32_t crc;
   2303 	uint32_t mchash[2];
   2304 	uint32_t rxcfg;
   2305 
   2306 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2307 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2308 	ifp->if_flags &= ~IFF_ALLMULTI;
   2309 
   2310 	/*
   2311 	 * Always accept broadcast frames.
   2312 	 */
   2313 	rxcfg |= MAC_CFG_BCAST;
   2314 
   2315 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2316 		ifp->if_flags |= IFF_ALLMULTI;
   2317 		if (ifp->if_flags & IFF_PROMISC)
   2318 			rxcfg |= MAC_CFG_PROMISC;
   2319 		else
   2320 			rxcfg |= MAC_CFG_ALLMULTI;
   2321 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2322 	} else {
   2323 		/* Program new filter. */
   2324 		memset(mchash, 0, sizeof(mchash));
   2325 
   2326 		ETHER_FIRST_MULTI(step, ec, enm);
   2327 		while (enm != NULL) {
   2328 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2329 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2330 			ETHER_NEXT_MULTI(step, enm);
   2331 		}
   2332 	}
   2333 
   2334 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2335 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2336 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2337 }
   2338