Home | History | Annotate | Line # | Download | only in pci
if_alc.c revision 1.11
      1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
      2 /*-
      3  * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice unmodified, this list of conditions, and the following
     11  *    disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "vlan.h"
     33 #endif
     34 
     35 #include <sys/param.h>
     36 #include <sys/proc.h>
     37 #include <sys/endian.h>
     38 #include <sys/systm.h>
     39 #include <sys/types.h>
     40 #include <sys/sockio.h>
     41 #include <sys/mbuf.h>
     42 #include <sys/queue.h>
     43 #include <sys/kernel.h>
     44 #include <sys/device.h>
     45 #include <sys/callout.h>
     46 #include <sys/socket.h>
     47 #include <sys/module.h>
     48 
     49 #include <sys/bus.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_llc.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <netinet/ip.h>
     64 #endif
     65 
     66 #include <net/if_types.h>
     67 #include <net/if_vlanvar.h>
     68 
     69 #include <net/bpf.h>
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_alcreg.h>
     81 
     82 /*
     83  * Devices supported by this driver.
     84  */
     85 static struct alc_ident alc_ident_table[] = {
     86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
     87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
     88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
     89 		"Atheros AR8132 PCIe Fast Ethernet" },
     90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
     91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
     92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
     93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
     94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
     95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
     96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
     97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
     98 	{ 0, 0, 0, NULL },
     99 };
    100 
    101 static int	alc_match(device_t, cfdata_t, void *);
    102 static void	alc_attach(device_t, device_t, void *);
    103 static int	alc_detach(device_t, int);
    104 
    105 static int	alc_init(struct ifnet *);
    106 static int	alc_init_backend(struct ifnet *, bool);
    107 static void	alc_start(struct ifnet *);
    108 static int	alc_ioctl(struct ifnet *, u_long, void *);
    109 static void	alc_watchdog(struct ifnet *);
    110 static int	alc_mediachange(struct ifnet *);
    111 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
    112 
    113 static void	alc_aspm(struct alc_softc *, int);
    114 static void	alc_disable_l0s_l1(struct alc_softc *);
    115 static int	alc_dma_alloc(struct alc_softc *);
    116 static void	alc_dma_free(struct alc_softc *);
    117 static int	alc_encap(struct alc_softc *, struct mbuf **);
    118 static struct alc_ident *
    119 		alc_find_ident(struct pci_attach_args *);
    120 static void	alc_get_macaddr(struct alc_softc *);
    121 static void	alc_init_cmb(struct alc_softc *);
    122 static void	alc_init_rr_ring(struct alc_softc *);
    123 static int	alc_init_rx_ring(struct alc_softc *, bool);
    124 static void	alc_init_smb(struct alc_softc *);
    125 static void	alc_init_tx_ring(struct alc_softc *);
    126 static int	alc_intr(void *);
    127 static void	alc_mac_config(struct alc_softc *);
    128 static int	alc_miibus_readreg(device_t, int, int);
    129 static void	alc_miibus_statchg(struct ifnet *);
    130 static void	alc_miibus_writereg(device_t, int, int, int);
    131 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
    132 static void	alc_phy_down(struct alc_softc *);
    133 static void	alc_phy_reset(struct alc_softc *);
    134 static void	alc_reset(struct alc_softc *);
    135 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
    136 static int	alc_rxintr(struct alc_softc *);
    137 static void	alc_iff(struct alc_softc *);
    138 static void	alc_rxvlan(struct alc_softc *);
    139 static void	alc_start_queue(struct alc_softc *);
    140 static void	alc_stats_clear(struct alc_softc *);
    141 static void	alc_stats_update(struct alc_softc *);
    142 static void	alc_stop(struct ifnet *, int);
    143 static void	alc_stop_mac(struct alc_softc *);
    144 static void	alc_stop_queue(struct alc_softc *);
    145 static void	alc_tick(void *);
    146 static void	alc_txeof(struct alc_softc *);
    147 
    148 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
    149 
    150 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
    151     alc_match, alc_attach, alc_detach, NULL);
    152 
    153 int alcdebug = 0;
    154 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
    155 
    156 #define ETHER_ALIGN		2
    157 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    158 
    159 static int
    160 alc_miibus_readreg(device_t dev, int phy, int reg)
    161 {
    162 	struct alc_softc *sc = device_private(dev);
    163 	uint32_t v;
    164 	int i;
    165 
    166 	if (phy != sc->alc_phyaddr)
    167 		return (0);
    168 
    169 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    170 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    171 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    172 		DELAY(5);
    173 		v = CSR_READ_4(sc, ALC_MDIO);
    174 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    175 			break;
    176 	}
    177 
    178 	if (i == 0) {
    179 		printf("%s: phy read timeout: phy %d, reg %d\n",
    180 		    device_xname(sc->sc_dev), phy, reg);
    181 		return (0);
    182 	}
    183 
    184 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    185 }
    186 
    187 static void
    188 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
    189 {
    190 	struct alc_softc *sc = device_private(dev);
    191 	uint32_t v;
    192 	int i;
    193 
    194 	if (phy != sc->alc_phyaddr)
    195 		return;
    196 
    197 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    198 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    199 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    200 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    201 		DELAY(5);
    202 		v = CSR_READ_4(sc, ALC_MDIO);
    203 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    204 			break;
    205 	}
    206 
    207 	if (i == 0)
    208 		printf("%s: phy write timeout: phy %d, reg %d\n",
    209 		    device_xname(sc->sc_dev), phy, reg);
    210 }
    211 
    212 static void
    213 alc_miibus_statchg(struct ifnet *ifp)
    214 {
    215 	struct alc_softc *sc = ifp->if_softc;
    216 	struct mii_data *mii = &sc->sc_miibus;
    217 	uint32_t reg;
    218 
    219 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    220 		return;
    221 
    222 	sc->alc_flags &= ~ALC_FLAG_LINK;
    223 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    224 	    (IFM_ACTIVE | IFM_AVALID)) {
    225 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    226 		case IFM_10_T:
    227 		case IFM_100_TX:
    228 			sc->alc_flags |= ALC_FLAG_LINK;
    229 			break;
    230 		case IFM_1000_T:
    231 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
    232 				sc->alc_flags |= ALC_FLAG_LINK;
    233 			break;
    234 		default:
    235 			break;
    236 		}
    237 	}
    238 	alc_stop_queue(sc);
    239 	/* Stop Rx/Tx MACs. */
    240 	alc_stop_mac(sc);
    241 
    242 	/* Program MACs with resolved speed/duplex/flow-control. */
    243 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    244 		alc_start_queue(sc);
    245 		alc_mac_config(sc);
    246 		/* Re-enable Tx/Rx MACs. */
    247 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
    248 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    249 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
    250 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
    251 	}
    252 }
    253 
    254 static void
    255 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    256 {
    257 	struct alc_softc *sc = ifp->if_softc;
    258 	struct mii_data *mii = &sc->sc_miibus;
    259 
    260 	mii_pollstat(mii);
    261 	ifmr->ifm_status = mii->mii_media_status;
    262 	ifmr->ifm_active = mii->mii_media_active;
    263 }
    264 
    265 static int
    266 alc_mediachange(struct ifnet *ifp)
    267 {
    268 	struct alc_softc *sc = ifp->if_softc;
    269 	struct mii_data *mii = &sc->sc_miibus;
    270 	int error;
    271 
    272 	if (mii->mii_instance != 0) {
    273 		struct mii_softc *miisc;
    274 
    275 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    276 			mii_phy_reset(miisc);
    277 	}
    278 	error = mii_mediachg(mii);
    279 
    280 	return (error);
    281 }
    282 
    283 static struct alc_ident *
    284 alc_find_ident(struct pci_attach_args *pa)
    285 {
    286 	struct alc_ident *ident;
    287 	uint16_t vendor, devid;
    288 
    289 	vendor = PCI_VENDOR(pa->pa_id);
    290 	devid = PCI_PRODUCT(pa->pa_id);
    291 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
    292 		if (vendor == ident->vendorid && devid == ident->deviceid)
    293 			return (ident);
    294 	}
    295 
    296 	return (NULL);
    297 }
    298 
    299 static int
    300 alc_match(device_t dev, cfdata_t match, void *aux)
    301 {
    302 	struct pci_attach_args *pa = aux;
    303 
    304 	return alc_find_ident(pa) != NULL;
    305 }
    306 
    307 static void
    308 alc_get_macaddr(struct alc_softc *sc)
    309 {
    310 	uint32_t ea[2], opt;
    311 	uint16_t val;
    312 	int eeprom, i;
    313 
    314 	eeprom = 0;
    315 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
    316 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
    317 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
    318 		/*
    319 		 * EEPROM found, let TWSI reload EEPROM configuration.
    320 		 * This will set ethernet address of controller.
    321 		 */
    322 		eeprom++;
    323 		switch (sc->alc_ident->deviceid) {
    324 		case PCI_PRODUCT_ATTANSIC_AR8131:
    325 		case PCI_PRODUCT_ATTANSIC_AR8132:
    326 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
    327 				opt |= OPT_CFG_CLK_ENB;
    328 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    329 				CSR_READ_4(sc, ALC_OPT_CFG);
    330 				DELAY(1000);
    331 			}
    332 			break;
    333 		case PCI_PRODUCT_ATTANSIC_AR8151:
    334 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    335 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    336 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    337 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    338 			    ALC_MII_DBG_ADDR, 0x00);
    339 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    340 			    ALC_MII_DBG_DATA);
    341 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    342 			    ALC_MII_DBG_DATA, val & 0xFF7F);
    343 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    344 			    ALC_MII_DBG_ADDR, 0x3B);
    345 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    346 			    ALC_MII_DBG_DATA);
    347 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    348 			    ALC_MII_DBG_DATA, val | 0x0008);
    349 			DELAY(20);
    350 			break;
    351 		}
    352 
    353 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    354 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    355 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
    356 		CSR_READ_4(sc, ALC_WOL_CFG);
    357 
    358 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
    359 		    TWSI_CFG_SW_LD_START);
    360 		for (i = 100; i > 0; i--) {
    361 			DELAY(1000);
    362 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
    363 			    TWSI_CFG_SW_LD_START) == 0)
    364 				break;
    365 		}
    366 		if (i == 0)
    367 			printf("%s: reloading EEPROM timeout!\n",
    368 			    device_xname(sc->sc_dev));
    369 	} else {
    370 		if (alcdebug)
    371 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
    372 	}
    373 	if (eeprom != 0) {
    374 		switch (sc->alc_ident->deviceid) {
    375 		case PCI_PRODUCT_ATTANSIC_AR8131:
    376 		case PCI_PRODUCT_ATTANSIC_AR8132:
    377 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
    378 				opt &= ~OPT_CFG_CLK_ENB;
    379 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    380 				CSR_READ_4(sc, ALC_OPT_CFG);
    381 				DELAY(1000);
    382 			}
    383 			break;
    384 		case PCI_PRODUCT_ATTANSIC_AR8151:
    385 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    386 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    387 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    388 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    389 			    ALC_MII_DBG_ADDR, 0x00);
    390 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    391 			    ALC_MII_DBG_DATA);
    392 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    393 			    ALC_MII_DBG_DATA, val | 0x0080);
    394 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    395 			    ALC_MII_DBG_ADDR, 0x3B);
    396 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    397 			    ALC_MII_DBG_DATA);
    398 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    399 			    ALC_MII_DBG_DATA, val & 0xFFF7);
    400 			DELAY(20);
    401 			break;
    402 		}
    403 	}
    404 
    405 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
    406 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
    407 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
    408 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
    409 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
    410 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
    411 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
    412 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
    413 }
    414 
    415 static void
    416 alc_disable_l0s_l1(struct alc_softc *sc)
    417 {
    418 	uint32_t pmcfg;
    419 
    420 	/* Another magic from vendor. */
    421 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    422 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
    423 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
    424 	    PM_CFG_SERDES_PD_EX_L1);
    425 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
    426 	    PM_CFG_SERDES_L1_ENB;
    427 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    428 }
    429 
    430 static void
    431 alc_phy_reset(struct alc_softc *sc)
    432 {
    433 	uint16_t data;
    434 
    435 	/* Reset magic from Linux. */
    436 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    437 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
    438 	CSR_READ_2(sc, ALC_GPHY_CFG);
    439 	DELAY(10 * 1000);
    440 
    441 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    442 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    443 	    GPHY_CFG_SEL_ANA_RESET);
    444 	CSR_READ_2(sc, ALC_GPHY_CFG);
    445 	DELAY(10 * 1000);
    446 
    447 	/* DSP fixup, Vendor magic. */
    448 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
    449 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    450 		    ALC_MII_DBG_ADDR, 0x000A);
    451 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    452 		    ALC_MII_DBG_DATA);
    453 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    454 		    ALC_MII_DBG_DATA, data & 0xDFFF);
    455 	}
    456 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
    457 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    458 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
    459 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    460 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    461 		    ALC_MII_DBG_ADDR, 0x003B);
    462 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    463 		    ALC_MII_DBG_DATA);
    464 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    465 		    ALC_MII_DBG_DATA, data & 0xFFF7);
    466 		DELAY(20 * 1000);
    467 	}
    468 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
    469 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    470 		    ALC_MII_DBG_ADDR, 0x0029);
    471 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    472 		    ALC_MII_DBG_DATA, 0x929D);
    473 	}
    474 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
    475 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
    476 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    477 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    478 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    479 		    ALC_MII_DBG_ADDR, 0x0029);
    480 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    481 		    ALC_MII_DBG_DATA, 0xB6DD);
    482 	}
    483 
    484 	/* Load DSP codes, vendor magic. */
    485 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
    486 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
    487 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    488 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
    489 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    490 	    ALC_MII_DBG_DATA, data);
    491 
    492 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
    493 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
    494 	    ANA_SERDES_EN_LCKDT;
    495 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    496 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
    497 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    498 	    ALC_MII_DBG_DATA, data);
    499 
    500 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
    501 	    ANA_LONG_CABLE_TH_100_MASK) |
    502 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
    503 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
    504 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
    505 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    506 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
    507 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    508 	    ALC_MII_DBG_DATA, data);
    509 
    510 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
    511 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
    512 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
    513 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
    514 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    515 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
    516 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    517 	    ALC_MII_DBG_DATA, data);
    518 
    519 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
    520 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
    521 	    ANA_OEN_125M;
    522 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    523 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
    524 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    525 	    ALC_MII_DBG_DATA, data);
    526 	DELAY(1000);
    527 }
    528 
    529 static void
    530 alc_phy_down(struct alc_softc *sc)
    531 {
    532 	switch (sc->alc_ident->deviceid) {
    533 	case PCI_PRODUCT_ATTANSIC_AR8151:
    534 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    535 		/*
    536 		 * GPHY power down caused more problems on AR8151 v2.0.
    537 		 * When driver is reloaded after GPHY power down,
    538 		 * accesses to PHY/MAC registers hung the system. Only
    539 		 * cold boot recovered from it.  I'm not sure whether
    540 		 * AR8151 v1.0 also requires this one though.  I don't
    541 		 * have AR8151 v1.0 controller in hand.
    542 		 * The only option left is to isolate the PHY and
    543 		 * initiates power down the PHY which in turn saves
    544 		 * more power when driver is unloaded.
    545 		 */
    546 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    547 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
    548 		break;
    549 	default:
    550 		/* Force PHY down. */
    551 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
    552 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    553 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
    554 		    GPHY_CFG_PWDOWN_HW);
    555 		DELAY(1000);
    556 		break;
    557 	}
    558 }
    559 
    560 static void
    561 alc_aspm(struct alc_softc *sc, int media)
    562 {
    563 	uint32_t pmcfg;
    564 	uint16_t linkcfg;
    565 
    566 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    567 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
    568 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
    569 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
    570 		    PCIE_LCSR);
    571 	else
    572 		linkcfg = 0;
    573 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
    574 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
    575 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
    576 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
    577 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    578 
    579 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    580 		/* Disable extended sync except AR8152 B v1.0 */
    581 		linkcfg &= ~0x80;
    582 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    583 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
    584 			linkcfg |= 0x80;
    585 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
    586 		    linkcfg);
    587 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
    588 		    PM_CFG_HOTRST);
    589 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
    590 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    591 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
    592 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
    593 		    PM_CFG_PM_REQ_TIMER_SHIFT);
    594 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
    595 	}
    596 
    597 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    598 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
    599 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
    600 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    601 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    602 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    603 			if (sc->alc_ident->deviceid ==
    604 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
    605 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
    606 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
    607 			    PM_CFG_SERDES_PLL_L1_ENB |
    608 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
    609 			pmcfg |= PM_CFG_CLK_SWH_L1;
    610 			if (media == IFM_100_TX || media == IFM_1000_T) {
    611 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
    612 				switch (sc->alc_ident->deviceid) {
    613 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
    614 					pmcfg |= (7 <<
    615 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    616 					break;
    617 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    618 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    619 					pmcfg |= (4 <<
    620 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    621 					break;
    622 				default:
    623 					pmcfg |= (15 <<
    624 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    625 					break;
    626 				}
    627 			}
    628 		} else {
    629 			pmcfg |= PM_CFG_SERDES_L1_ENB |
    630 			    PM_CFG_SERDES_PLL_L1_ENB |
    631 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
    632 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
    633 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    634 		}
    635 	} else {
    636 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
    637 		    PM_CFG_SERDES_PLL_L1_ENB);
    638 		pmcfg |= PM_CFG_CLK_SWH_L1;
    639 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    640 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    641 	}
    642 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    643 }
    644 
    645 static void
    646 alc_attach(device_t parent, device_t self, void *aux)
    647 {
    648 
    649 	struct alc_softc *sc = device_private(self);
    650 	struct pci_attach_args *pa = aux;
    651 	pci_chipset_tag_t pc = pa->pa_pc;
    652 	pci_intr_handle_t ih;
    653 	const char *intrstr;
    654 	struct ifnet *ifp;
    655 	pcireg_t memtype;
    656 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
    657 	uint16_t burst;
    658 	int base, mii_flags, state, error = 0;
    659 	uint32_t cap, ctl, val;
    660 	char intrbuf[PCI_INTRSTR_LEN];
    661 
    662 	sc->alc_ident = alc_find_ident(pa);
    663 
    664 	aprint_naive("\n");
    665 	aprint_normal(": %s\n", sc->alc_ident->name);
    666 
    667 	sc->sc_dev = self;
    668 	sc->sc_dmat = pa->pa_dmat;
    669 	sc->sc_pct = pa->pa_pc;
    670 	sc->sc_pcitag = pa->pa_tag;
    671 
    672 	/*
    673 	 * Allocate IO memory
    674 	 */
    675 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
    676 	switch (memtype) {
    677 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    680 		break;
    681 	default:
    682 		aprint_error_dev(self, "invalid base address register\n");
    683 		break;
    684 	}
    685 
    686 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    687 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
    688 		aprint_error_dev(self, "could not map mem space\n");
    689 		return;
    690 	}
    691 
    692 	if (pci_intr_map(pa, &ih) != 0) {
    693 		printf(": can't map interrupt\n");
    694 		goto fail;
    695 	}
    696 
    697 	/*
    698 	 * Allocate IRQ
    699 	 */
    700 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    701 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
    702 	if (sc->sc_irq_handle == NULL) {
    703 		printf(": could not establish interrupt");
    704 		if (intrstr != NULL)
    705 			printf(" at %s", intrstr);
    706 		printf("\n");
    707 		goto fail;
    708 	}
    709 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    710 
    711 	/* Set PHY address. */
    712 	sc->alc_phyaddr = ALC_PHY_ADDR;
    713 
    714 	/* Initialize DMA parameters. */
    715 	sc->alc_dma_rd_burst = 0;
    716 	sc->alc_dma_wr_burst = 0;
    717 	sc->alc_rcb = DMA_CFG_RCB_64;
    718 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    719 	    &base, NULL)) {
    720 		sc->alc_flags |= ALC_FLAG_PCIE;
    721 		sc->alc_expcap = base;
    722 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    723 		    base + PCIE_DCSR) >> 16;
    724 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
    725 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
    726 		if (alcdebug) {
    727 			printf("%s: Read request size : %u bytes.\n",
    728 			    device_xname(sc->sc_dev),
    729 			    alc_dma_burst[sc->alc_dma_rd_burst]);
    730 			printf("%s: TLP payload size : %u bytes.\n",
    731 			    device_xname(sc->sc_dev),
    732 			    alc_dma_burst[sc->alc_dma_wr_burst]);
    733 		}
    734 		/* Clear data link and flow-control protocol error. */
    735 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
    736 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
    737 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
    738 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    739 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    740 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
    741 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
    742 		    PCIE_PHYMISC_FORCE_RCV_DET);
    743 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    744 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
    745 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
    746 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
    747 			    PCIE_PHYMISC2_SERDES_TH_MASK);
    748 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
    749 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
    750 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
    751 		}
    752 		/* Disable ASPM L0S and L1. */
    753 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    754 		    base + PCIE_LCAP) >> 16;
    755 		if ((cap & 0x00000c00) != 0) {
    756 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    757 			    base + PCIE_LCSR) >> 16;
    758 			if ((ctl & 0x08) != 0)
    759 				sc->alc_rcb = DMA_CFG_RCB_128;
    760 			if (alcdebug)
    761 				printf("%s: RCB %u bytes\n",
    762 				    device_xname(sc->sc_dev),
    763 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
    764 			state = ctl & 0x03;
    765 			if (state & 0x01)
    766 				sc->alc_flags |= ALC_FLAG_L0S;
    767 			if (state & 0x02)
    768 				sc->alc_flags |= ALC_FLAG_L1S;
    769 			if (alcdebug)
    770 				printf("%s: ASPM %s %s\n",
    771 				    device_xname(sc->sc_dev),
    772 				    aspm_state[state],
    773 				    state == 0 ? "disabled" : "enabled");
    774 			alc_disable_l0s_l1(sc);
    775 		} else {
    776 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
    777 		}
    778 	}
    779 
    780 	/* Reset PHY. */
    781 	alc_phy_reset(sc);
    782 
    783 	/* Reset the ethernet controller. */
    784 	alc_reset(sc);
    785 
    786 	/*
    787 	 * One odd thing is AR8132 uses the same PHY hardware(F1
    788 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
    789 	 * the PHY supports 1000Mbps but that's not true. The PHY
    790 	 * used in AR8132 can't establish gigabit link even if it
    791 	 * shows the same PHY model/revision number of AR8131.
    792 	 */
    793 	switch (sc->alc_ident->deviceid) {
    794 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
    795 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    796 		sc->alc_flags |= ALC_FLAG_APS;
    797 		/* FALLTHROUGH */
    798 	case PCI_PRODUCT_ATTANSIC_AR8132:
    799 		sc->alc_flags |= ALC_FLAG_FASTETHER;
    800 		break;
    801 	case PCI_PRODUCT_ATTANSIC_AR8151:
    802 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    803 		sc->alc_flags |= ALC_FLAG_APS;
    804 		/* FALLTHROUGH */
    805 	default:
    806 		break;
    807 	}
    808 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
    809 
    810 	/*
    811 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
    812 	 * addition, Atheros said that enabling SMB wouldn't improve
    813 	 * performance. However I think it's bad to access lots of
    814 	 * registers to extract MAC statistics.
    815 	 */
    816 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
    817 	/*
    818 	 * Don't use Tx CMB. It is known to have silicon bug.
    819 	 */
    820 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
    821 	sc->alc_rev = PCI_REVISION(pa->pa_class);
    822 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
    823 	    MASTER_CHIP_REV_SHIFT;
    824 	if (alcdebug) {
    825 		printf("%s: PCI device revision : 0x%04x\n",
    826 		    device_xname(sc->sc_dev), sc->alc_rev);
    827 		printf("%s: Chip id/revision : 0x%04x\n",
    828 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
    829 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
    830 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
    831 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
    832 	}
    833 
    834 	error = alc_dma_alloc(sc);
    835 	if (error)
    836 		goto fail;
    837 
    838 	callout_init(&sc->sc_tick_ch, 0);
    839 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
    840 
    841 	/* Load station address. */
    842 	alc_get_macaddr(sc);
    843 
    844 	aprint_normal_dev(self, "Ethernet address %s\n",
    845 	    ether_sprintf(sc->alc_eaddr));
    846 
    847 	ifp = &sc->sc_ec.ec_if;
    848 	ifp->if_softc = sc;
    849 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    850 	ifp->if_init = alc_init;
    851 	ifp->if_ioctl = alc_ioctl;
    852 	ifp->if_start = alc_start;
    853 	ifp->if_stop = alc_stop;
    854 	ifp->if_watchdog = alc_watchdog;
    855 	ifp->if_baudrate = IF_Gbps(1);
    856 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
    857 	IFQ_SET_READY(&ifp->if_snd);
    858 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    859 
    860 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    861 
    862 #ifdef ALC_CHECKSUM
    863 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    864 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    865 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    866 #endif
    867 
    868 #if NVLAN > 0
    869 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    870 #endif
    871 
    872 	/* Set up MII bus. */
    873 	sc->sc_miibus.mii_ifp = ifp;
    874 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
    875 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
    876 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
    877 
    878 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    879 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
    880 	    alc_mediastatus);
    881 	mii_flags = 0;
    882 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
    883 		mii_flags |= MIIF_DOPAUSE;
    884 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    885 		MII_OFFSET_ANY, mii_flags);
    886 
    887 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    888 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
    889 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    890 		    0, NULL);
    891 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    892 	} else
    893 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    894 
    895 	if_attach(ifp);
    896 	ether_ifattach(ifp, sc->alc_eaddr);
    897 
    898 	if (!pmf_device_register(self, NULL, NULL))
    899 		aprint_error_dev(self, "couldn't establish power handler\n");
    900 	else
    901 		pmf_class_network_register(self, ifp);
    902 
    903 	return;
    904 fail:
    905 	alc_dma_free(sc);
    906 	if (sc->sc_irq_handle != NULL) {
    907 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    908 		sc->sc_irq_handle = NULL;
    909 	}
    910 	if (sc->sc_mem_size) {
    911 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    912 		sc->sc_mem_size = 0;
    913 	}
    914 }
    915 
    916 static int
    917 alc_detach(device_t self, int flags)
    918 {
    919 	struct alc_softc *sc = device_private(self);
    920 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    921 	int s;
    922 
    923 	s = splnet();
    924 	alc_stop(ifp, 0);
    925 	splx(s);
    926 
    927 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    928 
    929 	/* Delete all remaining media. */
    930 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    931 
    932 	ether_ifdetach(ifp);
    933 	if_detach(ifp);
    934 	alc_dma_free(sc);
    935 
    936 	alc_phy_down(sc);
    937 	if (sc->sc_irq_handle != NULL) {
    938 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    939 		sc->sc_irq_handle = NULL;
    940 	}
    941 	if (sc->sc_mem_size) {
    942 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    943 		sc->sc_mem_size = 0;
    944 	}
    945 
    946 	return (0);
    947 }
    948 
    949 static int
    950 alc_dma_alloc(struct alc_softc *sc)
    951 {
    952 	struct alc_txdesc *txd;
    953 	struct alc_rxdesc *rxd;
    954 	int nsegs, error, i;
    955 
    956 	/*
    957 	 * Create DMA stuffs for TX ring
    958 	 */
    959 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
    960 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
    961 	if (error) {
    962 		sc->alc_cdata.alc_tx_ring_map = NULL;
    963 		return (ENOBUFS);
    964 	}
    965 
    966 	/* Allocate DMA'able memory for TX ring */
    967 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
    968 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
    969 	    &nsegs, BUS_DMA_NOWAIT);
    970 	if (error) {
    971 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    972 		    device_xname(sc->sc_dev));
    973 		return error;
    974 	}
    975 
    976 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
    977 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
    978 	    BUS_DMA_NOWAIT);
    979 	if (error)
    980 		return (ENOBUFS);
    981 
    982 	/* Load the DMA map for Tx ring. */
    983 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
    984 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    985 	if (error) {
    986 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    987 		    device_xname(sc->sc_dev));
    988 		bus_dmamem_free(sc->sc_dmat,
    989 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
    990 		return error;
    991 	}
    992 
    993 	sc->alc_rdata.alc_tx_ring_paddr =
    994 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
    995 
    996 	/*
    997 	 * Create DMA stuffs for RX ring
    998 	 */
    999 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
   1000 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
   1001 	if (error)
   1002 		return (ENOBUFS);
   1003 
   1004 	/* Allocate DMA'able memory for RX ring */
   1005 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
   1006 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
   1007 	    &nsegs, BUS_DMA_NOWAIT);
   1008 	if (error) {
   1009 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
   1010 		    device_xname(sc->sc_dev));
   1011 		return error;
   1012 	}
   1013 
   1014 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
   1015 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
   1016 	    BUS_DMA_NOWAIT);
   1017 	if (error)
   1018 		return (ENOBUFS);
   1019 
   1020 	/* Load the DMA map for Rx ring. */
   1021 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
   1022 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
   1023 	if (error) {
   1024 		printf("%s: could not load DMA'able memory for Rx ring.\n",
   1025 		    device_xname(sc->sc_dev));
   1026 		bus_dmamem_free(sc->sc_dmat,
   1027 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1028 		return error;
   1029 	}
   1030 
   1031 	sc->alc_rdata.alc_rx_ring_paddr =
   1032 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
   1033 
   1034 	/*
   1035 	 * Create DMA stuffs for RX return ring
   1036 	 */
   1037 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
   1038 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
   1039 	if (error)
   1040 		return (ENOBUFS);
   1041 
   1042 	/* Allocate DMA'able memory for RX return ring */
   1043 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
   1044 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
   1045 	    &nsegs, BUS_DMA_NOWAIT);
   1046 	if (error) {
   1047 		printf("%s: could not allocate DMA'able memory for Rx "
   1048 		    "return ring.\n", device_xname(sc->sc_dev));
   1049 		return error;
   1050 	}
   1051 
   1052 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
   1053 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
   1054 	    BUS_DMA_NOWAIT);
   1055 	if (error)
   1056 		return (ENOBUFS);
   1057 
   1058 	/*  Load the DMA map for Rx return ring. */
   1059 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
   1060 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
   1061 	if (error) {
   1062 		printf("%s: could not load DMA'able memory for Rx return ring."
   1063 		    "\n", device_xname(sc->sc_dev));
   1064 		bus_dmamem_free(sc->sc_dmat,
   1065 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1066 		return error;
   1067 	}
   1068 
   1069 	sc->alc_rdata.alc_rr_ring_paddr =
   1070 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
   1071 
   1072 	/*
   1073 	 * Create DMA stuffs for CMB block
   1074 	 */
   1075 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
   1076 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
   1077 	    &sc->alc_cdata.alc_cmb_map);
   1078 	if (error)
   1079 		return (ENOBUFS);
   1080 
   1081 	/* Allocate DMA'able memory for CMB block */
   1082 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
   1083 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
   1084 	    &nsegs, BUS_DMA_NOWAIT);
   1085 	if (error) {
   1086 		printf("%s: could not allocate DMA'able memory for "
   1087 		    "CMB block\n", device_xname(sc->sc_dev));
   1088 		return error;
   1089 	}
   1090 
   1091 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
   1092 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
   1093 	    BUS_DMA_NOWAIT);
   1094 	if (error)
   1095 		return (ENOBUFS);
   1096 
   1097 	/*  Load the DMA map for CMB block. */
   1098 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
   1099 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
   1100 	    BUS_DMA_WAITOK);
   1101 	if (error) {
   1102 		printf("%s: could not load DMA'able memory for CMB block\n",
   1103 		    device_xname(sc->sc_dev));
   1104 		bus_dmamem_free(sc->sc_dmat,
   1105 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1106 		return error;
   1107 	}
   1108 
   1109 	sc->alc_rdata.alc_cmb_paddr =
   1110 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
   1111 
   1112 	/*
   1113 	 * Create DMA stuffs for SMB block
   1114 	 */
   1115 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
   1116 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
   1117 	    &sc->alc_cdata.alc_smb_map);
   1118 	if (error)
   1119 		return (ENOBUFS);
   1120 
   1121 	/* Allocate DMA'able memory for SMB block */
   1122 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
   1123 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
   1124 	    &nsegs, BUS_DMA_NOWAIT);
   1125 	if (error) {
   1126 		printf("%s: could not allocate DMA'able memory for "
   1127 		    "SMB block\n", device_xname(sc->sc_dev));
   1128 		return error;
   1129 	}
   1130 
   1131 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
   1132 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
   1133 	    BUS_DMA_NOWAIT);
   1134 	if (error)
   1135 		return (ENOBUFS);
   1136 
   1137 	/*  Load the DMA map for SMB block */
   1138 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
   1139 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
   1140 	    BUS_DMA_WAITOK);
   1141 	if (error) {
   1142 		printf("%s: could not load DMA'able memory for SMB block\n",
   1143 		    device_xname(sc->sc_dev));
   1144 		bus_dmamem_free(sc->sc_dmat,
   1145 		    &sc->alc_rdata.alc_smb_seg, 1);
   1146 		return error;
   1147 	}
   1148 
   1149 	sc->alc_rdata.alc_smb_paddr =
   1150 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
   1151 
   1152 
   1153 	/* Create DMA maps for Tx buffers. */
   1154 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1155 		txd = &sc->alc_cdata.alc_txdesc[i];
   1156 		txd->tx_m = NULL;
   1157 		txd->tx_dmamap = NULL;
   1158 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
   1159 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
   1160 		    &txd->tx_dmamap);
   1161 		if (error) {
   1162 			printf("%s: could not create Tx dmamap.\n",
   1163 			    device_xname(sc->sc_dev));
   1164 			return error;
   1165 		}
   1166 	}
   1167 
   1168 	/* Create DMA maps for Rx buffers. */
   1169 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
   1170 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
   1171 	if (error) {
   1172 		printf("%s: could not create spare Rx dmamap.\n",
   1173 		    device_xname(sc->sc_dev));
   1174 		return error;
   1175 	}
   1176 
   1177 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1178 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1179 		rxd->rx_m = NULL;
   1180 		rxd->rx_dmamap = NULL;
   1181 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1182 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
   1183 		if (error) {
   1184 			printf("%s: could not create Rx dmamap.\n",
   1185 			    device_xname(sc->sc_dev));
   1186 			return error;
   1187 		}
   1188 	}
   1189 
   1190 	return (0);
   1191 }
   1192 
   1193 
   1194 static void
   1195 alc_dma_free(struct alc_softc *sc)
   1196 {
   1197 	struct alc_txdesc *txd;
   1198 	struct alc_rxdesc *rxd;
   1199 	int i;
   1200 
   1201 	/* Tx buffers */
   1202 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1203 		txd = &sc->alc_cdata.alc_txdesc[i];
   1204 		if (txd->tx_dmamap != NULL) {
   1205 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
   1206 			txd->tx_dmamap = NULL;
   1207 		}
   1208 	}
   1209 	/* Rx buffers */
   1210 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1211 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1212 		if (rxd->rx_dmamap != NULL) {
   1213 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
   1214 			rxd->rx_dmamap = NULL;
   1215 		}
   1216 	}
   1217 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
   1218 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
   1219 		sc->alc_cdata.alc_rx_sparemap = NULL;
   1220 	}
   1221 
   1222 	/* Tx ring. */
   1223 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
   1224 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
   1225 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
   1226 	    sc->alc_rdata.alc_tx_ring != NULL)
   1227 		bus_dmamem_free(sc->sc_dmat,
   1228 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
   1229 	sc->alc_rdata.alc_tx_ring = NULL;
   1230 	sc->alc_cdata.alc_tx_ring_map = NULL;
   1231 
   1232 	/* Rx ring. */
   1233 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
   1234 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
   1235 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
   1236 	    sc->alc_rdata.alc_rx_ring != NULL)
   1237 		bus_dmamem_free(sc->sc_dmat,
   1238 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1239 	sc->alc_rdata.alc_rx_ring = NULL;
   1240 	sc->alc_cdata.alc_rx_ring_map = NULL;
   1241 
   1242 	/* Rx return ring. */
   1243 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
   1244 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
   1245 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
   1246 	    sc->alc_rdata.alc_rr_ring != NULL)
   1247 		bus_dmamem_free(sc->sc_dmat,
   1248 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1249 	sc->alc_rdata.alc_rr_ring = NULL;
   1250 	sc->alc_cdata.alc_rr_ring_map = NULL;
   1251 
   1252 	/* CMB block */
   1253 	if (sc->alc_cdata.alc_cmb_map != NULL)
   1254 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
   1255 	if (sc->alc_cdata.alc_cmb_map != NULL &&
   1256 	    sc->alc_rdata.alc_cmb != NULL)
   1257 		bus_dmamem_free(sc->sc_dmat,
   1258 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1259 	sc->alc_rdata.alc_cmb = NULL;
   1260 	sc->alc_cdata.alc_cmb_map = NULL;
   1261 
   1262 	/* SMB block */
   1263 	if (sc->alc_cdata.alc_smb_map != NULL)
   1264 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
   1265 	if (sc->alc_cdata.alc_smb_map != NULL &&
   1266 	    sc->alc_rdata.alc_smb != NULL)
   1267 		bus_dmamem_free(sc->sc_dmat,
   1268 		    &sc->alc_rdata.alc_smb_seg, 1);
   1269 	sc->alc_rdata.alc_smb = NULL;
   1270 	sc->alc_cdata.alc_smb_map = NULL;
   1271 }
   1272 
   1273 static int
   1274 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
   1275 {
   1276 	struct alc_txdesc *txd, *txd_last;
   1277 	struct tx_desc *desc;
   1278 	struct mbuf *m;
   1279 	bus_dmamap_t map;
   1280 	uint32_t cflags, poff, vtag;
   1281 	int error, idx, nsegs, prod;
   1282 #if NVLAN > 0
   1283 	struct m_tag *mtag;
   1284 #endif
   1285 
   1286 	m = *m_head;
   1287 	cflags = vtag = 0;
   1288 	poff = 0;
   1289 
   1290 	prod = sc->alc_cdata.alc_tx_prod;
   1291 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1292 	txd_last = txd;
   1293 	map = txd->tx_dmamap;
   1294 
   1295 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1296 
   1297 	if (error == EFBIG) {
   1298 		error = 0;
   1299 
   1300 		*m_head = m_pullup(*m_head, MHLEN);
   1301 		if (*m_head == NULL) {
   1302 			printf("%s: can't defrag TX mbuf\n",
   1303 			    device_xname(sc->sc_dev));
   1304 			return ENOBUFS;
   1305 		}
   1306 
   1307 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1308 		    BUS_DMA_NOWAIT);
   1309 
   1310 		if (error != 0) {
   1311 			printf("%s: could not load defragged TX mbuf\n",
   1312 			    device_xname(sc->sc_dev));
   1313 			m_freem(*m_head);
   1314 			*m_head = NULL;
   1315 			return error;
   1316 		}
   1317 	} else if (error) {
   1318 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1319 		return (error);
   1320 	}
   1321 
   1322 	nsegs = map->dm_nsegs;
   1323 
   1324 	if (nsegs == 0) {
   1325 		m_freem(*m_head);
   1326 		*m_head = NULL;
   1327 		return (EIO);
   1328 	}
   1329 
   1330 	/* Check descriptor overrun. */
   1331 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
   1332 		bus_dmamap_unload(sc->sc_dmat, map);
   1333 		return (ENOBUFS);
   1334 	}
   1335 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1336 	    BUS_DMASYNC_PREWRITE);
   1337 
   1338 	m = *m_head;
   1339 	desc = NULL;
   1340 	idx = 0;
   1341 #if NVLAN > 0
   1342 	/* Configure VLAN hardware tag insertion. */
   1343 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1344 		vtag = htons(VLAN_TAG_VALUE(mtag));
   1345 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
   1346 		cflags |= TD_INS_VLAN_TAG;
   1347 	}
   1348 #endif
   1349 	/* Configure Tx checksum offload. */
   1350 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
   1351 		cflags |= TD_CUSTOM_CSUM;
   1352 		/* Set checksum start offset. */
   1353 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
   1354 		    TD_PLOAD_OFFSET_MASK;
   1355 	}
   1356 	for (; idx < nsegs; idx++) {
   1357 		desc = &sc->alc_rdata.alc_tx_ring[prod];
   1358 		desc->len =
   1359 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
   1360 		desc->flags = htole32(cflags);
   1361 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
   1362 		sc->alc_cdata.alc_tx_cnt++;
   1363 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
   1364 	}
   1365 	/* Update producer index. */
   1366 	sc->alc_cdata.alc_tx_prod = prod;
   1367 
   1368 	/* Finally set EOP on the last descriptor. */
   1369 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
   1370 	desc = &sc->alc_rdata.alc_tx_ring[prod];
   1371 	desc->flags |= htole32(TD_EOP);
   1372 
   1373 	/* Swap dmamap of the first and the last. */
   1374 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1375 	map = txd_last->tx_dmamap;
   1376 	txd_last->tx_dmamap = txd->tx_dmamap;
   1377 	txd->tx_dmamap = map;
   1378 	txd->tx_m = m;
   1379 
   1380 	return (0);
   1381 }
   1382 
   1383 static void
   1384 alc_start(struct ifnet *ifp)
   1385 {
   1386 	struct alc_softc *sc = ifp->if_softc;
   1387 	struct mbuf *m_head;
   1388 	int enq;
   1389 
   1390 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1391 		return;
   1392 
   1393 	/* Reclaim transmitted frames. */
   1394 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
   1395 		alc_txeof(sc);
   1396 
   1397 	enq = 0;
   1398 	for (;;) {
   1399 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1400 		if (m_head == NULL)
   1401 			break;
   1402 
   1403 		/*
   1404 		 * Pack the data into the transmit ring. If we
   1405 		 * don't have room, set the OACTIVE flag and wait
   1406 		 * for the NIC to drain the ring.
   1407 		 */
   1408 		if (alc_encap(sc, &m_head)) {
   1409 			if (m_head == NULL)
   1410 				break;
   1411 			ifp->if_flags |= IFF_OACTIVE;
   1412 			break;
   1413 		}
   1414 		enq = 1;
   1415 
   1416 		/*
   1417 		 * If there's a BPF listener, bounce a copy of this frame
   1418 		 * to him.
   1419 		 */
   1420 		bpf_mtap(ifp, m_head);
   1421 	}
   1422 
   1423 	if (enq) {
   1424 		/* Sync descriptors. */
   1425 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1426 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1427 		    BUS_DMASYNC_PREWRITE);
   1428 		/* Kick. Assume we're using normal Tx priority queue. */
   1429 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
   1430 		    (sc->alc_cdata.alc_tx_prod <<
   1431 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
   1432 		    MBOX_TD_PROD_LO_IDX_MASK);
   1433 		/* Set a timeout in case the chip goes out to lunch. */
   1434 		ifp->if_timer = ALC_TX_TIMEOUT;
   1435 	}
   1436 }
   1437 
   1438 static void
   1439 alc_watchdog(struct ifnet *ifp)
   1440 {
   1441 	struct alc_softc *sc = ifp->if_softc;
   1442 
   1443 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
   1444 		printf("%s: watchdog timeout (missed link)\n",
   1445 		    device_xname(sc->sc_dev));
   1446 		ifp->if_oerrors++;
   1447 		alc_init_backend(ifp, false);
   1448 		return;
   1449 	}
   1450 
   1451 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1452 	ifp->if_oerrors++;
   1453 	alc_init_backend(ifp, false);
   1454 
   1455 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1456 		 alc_start(ifp);
   1457 }
   1458 
   1459 static int
   1460 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1461 {
   1462 	struct alc_softc *sc = ifp->if_softc;
   1463 	int s, error = 0;
   1464 
   1465 	s = splnet();
   1466 
   1467 	error = ether_ioctl(ifp, cmd, data);
   1468 	if (error == ENETRESET) {
   1469 		if (ifp->if_flags & IFF_RUNNING)
   1470 			alc_iff(sc);
   1471 		error = 0;
   1472 	}
   1473 
   1474 	splx(s);
   1475 	return (error);
   1476 }
   1477 
   1478 static void
   1479 alc_mac_config(struct alc_softc *sc)
   1480 {
   1481 	struct mii_data *mii;
   1482 	uint32_t reg;
   1483 
   1484 	mii = &sc->sc_miibus;
   1485 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   1486 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
   1487 	    MAC_CFG_SPEED_MASK);
   1488 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   1489 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   1490 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   1491 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   1492 	/* Reprogram MAC with resolved speed/duplex. */
   1493 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1494 	case IFM_10_T:
   1495 	case IFM_100_TX:
   1496 		reg |= MAC_CFG_SPEED_10_100;
   1497 		break;
   1498 	case IFM_1000_T:
   1499 		reg |= MAC_CFG_SPEED_1000;
   1500 		break;
   1501 	}
   1502 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1503 		reg |= MAC_CFG_FULL_DUPLEX;
   1504 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1505 			reg |= MAC_CFG_TX_FC;
   1506 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1507 			reg |= MAC_CFG_RX_FC;
   1508 	}
   1509 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   1510 }
   1511 
   1512 static void
   1513 alc_stats_clear(struct alc_softc *sc)
   1514 {
   1515 	struct smb sb, *smb;
   1516 	uint32_t *reg;
   1517 	int i;
   1518 
   1519 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1520 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1521 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1522 		    BUS_DMASYNC_POSTREAD);
   1523 		smb = sc->alc_rdata.alc_smb;
   1524 		/* Update done, clear. */
   1525 		smb->updated = 0;
   1526 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1527 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1528 		    BUS_DMASYNC_PREWRITE);
   1529 	} else {
   1530 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1531 		    reg++) {
   1532 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1533 			i += sizeof(uint32_t);
   1534 		}
   1535 		/* Read Tx statistics. */
   1536 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1537 		    reg++) {
   1538 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1539 			i += sizeof(uint32_t);
   1540 		}
   1541 	}
   1542 }
   1543 
   1544 static void
   1545 alc_stats_update(struct alc_softc *sc)
   1546 {
   1547 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1548 	struct alc_hw_stats *stat;
   1549 	struct smb sb, *smb;
   1550 	uint32_t *reg;
   1551 	int i;
   1552 
   1553 	stat = &sc->alc_stats;
   1554 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1555 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1556 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1557 		    BUS_DMASYNC_POSTREAD);
   1558 		smb = sc->alc_rdata.alc_smb;
   1559 		if (smb->updated == 0)
   1560 			return;
   1561 	} else {
   1562 		smb = &sb;
   1563 		/* Read Rx statistics. */
   1564 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1565 		    reg++) {
   1566 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1567 			i += sizeof(uint32_t);
   1568 		}
   1569 		/* Read Tx statistics. */
   1570 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1571 		    reg++) {
   1572 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1573 			i += sizeof(uint32_t);
   1574 		}
   1575 	}
   1576 
   1577 	/* Rx stats. */
   1578 	stat->rx_frames += smb->rx_frames;
   1579 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1580 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1581 	stat->rx_pause_frames += smb->rx_pause_frames;
   1582 	stat->rx_control_frames += smb->rx_control_frames;
   1583 	stat->rx_crcerrs += smb->rx_crcerrs;
   1584 	stat->rx_lenerrs += smb->rx_lenerrs;
   1585 	stat->rx_bytes += smb->rx_bytes;
   1586 	stat->rx_runts += smb->rx_runts;
   1587 	stat->rx_fragments += smb->rx_fragments;
   1588 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1589 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1590 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1591 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1592 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1593 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1594 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1595 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1596 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   1597 	stat->rx_rrs_errs += smb->rx_rrs_errs;
   1598 	stat->rx_alignerrs += smb->rx_alignerrs;
   1599 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   1600 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   1601 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   1602 
   1603 	/* Tx stats. */
   1604 	stat->tx_frames += smb->tx_frames;
   1605 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   1606 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   1607 	stat->tx_pause_frames += smb->tx_pause_frames;
   1608 	stat->tx_excess_defer += smb->tx_excess_defer;
   1609 	stat->tx_control_frames += smb->tx_control_frames;
   1610 	stat->tx_deferred += smb->tx_deferred;
   1611 	stat->tx_bytes += smb->tx_bytes;
   1612 	stat->tx_pkts_64 += smb->tx_pkts_64;
   1613 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   1614 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   1615 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   1616 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   1617 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   1618 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   1619 	stat->tx_single_colls += smb->tx_single_colls;
   1620 	stat->tx_multi_colls += smb->tx_multi_colls;
   1621 	stat->tx_late_colls += smb->tx_late_colls;
   1622 	stat->tx_excess_colls += smb->tx_excess_colls;
   1623 	stat->tx_abort += smb->tx_abort;
   1624 	stat->tx_underrun += smb->tx_underrun;
   1625 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   1626 	stat->tx_lenerrs += smb->tx_lenerrs;
   1627 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   1628 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   1629 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   1630 
   1631 	/* Update counters in ifnet. */
   1632 	ifp->if_opackets += smb->tx_frames;
   1633 
   1634 	ifp->if_collisions += smb->tx_single_colls +
   1635 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
   1636 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
   1637 
   1638 	/*
   1639 	 * XXX
   1640 	 * tx_pkts_truncated counter looks suspicious. It constantly
   1641 	 * increments with no sign of Tx errors. This may indicate
   1642 	 * the counter name is not correct one so I've removed the
   1643 	 * counter in output errors.
   1644 	 */
   1645 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
   1646 	    smb->tx_underrun;
   1647 
   1648 	ifp->if_ipackets += smb->rx_frames;
   1649 
   1650 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   1651 	    smb->rx_runts + smb->rx_pkts_truncated +
   1652 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
   1653 	    smb->rx_alignerrs;
   1654 
   1655 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1656 		/* Update done, clear. */
   1657 		smb->updated = 0;
   1658 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1659 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1660 	}
   1661 }
   1662 
   1663 static int
   1664 alc_intr(void *arg)
   1665 {
   1666 	struct alc_softc *sc = arg;
   1667 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1668 	uint32_t status;
   1669 
   1670 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
   1671 	if ((status & ALC_INTRS) == 0)
   1672 		return (0);
   1673 
   1674 	/* Acknowledge and disable interrupts. */
   1675 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
   1676 
   1677 	if (ifp->if_flags & IFF_RUNNING) {
   1678 		if (status & INTR_RX_PKT) {
   1679 			int error;
   1680 
   1681 			error = alc_rxintr(sc);
   1682 			if (error) {
   1683 				alc_init_backend(ifp, false);
   1684 				return (0);
   1685 			}
   1686 		}
   1687 
   1688 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
   1689 		    INTR_TXQ_TO_RST)) {
   1690 			if (status & INTR_DMA_RD_TO_RST)
   1691 				printf("%s: DMA read error! -- resetting\n",
   1692 				    device_xname(sc->sc_dev));
   1693 			if (status & INTR_DMA_WR_TO_RST)
   1694 				printf("%s: DMA write error! -- resetting\n",
   1695 				    device_xname(sc->sc_dev));
   1696 			if (status & INTR_TXQ_TO_RST)
   1697 				printf("%s: TxQ reset! -- resetting\n",
   1698 				    device_xname(sc->sc_dev));
   1699 			alc_init_backend(ifp, false);
   1700 			return (0);
   1701 		}
   1702 
   1703 		alc_txeof(sc);
   1704 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1705 			alc_start(ifp);
   1706 	}
   1707 
   1708 	/* Re-enable interrupts. */
   1709 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
   1710 	return (1);
   1711 }
   1712 
   1713 static void
   1714 alc_txeof(struct alc_softc *sc)
   1715 {
   1716 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1717 	struct alc_txdesc *txd;
   1718 	uint32_t cons, prod;
   1719 	int prog;
   1720 
   1721 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1722 		return;
   1723 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1724 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1725 	    BUS_DMASYNC_POSTREAD);
   1726 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
   1727 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1728 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
   1729 		    BUS_DMASYNC_POSTREAD);
   1730 		prod = sc->alc_rdata.alc_cmb->cons;
   1731 	} else
   1732 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
   1733 	/* Assume we're using normal Tx priority queue. */
   1734 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
   1735 	    MBOX_TD_CONS_LO_IDX_SHIFT;
   1736 	cons = sc->alc_cdata.alc_tx_cons;
   1737 	/*
   1738 	 * Go through our Tx list and free mbufs for those
   1739 	 * frames which have been transmitted.
   1740 	 */
   1741 	for (prog = 0; cons != prod; prog++,
   1742 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
   1743 		if (sc->alc_cdata.alc_tx_cnt <= 0)
   1744 			break;
   1745 		prog++;
   1746 		ifp->if_flags &= ~IFF_OACTIVE;
   1747 		sc->alc_cdata.alc_tx_cnt--;
   1748 		txd = &sc->alc_cdata.alc_txdesc[cons];
   1749 		if (txd->tx_m != NULL) {
   1750 			/* Reclaim transmitted mbufs. */
   1751 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1752 			m_freem(txd->tx_m);
   1753 			txd->tx_m = NULL;
   1754 		}
   1755 	}
   1756 
   1757 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   1758 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1759 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1760 	sc->alc_cdata.alc_tx_cons = cons;
   1761 	/*
   1762 	 * Unarm watchdog timer only when there is no pending
   1763 	 * frames in Tx queue.
   1764 	 */
   1765 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1766 		ifp->if_timer = 0;
   1767 }
   1768 
   1769 static int
   1770 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
   1771 {
   1772 	struct mbuf *m;
   1773 	bus_dmamap_t map;
   1774 	int error;
   1775 
   1776 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   1777 	if (m == NULL)
   1778 		return (ENOBUFS);
   1779 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   1780 	if (!(m->m_flags & M_EXT)) {
   1781 		m_freem(m);
   1782 		return (ENOBUFS);
   1783 	}
   1784 
   1785 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
   1786 
   1787 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1788 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
   1789 
   1790 	if (error != 0) {
   1791 		if (!error) {
   1792 			bus_dmamap_unload(sc->sc_dmat,
   1793 			    sc->alc_cdata.alc_rx_sparemap);
   1794 			error = EFBIG;
   1795 			printf("%s: too many segments?!\n",
   1796 			    device_xname(sc->sc_dev));
   1797 		}
   1798 		m_freem(m);
   1799 
   1800 		if (init)
   1801 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   1802 
   1803 		return (error);
   1804 	}
   1805 
   1806 	if (rxd->rx_m != NULL) {
   1807 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   1808 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1809 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1810 	}
   1811 	map = rxd->rx_dmamap;
   1812 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
   1813 	sc->alc_cdata.alc_rx_sparemap = map;
   1814 	rxd->rx_m = m;
   1815 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1816 	return (0);
   1817 }
   1818 
   1819 static int
   1820 alc_rxintr(struct alc_softc *sc)
   1821 {
   1822 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1823 	struct rx_rdesc *rrd;
   1824 	uint32_t nsegs, status;
   1825 	int rr_cons, prog;
   1826 
   1827 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1828 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1829 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1830 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1831 	rr_cons = sc->alc_cdata.alc_rr_cons;
   1832 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
   1833 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
   1834 		status = le32toh(rrd->status);
   1835 		if ((status & RRD_VALID) == 0)
   1836 			break;
   1837 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
   1838 		if (nsegs == 0) {
   1839 			/* This should not happen! */
   1840 			if (alcdebug)
   1841 				printf("%s: unexpected segment count -- "
   1842 				    "resetting\n", device_xname(sc->sc_dev));
   1843 			return (EIO);
   1844 		}
   1845 		alc_rxeof(sc, rrd);
   1846 		/* Clear Rx return status. */
   1847 		rrd->status = 0;
   1848 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
   1849 		sc->alc_cdata.alc_rx_cons += nsegs;
   1850 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
   1851 		prog += nsegs;
   1852 	}
   1853 
   1854 	if (prog > 0) {
   1855 		/* Update the consumer index. */
   1856 		sc->alc_cdata.alc_rr_cons = rr_cons;
   1857 		/* Sync Rx return descriptors. */
   1858 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1859 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
   1860 		    BUS_DMASYNC_PREWRITE);
   1861 		/*
   1862 		 * Sync updated Rx descriptors such that controller see
   1863 		 * modified buffer addresses.
   1864 		 */
   1865 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1866 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
   1867 		    BUS_DMASYNC_PREWRITE);
   1868 		/*
   1869 		 * Let controller know availability of new Rx buffers.
   1870 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
   1871 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
   1872 		 * only when Rx buffer pre-fetching is required. In
   1873 		 * addition we already set ALC_RX_RD_FREE_THRESH to
   1874 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
   1875 		 * it still seems that pre-fetching needs more
   1876 		 * experimentation.
   1877 		 */
   1878 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
   1879 		    sc->alc_cdata.alc_rx_cons);
   1880 	}
   1881 
   1882 	return (0);
   1883 }
   1884 
   1885 /* Receive a frame. */
   1886 static void
   1887 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
   1888 {
   1889 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1890 	struct alc_rxdesc *rxd;
   1891 	struct mbuf *mp, *m;
   1892 	uint32_t rdinfo, status;
   1893 	int count, nsegs, rx_cons;
   1894 
   1895 	status = le32toh(rrd->status);
   1896 	rdinfo = le32toh(rrd->rdinfo);
   1897 	rx_cons = RRD_RD_IDX(rdinfo);
   1898 	nsegs = RRD_RD_CNT(rdinfo);
   1899 
   1900 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
   1901 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
   1902 		/*
   1903 		 * We want to pass the following frames to upper
   1904 		 * layer regardless of error status of Rx return
   1905 		 * ring.
   1906 		 *
   1907 		 *  o IP/TCP/UDP checksum is bad.
   1908 		 *  o frame length and protocol specific length
   1909 		 *     does not match.
   1910 		 *
   1911 		 *  Force network stack compute checksum for
   1912 		 *  errored frames.
   1913 		 */
   1914 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
   1915 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
   1916 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
   1917 			return;
   1918 	}
   1919 
   1920 	for (count = 0; count < nsegs; count++,
   1921 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
   1922 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
   1923 		mp = rxd->rx_m;
   1924 		/* Add a new receive buffer to the ring. */
   1925 		if (alc_newbuf(sc, rxd, false) != 0) {
   1926 			ifp->if_iqdrops++;
   1927 			/* Reuse Rx buffers. */
   1928 			if (sc->alc_cdata.alc_rxhead != NULL)
   1929 				m_freem(sc->alc_cdata.alc_rxhead);
   1930 			break;
   1931 		}
   1932 
   1933 		/*
   1934 		 * Assume we've received a full sized frame.
   1935 		 * Actual size is fixed when we encounter the end of
   1936 		 * multi-segmented frame.
   1937 		 */
   1938 		mp->m_len = sc->alc_buf_size;
   1939 
   1940 		/* Chain received mbufs. */
   1941 		if (sc->alc_cdata.alc_rxhead == NULL) {
   1942 			sc->alc_cdata.alc_rxhead = mp;
   1943 			sc->alc_cdata.alc_rxtail = mp;
   1944 		} else {
   1945 			mp->m_flags &= ~M_PKTHDR;
   1946 			sc->alc_cdata.alc_rxprev_tail =
   1947 			    sc->alc_cdata.alc_rxtail;
   1948 			sc->alc_cdata.alc_rxtail->m_next = mp;
   1949 			sc->alc_cdata.alc_rxtail = mp;
   1950 		}
   1951 
   1952 		if (count == nsegs - 1) {
   1953 			/* Last desc. for this frame. */
   1954 			m = sc->alc_cdata.alc_rxhead;
   1955 			m->m_flags |= M_PKTHDR;
   1956 			/*
   1957 			 * It seems that L1C/L2C controller has no way
   1958 			 * to tell hardware to strip CRC bytes.
   1959 			 */
   1960 			m->m_pkthdr.len =
   1961 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
   1962 			if (nsegs > 1) {
   1963 				/* Set last mbuf size. */
   1964 				mp->m_len = sc->alc_cdata.alc_rxlen -
   1965 				    (nsegs - 1) * sc->alc_buf_size;
   1966 				/* Remove the CRC bytes in chained mbufs. */
   1967 				if (mp->m_len <= ETHER_CRC_LEN) {
   1968 					sc->alc_cdata.alc_rxtail =
   1969 					    sc->alc_cdata.alc_rxprev_tail;
   1970 					sc->alc_cdata.alc_rxtail->m_len -=
   1971 					    (ETHER_CRC_LEN - mp->m_len);
   1972 					sc->alc_cdata.alc_rxtail->m_next = NULL;
   1973 					m_freem(mp);
   1974 				} else {
   1975 					mp->m_len -= ETHER_CRC_LEN;
   1976 				}
   1977 			} else
   1978 				m->m_len = m->m_pkthdr.len;
   1979 			m->m_pkthdr.rcvif = ifp;
   1980 #if NVLAN > 0
   1981 			/*
   1982 			 * Due to hardware bugs, Rx checksum offloading
   1983 			 * was intentionally disabled.
   1984 			 */
   1985 			if (status & RRD_VLAN_TAG) {
   1986 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
   1987 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
   1988 			}
   1989 #endif
   1990 
   1991 			bpf_mtap(ifp, m);
   1992 
   1993 			/* Pass it on. */
   1994 			(*ifp->if_input)(ifp, m);
   1995 		}
   1996 	}
   1997 	/* Reset mbuf chains. */
   1998 	ALC_RXCHAIN_RESET(sc);
   1999 }
   2000 
   2001 static void
   2002 alc_tick(void *xsc)
   2003 {
   2004 	struct alc_softc *sc = xsc;
   2005 	struct mii_data *mii = &sc->sc_miibus;
   2006 	int s;
   2007 
   2008 	s = splnet();
   2009 	mii_tick(mii);
   2010 	alc_stats_update(sc);
   2011 	splx(s);
   2012 
   2013 	callout_schedule(&sc->sc_tick_ch, hz);
   2014 }
   2015 
   2016 static void
   2017 alc_reset(struct alc_softc *sc)
   2018 {
   2019 	uint32_t reg;
   2020 	int i;
   2021 
   2022 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
   2023 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
   2024 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2025 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2026 		DELAY(10);
   2027 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
   2028 			break;
   2029 	}
   2030 	if (i == 0)
   2031 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   2032 
   2033 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2034 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
   2035 			break;
   2036 		DELAY(10);
   2037 	}
   2038 
   2039 	if (i == 0)
   2040 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   2041 		    reg);
   2042 }
   2043 
   2044 static int
   2045 alc_init(struct ifnet *ifp)
   2046 {
   2047 
   2048 	return alc_init_backend(ifp, true);
   2049 }
   2050 
   2051 static int
   2052 alc_init_backend(struct ifnet *ifp, bool init)
   2053 {
   2054 	struct alc_softc *sc = ifp->if_softc;
   2055 	struct mii_data *mii;
   2056 	uint8_t eaddr[ETHER_ADDR_LEN];
   2057 	bus_addr_t paddr;
   2058 	uint32_t reg, rxf_hi, rxf_lo;
   2059 	int error;
   2060 
   2061 	/*
   2062 	 * Cancel any pending I/O.
   2063 	 */
   2064 	alc_stop(ifp, 0);
   2065 	/*
   2066 	 * Reset the chip to a known state.
   2067 	 */
   2068 	alc_reset(sc);
   2069 
   2070 	/* Initialize Rx descriptors. */
   2071 	error = alc_init_rx_ring(sc, init);
   2072 	if (error != 0) {
   2073 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   2074 		alc_stop(ifp, 0);
   2075 		return (error);
   2076 	}
   2077 	alc_init_rr_ring(sc);
   2078 	alc_init_tx_ring(sc);
   2079 	alc_init_cmb(sc);
   2080 	alc_init_smb(sc);
   2081 
   2082 	/* Enable all clocks. */
   2083 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
   2084 
   2085 	/* Reprogram the station address. */
   2086 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   2087 	CSR_WRITE_4(sc, ALC_PAR0,
   2088 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   2089 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
   2090 	/*
   2091 	 * Clear WOL status and disable all WOL feature as WOL
   2092 	 * would interfere Rx operation under normal environments.
   2093 	 */
   2094 	CSR_READ_4(sc, ALC_WOL_CFG);
   2095 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
   2096 	/* Set Tx descriptor base addresses. */
   2097 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
   2098 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2099 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2100 	/* We don't use high priority ring. */
   2101 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
   2102 	/* Set Tx descriptor counter. */
   2103 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
   2104 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
   2105 	/* Set Rx descriptor base addresses. */
   2106 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
   2107 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2108 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2109 	/* We use one Rx ring. */
   2110 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
   2111 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
   2112 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
   2113 	/* Set Rx descriptor counter. */
   2114 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
   2115 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
   2116 
   2117 	/*
   2118 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
   2119 	 * if it do not fit the buffer size. Rx return descriptor holds
   2120 	 * a counter that indicates how many fragments were made by the
   2121 	 * hardware. The buffer size should be multiple of 8 bytes.
   2122 	 * Since hardware has limit on the size of buffer size, always
   2123 	 * use the maximum value.
   2124 	 * For strict-alignment architectures make sure to reduce buffer
   2125 	 * size by 8 bytes to make room for alignment fixup.
   2126 	 */
   2127 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
   2128 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
   2129 
   2130 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
   2131 	/* Set Rx return descriptor base addresses. */
   2132 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2133 	/* We use one Rx return ring. */
   2134 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
   2135 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
   2136 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
   2137 	/* Set Rx return descriptor counter. */
   2138 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
   2139 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
   2140 	paddr = sc->alc_rdata.alc_cmb_paddr;
   2141 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2142 	paddr = sc->alc_rdata.alc_smb_paddr;
   2143 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2144 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2145 
   2146 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
   2147 		/* Reconfigure SRAM - Vendor magic. */
   2148 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
   2149 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
   2150 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
   2151 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
   2152 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
   2153 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
   2154 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
   2155 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
   2156 	}
   2157 
   2158 	/* Tell hardware that we're ready to load DMA blocks. */
   2159 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
   2160 
   2161 	/* Configure interrupt moderation timer. */
   2162 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
   2163 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
   2164 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
   2165 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
   2166 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
   2167 	/*
   2168 	 * We don't want to automatic interrupt clear as task queue
   2169 	 * for the interrupt should know interrupt status.
   2170 	 */
   2171 	reg = MASTER_SA_TIMER_ENB;
   2172 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
   2173 		reg |= MASTER_IM_RX_TIMER_ENB;
   2174 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
   2175 		reg |= MASTER_IM_TX_TIMER_ENB;
   2176 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2177 	/*
   2178 	 * Disable interrupt re-trigger timer. We don't want automatic
   2179 	 * re-triggering of un-ACKed interrupts.
   2180 	 */
   2181 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
   2182 	/* Configure CMB. */
   2183 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
   2184 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2185 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
   2186 	else
   2187 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
   2188 	/*
   2189 	 * Hardware can be configured to issue SMB interrupt based
   2190 	 * on programmed interval. Since there is a callout that is
   2191 	 * invoked for every hz in driver we use that instead of
   2192 	 * relying on periodic SMB interrupt.
   2193 	 */
   2194 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
   2195 	/* Clear MAC statistics. */
   2196 	alc_stats_clear(sc);
   2197 
   2198 	/*
   2199 	 * Always use maximum frame size that controller can support.
   2200 	 * Otherwise received frames that has larger frame length
   2201 	 * than alc(4) MTU would be silently dropped in hardware. This
   2202 	 * would make path-MTU discovery hard as sender wouldn't get
   2203 	 * any responses from receiver. alc(4) supports
   2204 	 * multi-fragmented frames on Rx path so it has no issue on
   2205 	 * assembling fragmented frames. Using maximum frame size also
   2206 	 * removes the need to reinitialize hardware when interface
   2207 	 * MTU configuration was changed.
   2208 	 *
   2209 	 * Be conservative in what you do, be liberal in what you
   2210 	 * accept from others - RFC 793.
   2211 	 */
   2212 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
   2213 
   2214 	/* Disable header split(?) */
   2215 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
   2216 
   2217 	/* Configure IPG/IFG parameters. */
   2218 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
   2219 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
   2220 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   2221 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   2222 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
   2223 	/* Set parameters for half-duplex media. */
   2224 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
   2225 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   2226 	    HDPX_CFG_LCOL_MASK) |
   2227 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   2228 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   2229 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   2230 	    HDPX_CFG_ABEBT_MASK) |
   2231 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   2232 	    HDPX_CFG_JAMIPG_MASK));
   2233 	/*
   2234 	 * Set TSO/checksum offload threshold. For frames that is
   2235 	 * larger than this threshold, hardware wouldn't do
   2236 	 * TSO/checksum offloading.
   2237 	 */
   2238 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
   2239 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
   2240 	    TSO_OFFLOAD_THRESH_MASK);
   2241 	/* Configure TxQ. */
   2242 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
   2243 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
   2244 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2245 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2246 		reg >>= 1;
   2247 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
   2248 	    TXQ_CFG_TD_BURST_MASK;
   2249 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
   2250 
   2251 	/* Configure Rx free descriptor pre-fetching. */
   2252 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
   2253 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
   2254 	    RX_RD_FREE_THRESH_HI_MASK) |
   2255 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
   2256 	    RX_RD_FREE_THRESH_LO_MASK));
   2257 
   2258 	/*
   2259 	 * Configure flow control parameters.
   2260 	 * XON  : 80% of Rx FIFO
   2261 	 * XOFF : 30% of Rx FIFO
   2262 	 */
   2263 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
   2264 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
   2265 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
   2266 		rxf_hi = (reg * 8) / 10;
   2267 		rxf_lo = (reg * 3) / 10;
   2268 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
   2269 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
   2270 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
   2271 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
   2272 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
   2273 	}
   2274 
   2275 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2276 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
   2277 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
   2278 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
   2279 		    SERDES_PHY_CLK_SLOWDOWN);
   2280 
   2281 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
   2282 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
   2283 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
   2284 
   2285 	/* Configure RxQ. */
   2286 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   2287 	    RXQ_CFG_RD_BURST_MASK;
   2288 	reg |= RXQ_CFG_RSS_MODE_DIS;
   2289 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
   2290 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
   2291 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2292 
   2293 	/* Configure DMA parameters. */
   2294 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
   2295 	reg |= sc->alc_rcb;
   2296 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2297 		reg |= DMA_CFG_CMB_ENB;
   2298 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
   2299 		reg |= DMA_CFG_SMB_ENB;
   2300 	else
   2301 		reg |= DMA_CFG_SMB_DIS;
   2302 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
   2303 	    DMA_CFG_RD_BURST_SHIFT;
   2304 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
   2305 	    DMA_CFG_WR_BURST_SHIFT;
   2306 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
   2307 	    DMA_CFG_RD_DELAY_CNT_MASK;
   2308 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
   2309 	    DMA_CFG_WR_DELAY_CNT_MASK;
   2310 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2311 
   2312 	/*
   2313 	 * Configure Tx/Rx MACs.
   2314 	 *  - Auto-padding for short frames.
   2315 	 *  - Enable CRC generation.
   2316 	 *  Actual reconfiguration of MAC for resolved speed/duplex
   2317 	 *  is followed after detection of link establishment.
   2318 	 *  AR813x/AR815x always does checksum computation regardless
   2319 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
   2320 	 *  have bug in protocol field in Rx return structure so
   2321 	 *  these controllers can't handle fragmented frames. Disable
   2322 	 *  Rx checksum offloading until there is a newer controller
   2323 	 *  that has sane implementation.
   2324 	 */
   2325 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
   2326 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   2327 	    MAC_CFG_PREAMBLE_MASK);
   2328 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   2329 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   2330 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2331 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   2332 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
   2333 		reg |= MAC_CFG_SPEED_10_100;
   2334 	else
   2335 		reg |= MAC_CFG_SPEED_1000;
   2336 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2337 
   2338 	/* Set up the receive filter. */
   2339 	alc_iff(sc);
   2340 	alc_rxvlan(sc);
   2341 
   2342 	/* Acknowledge all pending interrupts and clear it. */
   2343 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
   2344 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2345 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
   2346 
   2347 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2348 	/* Switch to the current media. */
   2349 	mii = &sc->sc_miibus;
   2350 	mii_mediachg(mii);
   2351 
   2352 	callout_schedule(&sc->sc_tick_ch, hz);
   2353 
   2354 	ifp->if_flags |= IFF_RUNNING;
   2355 	ifp->if_flags &= ~IFF_OACTIVE;
   2356 
   2357 	return (0);
   2358 }
   2359 
   2360 static void
   2361 alc_stop(struct ifnet *ifp, int disable)
   2362 {
   2363 	struct alc_softc *sc = ifp->if_softc;
   2364 	struct alc_txdesc *txd;
   2365 	struct alc_rxdesc *rxd;
   2366 	uint32_t reg;
   2367 	int i;
   2368 
   2369 	callout_stop(&sc->sc_tick_ch);
   2370 
   2371 	/*
   2372 	 * Mark the interface down and cancel the watchdog timer.
   2373 	 */
   2374 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2375 	ifp->if_timer = 0;
   2376 
   2377 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2378 
   2379 	alc_stats_update(sc);
   2380 
   2381 	mii_down(&sc->sc_miibus);
   2382 
   2383 	/* Disable interrupts. */
   2384 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
   2385 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2386 	alc_stop_queue(sc);
   2387 
   2388 	/* Disable DMA. */
   2389 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
   2390 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
   2391 	reg |= DMA_CFG_SMB_DIS;
   2392 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2393 	DELAY(1000);
   2394 
   2395 	/* Stop Rx/Tx MACs. */
   2396 	alc_stop_mac(sc);
   2397 
   2398 	/* Disable interrupts which might be touched in taskq handler. */
   2399 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2400 
   2401 	/* Reclaim Rx buffers that have been processed. */
   2402 	if (sc->alc_cdata.alc_rxhead != NULL)
   2403 		m_freem(sc->alc_cdata.alc_rxhead);
   2404 	ALC_RXCHAIN_RESET(sc);
   2405 	/*
   2406 	 * Free Tx/Rx mbufs still in the queues.
   2407 	 */
   2408 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2409 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2410 		if (rxd->rx_m != NULL) {
   2411 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2412 			m_freem(rxd->rx_m);
   2413 			rxd->rx_m = NULL;
   2414 		}
   2415 	}
   2416 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2417 		txd = &sc->alc_cdata.alc_txdesc[i];
   2418 		if (txd->tx_m != NULL) {
   2419 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   2420 			m_freem(txd->tx_m);
   2421 			txd->tx_m = NULL;
   2422 		}
   2423 	}
   2424 }
   2425 
   2426 static void
   2427 alc_stop_mac(struct alc_softc *sc)
   2428 {
   2429 	uint32_t reg;
   2430 	int i;
   2431 
   2432 	/* Disable Rx/Tx MAC. */
   2433 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2434 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
   2435 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   2436 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2437 	}
   2438 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2439 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2440 		if (reg == 0)
   2441 			break;
   2442 		DELAY(10);
   2443 	}
   2444 	if (i == 0)
   2445 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
   2446 		    device_xname(sc->sc_dev), reg);
   2447 }
   2448 
   2449 static void
   2450 alc_start_queue(struct alc_softc *sc)
   2451 {
   2452 	uint32_t qcfg[] = {
   2453 		0,
   2454 		RXQ_CFG_QUEUE0_ENB,
   2455 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
   2456 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
   2457 		RXQ_CFG_ENB
   2458 	};
   2459 	uint32_t cfg;
   2460 
   2461 	/* Enable RxQ. */
   2462 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2463 	cfg &= ~RXQ_CFG_ENB;
   2464 	cfg |= qcfg[1];
   2465 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
   2466 	/* Enable TxQ. */
   2467 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2468 	cfg |= TXQ_CFG_ENB;
   2469 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
   2470 }
   2471 
   2472 static void
   2473 alc_stop_queue(struct alc_softc *sc)
   2474 {
   2475 	uint32_t reg;
   2476 	int i;
   2477 
   2478 	/* Disable RxQ. */
   2479 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2480 	if ((reg & RXQ_CFG_ENB) != 0) {
   2481 		reg &= ~RXQ_CFG_ENB;
   2482 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2483 	}
   2484 	/* Disable TxQ. */
   2485 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2486 	if ((reg & TXQ_CFG_ENB) != 0) {
   2487 		reg &= ~TXQ_CFG_ENB;
   2488 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
   2489 	}
   2490 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2491 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2492 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
   2493 			break;
   2494 		DELAY(10);
   2495 	}
   2496 	if (i == 0)
   2497 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
   2498 		    device_xname(sc->sc_dev), reg);
   2499 }
   2500 
   2501 static void
   2502 alc_init_tx_ring(struct alc_softc *sc)
   2503 {
   2504 	struct alc_ring_data *rd;
   2505 	struct alc_txdesc *txd;
   2506 	int i;
   2507 
   2508 	sc->alc_cdata.alc_tx_prod = 0;
   2509 	sc->alc_cdata.alc_tx_cons = 0;
   2510 	sc->alc_cdata.alc_tx_cnt = 0;
   2511 
   2512 	rd = &sc->alc_rdata;
   2513 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
   2514 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2515 		txd = &sc->alc_cdata.alc_txdesc[i];
   2516 		txd->tx_m = NULL;
   2517 	}
   2518 
   2519 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   2520 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2521 }
   2522 
   2523 static int
   2524 alc_init_rx_ring(struct alc_softc *sc, bool init)
   2525 {
   2526 	struct alc_ring_data *rd;
   2527 	struct alc_rxdesc *rxd;
   2528 	int i;
   2529 
   2530 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
   2531 	rd = &sc->alc_rdata;
   2532 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
   2533 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2534 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2535 		rxd->rx_m = NULL;
   2536 		rxd->rx_desc = &rd->alc_rx_ring[i];
   2537 		if (alc_newbuf(sc, rxd, init) != 0)
   2538 			return (ENOBUFS);
   2539 	}
   2540 
   2541 	/*
   2542 	 * Since controller does not update Rx descriptors, driver
   2543 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
   2544 	 * is enough to ensure coherence.
   2545 	 */
   2546 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   2547 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2548 	/* Let controller know availability of new Rx buffers. */
   2549 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
   2550 
   2551 	return (0);
   2552 }
   2553 
   2554 static void
   2555 alc_init_rr_ring(struct alc_softc *sc)
   2556 {
   2557 	struct alc_ring_data *rd;
   2558 
   2559 	sc->alc_cdata.alc_rr_cons = 0;
   2560 	ALC_RXCHAIN_RESET(sc);
   2561 
   2562 	rd = &sc->alc_rdata;
   2563 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
   2564 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   2565 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2566 }
   2567 
   2568 static void
   2569 alc_init_cmb(struct alc_softc *sc)
   2570 {
   2571 	struct alc_ring_data *rd;
   2572 
   2573 	rd = &sc->alc_rdata;
   2574 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
   2575 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   2576 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2577 }
   2578 
   2579 static void
   2580 alc_init_smb(struct alc_softc *sc)
   2581 {
   2582 	struct alc_ring_data *rd;
   2583 
   2584 	rd = &sc->alc_rdata;
   2585 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
   2586 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   2587 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2588 }
   2589 
   2590 static void
   2591 alc_rxvlan(struct alc_softc *sc)
   2592 {
   2593 	uint32_t reg;
   2594 
   2595 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2596 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2597 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2598 	else
   2599 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2600 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2601 }
   2602 
   2603 static void
   2604 alc_iff(struct alc_softc *sc)
   2605 {
   2606 	struct ethercom *ec = &sc->sc_ec;
   2607 	struct ifnet *ifp = &ec->ec_if;
   2608 	struct ether_multi *enm;
   2609 	struct ether_multistep step;
   2610 	uint32_t crc;
   2611 	uint32_t mchash[2];
   2612 	uint32_t rxcfg;
   2613 
   2614 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
   2615 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2616 	ifp->if_flags &= ~IFF_ALLMULTI;
   2617 
   2618 	/*
   2619 	 * Always accept broadcast frames.
   2620 	 */
   2621 	rxcfg |= MAC_CFG_BCAST;
   2622 
   2623 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2624 		ifp->if_flags |= IFF_ALLMULTI;
   2625 		if (ifp->if_flags & IFF_PROMISC)
   2626 			rxcfg |= MAC_CFG_PROMISC;
   2627 		else
   2628 			rxcfg |= MAC_CFG_ALLMULTI;
   2629 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2630 	} else {
   2631 		/* Program new filter. */
   2632 		memset(mchash, 0, sizeof(mchash));
   2633 
   2634 		ETHER_FIRST_MULTI(step, ec, enm);
   2635 		while (enm != NULL) {
   2636 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2637 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2638 			ETHER_NEXT_MULTI(step, enm);
   2639 		}
   2640 	}
   2641 
   2642 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
   2643 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
   2644 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
   2645 }
   2646 
   2647 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
   2648 
   2649 #ifdef _MODULE
   2650 #include "ioconf.c"
   2651 #endif
   2652 
   2653 static int
   2654 if_alc_modcmd(modcmd_t cmd, void *opaque)
   2655 {
   2656 	int error = 0;
   2657 
   2658 	switch (cmd) {
   2659 	case MODULE_CMD_INIT:
   2660 #ifdef _MODULE
   2661 		error = config_init_component(cfdriver_ioconf_if_alc,
   2662 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2663 #endif
   2664 		return error;
   2665 	case MODULE_CMD_FINI:
   2666 #ifdef _MODULE
   2667 		error = config_fini_component(cfdriver_ioconf_if_alc,
   2668 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2669 #endif
   2670 		return error;
   2671 	default:
   2672 		return ENOTTY;
   2673 	}
   2674 }
   2675