if_alc.c revision 1.12 1 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
2 /*-
3 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48
49 #include <sys/bus.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #include <net/bpf.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <net/bpf.h>
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_alcreg.h>
81
82 /*
83 * Devices supported by this driver.
84 */
85 static struct alc_ident alc_ident_table[] = {
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 "Atheros AR8131 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 "Atheros AR8132 PCIe Fast Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
99 "Atheros AR8161 PCIe Gigabit Ethernet" },
100 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
101 "Atheros AR8162 PCIe Fast Ethernet" },
102 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
103 "Atheros AR8171 PCIe Gigabit Ethernet" },
104 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
105 "Atheros AR8172 PCIe Fast Ethernet" },
106 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
107 "Killer E2200 Gigabit Ethernet" },
108 { 0, 0, 0, NULL },
109 };
110
111 static int alc_match(device_t, cfdata_t, void *);
112 static void alc_attach(device_t, device_t, void *);
113 static int alc_detach(device_t, int);
114
115 static int alc_init(struct ifnet *);
116 static int alc_init_backend(struct ifnet *, bool);
117 static void alc_start(struct ifnet *);
118 static int alc_ioctl(struct ifnet *, u_long, void *);
119 static void alc_watchdog(struct ifnet *);
120 static int alc_mediachange(struct ifnet *);
121 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
122
123 static void alc_aspm(struct alc_softc *, int, int);
124 static void alc_aspm_813x(struct alc_softc *, int);
125 static void alc_aspm_816x(struct alc_softc *, int);
126 static void alc_disable_l0s_l1(struct alc_softc *);
127 static int alc_dma_alloc(struct alc_softc *);
128 static void alc_dma_free(struct alc_softc *);
129 static void alc_dsp_fixup(struct alc_softc *, int);
130 static int alc_encap(struct alc_softc *, struct mbuf **);
131 static struct alc_ident *
132 alc_find_ident(struct pci_attach_args *);
133 static void alc_get_macaddr(struct alc_softc *);
134 static void alc_get_macaddr_813x(struct alc_softc *);
135 static void alc_get_macaddr_816x(struct alc_softc *);
136 static void alc_get_macaddr_par(struct alc_softc *);
137 static void alc_init_cmb(struct alc_softc *);
138 static void alc_init_rr_ring(struct alc_softc *);
139 static int alc_init_rx_ring(struct alc_softc *, bool);
140 static void alc_init_smb(struct alc_softc *);
141 static void alc_init_tx_ring(struct alc_softc *);
142 static int alc_intr(void *);
143 static void alc_mac_config(struct alc_softc *);
144 static uint32_t alc_mii_readreg_813x(struct alc_softc *, int, int);
145 static uint32_t alc_mii_readreg_816x(struct alc_softc *, int, int);
146 static void alc_mii_writereg_813x(struct alc_softc *, int, int, int);
147 static void alc_mii_writereg_816x(struct alc_softc *, int, int, int);
148 static int alc_miibus_readreg(device_t, int, int);
149 static void alc_miibus_statchg(struct ifnet *);
150 static void alc_miibus_writereg(device_t, int, int, int);
151 static uint32_t alc_miidbg_readreg(struct alc_softc *, int);
152 static void alc_miidbg_writereg(struct alc_softc *, int, int);
153 static uint32_t alc_miiext_readreg(struct alc_softc *, int, int);
154 static uint32_t alc_miiext_writereg(struct alc_softc *, int, int, int);
155 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
156 static void alc_phy_down(struct alc_softc *);
157 static void alc_phy_reset(struct alc_softc *);
158 static void alc_phy_reset_813x(struct alc_softc *);
159 static void alc_phy_reset_816x(struct alc_softc *);
160 static void alc_reset(struct alc_softc *);
161 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
162 static int alc_rxintr(struct alc_softc *);
163 static void alc_iff(struct alc_softc *);
164 static void alc_rxvlan(struct alc_softc *);
165 static void alc_start_queue(struct alc_softc *);
166 static void alc_stats_clear(struct alc_softc *);
167 static void alc_stats_update(struct alc_softc *);
168 static void alc_stop(struct ifnet *, int);
169 static void alc_stop_mac(struct alc_softc *);
170 static void alc_stop_queue(struct alc_softc *);
171 static void alc_tick(void *);
172 static void alc_txeof(struct alc_softc *);
173
174 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
175
176 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
177 alc_match, alc_attach, alc_detach, NULL);
178
179 int alcdebug = 0;
180 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
181
182 #define ETHER_ALIGN 2
183 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
184
185 static int
186 alc_miibus_readreg(device_t dev, int phy, int reg)
187 {
188 struct alc_softc *sc = device_private(dev);
189 int v;
190
191 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
192 v = alc_mii_readreg_816x(sc, phy, reg);
193 else
194 v = alc_mii_readreg_813x(sc, phy, reg);
195 return (v);
196 }
197
198 static uint32_t
199 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg)
200 {
201 uint32_t v;
202 int i;
203
204 if (phy != sc->alc_phyaddr)
205 return (0);
206
207 /*
208 * For AR8132 fast ethernet controller, do not report 1000baseT
209 * capability to mii(4). Even though AR8132 uses the same
210 * model/revision number of F1 gigabit PHY, the PHY has no
211 * ability to establish 1000baseT link.
212 */
213 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
214 reg == MII_EXTSR)
215 return 0;
216
217 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
220 DELAY(5);
221 v = CSR_READ_4(sc, ALC_MDIO);
222 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223 break;
224 }
225
226 if (i == 0) {
227 printf("%s: phy read timeout: phy %d, reg %d\n",
228 device_xname(sc->sc_dev), phy, reg);
229 return (0);
230 }
231
232 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234
235 static uint32_t
236 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg)
237 {
238 uint32_t clk, v;
239 int i;
240
241 if (phy != sc->alc_phyaddr)
242 return (0);
243
244 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
245 clk = MDIO_CLK_25_128;
246 else
247 clk = MDIO_CLK_25_4;
248 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
249 MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
250 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
251 DELAY(5);
252 v = CSR_READ_4(sc, ALC_MDIO);
253 if ((v & MDIO_OP_BUSY) == 0)
254 break;
255 }
256
257 if (i == 0) {
258 printf("%s: phy read timeout: phy %d, reg %d\n",
259 device_xname(sc->sc_dev), phy, reg);
260 return (0);
261 }
262
263 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
264 }
265
266 static void
267 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
268 {
269 struct alc_softc *sc = device_private(dev);
270
271 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
272 alc_mii_writereg_816x(sc, phy, reg, val);
273 else
274 alc_mii_writereg_813x(sc, phy, reg, val);
275
276 return;
277 }
278
279 static void
280 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val)
281 {
282 uint32_t v;
283 int i;
284
285 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
286 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
287 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
288 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
289 DELAY(5);
290 v = CSR_READ_4(sc, ALC_MDIO);
291 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
292 break;
293 }
294
295 if (i == 0)
296 printf("%s: phy write timeout: phy %d, reg %d\n",
297 device_xname(sc->sc_dev), phy, reg);
298
299 return;
300 }
301
302 static void
303 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val)
304 {
305 uint32_t clk, v;
306 int i;
307
308 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
309 clk = MDIO_CLK_25_128;
310 else
311 clk = MDIO_CLK_25_4;
312 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
313 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
314 MDIO_SUP_PREAMBLE | clk);
315 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
316 DELAY(5);
317 v = CSR_READ_4(sc, ALC_MDIO);
318 if ((v & MDIO_OP_BUSY) == 0)
319 break;
320 }
321
322 if (i == 0)
323 printf("%s: phy write timeout: phy %d, reg %d\n",
324 device_xname(sc->sc_dev), phy, reg);
325
326 return;
327 }
328
329 static void
330 alc_miibus_statchg(struct ifnet *ifp)
331 {
332 struct alc_softc *sc = ifp->if_softc;
333 struct mii_data *mii = &sc->sc_miibus;
334 uint32_t reg;
335
336 if ((ifp->if_flags & IFF_RUNNING) == 0)
337 return;
338
339 sc->alc_flags &= ~ALC_FLAG_LINK;
340 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
341 (IFM_ACTIVE | IFM_AVALID)) {
342 switch (IFM_SUBTYPE(mii->mii_media_active)) {
343 case IFM_10_T:
344 case IFM_100_TX:
345 sc->alc_flags |= ALC_FLAG_LINK;
346 break;
347 case IFM_1000_T:
348 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
349 sc->alc_flags |= ALC_FLAG_LINK;
350 break;
351 default:
352 break;
353 }
354 }
355 /* Stop Rx/Tx MACs. */
356 alc_stop_mac(sc);
357
358 /* Program MACs with resolved speed/duplex/flow-control. */
359 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
360 alc_start_queue(sc);
361 alc_mac_config(sc);
362 /* Re-enable Tx/Rx MACs. */
363 reg = CSR_READ_4(sc, ALC_MAC_CFG);
364 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
365 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
366 }
367 alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
368 alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
369 }
370
371 static uint32_t
372 alc_miidbg_readreg(struct alc_softc *sc, int reg)
373 {
374
375 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
376 reg);
377 return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
378 ALC_MII_DBG_DATA));
379 }
380
381 static void
382 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val)
383 {
384
385 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
386 reg);
387 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val);
388
389 return;
390 }
391
392 static uint32_t
393 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg)
394 {
395 uint32_t clk, v;
396 int i;
397
398 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
399 EXT_MDIO_DEVADDR(devaddr));
400 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
401 clk = MDIO_CLK_25_128;
402 else
403 clk = MDIO_CLK_25_4;
404 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
405 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
406 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
407 DELAY(5);
408 v = CSR_READ_4(sc, ALC_MDIO);
409 if ((v & MDIO_OP_BUSY) == 0)
410 break;
411 }
412
413 if (i == 0) {
414 printf("%s: phy ext read timeout: %d\n",
415 device_xname(sc->sc_dev), reg);
416 return (0);
417 }
418
419 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
420 }
421
422 static uint32_t
423 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val)
424 {
425 uint32_t clk, v;
426 int i;
427
428 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
429 EXT_MDIO_DEVADDR(devaddr));
430 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
431 clk = MDIO_CLK_25_128;
432 else
433 clk = MDIO_CLK_25_4;
434 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
435 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
436 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
437 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
438 DELAY(5);
439 v = CSR_READ_4(sc, ALC_MDIO);
440 if ((v & MDIO_OP_BUSY) == 0)
441 break;
442 }
443
444 if (i == 0) {
445 printf("%s: phy ext write timeout: reg %d\n",
446 device_xname(sc->sc_dev), reg);
447 return (0);
448 }
449
450 return (0);
451 }
452
453 static void
454 alc_dsp_fixup(struct alc_softc *sc, int media)
455 {
456 uint16_t agc, len, val;
457
458 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
459 return;
460 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
461 return;
462
463 /*
464 * Vendor PHY magic.
465 * 1000BT/AZ, wrong cable length
466 */
467 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
468 len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6);
469 len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
470 EXT_CLDCTL6_CAB_LEN_MASK;
471 agc = alc_miidbg_readreg(sc, MII_DBG_AGC);
472 agc = (agc >> DBG_AGC_2_VGA_SHIFT) & DBG_AGC_2_VGA_MASK;
473 if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
474 agc > DBG_AGC_LONG1G_LIMT) ||
475 (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
476 agc > DBG_AGC_LONG1G_LIMT)) {
477 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
478 DBG_AZ_ANADECT_LONG);
479 val = alc_miiext_readreg(sc, MII_EXT_ANEG,
480 MII_EXT_ANEG_AFE);
481 val |= ANEG_AFEE_10BT_100M_TH;
482 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
483 val);
484 } else {
485 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
486 DBG_AZ_ANADECT_DEFAULT);
487 val = alc_miiext_readreg(sc, MII_EXT_ANEG,
488 MII_EXT_ANEG_AFE);
489 val &= ~ANEG_AFEE_10BT_100M_TH;
490 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
491 val);
492 }
493 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
494 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
495 if (media == IFM_1000_T) {
496 /*
497 * Giga link threshold, raise the tolerance of
498 * noise 50%.
499 */
500 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
501 val &= ~DBG_MSE20DB_TH_MASK;
502 val |= (DBG_MSE20DB_TH_HI <<
503 DBG_MSE20DB_TH_SHIFT);
504 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
505 } else if (media == IFM_100_TX)
506 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
507 DBG_MSE16DB_UP);
508 }
509 } else {
510 val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE);
511 val &= ~ANEG_AFEE_10BT_100M_TH;
512 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
513 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
516 DBG_MSE16DB_DOWN);
517 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
518 val &= ~DBG_MSE20DB_TH_MASK;
519 val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
520 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
521 }
522 }
523 }
524
525 static void
526 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
527 {
528 struct alc_softc *sc = ifp->if_softc;
529 struct mii_data *mii = &sc->sc_miibus;
530
531 mii_pollstat(mii);
532 ifmr->ifm_status = mii->mii_media_status;
533 ifmr->ifm_active = mii->mii_media_active;
534 }
535
536 static int
537 alc_mediachange(struct ifnet *ifp)
538 {
539 struct alc_softc *sc = ifp->if_softc;
540 struct mii_data *mii = &sc->sc_miibus;
541 int error;
542
543 if (mii->mii_instance != 0) {
544 struct mii_softc *miisc;
545
546 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
547 mii_phy_reset(miisc);
548 }
549 error = mii_mediachg(mii);
550
551 return (error);
552 }
553
554 static struct alc_ident *
555 alc_find_ident(struct pci_attach_args *pa)
556 {
557 struct alc_ident *ident;
558 uint16_t vendor, devid;
559
560 vendor = PCI_VENDOR(pa->pa_id);
561 devid = PCI_PRODUCT(pa->pa_id);
562 for (ident = alc_ident_table; ident->name != NULL; ident++) {
563 if (vendor == ident->vendorid && devid == ident->deviceid)
564 return (ident);
565 }
566
567 return (NULL);
568 }
569
570 static int
571 alc_match(device_t dev, cfdata_t match, void *aux)
572 {
573 struct pci_attach_args *pa = aux;
574
575 return alc_find_ident(pa) != NULL;
576 }
577
578 static void
579 alc_get_macaddr(struct alc_softc *sc)
580 {
581
582 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
583 alc_get_macaddr_816x(sc);
584 else
585 alc_get_macaddr_813x(sc);
586 }
587
588 static void
589 alc_get_macaddr_813x(struct alc_softc *sc)
590 {
591 uint32_t opt;
592 uint16_t val;
593 int eeprom, i;
594
595 eeprom = 0;
596 opt = CSR_READ_4(sc, ALC_OPT_CFG);
597 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
598 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
599 /*
600 * EEPROM found, let TWSI reload EEPROM configuration.
601 * This will set ethernet address of controller.
602 */
603 eeprom++;
604 switch (sc->alc_ident->deviceid) {
605 case PCI_PRODUCT_ATTANSIC_AR8131:
606 case PCI_PRODUCT_ATTANSIC_AR8132:
607 if ((opt & OPT_CFG_CLK_ENB) == 0) {
608 opt |= OPT_CFG_CLK_ENB;
609 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
610 CSR_READ_4(sc, ALC_OPT_CFG);
611 DELAY(1000);
612 }
613 break;
614 case PCI_PRODUCT_ATTANSIC_AR8151:
615 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
616 case PCI_PRODUCT_ATTANSIC_AR8152_B:
617 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
619 ALC_MII_DBG_ADDR, 0x00);
620 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
621 ALC_MII_DBG_DATA);
622 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
623 ALC_MII_DBG_DATA, val & 0xFF7F);
624 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
625 ALC_MII_DBG_ADDR, 0x3B);
626 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
627 ALC_MII_DBG_DATA);
628 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
629 ALC_MII_DBG_DATA, val | 0x0008);
630 DELAY(20);
631 break;
632 }
633
634 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
635 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
636 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
637 CSR_READ_4(sc, ALC_WOL_CFG);
638
639 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
640 TWSI_CFG_SW_LD_START);
641 for (i = 100; i > 0; i--) {
642 DELAY(1000);
643 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
644 TWSI_CFG_SW_LD_START) == 0)
645 break;
646 }
647 if (i == 0)
648 printf("%s: reloading EEPROM timeout!\n",
649 device_xname(sc->sc_dev));
650 } else {
651 if (alcdebug)
652 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
653 }
654 if (eeprom != 0) {
655 switch (sc->alc_ident->deviceid) {
656 case PCI_PRODUCT_ATTANSIC_AR8131:
657 case PCI_PRODUCT_ATTANSIC_AR8132:
658 if ((opt & OPT_CFG_CLK_ENB) != 0) {
659 opt &= ~OPT_CFG_CLK_ENB;
660 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
661 CSR_READ_4(sc, ALC_OPT_CFG);
662 DELAY(1000);
663 }
664 break;
665 case PCI_PRODUCT_ATTANSIC_AR8151:
666 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
667 case PCI_PRODUCT_ATTANSIC_AR8152_B:
668 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
669 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
670 ALC_MII_DBG_ADDR, 0x00);
671 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
672 ALC_MII_DBG_DATA);
673 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
674 ALC_MII_DBG_DATA, val | 0x0080);
675 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
676 ALC_MII_DBG_ADDR, 0x3B);
677 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
678 ALC_MII_DBG_DATA);
679 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
680 ALC_MII_DBG_DATA, val & 0xFFF7);
681 DELAY(20);
682 break;
683 }
684 }
685
686 alc_get_macaddr_par(sc);
687 }
688
689 static void
690 alc_get_macaddr_816x(struct alc_softc *sc)
691 {
692 uint32_t reg;
693 int i, reloaded;
694
695 reloaded = 0;
696 /* Try to reload station address via TWSI. */
697 for (i = 100; i > 0; i--) {
698 reg = CSR_READ_4(sc, ALC_SLD);
699 if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
700 break;
701 DELAY(1000);
702 }
703 if (i != 0) {
704 CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
705 for (i = 100; i > 0; i--) {
706 DELAY(1000);
707 reg = CSR_READ_4(sc, ALC_SLD);
708 if ((reg & SLD_START) == 0)
709 break;
710 }
711 if (i != 0)
712 reloaded++;
713 else if (alcdebug)
714 printf("%s: reloading station address via TWSI timed out!\n",
715 device_xname(sc->sc_dev));
716 }
717
718 /* Try to reload station address from EEPROM or FLASH. */
719 if (reloaded == 0) {
720 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
721 if ((reg & (EEPROM_LD_EEPROM_EXIST |
722 EEPROM_LD_FLASH_EXIST)) != 0) {
723 for (i = 100; i > 0; i--) {
724 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
725 if ((reg & (EEPROM_LD_PROGRESS |
726 EEPROM_LD_START)) == 0)
727 break;
728 DELAY(1000);
729 }
730 if (i != 0) {
731 CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
732 EEPROM_LD_START);
733 for (i = 100; i > 0; i--) {
734 DELAY(1000);
735 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
736 if ((reg & EEPROM_LD_START) == 0)
737 break;
738 }
739 } else if (alcdebug)
740 printf("%s: reloading EEPROM/FLASH timed out!\n",
741 device_xname(sc->sc_dev));
742 }
743 }
744
745 alc_get_macaddr_par(sc);
746 }
747
748
749 static void
750 alc_get_macaddr_par(struct alc_softc *sc)
751 {
752 uint32_t ea[2];
753
754 ea[0] = CSR_READ_4(sc, ALC_PAR0);
755 ea[1] = CSR_READ_4(sc, ALC_PAR1);
756 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
757 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
758 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
759 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
760 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
761 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
762 }
763
764 static void
765 alc_disable_l0s_l1(struct alc_softc *sc)
766 {
767 uint32_t pmcfg;
768
769 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
770 /* Another magic from vendor. */
771 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
772 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
773 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
774 PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
775 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
776 PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
777 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
778 }
779 }
780
781 static void
782 alc_phy_reset(struct alc_softc *sc)
783 {
784
785 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
786 alc_phy_reset_816x(sc);
787 else
788 alc_phy_reset_813x(sc);
789 }
790
791 static void
792 alc_phy_reset_813x(struct alc_softc *sc)
793 {
794 uint16_t data;
795
796 /* Reset magic from Linux. */
797 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
798 CSR_READ_2(sc, ALC_GPHY_CFG);
799 DELAY(10 * 1000);
800
801 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
802 GPHY_CFG_SEL_ANA_RESET);
803 CSR_READ_2(sc, ALC_GPHY_CFG);
804 DELAY(10 * 1000);
805
806 /* DSP fixup, Vendor magic. */
807 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
808 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
809 ALC_MII_DBG_ADDR, 0x000A);
810 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
811 ALC_MII_DBG_DATA);
812 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
813 ALC_MII_DBG_DATA, data & 0xDFFF);
814 }
815 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
816 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
817 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
818 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
819 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
820 ALC_MII_DBG_ADDR, 0x003B);
821 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
822 ALC_MII_DBG_DATA);
823 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
824 ALC_MII_DBG_DATA, data & 0xFFF7);
825 DELAY(20 * 1000);
826 }
827 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
828 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
829 ALC_MII_DBG_ADDR, 0x0029);
830 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 ALC_MII_DBG_DATA, 0x929D);
832 }
833 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
834 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
835 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
836 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
837 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
838 ALC_MII_DBG_ADDR, 0x0029);
839 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
840 ALC_MII_DBG_DATA, 0xB6DD);
841 }
842
843 /* Load DSP codes, vendor magic. */
844 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
845 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
846 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
847 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
848 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
849 ALC_MII_DBG_DATA, data);
850
851 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
852 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
853 ANA_SERDES_EN_LCKDT;
854 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
855 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
856 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
857 ALC_MII_DBG_DATA, data);
858
859 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
860 ANA_LONG_CABLE_TH_100_MASK) |
861 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
862 ANA_SHORT_CABLE_TH_100_SHIFT) |
863 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
864 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
865 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
866 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
867 ALC_MII_DBG_DATA, data);
868
869 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
870 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
871 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
872 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
873 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
874 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
875 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
876 ALC_MII_DBG_DATA, data);
877
878 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
879 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
880 ANA_OEN_125M;
881 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
882 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
883 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
884 ALC_MII_DBG_DATA, data);
885 DELAY(1000);
886
887 /* Disable hibernation. */
888 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
889 0x0029);
890 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
891 ALC_MII_DBG_DATA);
892 data &= ~0x8000;
893 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
894 data);
895
896 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
897 0x000B);
898 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
899 ALC_MII_DBG_DATA);
900 data &= ~0x8000;
901 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
902 data);
903 }
904
905 static void
906 alc_phy_reset_816x(struct alc_softc *sc)
907 {
908 uint32_t val;
909
910 val = CSR_READ_4(sc, ALC_GPHY_CFG);
911 val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
912 GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
913 GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
914 val |= GPHY_CFG_SEL_ANA_RESET;
915 #ifdef notyet
916 val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
917 #else
918 /* Disable PHY hibernation. */
919 val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
920 #endif
921 CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
922 DELAY(10);
923 CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
924 DELAY(800);
925
926 /* Vendor PHY magic. */
927 #ifdef notyet
928 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
929 alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
930 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
931 EXT_VDRVBIAS_DEFAULT);
932 #else
933 /* Disable PHY hibernation. */
934 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
935 DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
936 alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
937 DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
938 alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
939 #endif
940
941 /* XXX Disable EEE. */
942 val = CSR_READ_4(sc, ALC_LPI_CTL);
943 val &= ~LPI_CTL_ENB;
944 CSR_WRITE_4(sc, ALC_LPI_CTL, val);
945 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
946
947 /* PHY power saving. */
948 alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
949 alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
950 alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
951 alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
952 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
953 val &= ~DBG_GREENCFG2_GATE_DFSE_EN;
954 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
955
956 /* RTL8139C, 120m issue. */
957 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
958 ANEG_NLP78_120M_DEFAULT);
959 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
960 ANEG_S3DIG10_DEFAULT);
961
962 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
963 /* Turn off half amplitude. */
964 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3);
965 val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
966 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val);
967 /* Turn off Green feature. */
968 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
969 val |= DBG_GREENCFG2_BP_GREEN;
970 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
971 /* Turn off half bias. */
972 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5);
973 val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
974 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val);
975 }
976 }
977
978 static void
979 alc_phy_down(struct alc_softc *sc)
980 {
981 uint32_t gphy;
982
983 switch (sc->alc_ident->deviceid) {
984 case PCI_PRODUCT_ATTANSIC_AR8161:
985 case PCI_PRODUCT_ATTANSIC_E2200:
986 case PCI_PRODUCT_ATTANSIC_AR8162:
987 case PCI_PRODUCT_ATTANSIC_AR8171:
988 case PCI_PRODUCT_ATTANSIC_AR8172:
989 gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
990 gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
991 GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
992 gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
993 GPHY_CFG_SEL_ANA_RESET;
994 gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
995 CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
996 break;
997 case PCI_PRODUCT_ATTANSIC_AR8151:
998 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
999 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1000 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1001 /*
1002 * GPHY power down caused more problems on AR8151 v2.0.
1003 * When driver is reloaded after GPHY power down,
1004 * accesses to PHY/MAC registers hung the system. Only
1005 * cold boot recovered from it. I'm not sure whether
1006 * AR8151 v1.0 also requires this one though. I don't
1007 * have AR8151 v1.0 controller in hand.
1008 * The only option left is to isolate the PHY and
1009 * initiates power down the PHY which in turn saves
1010 * more power when driver is unloaded.
1011 */
1012 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1013 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1014 break;
1015 default:
1016 /* Force PHY down. */
1017 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1018 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1019 GPHY_CFG_PWDOWN_HW);
1020 DELAY(1000);
1021 break;
1022 }
1023 }
1024
1025 static void
1026 alc_aspm(struct alc_softc *sc, int init, int media)
1027 {
1028
1029 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1030 alc_aspm_816x(sc, init);
1031 else
1032 alc_aspm_813x(sc, media);
1033 }
1034
1035 static void
1036 alc_aspm_813x(struct alc_softc *sc, int media)
1037 {
1038 uint32_t pmcfg;
1039 uint16_t linkcfg;
1040
1041 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1042 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1043 (ALC_FLAG_APS | ALC_FLAG_PCIE))
1044 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1045 PCIE_LCSR);
1046 else
1047 linkcfg = 0;
1048 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1049 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1050 pmcfg |= PM_CFG_MAC_ASPM_CHK;
1051 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1052 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1053
1054 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1055 /* Disable extended sync except AR8152 B v1.0 */
1056 linkcfg &= ~0x80;
1057 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1058 sc->alc_rev == ATHEROS_AR8152_B_V10)
1059 linkcfg |= 0x80;
1060 CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1061 linkcfg);
1062 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1063 PM_CFG_HOTRST);
1064 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1065 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1066 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1067 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1068 PM_CFG_PM_REQ_TIMER_SHIFT);
1069 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1070 }
1071
1072 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1073 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1074 pmcfg |= PM_CFG_ASPM_L0S_ENB;
1075 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1076 pmcfg |= PM_CFG_ASPM_L1_ENB;
1077 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1078 if (sc->alc_ident->deviceid ==
1079 PCI_PRODUCT_ATTANSIC_AR8152_B)
1080 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1081 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1082 PM_CFG_SERDES_PLL_L1_ENB |
1083 PM_CFG_SERDES_BUDS_RX_L1_ENB);
1084 pmcfg |= PM_CFG_CLK_SWH_L1;
1085 if (media == IFM_100_TX || media == IFM_1000_T) {
1086 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1087 switch (sc->alc_ident->deviceid) {
1088 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1089 pmcfg |= (7 <<
1090 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 break;
1092 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1093 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1094 pmcfg |= (4 <<
1095 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1096 break;
1097 default:
1098 pmcfg |= (15 <<
1099 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1100 break;
1101 }
1102 }
1103 } else {
1104 pmcfg |= PM_CFG_SERDES_L1_ENB |
1105 PM_CFG_SERDES_PLL_L1_ENB |
1106 PM_CFG_SERDES_BUDS_RX_L1_ENB;
1107 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1108 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1109 }
1110 } else {
1111 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1112 PM_CFG_SERDES_PLL_L1_ENB);
1113 pmcfg |= PM_CFG_CLK_SWH_L1;
1114 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1115 pmcfg |= PM_CFG_ASPM_L1_ENB;
1116 }
1117 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1118 }
1119
1120 static void
1121 alc_aspm_816x(struct alc_softc *sc, int init)
1122 {
1123 uint32_t pmcfg;
1124
1125 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1126 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1127 pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1128 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1129 pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1130 pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1131 pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1132 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1133 pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1134 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1135 PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1136 PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1137 PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1138 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1139 (sc->alc_rev & 0x01) != 0)
1140 pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1141 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1142 /* Link up, enable both L0s, L1s. */
1143 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1144 PM_CFG_MAC_ASPM_CHK;
1145 } else {
1146 if (init != 0)
1147 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1148 PM_CFG_MAC_ASPM_CHK;
1149 else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1150 pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1151 }
1152 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1153 }
1154
1155 static void
1156 alc_attach(device_t parent, device_t self, void *aux)
1157 {
1158
1159 struct alc_softc *sc = device_private(self);
1160 struct pci_attach_args *pa = aux;
1161 pci_chipset_tag_t pc = pa->pa_pc;
1162 pci_intr_handle_t ih;
1163 const char *intrstr;
1164 struct ifnet *ifp;
1165 pcireg_t memtype;
1166 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1167 uint16_t burst;
1168 int base, mii_flags, state, error = 0;
1169 uint32_t cap, ctl, val;
1170 char intrbuf[PCI_INTRSTR_LEN];
1171
1172 sc->alc_ident = alc_find_ident(pa);
1173
1174 aprint_naive("\n");
1175 aprint_normal(": %s\n", sc->alc_ident->name);
1176
1177 sc->sc_dev = self;
1178 sc->sc_dmat = pa->pa_dmat;
1179 sc->sc_pct = pa->pa_pc;
1180 sc->sc_pcitag = pa->pa_tag;
1181
1182 /*
1183 * Allocate IO memory
1184 */
1185 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1186 switch (memtype) {
1187 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1188 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1189 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1190 break;
1191 default:
1192 aprint_error_dev(self, "invalid base address register\n");
1193 break;
1194 }
1195
1196 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1197 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1198 aprint_error_dev(self, "could not map mem space\n");
1199 return;
1200 }
1201
1202 if (pci_intr_map(pa, &ih) != 0) {
1203 printf(": can't map interrupt\n");
1204 goto fail;
1205 }
1206
1207 /*
1208 * Allocate IRQ
1209 */
1210 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1211 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
1212 if (sc->sc_irq_handle == NULL) {
1213 printf(": could not establish interrupt");
1214 if (intrstr != NULL)
1215 printf(" at %s", intrstr);
1216 printf("\n");
1217 goto fail;
1218 }
1219 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1220
1221 /* Set PHY address. */
1222 sc->alc_phyaddr = ALC_PHY_ADDR;
1223
1224 /* Initialize DMA parameters. */
1225 sc->alc_dma_rd_burst = 0;
1226 sc->alc_dma_wr_burst = 0;
1227 sc->alc_rcb = DMA_CFG_RCB_64;
1228 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1229 &base, NULL)) {
1230 sc->alc_flags |= ALC_FLAG_PCIE;
1231 sc->alc_expcap = base;
1232 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1233 base + PCIE_DCSR) >> 16;
1234 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1235 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1236 if (alcdebug) {
1237 printf("%s: Read request size : %u bytes.\n",
1238 device_xname(sc->sc_dev),
1239 alc_dma_burst[sc->alc_dma_rd_burst]);
1240 printf("%s: TLP payload size : %u bytes.\n",
1241 device_xname(sc->sc_dev),
1242 alc_dma_burst[sc->alc_dma_wr_burst]);
1243 }
1244 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1245 sc->alc_dma_rd_burst = 3;
1246 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1247 sc->alc_dma_wr_burst = 3;
1248
1249 /* Clear data link and flow-control protocol error. */
1250 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1251 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1252 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1253
1254 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1255 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1256 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1257 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1258 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1259 PCIE_PHYMISC_FORCE_RCV_DET);
1260 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1261 sc->alc_rev == ATHEROS_AR8152_B_V10) {
1262 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1263 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1264 PCIE_PHYMISC2_SERDES_TH_MASK);
1265 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1266 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1267 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1268 }
1269 /* Disable ASPM L0S and L1. */
1270 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1271 base + PCIE_LCAP) >> 16;
1272 if ((cap & 0x00000c00) != 0) {
1273 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1274 base + PCIE_LCSR) >> 16;
1275 if ((ctl & 0x08) != 0)
1276 sc->alc_rcb = DMA_CFG_RCB_128;
1277 if (alcdebug)
1278 printf("%s: RCB %u bytes\n",
1279 device_xname(sc->sc_dev),
1280 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1281 state = ctl & 0x03;
1282 if (state & 0x01)
1283 sc->alc_flags |= ALC_FLAG_L0S;
1284 if (state & 0x02)
1285 sc->alc_flags |= ALC_FLAG_L1S;
1286 if (alcdebug)
1287 printf("%s: ASPM %s %s\n",
1288 device_xname(sc->sc_dev),
1289 aspm_state[state],
1290 state == 0 ? "disabled" : "enabled");
1291 alc_disable_l0s_l1(sc);
1292 } else {
1293 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1294 }
1295 } else {
1296 val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1297 val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1298 CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1299 val = CSR_READ_4(sc, ALC_MASTER_CFG);
1300 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1301 (sc->alc_rev & 0x01) != 0) {
1302 if ((val & MASTER_WAKEN_25M) == 0 ||
1303 (val & MASTER_CLK_SEL_DIS) == 0) {
1304 val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1305 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1306 }
1307 } else {
1308 if ((val & MASTER_WAKEN_25M) == 0 ||
1309 (val & MASTER_CLK_SEL_DIS) != 0) {
1310 val |= MASTER_WAKEN_25M;
1311 val &= ~MASTER_CLK_SEL_DIS;
1312 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1313 }
1314 }
1315 }
1316 alc_aspm(sc, 1, IFM_UNKNOWN);
1317 }
1318
1319 /* Reset PHY. */
1320 alc_phy_reset(sc);
1321
1322 /* Reset the ethernet controller. */
1323 alc_stop_mac(sc);
1324 alc_reset(sc);
1325
1326 /*
1327 * One odd thing is AR8132 uses the same PHY hardware(F1
1328 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1329 * the PHY supports 1000Mbps but that's not true. The PHY
1330 * used in AR8132 can't establish gigabit link even if it
1331 * shows the same PHY model/revision number of AR8131.
1332 */
1333 switch (sc->alc_ident->deviceid) {
1334 case PCI_PRODUCT_ATTANSIC_AR8161:
1335 if (PCI_SUBSYS_ID(pci_conf_read(
1336 sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1337 sc->alc_rev == 0)
1338 sc->alc_flags |= ALC_FLAG_LINK_WAR;
1339 /* FALLTHROUGH */
1340 case PCI_PRODUCT_ATTANSIC_E2200:
1341 case PCI_PRODUCT_ATTANSIC_AR8171:
1342 sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1343 break;
1344 case PCI_PRODUCT_ATTANSIC_AR8162:
1345 case PCI_PRODUCT_ATTANSIC_AR8172:
1346 sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1347 break;
1348 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1349 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1350 sc->alc_flags |= ALC_FLAG_APS;
1351 /* FALLTHROUGH */
1352 case PCI_PRODUCT_ATTANSIC_AR8132:
1353 sc->alc_flags |= ALC_FLAG_FASTETHER;
1354 break;
1355 case PCI_PRODUCT_ATTANSIC_AR8151:
1356 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1357 sc->alc_flags |= ALC_FLAG_APS;
1358 /* FALLTHROUGH */
1359 default:
1360 break;
1361 }
1362 sc->alc_flags |= ALC_FLAG_JUMBO;
1363
1364 /*
1365 * It seems that AR813x/AR815x has silicon bug for SMB. In
1366 * addition, Atheros said that enabling SMB wouldn't improve
1367 * performance. However I think it's bad to access lots of
1368 * registers to extract MAC statistics.
1369 */
1370 sc->alc_flags |= ALC_FLAG_SMB_BUG;
1371 /*
1372 * Don't use Tx CMB. It is known to have silicon bug.
1373 */
1374 sc->alc_flags |= ALC_FLAG_CMB_BUG;
1375 sc->alc_rev = PCI_REVISION(pa->pa_class);
1376 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1377 MASTER_CHIP_REV_SHIFT;
1378 if (alcdebug) {
1379 printf("%s: PCI device revision : 0x%04x\n",
1380 device_xname(sc->sc_dev), sc->alc_rev);
1381 printf("%s: Chip id/revision : 0x%04x\n",
1382 device_xname(sc->sc_dev), sc->alc_chip_rev);
1383 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1384 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1385 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1386 }
1387
1388 error = alc_dma_alloc(sc);
1389 if (error)
1390 goto fail;
1391
1392 callout_init(&sc->sc_tick_ch, 0);
1393 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1394
1395 /* Load station address. */
1396 alc_get_macaddr(sc);
1397
1398 aprint_normal_dev(self, "Ethernet address %s\n",
1399 ether_sprintf(sc->alc_eaddr));
1400
1401 ifp = &sc->sc_ec.ec_if;
1402 ifp->if_softc = sc;
1403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 ifp->if_init = alc_init;
1405 ifp->if_ioctl = alc_ioctl;
1406 ifp->if_start = alc_start;
1407 ifp->if_stop = alc_stop;
1408 ifp->if_watchdog = alc_watchdog;
1409 ifp->if_baudrate = IF_Gbps(1);
1410 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1411 IFQ_SET_READY(&ifp->if_snd);
1412 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1413
1414 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1415
1416 #ifdef ALC_CHECKSUM
1417 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1418 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1419 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
1420 #endif
1421
1422 #if NVLAN > 0
1423 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1424 #endif
1425
1426 /*
1427 * XXX
1428 * It seems enabling Tx checksum offloading makes more trouble.
1429 * Sometimes the controller does not receive any frames when
1430 * Tx checksum offloading is enabled. I'm not sure whether this
1431 * is a bug in Tx checksum offloading logic or I got broken
1432 * sample boards. To safety, don't enable Tx checksum offloading
1433 * by default but give chance to users to toggle it if they know
1434 * their controllers work without problems.
1435 * Fortunately, Tx checksum offloading for AR816x family
1436 * seems to work.
1437 */
1438 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1439 ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1440 ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1441 }
1442
1443 /* Set up MII bus. */
1444 sc->sc_miibus.mii_ifp = ifp;
1445 sc->sc_miibus.mii_readreg = alc_miibus_readreg;
1446 sc->sc_miibus.mii_writereg = alc_miibus_writereg;
1447 sc->sc_miibus.mii_statchg = alc_miibus_statchg;
1448
1449 sc->sc_ec.ec_mii = &sc->sc_miibus;
1450 ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
1451 alc_mediastatus);
1452 mii_flags = 0;
1453 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1454 mii_flags |= MIIF_DOPAUSE;
1455 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
1456 MII_OFFSET_ANY, mii_flags);
1457
1458 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
1459 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1460 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
1461 0, NULL);
1462 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
1463 } else
1464 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
1465
1466 if_attach(ifp);
1467 ether_ifattach(ifp, sc->alc_eaddr);
1468
1469 if (!pmf_device_register(self, NULL, NULL))
1470 aprint_error_dev(self, "couldn't establish power handler\n");
1471 else
1472 pmf_class_network_register(self, ifp);
1473
1474 return;
1475 fail:
1476 alc_dma_free(sc);
1477 if (sc->sc_irq_handle != NULL) {
1478 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1479 sc->sc_irq_handle = NULL;
1480 }
1481 if (sc->sc_mem_size) {
1482 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1483 sc->sc_mem_size = 0;
1484 }
1485 }
1486
1487 static int
1488 alc_detach(device_t self, int flags)
1489 {
1490 struct alc_softc *sc = device_private(self);
1491 struct ifnet *ifp = &sc->sc_ec.ec_if;
1492 int s;
1493
1494 s = splnet();
1495 alc_stop(ifp, 0);
1496 splx(s);
1497
1498 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1499
1500 /* Delete all remaining media. */
1501 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1502
1503 ether_ifdetach(ifp);
1504 if_detach(ifp);
1505 alc_dma_free(sc);
1506
1507 alc_phy_down(sc);
1508 if (sc->sc_irq_handle != NULL) {
1509 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1510 sc->sc_irq_handle = NULL;
1511 }
1512 if (sc->sc_mem_size) {
1513 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1514 sc->sc_mem_size = 0;
1515 }
1516
1517 return (0);
1518 }
1519
1520 static int
1521 alc_dma_alloc(struct alc_softc *sc)
1522 {
1523 struct alc_txdesc *txd;
1524 struct alc_rxdesc *rxd;
1525 int nsegs, error, i;
1526
1527 /*
1528 * Create DMA stuffs for TX ring
1529 */
1530 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1531 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1532 if (error) {
1533 sc->alc_cdata.alc_tx_ring_map = NULL;
1534 return (ENOBUFS);
1535 }
1536
1537 /* Allocate DMA'able memory for TX ring */
1538 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1539 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1540 &nsegs, BUS_DMA_NOWAIT);
1541 if (error) {
1542 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1543 device_xname(sc->sc_dev));
1544 return error;
1545 }
1546
1547 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1548 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1549 BUS_DMA_NOWAIT);
1550 if (error)
1551 return (ENOBUFS);
1552
1553 /* Load the DMA map for Tx ring. */
1554 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1555 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1556 if (error) {
1557 printf("%s: could not load DMA'able memory for Tx ring.\n",
1558 device_xname(sc->sc_dev));
1559 bus_dmamem_free(sc->sc_dmat,
1560 &sc->alc_rdata.alc_tx_ring_seg, 1);
1561 return error;
1562 }
1563
1564 sc->alc_rdata.alc_tx_ring_paddr =
1565 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1566
1567 /*
1568 * Create DMA stuffs for RX ring
1569 */
1570 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1571 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1572 if (error)
1573 return (ENOBUFS);
1574
1575 /* Allocate DMA'able memory for RX ring */
1576 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1577 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1578 &nsegs, BUS_DMA_NOWAIT);
1579 if (error) {
1580 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1581 device_xname(sc->sc_dev));
1582 return error;
1583 }
1584
1585 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1586 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1587 BUS_DMA_NOWAIT);
1588 if (error)
1589 return (ENOBUFS);
1590
1591 /* Load the DMA map for Rx ring. */
1592 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1593 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1594 if (error) {
1595 printf("%s: could not load DMA'able memory for Rx ring.\n",
1596 device_xname(sc->sc_dev));
1597 bus_dmamem_free(sc->sc_dmat,
1598 &sc->alc_rdata.alc_rx_ring_seg, 1);
1599 return error;
1600 }
1601
1602 sc->alc_rdata.alc_rx_ring_paddr =
1603 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1604
1605 /*
1606 * Create DMA stuffs for RX return ring
1607 */
1608 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1609 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1610 if (error)
1611 return (ENOBUFS);
1612
1613 /* Allocate DMA'able memory for RX return ring */
1614 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1615 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1616 &nsegs, BUS_DMA_NOWAIT);
1617 if (error) {
1618 printf("%s: could not allocate DMA'able memory for Rx "
1619 "return ring.\n", device_xname(sc->sc_dev));
1620 return error;
1621 }
1622
1623 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1624 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1625 BUS_DMA_NOWAIT);
1626 if (error)
1627 return (ENOBUFS);
1628
1629 /* Load the DMA map for Rx return ring. */
1630 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1631 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1632 if (error) {
1633 printf("%s: could not load DMA'able memory for Rx return ring."
1634 "\n", device_xname(sc->sc_dev));
1635 bus_dmamem_free(sc->sc_dmat,
1636 &sc->alc_rdata.alc_rr_ring_seg, 1);
1637 return error;
1638 }
1639
1640 sc->alc_rdata.alc_rr_ring_paddr =
1641 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1642
1643 /*
1644 * Create DMA stuffs for CMB block
1645 */
1646 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1647 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1648 &sc->alc_cdata.alc_cmb_map);
1649 if (error)
1650 return (ENOBUFS);
1651
1652 /* Allocate DMA'able memory for CMB block */
1653 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1654 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1655 &nsegs, BUS_DMA_NOWAIT);
1656 if (error) {
1657 printf("%s: could not allocate DMA'able memory for "
1658 "CMB block\n", device_xname(sc->sc_dev));
1659 return error;
1660 }
1661
1662 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1663 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1664 BUS_DMA_NOWAIT);
1665 if (error)
1666 return (ENOBUFS);
1667
1668 /* Load the DMA map for CMB block. */
1669 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1670 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1671 BUS_DMA_WAITOK);
1672 if (error) {
1673 printf("%s: could not load DMA'able memory for CMB block\n",
1674 device_xname(sc->sc_dev));
1675 bus_dmamem_free(sc->sc_dmat,
1676 &sc->alc_rdata.alc_cmb_seg, 1);
1677 return error;
1678 }
1679
1680 sc->alc_rdata.alc_cmb_paddr =
1681 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1682
1683 /*
1684 * Create DMA stuffs for SMB block
1685 */
1686 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1687 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1688 &sc->alc_cdata.alc_smb_map);
1689 if (error)
1690 return (ENOBUFS);
1691
1692 /* Allocate DMA'able memory for SMB block */
1693 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1694 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1695 &nsegs, BUS_DMA_NOWAIT);
1696 if (error) {
1697 printf("%s: could not allocate DMA'able memory for "
1698 "SMB block\n", device_xname(sc->sc_dev));
1699 return error;
1700 }
1701
1702 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1703 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1704 BUS_DMA_NOWAIT);
1705 if (error)
1706 return (ENOBUFS);
1707
1708 /* Load the DMA map for SMB block */
1709 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1710 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1711 BUS_DMA_WAITOK);
1712 if (error) {
1713 printf("%s: could not load DMA'able memory for SMB block\n",
1714 device_xname(sc->sc_dev));
1715 bus_dmamem_free(sc->sc_dmat,
1716 &sc->alc_rdata.alc_smb_seg, 1);
1717 return error;
1718 }
1719
1720 sc->alc_rdata.alc_smb_paddr =
1721 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1722
1723
1724 /* Create DMA maps for Tx buffers. */
1725 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1726 txd = &sc->alc_cdata.alc_txdesc[i];
1727 txd->tx_m = NULL;
1728 txd->tx_dmamap = NULL;
1729 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1730 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1731 &txd->tx_dmamap);
1732 if (error) {
1733 printf("%s: could not create Tx dmamap.\n",
1734 device_xname(sc->sc_dev));
1735 return error;
1736 }
1737 }
1738
1739 /* Create DMA maps for Rx buffers. */
1740 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1741 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1742 if (error) {
1743 printf("%s: could not create spare Rx dmamap.\n",
1744 device_xname(sc->sc_dev));
1745 return error;
1746 }
1747
1748 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1749 rxd = &sc->alc_cdata.alc_rxdesc[i];
1750 rxd->rx_m = NULL;
1751 rxd->rx_dmamap = NULL;
1752 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1753 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1754 if (error) {
1755 printf("%s: could not create Rx dmamap.\n",
1756 device_xname(sc->sc_dev));
1757 return error;
1758 }
1759 }
1760
1761 return (0);
1762 }
1763
1764
1765 static void
1766 alc_dma_free(struct alc_softc *sc)
1767 {
1768 struct alc_txdesc *txd;
1769 struct alc_rxdesc *rxd;
1770 int i;
1771
1772 /* Tx buffers */
1773 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1774 txd = &sc->alc_cdata.alc_txdesc[i];
1775 if (txd->tx_dmamap != NULL) {
1776 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1777 txd->tx_dmamap = NULL;
1778 }
1779 }
1780 /* Rx buffers */
1781 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1782 rxd = &sc->alc_cdata.alc_rxdesc[i];
1783 if (rxd->rx_dmamap != NULL) {
1784 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1785 rxd->rx_dmamap = NULL;
1786 }
1787 }
1788 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1789 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1790 sc->alc_cdata.alc_rx_sparemap = NULL;
1791 }
1792
1793 /* Tx ring. */
1794 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1795 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1796 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1797 sc->alc_rdata.alc_tx_ring != NULL)
1798 bus_dmamem_free(sc->sc_dmat,
1799 &sc->alc_rdata.alc_tx_ring_seg, 1);
1800 sc->alc_rdata.alc_tx_ring = NULL;
1801 sc->alc_cdata.alc_tx_ring_map = NULL;
1802
1803 /* Rx ring. */
1804 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1805 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1806 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1807 sc->alc_rdata.alc_rx_ring != NULL)
1808 bus_dmamem_free(sc->sc_dmat,
1809 &sc->alc_rdata.alc_rx_ring_seg, 1);
1810 sc->alc_rdata.alc_rx_ring = NULL;
1811 sc->alc_cdata.alc_rx_ring_map = NULL;
1812
1813 /* Rx return ring. */
1814 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1815 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1816 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1817 sc->alc_rdata.alc_rr_ring != NULL)
1818 bus_dmamem_free(sc->sc_dmat,
1819 &sc->alc_rdata.alc_rr_ring_seg, 1);
1820 sc->alc_rdata.alc_rr_ring = NULL;
1821 sc->alc_cdata.alc_rr_ring_map = NULL;
1822
1823 /* CMB block */
1824 if (sc->alc_cdata.alc_cmb_map != NULL)
1825 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1826 if (sc->alc_cdata.alc_cmb_map != NULL &&
1827 sc->alc_rdata.alc_cmb != NULL)
1828 bus_dmamem_free(sc->sc_dmat,
1829 &sc->alc_rdata.alc_cmb_seg, 1);
1830 sc->alc_rdata.alc_cmb = NULL;
1831 sc->alc_cdata.alc_cmb_map = NULL;
1832
1833 /* SMB block */
1834 if (sc->alc_cdata.alc_smb_map != NULL)
1835 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1836 if (sc->alc_cdata.alc_smb_map != NULL &&
1837 sc->alc_rdata.alc_smb != NULL)
1838 bus_dmamem_free(sc->sc_dmat,
1839 &sc->alc_rdata.alc_smb_seg, 1);
1840 sc->alc_rdata.alc_smb = NULL;
1841 sc->alc_cdata.alc_smb_map = NULL;
1842 }
1843
1844 static int
1845 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1846 {
1847 struct alc_txdesc *txd, *txd_last;
1848 struct tx_desc *desc;
1849 struct mbuf *m;
1850 bus_dmamap_t map;
1851 uint32_t cflags, poff, vtag;
1852 int error, idx, nsegs, prod;
1853 #if NVLAN > 0
1854 struct m_tag *mtag;
1855 #endif
1856
1857 m = *m_head;
1858 cflags = vtag = 0;
1859 poff = 0;
1860
1861 prod = sc->alc_cdata.alc_tx_prod;
1862 txd = &sc->alc_cdata.alc_txdesc[prod];
1863 txd_last = txd;
1864 map = txd->tx_dmamap;
1865
1866 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1867
1868 if (error == EFBIG) {
1869 error = 0;
1870
1871 *m_head = m_pullup(*m_head, MHLEN);
1872 if (*m_head == NULL) {
1873 printf("%s: can't defrag TX mbuf\n",
1874 device_xname(sc->sc_dev));
1875 return ENOBUFS;
1876 }
1877
1878 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1879 BUS_DMA_NOWAIT);
1880
1881 if (error != 0) {
1882 printf("%s: could not load defragged TX mbuf\n",
1883 device_xname(sc->sc_dev));
1884 m_freem(*m_head);
1885 *m_head = NULL;
1886 return error;
1887 }
1888 } else if (error) {
1889 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1890 return (error);
1891 }
1892
1893 nsegs = map->dm_nsegs;
1894
1895 if (nsegs == 0) {
1896 m_freem(*m_head);
1897 *m_head = NULL;
1898 return (EIO);
1899 }
1900
1901 /* Check descriptor overrun. */
1902 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1903 bus_dmamap_unload(sc->sc_dmat, map);
1904 return (ENOBUFS);
1905 }
1906 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1907 BUS_DMASYNC_PREWRITE);
1908
1909 m = *m_head;
1910 desc = NULL;
1911 idx = 0;
1912 #if NVLAN > 0
1913 /* Configure VLAN hardware tag insertion. */
1914 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1915 vtag = htons(VLAN_TAG_VALUE(mtag));
1916 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1917 cflags |= TD_INS_VLAN_TAG;
1918 }
1919 #endif
1920 /* Configure Tx checksum offload. */
1921 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1922 cflags |= TD_CUSTOM_CSUM;
1923 /* Set checksum start offset. */
1924 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1925 TD_PLOAD_OFFSET_MASK;
1926 }
1927 for (; idx < nsegs; idx++) {
1928 desc = &sc->alc_rdata.alc_tx_ring[prod];
1929 desc->len =
1930 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1931 desc->flags = htole32(cflags);
1932 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1933 sc->alc_cdata.alc_tx_cnt++;
1934 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1935 }
1936 /* Update producer index. */
1937 sc->alc_cdata.alc_tx_prod = prod;
1938
1939 /* Finally set EOP on the last descriptor. */
1940 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1941 desc = &sc->alc_rdata.alc_tx_ring[prod];
1942 desc->flags |= htole32(TD_EOP);
1943
1944 /* Swap dmamap of the first and the last. */
1945 txd = &sc->alc_cdata.alc_txdesc[prod];
1946 map = txd_last->tx_dmamap;
1947 txd_last->tx_dmamap = txd->tx_dmamap;
1948 txd->tx_dmamap = map;
1949 txd->tx_m = m;
1950
1951 return (0);
1952 }
1953
1954 static void
1955 alc_start(struct ifnet *ifp)
1956 {
1957 struct alc_softc *sc = ifp->if_softc;
1958 struct mbuf *m_head;
1959 int enq;
1960
1961 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1962 return;
1963
1964 /* Reclaim transmitted frames. */
1965 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1966 alc_txeof(sc);
1967
1968 enq = 0;
1969 for (;;) {
1970 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1971 if (m_head == NULL)
1972 break;
1973
1974 /*
1975 * Pack the data into the transmit ring. If we
1976 * don't have room, set the OACTIVE flag and wait
1977 * for the NIC to drain the ring.
1978 */
1979 if (alc_encap(sc, &m_head)) {
1980 if (m_head == NULL)
1981 break;
1982 ifp->if_flags |= IFF_OACTIVE;
1983 break;
1984 }
1985 enq = 1;
1986
1987 /*
1988 * If there's a BPF listener, bounce a copy of this frame
1989 * to him.
1990 */
1991 bpf_mtap(ifp, m_head);
1992 }
1993
1994 if (enq) {
1995 /* Sync descriptors. */
1996 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1997 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1998 BUS_DMASYNC_PREWRITE);
1999 /* Kick. Assume we're using normal Tx priority queue. */
2000 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2001 (sc->alc_cdata.alc_tx_prod <<
2002 MBOX_TD_PROD_LO_IDX_SHIFT) &
2003 MBOX_TD_PROD_LO_IDX_MASK);
2004 /* Set a timeout in case the chip goes out to lunch. */
2005 ifp->if_timer = ALC_TX_TIMEOUT;
2006 }
2007 }
2008
2009 static void
2010 alc_watchdog(struct ifnet *ifp)
2011 {
2012 struct alc_softc *sc = ifp->if_softc;
2013
2014 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2015 printf("%s: watchdog timeout (missed link)\n",
2016 device_xname(sc->sc_dev));
2017 ifp->if_oerrors++;
2018 alc_init_backend(ifp, false);
2019 return;
2020 }
2021
2022 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2023 ifp->if_oerrors++;
2024 alc_init_backend(ifp, false);
2025
2026 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2027 alc_start(ifp);
2028 }
2029
2030 static int
2031 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2032 {
2033 struct alc_softc *sc = ifp->if_softc;
2034 int s, error = 0;
2035
2036 s = splnet();
2037
2038 error = ether_ioctl(ifp, cmd, data);
2039 if (error == ENETRESET) {
2040 if (ifp->if_flags & IFF_RUNNING)
2041 alc_iff(sc);
2042 error = 0;
2043 }
2044
2045 splx(s);
2046 return (error);
2047 }
2048
2049 static void
2050 alc_mac_config(struct alc_softc *sc)
2051 {
2052 struct mii_data *mii;
2053 uint32_t reg;
2054
2055 mii = &sc->sc_miibus;
2056 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2057 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2058 MAC_CFG_SPEED_MASK);
2059 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2060 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2061 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2062 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2063 /* Reprogram MAC with resolved speed/duplex. */
2064 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2065 case IFM_10_T:
2066 case IFM_100_TX:
2067 reg |= MAC_CFG_SPEED_10_100;
2068 break;
2069 case IFM_1000_T:
2070 reg |= MAC_CFG_SPEED_1000;
2071 break;
2072 }
2073 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2074 reg |= MAC_CFG_FULL_DUPLEX;
2075 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2076 reg |= MAC_CFG_TX_FC;
2077 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2078 reg |= MAC_CFG_RX_FC;
2079 }
2080 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2081 }
2082
2083 static void
2084 alc_stats_clear(struct alc_softc *sc)
2085 {
2086 struct smb sb, *smb;
2087 uint32_t *reg;
2088 int i;
2089
2090 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2091 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2092 sc->alc_cdata.alc_smb_map->dm_mapsize,
2093 BUS_DMASYNC_POSTREAD);
2094 smb = sc->alc_rdata.alc_smb;
2095 /* Update done, clear. */
2096 smb->updated = 0;
2097 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2098 sc->alc_cdata.alc_smb_map->dm_mapsize,
2099 BUS_DMASYNC_PREWRITE);
2100 } else {
2101 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2102 reg++) {
2103 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2104 i += sizeof(uint32_t);
2105 }
2106 /* Read Tx statistics. */
2107 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2108 reg++) {
2109 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2110 i += sizeof(uint32_t);
2111 }
2112 }
2113 }
2114
2115 static void
2116 alc_stats_update(struct alc_softc *sc)
2117 {
2118 struct ifnet *ifp = &sc->sc_ec.ec_if;
2119 struct alc_hw_stats *stat;
2120 struct smb sb, *smb;
2121 uint32_t *reg;
2122 int i;
2123
2124 stat = &sc->alc_stats;
2125 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2126 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2127 sc->alc_cdata.alc_smb_map->dm_mapsize,
2128 BUS_DMASYNC_POSTREAD);
2129 smb = sc->alc_rdata.alc_smb;
2130 if (smb->updated == 0)
2131 return;
2132 } else {
2133 smb = &sb;
2134 /* Read Rx statistics. */
2135 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2136 reg++) {
2137 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2138 i += sizeof(uint32_t);
2139 }
2140 /* Read Tx statistics. */
2141 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2142 reg++) {
2143 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2144 i += sizeof(uint32_t);
2145 }
2146 }
2147
2148 /* Rx stats. */
2149 stat->rx_frames += smb->rx_frames;
2150 stat->rx_bcast_frames += smb->rx_bcast_frames;
2151 stat->rx_mcast_frames += smb->rx_mcast_frames;
2152 stat->rx_pause_frames += smb->rx_pause_frames;
2153 stat->rx_control_frames += smb->rx_control_frames;
2154 stat->rx_crcerrs += smb->rx_crcerrs;
2155 stat->rx_lenerrs += smb->rx_lenerrs;
2156 stat->rx_bytes += smb->rx_bytes;
2157 stat->rx_runts += smb->rx_runts;
2158 stat->rx_fragments += smb->rx_fragments;
2159 stat->rx_pkts_64 += smb->rx_pkts_64;
2160 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2161 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2162 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2163 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2164 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2165 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2166 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2167 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2168 stat->rx_rrs_errs += smb->rx_rrs_errs;
2169 stat->rx_alignerrs += smb->rx_alignerrs;
2170 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2171 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2172 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2173
2174 /* Tx stats. */
2175 stat->tx_frames += smb->tx_frames;
2176 stat->tx_bcast_frames += smb->tx_bcast_frames;
2177 stat->tx_mcast_frames += smb->tx_mcast_frames;
2178 stat->tx_pause_frames += smb->tx_pause_frames;
2179 stat->tx_excess_defer += smb->tx_excess_defer;
2180 stat->tx_control_frames += smb->tx_control_frames;
2181 stat->tx_deferred += smb->tx_deferred;
2182 stat->tx_bytes += smb->tx_bytes;
2183 stat->tx_pkts_64 += smb->tx_pkts_64;
2184 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2185 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2186 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2187 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2188 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2189 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2190 stat->tx_single_colls += smb->tx_single_colls;
2191 stat->tx_multi_colls += smb->tx_multi_colls;
2192 stat->tx_late_colls += smb->tx_late_colls;
2193 stat->tx_excess_colls += smb->tx_excess_colls;
2194 stat->tx_abort += smb->tx_abort;
2195 stat->tx_underrun += smb->tx_underrun;
2196 stat->tx_desc_underrun += smb->tx_desc_underrun;
2197 stat->tx_lenerrs += smb->tx_lenerrs;
2198 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2199 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2200 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2201
2202 /* Update counters in ifnet. */
2203 ifp->if_opackets += smb->tx_frames;
2204
2205 ifp->if_collisions += smb->tx_single_colls +
2206 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2207 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2208
2209 /*
2210 * XXX
2211 * tx_pkts_truncated counter looks suspicious. It constantly
2212 * increments with no sign of Tx errors. This may indicate
2213 * the counter name is not correct one so I've removed the
2214 * counter in output errors.
2215 */
2216 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2217 smb->tx_underrun;
2218
2219 ifp->if_ipackets += smb->rx_frames;
2220
2221 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2222 smb->rx_runts + smb->rx_pkts_truncated +
2223 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2224 smb->rx_alignerrs;
2225
2226 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2227 /* Update done, clear. */
2228 smb->updated = 0;
2229 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2230 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2231 }
2232 }
2233
2234 static int
2235 alc_intr(void *arg)
2236 {
2237 struct alc_softc *sc = arg;
2238 struct ifnet *ifp = &sc->sc_ec.ec_if;
2239 uint32_t status;
2240
2241 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2242 if ((status & ALC_INTRS) == 0)
2243 return (0);
2244
2245 /* Acknowledge and disable interrupts. */
2246 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2247
2248 if (ifp->if_flags & IFF_RUNNING) {
2249 if (status & INTR_RX_PKT) {
2250 int error;
2251
2252 error = alc_rxintr(sc);
2253 if (error) {
2254 alc_init_backend(ifp, false);
2255 return (0);
2256 }
2257 }
2258
2259 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2260 INTR_TXQ_TO_RST)) {
2261 if (status & INTR_DMA_RD_TO_RST)
2262 printf("%s: DMA read error! -- resetting\n",
2263 device_xname(sc->sc_dev));
2264 if (status & INTR_DMA_WR_TO_RST)
2265 printf("%s: DMA write error! -- resetting\n",
2266 device_xname(sc->sc_dev));
2267 if (status & INTR_TXQ_TO_RST)
2268 printf("%s: TxQ reset! -- resetting\n",
2269 device_xname(sc->sc_dev));
2270 alc_init_backend(ifp, false);
2271 return (0);
2272 }
2273
2274 alc_txeof(sc);
2275 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2276 alc_start(ifp);
2277 }
2278
2279 /* Re-enable interrupts. */
2280 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2281 return (1);
2282 }
2283
2284 static void
2285 alc_txeof(struct alc_softc *sc)
2286 {
2287 struct ifnet *ifp = &sc->sc_ec.ec_if;
2288 struct alc_txdesc *txd;
2289 uint32_t cons, prod;
2290 int prog;
2291
2292 if (sc->alc_cdata.alc_tx_cnt == 0)
2293 return;
2294 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2295 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2296 BUS_DMASYNC_POSTREAD);
2297 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2298 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2299 sc->alc_cdata.alc_cmb_map->dm_mapsize,
2300 BUS_DMASYNC_POSTREAD);
2301 prod = sc->alc_rdata.alc_cmb->cons;
2302 } else
2303 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2304 /* Assume we're using normal Tx priority queue. */
2305 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2306 MBOX_TD_CONS_LO_IDX_SHIFT;
2307 cons = sc->alc_cdata.alc_tx_cons;
2308 /*
2309 * Go through our Tx list and free mbufs for those
2310 * frames which have been transmitted.
2311 */
2312 for (prog = 0; cons != prod; prog++,
2313 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2314 if (sc->alc_cdata.alc_tx_cnt <= 0)
2315 break;
2316 prog++;
2317 ifp->if_flags &= ~IFF_OACTIVE;
2318 sc->alc_cdata.alc_tx_cnt--;
2319 txd = &sc->alc_cdata.alc_txdesc[cons];
2320 if (txd->tx_m != NULL) {
2321 /* Reclaim transmitted mbufs. */
2322 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2323 m_freem(txd->tx_m);
2324 txd->tx_m = NULL;
2325 }
2326 }
2327
2328 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2329 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2330 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2331 sc->alc_cdata.alc_tx_cons = cons;
2332 /*
2333 * Unarm watchdog timer only when there is no pending
2334 * frames in Tx queue.
2335 */
2336 if (sc->alc_cdata.alc_tx_cnt == 0)
2337 ifp->if_timer = 0;
2338 }
2339
2340 static int
2341 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2342 {
2343 struct mbuf *m;
2344 bus_dmamap_t map;
2345 int error;
2346
2347 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2348 if (m == NULL)
2349 return (ENOBUFS);
2350 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2351 if (!(m->m_flags & M_EXT)) {
2352 m_freem(m);
2353 return (ENOBUFS);
2354 }
2355
2356 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2357
2358 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2359 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2360
2361 if (error != 0) {
2362 if (!error) {
2363 bus_dmamap_unload(sc->sc_dmat,
2364 sc->alc_cdata.alc_rx_sparemap);
2365 error = EFBIG;
2366 printf("%s: too many segments?!\n",
2367 device_xname(sc->sc_dev));
2368 }
2369 m_freem(m);
2370
2371 if (init)
2372 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2373
2374 return (error);
2375 }
2376
2377 if (rxd->rx_m != NULL) {
2378 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2379 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2380 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2381 }
2382 map = rxd->rx_dmamap;
2383 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2384 sc->alc_cdata.alc_rx_sparemap = map;
2385 rxd->rx_m = m;
2386 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2387 return (0);
2388 }
2389
2390 static int
2391 alc_rxintr(struct alc_softc *sc)
2392 {
2393 struct ifnet *ifp = &sc->sc_ec.ec_if;
2394 struct rx_rdesc *rrd;
2395 uint32_t nsegs, status;
2396 int rr_cons, prog;
2397
2398 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2399 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2400 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2401 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2402 rr_cons = sc->alc_cdata.alc_rr_cons;
2403 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2404 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2405 status = le32toh(rrd->status);
2406 if ((status & RRD_VALID) == 0)
2407 break;
2408 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2409 if (nsegs == 0) {
2410 /* This should not happen! */
2411 if (alcdebug)
2412 printf("%s: unexpected segment count -- "
2413 "resetting\n", device_xname(sc->sc_dev));
2414 return (EIO);
2415 }
2416 alc_rxeof(sc, rrd);
2417 /* Clear Rx return status. */
2418 rrd->status = 0;
2419 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2420 sc->alc_cdata.alc_rx_cons += nsegs;
2421 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2422 prog += nsegs;
2423 }
2424
2425 if (prog > 0) {
2426 /* Update the consumer index. */
2427 sc->alc_cdata.alc_rr_cons = rr_cons;
2428 /* Sync Rx return descriptors. */
2429 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2430 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2431 BUS_DMASYNC_PREWRITE);
2432 /*
2433 * Sync updated Rx descriptors such that controller see
2434 * modified buffer addresses.
2435 */
2436 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2437 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2438 BUS_DMASYNC_PREWRITE);
2439 /*
2440 * Let controller know availability of new Rx buffers.
2441 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2442 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2443 * only when Rx buffer pre-fetching is required. In
2444 * addition we already set ALC_RX_RD_FREE_THRESH to
2445 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2446 * it still seems that pre-fetching needs more
2447 * experimentation.
2448 */
2449 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2450 sc->alc_cdata.alc_rx_cons);
2451 }
2452
2453 return (0);
2454 }
2455
2456 /* Receive a frame. */
2457 static void
2458 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2459 {
2460 struct ifnet *ifp = &sc->sc_ec.ec_if;
2461 struct alc_rxdesc *rxd;
2462 struct mbuf *mp, *m;
2463 uint32_t rdinfo, status;
2464 int count, nsegs, rx_cons;
2465
2466 status = le32toh(rrd->status);
2467 rdinfo = le32toh(rrd->rdinfo);
2468 rx_cons = RRD_RD_IDX(rdinfo);
2469 nsegs = RRD_RD_CNT(rdinfo);
2470
2471 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2472 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2473 /*
2474 * We want to pass the following frames to upper
2475 * layer regardless of error status of Rx return
2476 * ring.
2477 *
2478 * o IP/TCP/UDP checksum is bad.
2479 * o frame length and protocol specific length
2480 * does not match.
2481 *
2482 * Force network stack compute checksum for
2483 * errored frames.
2484 */
2485 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2486 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2487 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2488 return;
2489 }
2490
2491 for (count = 0; count < nsegs; count++,
2492 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2493 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2494 mp = rxd->rx_m;
2495 /* Add a new receive buffer to the ring. */
2496 if (alc_newbuf(sc, rxd, false) != 0) {
2497 ifp->if_iqdrops++;
2498 /* Reuse Rx buffers. */
2499 if (sc->alc_cdata.alc_rxhead != NULL)
2500 m_freem(sc->alc_cdata.alc_rxhead);
2501 break;
2502 }
2503
2504 /*
2505 * Assume we've received a full sized frame.
2506 * Actual size is fixed when we encounter the end of
2507 * multi-segmented frame.
2508 */
2509 mp->m_len = sc->alc_buf_size;
2510
2511 /* Chain received mbufs. */
2512 if (sc->alc_cdata.alc_rxhead == NULL) {
2513 sc->alc_cdata.alc_rxhead = mp;
2514 sc->alc_cdata.alc_rxtail = mp;
2515 } else {
2516 mp->m_flags &= ~M_PKTHDR;
2517 sc->alc_cdata.alc_rxprev_tail =
2518 sc->alc_cdata.alc_rxtail;
2519 sc->alc_cdata.alc_rxtail->m_next = mp;
2520 sc->alc_cdata.alc_rxtail = mp;
2521 }
2522
2523 if (count == nsegs - 1) {
2524 /* Last desc. for this frame. */
2525 m = sc->alc_cdata.alc_rxhead;
2526 m->m_flags |= M_PKTHDR;
2527 /*
2528 * It seems that L1C/L2C controller has no way
2529 * to tell hardware to strip CRC bytes.
2530 */
2531 m->m_pkthdr.len =
2532 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2533 if (nsegs > 1) {
2534 /* Set last mbuf size. */
2535 mp->m_len = sc->alc_cdata.alc_rxlen -
2536 (nsegs - 1) * sc->alc_buf_size;
2537 /* Remove the CRC bytes in chained mbufs. */
2538 if (mp->m_len <= ETHER_CRC_LEN) {
2539 sc->alc_cdata.alc_rxtail =
2540 sc->alc_cdata.alc_rxprev_tail;
2541 sc->alc_cdata.alc_rxtail->m_len -=
2542 (ETHER_CRC_LEN - mp->m_len);
2543 sc->alc_cdata.alc_rxtail->m_next = NULL;
2544 m_freem(mp);
2545 } else {
2546 mp->m_len -= ETHER_CRC_LEN;
2547 }
2548 } else
2549 m->m_len = m->m_pkthdr.len;
2550 m->m_pkthdr.rcvif = ifp;
2551 #if NVLAN > 0
2552 /*
2553 * Due to hardware bugs, Rx checksum offloading
2554 * was intentionally disabled.
2555 */
2556 if (status & RRD_VLAN_TAG) {
2557 u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2558 VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
2559 }
2560 #endif
2561
2562 bpf_mtap(ifp, m);
2563
2564 /* Pass it on. */
2565 (*ifp->if_input)(ifp, m);
2566 }
2567 }
2568 /* Reset mbuf chains. */
2569 ALC_RXCHAIN_RESET(sc);
2570 }
2571
2572 static void
2573 alc_tick(void *xsc)
2574 {
2575 struct alc_softc *sc = xsc;
2576 struct mii_data *mii = &sc->sc_miibus;
2577 int s;
2578
2579 s = splnet();
2580 mii_tick(mii);
2581 alc_stats_update(sc);
2582 splx(s);
2583
2584 callout_schedule(&sc->sc_tick_ch, hz);
2585 }
2586
2587 static void
2588 alc_osc_reset(struct alc_softc *sc)
2589 {
2590 uint32_t reg;
2591
2592 reg = CSR_READ_4(sc, ALC_MISC3);
2593 reg &= ~MISC3_25M_BY_SW;
2594 reg |= MISC3_25M_NOTO_INTNL;
2595 CSR_WRITE_4(sc, ALC_MISC3, reg);
2596
2597 reg = CSR_READ_4(sc, ALC_MISC);
2598 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2599 /*
2600 * Restore over-current protection default value.
2601 * This value could be reset by MAC reset.
2602 */
2603 reg &= ~MISC_PSW_OCP_MASK;
2604 reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2605 reg &= ~MISC_INTNLOSC_OPEN;
2606 CSR_WRITE_4(sc, ALC_MISC, reg);
2607 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2608 reg = CSR_READ_4(sc, ALC_MISC2);
2609 reg &= ~MISC2_CALB_START;
2610 CSR_WRITE_4(sc, ALC_MISC2, reg);
2611 CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2612
2613 } else {
2614 reg &= ~MISC_INTNLOSC_OPEN;
2615 /* Disable isolate for revision A devices. */
2616 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2617 reg &= ~MISC_ISO_ENB;
2618 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2619 CSR_WRITE_4(sc, ALC_MISC, reg);
2620 }
2621
2622 DELAY(20);
2623 }
2624
2625 static void
2626 alc_reset(struct alc_softc *sc)
2627 {
2628 uint32_t pmcfg, reg;
2629 int i;
2630
2631 pmcfg = 0;
2632 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2633 /* Reset workaround. */
2634 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2635 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2636 (sc->alc_rev & 0x01) != 0) {
2637 /* Disable L0s/L1s before reset. */
2638 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2639 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2640 != 0) {
2641 pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2642 PM_CFG_ASPM_L1_ENB);
2643 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2644 }
2645 }
2646 }
2647 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2648 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2649 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2650
2651 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2652 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2653 DELAY(10);
2654 if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2655 break;
2656 }
2657 if (i == 0)
2658 printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2659 }
2660 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2661 DELAY(10);
2662 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2663 break;
2664 }
2665 if (i == 0)
2666 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2667
2668 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2669 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2670 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2671 IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2672 break;
2673 DELAY(10);
2674 }
2675 if (i == 0)
2676 printf("%s: reset timeout(0x%08x)!\n",
2677 device_xname(sc->sc_dev), reg);
2678
2679 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2680 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2681 (sc->alc_rev & 0x01) != 0) {
2682 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2683 reg |= MASTER_CLK_SEL_DIS;
2684 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2685 /* Restore L0s/L1s config. */
2686 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2687 != 0)
2688 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2689 }
2690
2691 alc_osc_reset(sc);
2692 reg = CSR_READ_4(sc, ALC_MISC3);
2693 reg &= ~MISC3_25M_BY_SW;
2694 reg |= MISC3_25M_NOTO_INTNL;
2695 CSR_WRITE_4(sc, ALC_MISC3, reg);
2696 reg = CSR_READ_4(sc, ALC_MISC);
2697 reg &= ~MISC_INTNLOSC_OPEN;
2698 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2699 reg &= ~MISC_ISO_ENB;
2700 CSR_WRITE_4(sc, ALC_MISC, reg);
2701 DELAY(20);
2702 }
2703 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2704 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2705 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2706 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2707 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2708 SERDES_PHY_CLK_SLOWDOWN);
2709 }
2710
2711 static int
2712 alc_init(struct ifnet *ifp)
2713 {
2714
2715 return alc_init_backend(ifp, true);
2716 }
2717
2718 static int
2719 alc_init_backend(struct ifnet *ifp, bool init)
2720 {
2721 struct alc_softc *sc = ifp->if_softc;
2722 struct mii_data *mii;
2723 uint8_t eaddr[ETHER_ADDR_LEN];
2724 bus_addr_t paddr;
2725 uint32_t reg, rxf_hi, rxf_lo;
2726 int error;
2727
2728 /*
2729 * Cancel any pending I/O.
2730 */
2731 alc_stop(ifp, 0);
2732 /*
2733 * Reset the chip to a known state.
2734 */
2735 alc_reset(sc);
2736
2737 /* Initialize Rx descriptors. */
2738 error = alc_init_rx_ring(sc, init);
2739 if (error != 0) {
2740 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2741 alc_stop(ifp, 0);
2742 return (error);
2743 }
2744 alc_init_rr_ring(sc);
2745 alc_init_tx_ring(sc);
2746 alc_init_cmb(sc);
2747 alc_init_smb(sc);
2748
2749 /* Enable all clocks. */
2750 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2751 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2752 CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2753 CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2754 CLK_GATING_RXMAC_ENB);
2755 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2756 CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2757 IDLE_DECISN_TIMER_DEFAULT_1MS);
2758 } else
2759 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2760
2761
2762 /* Reprogram the station address. */
2763 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2764 CSR_WRITE_4(sc, ALC_PAR0,
2765 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2766 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2767 /*
2768 * Clear WOL status and disable all WOL feature as WOL
2769 * would interfere Rx operation under normal environments.
2770 */
2771 CSR_READ_4(sc, ALC_WOL_CFG);
2772 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2773 /* Set Tx descriptor base addresses. */
2774 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2775 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2776 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2777 /* We don't use high priority ring. */
2778 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2779 /* Set Tx descriptor counter. */
2780 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2781 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2782 /* Set Rx descriptor base addresses. */
2783 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2784 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2785 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2786 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2787 /* We use one Rx ring. */
2788 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2789 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2790 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2791 }
2792 /* Set Rx descriptor counter. */
2793 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2794 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2795
2796 /*
2797 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2798 * if it do not fit the buffer size. Rx return descriptor holds
2799 * a counter that indicates how many fragments were made by the
2800 * hardware. The buffer size should be multiple of 8 bytes.
2801 * Since hardware has limit on the size of buffer size, always
2802 * use the maximum value.
2803 * For strict-alignment architectures make sure to reduce buffer
2804 * size by 8 bytes to make room for alignment fixup.
2805 */
2806 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2807 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2808
2809 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2810 /* Set Rx return descriptor base addresses. */
2811 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2812 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2813 /* We use one Rx return ring. */
2814 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2815 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2816 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2817 }\
2818 /* Set Rx return descriptor counter. */
2819 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2820 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2821 paddr = sc->alc_rdata.alc_cmb_paddr;
2822 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2823 paddr = sc->alc_rdata.alc_smb_paddr;
2824 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2825 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2826
2827 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2828 /* Reconfigure SRAM - Vendor magic. */
2829 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2830 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2831 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2832 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2833 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2834 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2835 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2836 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2837 }
2838
2839 /* Tell hardware that we're ready to load DMA blocks. */
2840 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2841
2842 /* Configure interrupt moderation timer. */
2843 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2844 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2845 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2846 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2847 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2848 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2849 /*
2850 * We don't want to automatic interrupt clear as task queue
2851 * for the interrupt should know interrupt status.
2852 */
2853 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2854 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2855 reg |= MASTER_SA_TIMER_ENB;
2856 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2857 reg |= MASTER_IM_RX_TIMER_ENB;
2858 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2859 ALC_USECS(sc->alc_int_tx_mod) != 0)
2860 reg |= MASTER_IM_TX_TIMER_ENB;
2861 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2862 /*
2863 * Disable interrupt re-trigger timer. We don't want automatic
2864 * re-triggering of un-ACKed interrupts.
2865 */
2866 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2867 /* Configure CMB. */
2868 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2869 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2870 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2871 ALC_USECS(sc->alc_int_tx_mod));
2872 } else {
2873 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2874 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2875 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2876 } else
2877 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2878 }
2879 /*
2880 * Hardware can be configured to issue SMB interrupt based
2881 * on programmed interval. Since there is a callout that is
2882 * invoked for every hz in driver we use that instead of
2883 * relying on periodic SMB interrupt.
2884 */
2885 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2886 /* Clear MAC statistics. */
2887 alc_stats_clear(sc);
2888
2889 /*
2890 * Always use maximum frame size that controller can support.
2891 * Otherwise received frames that has larger frame length
2892 * than alc(4) MTU would be silently dropped in hardware. This
2893 * would make path-MTU discovery hard as sender wouldn't get
2894 * any responses from receiver. alc(4) supports
2895 * multi-fragmented frames on Rx path so it has no issue on
2896 * assembling fragmented frames. Using maximum frame size also
2897 * removes the need to reinitialize hardware when interface
2898 * MTU configuration was changed.
2899 *
2900 * Be conservative in what you do, be liberal in what you
2901 * accept from others - RFC 793.
2902 */
2903 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2904
2905 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2906 /* Disable header split(?) */
2907 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2908
2909 /* Configure IPG/IFG parameters. */
2910 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2911 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2912 IPG_IFG_IPGT_MASK) |
2913 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2914 IPG_IFG_MIFG_MASK) |
2915 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2916 IPG_IFG_IPG1_MASK) |
2917 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2918 IPG_IFG_IPG2_MASK));
2919 /* Set parameters for half-duplex media. */
2920 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2921 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2922 HDPX_CFG_LCOL_MASK) |
2923 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2924 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2925 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2926 HDPX_CFG_ABEBT_MASK) |
2927 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2928 HDPX_CFG_JAMIPG_MASK));
2929 }
2930
2931 /*
2932 * Set TSO/checksum offload threshold. For frames that is
2933 * larger than this threshold, hardware wouldn't do
2934 * TSO/checksum offloading.
2935 */
2936 reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2937 TSO_OFFLOAD_THRESH_MASK;
2938 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2939 reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2940 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2941 /* Configure TxQ. */
2942 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2943 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2944 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2945 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2946 reg >>= 1;
2947 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2948 TXQ_CFG_TD_BURST_MASK;
2949 reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
2950 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2951 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2952 reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
2953 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
2954 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
2955 HQTD_CFG_BURST_ENB);
2956 CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
2957 reg = WRR_PRI_RESTRICT_NONE;
2958 reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
2959 WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
2960 WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
2961 WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
2962 CSR_WRITE_4(sc, ALC_WRR, reg);
2963 } else {
2964 /* Configure Rx free descriptor pre-fetching. */
2965 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2966 ((RX_RD_FREE_THRESH_HI_DEFAULT <<
2967 RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
2968 ((RX_RD_FREE_THRESH_LO_DEFAULT <<
2969 RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
2970 }
2971
2972 /*
2973 * Configure flow control parameters.
2974 * XON : 80% of Rx FIFO
2975 * XOFF : 30% of Rx FIFO
2976 */
2977 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2978 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2979 reg &= SRAM_RX_FIFO_LEN_MASK;
2980 reg *= 8;
2981 if (reg > 8 * 1024)
2982 reg -= RX_FIFO_PAUSE_816X_RSVD;
2983 else
2984 reg -= RX_BUF_SIZE_MAX;
2985 reg /= 8;
2986 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2987 ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2988 RX_FIFO_PAUSE_THRESH_LO_MASK) |
2989 (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
2990 RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2991 RX_FIFO_PAUSE_THRESH_HI_MASK));
2992 } else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2993 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2994 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2995 rxf_hi = (reg * 8) / 10;
2996 rxf_lo = (reg * 3) / 10;
2997 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2998 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2999 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3000 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3001 RX_FIFO_PAUSE_THRESH_HI_MASK));
3002 }
3003
3004 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3005 /* Disable RSS until I understand L1C/L2C's RSS logic. */
3006 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3007 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3008 }
3009
3010 /* Configure RxQ. */
3011 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3012 RXQ_CFG_RD_BURST_MASK;
3013 reg |= RXQ_CFG_RSS_MODE_DIS;
3014 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3015 reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3016 RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3017 RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3018 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3019 sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3020 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3021 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3022
3023 /* Configure DMA parameters. */
3024 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3025 reg |= sc->alc_rcb;
3026 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3027 reg |= DMA_CFG_CMB_ENB;
3028 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3029 reg |= DMA_CFG_SMB_ENB;
3030 else
3031 reg |= DMA_CFG_SMB_DIS;
3032 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3033 DMA_CFG_RD_BURST_SHIFT;
3034 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3035 DMA_CFG_WR_BURST_SHIFT;
3036 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3037 DMA_CFG_RD_DELAY_CNT_MASK;
3038 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3039 DMA_CFG_WR_DELAY_CNT_MASK;
3040 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3041 switch (AR816X_REV(sc->alc_rev)) {
3042 case AR816X_REV_A0:
3043 case AR816X_REV_A1:
3044 reg |= DMA_CFG_RD_CHNL_SEL_1;
3045 break;
3046 case AR816X_REV_B0:
3047 /* FALLTHROUGH */
3048 default:
3049 reg |= DMA_CFG_RD_CHNL_SEL_3;
3050 break;
3051 }
3052 }
3053 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3054
3055 /*
3056 * Configure Tx/Rx MACs.
3057 * - Auto-padding for short frames.
3058 * - Enable CRC generation.
3059 * Actual reconfiguration of MAC for resolved speed/duplex
3060 * is followed after detection of link establishment.
3061 * AR813x/AR815x always does checksum computation regardless
3062 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3063 * have bug in protocol field in Rx return structure so
3064 * these controllers can't handle fragmented frames. Disable
3065 * Rx checksum offloading until there is a newer controller
3066 * that has sane implementation.
3067 */
3068 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3069 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3070 MAC_CFG_PREAMBLE_MASK);
3071 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3072 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3073 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3074 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3075 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3076 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3077 reg |= MAC_CFG_SPEED_10_100;
3078 else
3079 reg |= MAC_CFG_SPEED_1000;
3080 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3081
3082 /* Set up the receive filter. */
3083 alc_iff(sc);
3084 alc_rxvlan(sc);
3085
3086 /* Acknowledge all pending interrupts and clear it. */
3087 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3088 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3089 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3090
3091 sc->alc_flags &= ~ALC_FLAG_LINK;
3092 /* Switch to the current media. */
3093 mii = &sc->sc_miibus;
3094 mii_mediachg(mii);
3095
3096 callout_schedule(&sc->sc_tick_ch, hz);
3097
3098 ifp->if_flags |= IFF_RUNNING;
3099 ifp->if_flags &= ~IFF_OACTIVE;
3100
3101 return (0);
3102 }
3103
3104 static void
3105 alc_stop(struct ifnet *ifp, int disable)
3106 {
3107 struct alc_softc *sc = ifp->if_softc;
3108 struct alc_txdesc *txd;
3109 struct alc_rxdesc *rxd;
3110 uint32_t reg;
3111 int i;
3112
3113 callout_stop(&sc->sc_tick_ch);
3114
3115 /*
3116 * Mark the interface down and cancel the watchdog timer.
3117 */
3118 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3119 ifp->if_timer = 0;
3120
3121 sc->alc_flags &= ~ALC_FLAG_LINK;
3122
3123 alc_stats_update(sc);
3124
3125 mii_down(&sc->sc_miibus);
3126
3127 /* Disable interrupts. */
3128 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3129 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3130
3131 /* Disable DMA. */
3132 reg = CSR_READ_4(sc, ALC_DMA_CFG);
3133 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3134 reg |= DMA_CFG_SMB_DIS;
3135 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3136 DELAY(1000);
3137
3138 /* Stop Rx/Tx MACs. */
3139 alc_stop_mac(sc);
3140
3141 /* Disable interrupts which might be touched in taskq handler. */
3142 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3143
3144 /* Disable L0s/L1s */
3145 alc_aspm(sc, 0, IFM_UNKNOWN);
3146
3147 /* Reclaim Rx buffers that have been processed. */
3148 if (sc->alc_cdata.alc_rxhead != NULL)
3149 m_freem(sc->alc_cdata.alc_rxhead);
3150 ALC_RXCHAIN_RESET(sc);
3151 /*
3152 * Free Tx/Rx mbufs still in the queues.
3153 */
3154 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3155 rxd = &sc->alc_cdata.alc_rxdesc[i];
3156 if (rxd->rx_m != NULL) {
3157 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3158 m_freem(rxd->rx_m);
3159 rxd->rx_m = NULL;
3160 }
3161 }
3162 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3163 txd = &sc->alc_cdata.alc_txdesc[i];
3164 if (txd->tx_m != NULL) {
3165 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3166 m_freem(txd->tx_m);
3167 txd->tx_m = NULL;
3168 }
3169 }
3170 }
3171
3172 static void
3173 alc_stop_mac(struct alc_softc *sc)
3174 {
3175 uint32_t reg;
3176 int i;
3177
3178 alc_stop_queue(sc);
3179 /* Disable Rx/Tx MAC. */
3180 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3181 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3182 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3183 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3184 }
3185 for (i = ALC_TIMEOUT; i > 0; i--) {
3186 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3187 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3188 break;
3189 DELAY(10);
3190 }
3191 if (i == 0)
3192 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3193 device_xname(sc->sc_dev), reg);
3194 }
3195
3196 static void
3197 alc_start_queue(struct alc_softc *sc)
3198 {
3199 uint32_t qcfg[] = {
3200 0,
3201 RXQ_CFG_QUEUE0_ENB,
3202 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3203 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3204 RXQ_CFG_ENB
3205 };
3206 uint32_t cfg;
3207
3208 /* Enable RxQ. */
3209 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3210 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3211 cfg &= ~RXQ_CFG_ENB;
3212 cfg |= qcfg[1];
3213 } else
3214 cfg |= RXQ_CFG_QUEUE0_ENB;
3215 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3216 /* Enable TxQ. */
3217 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3218 cfg |= TXQ_CFG_ENB;
3219 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3220 }
3221
3222 static void
3223 alc_stop_queue(struct alc_softc *sc)
3224 {
3225 uint32_t reg;
3226 int i;
3227
3228 /* Disable RxQ. */
3229 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3230 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3231 if ((reg & RXQ_CFG_ENB) != 0) {
3232 reg &= ~RXQ_CFG_ENB;
3233 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3234 }
3235 } else {
3236 if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3237 reg &= ~RXQ_CFG_QUEUE0_ENB;
3238 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3239 }
3240 }
3241 /* Disable TxQ. */
3242 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3243 if ((reg & TXQ_CFG_ENB) != 0) {
3244 reg &= ~TXQ_CFG_ENB;
3245 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3246 }
3247 DELAY(40);
3248 for (i = ALC_TIMEOUT; i > 0; i--) {
3249 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3250 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3251 break;
3252 DELAY(10);
3253 }
3254 if (i == 0)
3255 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3256 device_xname(sc->sc_dev), reg);
3257 }
3258
3259 static void
3260 alc_init_tx_ring(struct alc_softc *sc)
3261 {
3262 struct alc_ring_data *rd;
3263 struct alc_txdesc *txd;
3264 int i;
3265
3266 sc->alc_cdata.alc_tx_prod = 0;
3267 sc->alc_cdata.alc_tx_cons = 0;
3268 sc->alc_cdata.alc_tx_cnt = 0;
3269
3270 rd = &sc->alc_rdata;
3271 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3272 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3273 txd = &sc->alc_cdata.alc_txdesc[i];
3274 txd->tx_m = NULL;
3275 }
3276
3277 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3278 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3279 }
3280
3281 static int
3282 alc_init_rx_ring(struct alc_softc *sc, bool init)
3283 {
3284 struct alc_ring_data *rd;
3285 struct alc_rxdesc *rxd;
3286 int i;
3287
3288 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3289 rd = &sc->alc_rdata;
3290 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3291 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3292 rxd = &sc->alc_cdata.alc_rxdesc[i];
3293 rxd->rx_m = NULL;
3294 rxd->rx_desc = &rd->alc_rx_ring[i];
3295 if (alc_newbuf(sc, rxd, init) != 0)
3296 return (ENOBUFS);
3297 }
3298
3299 /*
3300 * Since controller does not update Rx descriptors, driver
3301 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3302 * is enough to ensure coherence.
3303 */
3304 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3305 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3306 /* Let controller know availability of new Rx buffers. */
3307 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3308
3309 return (0);
3310 }
3311
3312 static void
3313 alc_init_rr_ring(struct alc_softc *sc)
3314 {
3315 struct alc_ring_data *rd;
3316
3317 sc->alc_cdata.alc_rr_cons = 0;
3318 ALC_RXCHAIN_RESET(sc);
3319
3320 rd = &sc->alc_rdata;
3321 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3322 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3323 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3324 }
3325
3326 static void
3327 alc_init_cmb(struct alc_softc *sc)
3328 {
3329 struct alc_ring_data *rd;
3330
3331 rd = &sc->alc_rdata;
3332 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3333 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3334 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3335 }
3336
3337 static void
3338 alc_init_smb(struct alc_softc *sc)
3339 {
3340 struct alc_ring_data *rd;
3341
3342 rd = &sc->alc_rdata;
3343 memset(rd->alc_smb, 0, ALC_SMB_SZ);
3344 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3345 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3346 }
3347
3348 static void
3349 alc_rxvlan(struct alc_softc *sc)
3350 {
3351 uint32_t reg;
3352
3353 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3354 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3355 reg |= MAC_CFG_VLAN_TAG_STRIP;
3356 else
3357 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3358 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3359 }
3360
3361 static void
3362 alc_iff(struct alc_softc *sc)
3363 {
3364 struct ethercom *ec = &sc->sc_ec;
3365 struct ifnet *ifp = &ec->ec_if;
3366 struct ether_multi *enm;
3367 struct ether_multistep step;
3368 uint32_t crc;
3369 uint32_t mchash[2];
3370 uint32_t rxcfg;
3371
3372 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3373 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3374 ifp->if_flags &= ~IFF_ALLMULTI;
3375
3376 /*
3377 * Always accept broadcast frames.
3378 */
3379 rxcfg |= MAC_CFG_BCAST;
3380
3381 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
3382 ifp->if_flags |= IFF_ALLMULTI;
3383 if (ifp->if_flags & IFF_PROMISC)
3384 rxcfg |= MAC_CFG_PROMISC;
3385 else
3386 rxcfg |= MAC_CFG_ALLMULTI;
3387 mchash[0] = mchash[1] = 0xFFFFFFFF;
3388 } else {
3389 /* Program new filter. */
3390 memset(mchash, 0, sizeof(mchash));
3391
3392 ETHER_FIRST_MULTI(step, ec, enm);
3393 while (enm != NULL) {
3394 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3395 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3396 ETHER_NEXT_MULTI(step, enm);
3397 }
3398 }
3399
3400 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3401 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3402 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3403 }
3404
3405 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3406
3407 #ifdef _MODULE
3408 #include "ioconf.c"
3409 #endif
3410
3411 static int
3412 if_alc_modcmd(modcmd_t cmd, void *opaque)
3413 {
3414 int error = 0;
3415
3416 switch (cmd) {
3417 case MODULE_CMD_INIT:
3418 #ifdef _MODULE
3419 error = config_init_component(cfdriver_ioconf_if_alc,
3420 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3421 #endif
3422 return error;
3423 case MODULE_CMD_FINI:
3424 #ifdef _MODULE
3425 error = config_fini_component(cfdriver_ioconf_if_alc,
3426 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3427 #endif
3428 return error;
3429 default:
3430 return ENOTTY;
3431 }
3432 }
3433