if_alc.c revision 1.28 1 /* $NetBSD: if_alc.c,v 1.28 2018/06/26 06:48:01 msaitoh Exp $ */
2 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
3 /*-
4 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49
50 #include <sys/bus.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_alcreg.h>
77
78 /*
79 * Devices supported by this driver.
80 */
81 static struct alc_ident alc_ident_table[] = {
82 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
83 "Atheros AR8131 PCIe Gigabit Ethernet" },
84 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
85 "Atheros AR8132 PCIe Fast Ethernet" },
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
87 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
89 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
91 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
93 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
95 "Atheros AR8161 PCIe Gigabit Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
97 "Atheros AR8162 PCIe Fast Ethernet" },
98 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
99 "Atheros AR8171 PCIe Gigabit Ethernet" },
100 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
101 "Atheros AR8172 PCIe Fast Ethernet" },
102 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
103 "Killer E2200 Gigabit Ethernet" },
104 { 0, 0, 0, NULL },
105 };
106
107 static int alc_match(device_t, cfdata_t, void *);
108 static void alc_attach(device_t, device_t, void *);
109 static int alc_detach(device_t, int);
110
111 static int alc_init(struct ifnet *);
112 static int alc_init_backend(struct ifnet *, bool);
113 static void alc_start(struct ifnet *);
114 static int alc_ioctl(struct ifnet *, u_long, void *);
115 static void alc_watchdog(struct ifnet *);
116 static int alc_mediachange(struct ifnet *);
117 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
118
119 static void alc_aspm(struct alc_softc *, int, int);
120 static void alc_aspm_813x(struct alc_softc *, int);
121 static void alc_aspm_816x(struct alc_softc *, int);
122 static void alc_disable_l0s_l1(struct alc_softc *);
123 static int alc_dma_alloc(struct alc_softc *);
124 static void alc_dma_free(struct alc_softc *);
125 static void alc_dsp_fixup(struct alc_softc *, int);
126 static int alc_encap(struct alc_softc *, struct mbuf **);
127 static struct alc_ident *
128 alc_find_ident(struct pci_attach_args *);
129 static void alc_get_macaddr(struct alc_softc *);
130 static void alc_get_macaddr_813x(struct alc_softc *);
131 static void alc_get_macaddr_816x(struct alc_softc *);
132 static void alc_get_macaddr_par(struct alc_softc *);
133 static void alc_init_cmb(struct alc_softc *);
134 static void alc_init_rr_ring(struct alc_softc *);
135 static int alc_init_rx_ring(struct alc_softc *, bool);
136 static void alc_init_smb(struct alc_softc *);
137 static void alc_init_tx_ring(struct alc_softc *);
138 static int alc_intr(void *);
139 static void alc_mac_config(struct alc_softc *);
140 static uint32_t alc_mii_readreg_813x(struct alc_softc *, int, int);
141 static uint32_t alc_mii_readreg_816x(struct alc_softc *, int, int);
142 static void alc_mii_writereg_813x(struct alc_softc *, int, int, int);
143 static void alc_mii_writereg_816x(struct alc_softc *, int, int, int);
144 static int alc_miibus_readreg(device_t, int, int);
145 static void alc_miibus_statchg(struct ifnet *);
146 static void alc_miibus_writereg(device_t, int, int, int);
147 static uint32_t alc_miidbg_readreg(struct alc_softc *, int);
148 static void alc_miidbg_writereg(struct alc_softc *, int, int);
149 static uint32_t alc_miiext_readreg(struct alc_softc *, int, int);
150 static uint32_t alc_miiext_writereg(struct alc_softc *, int, int, int);
151 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
152 static void alc_phy_down(struct alc_softc *);
153 static void alc_phy_reset(struct alc_softc *);
154 static void alc_phy_reset_813x(struct alc_softc *);
155 static void alc_phy_reset_816x(struct alc_softc *);
156 static void alc_reset(struct alc_softc *);
157 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
158 static int alc_rxintr(struct alc_softc *);
159 static void alc_iff(struct alc_softc *);
160 static void alc_rxvlan(struct alc_softc *);
161 static void alc_start_queue(struct alc_softc *);
162 static void alc_stats_clear(struct alc_softc *);
163 static void alc_stats_update(struct alc_softc *);
164 static void alc_stop(struct ifnet *, int);
165 static void alc_stop_mac(struct alc_softc *);
166 static void alc_stop_queue(struct alc_softc *);
167 static void alc_tick(void *);
168 static void alc_txeof(struct alc_softc *);
169
170 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
171
172 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
173 alc_match, alc_attach, alc_detach, NULL);
174
175 int alcdebug = 0;
176 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
177
178 #define ETHER_ALIGN 2
179 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
180
181 static int
182 alc_miibus_readreg(device_t dev, int phy, int reg)
183 {
184 struct alc_softc *sc = device_private(dev);
185 int v;
186
187 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
188 v = alc_mii_readreg_816x(sc, phy, reg);
189 else
190 v = alc_mii_readreg_813x(sc, phy, reg);
191 return (v);
192 }
193
194 static uint32_t
195 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg)
196 {
197 uint32_t v;
198 int i;
199
200 if (phy != sc->alc_phyaddr)
201 return (0);
202
203 /*
204 * For AR8132 fast ethernet controller, do not report 1000baseT
205 * capability to mii(4). Even though AR8132 uses the same
206 * model/revision number of F1 gigabit PHY, the PHY has no
207 * ability to establish 1000baseT link.
208 */
209 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
210 reg == MII_EXTSR)
211 return 0;
212
213 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
214 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
215 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
216 DELAY(5);
217 v = CSR_READ_4(sc, ALC_MDIO);
218 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
219 break;
220 }
221
222 if (i == 0) {
223 printf("%s: phy read timeout: phy %d, reg %d\n",
224 device_xname(sc->sc_dev), phy, reg);
225 return (0);
226 }
227
228 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230
231 static uint32_t
232 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg)
233 {
234 uint32_t clk, v;
235 int i;
236
237 if (phy != sc->alc_phyaddr)
238 return (0);
239
240 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
241 clk = MDIO_CLK_25_128;
242 else
243 clk = MDIO_CLK_25_4;
244 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
245 MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
246 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
247 DELAY(5);
248 v = CSR_READ_4(sc, ALC_MDIO);
249 if ((v & MDIO_OP_BUSY) == 0)
250 break;
251 }
252
253 if (i == 0) {
254 printf("%s: phy read timeout: phy %d, reg %d\n",
255 device_xname(sc->sc_dev), phy, reg);
256 return (0);
257 }
258
259 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
260 }
261
262 static void
263 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
264 {
265 struct alc_softc *sc = device_private(dev);
266
267 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
268 alc_mii_writereg_816x(sc, phy, reg, val);
269 else
270 alc_mii_writereg_813x(sc, phy, reg, val);
271
272 return;
273 }
274
275 static void
276 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val)
277 {
278 uint32_t v;
279 int i;
280
281 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
282 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
283 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
284 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
285 DELAY(5);
286 v = CSR_READ_4(sc, ALC_MDIO);
287 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
288 break;
289 }
290
291 if (i == 0)
292 printf("%s: phy write timeout: phy %d, reg %d\n",
293 device_xname(sc->sc_dev), phy, reg);
294
295 return;
296 }
297
298 static void
299 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val)
300 {
301 uint32_t clk, v;
302 int i;
303
304 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
305 clk = MDIO_CLK_25_128;
306 else
307 clk = MDIO_CLK_25_4;
308 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
309 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
310 MDIO_SUP_PREAMBLE | clk);
311 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
312 DELAY(5);
313 v = CSR_READ_4(sc, ALC_MDIO);
314 if ((v & MDIO_OP_BUSY) == 0)
315 break;
316 }
317
318 if (i == 0)
319 printf("%s: phy write timeout: phy %d, reg %d\n",
320 device_xname(sc->sc_dev), phy, reg);
321
322 return;
323 }
324
325 static void
326 alc_miibus_statchg(struct ifnet *ifp)
327 {
328 struct alc_softc *sc = ifp->if_softc;
329 struct mii_data *mii = &sc->sc_miibus;
330 uint32_t reg;
331
332 if ((ifp->if_flags & IFF_RUNNING) == 0)
333 return;
334
335 sc->alc_flags &= ~ALC_FLAG_LINK;
336 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
337 (IFM_ACTIVE | IFM_AVALID)) {
338 switch (IFM_SUBTYPE(mii->mii_media_active)) {
339 case IFM_10_T:
340 case IFM_100_TX:
341 sc->alc_flags |= ALC_FLAG_LINK;
342 break;
343 case IFM_1000_T:
344 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
345 sc->alc_flags |= ALC_FLAG_LINK;
346 break;
347 default:
348 break;
349 }
350 }
351 /* Stop Rx/Tx MACs. */
352 alc_stop_mac(sc);
353
354 /* Program MACs with resolved speed/duplex/flow-control. */
355 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
356 alc_start_queue(sc);
357 alc_mac_config(sc);
358 /* Re-enable Tx/Rx MACs. */
359 reg = CSR_READ_4(sc, ALC_MAC_CFG);
360 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
361 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
362 }
363 alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
364 alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
365 }
366
367 static uint32_t
368 alc_miidbg_readreg(struct alc_softc *sc, int reg)
369 {
370
371 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
372 reg);
373 return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
374 ALC_MII_DBG_DATA));
375 }
376
377 static void
378 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val)
379 {
380
381 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
382 reg);
383 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val);
384
385 return;
386 }
387
388 static uint32_t
389 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg)
390 {
391 uint32_t clk, v;
392 int i;
393
394 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
395 EXT_MDIO_DEVADDR(devaddr));
396 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
397 clk = MDIO_CLK_25_128;
398 else
399 clk = MDIO_CLK_25_4;
400 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
401 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
402 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
403 DELAY(5);
404 v = CSR_READ_4(sc, ALC_MDIO);
405 if ((v & MDIO_OP_BUSY) == 0)
406 break;
407 }
408
409 if (i == 0) {
410 printf("%s: phy ext read timeout: %d\n",
411 device_xname(sc->sc_dev), reg);
412 return (0);
413 }
414
415 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
416 }
417
418 static uint32_t
419 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val)
420 {
421 uint32_t clk, v;
422 int i;
423
424 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
425 EXT_MDIO_DEVADDR(devaddr));
426 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
427 clk = MDIO_CLK_25_128;
428 else
429 clk = MDIO_CLK_25_4;
430 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
431 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
432 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
433 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
434 DELAY(5);
435 v = CSR_READ_4(sc, ALC_MDIO);
436 if ((v & MDIO_OP_BUSY) == 0)
437 break;
438 }
439
440 if (i == 0) {
441 printf("%s: phy ext write timeout: reg %d\n",
442 device_xname(sc->sc_dev), reg);
443 return (0);
444 }
445
446 return (0);
447 }
448
449 static void
450 alc_dsp_fixup(struct alc_softc *sc, int media)
451 {
452 uint16_t agc, len, val;
453
454 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
455 return;
456 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
457 return;
458
459 /*
460 * Vendor PHY magic.
461 * 1000BT/AZ, wrong cable length
462 */
463 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
464 len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6);
465 len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
466 EXT_CLDCTL6_CAB_LEN_MASK;
467 /* XXX: used to be (alc >> shift) & mask which is 0 */
468 agc = alc_miidbg_readreg(sc, MII_DBG_AGC) & DBG_AGC_2_VGA_MASK;
469 agc >>= DBG_AGC_2_VGA_SHIFT;
470 if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
471 agc > DBG_AGC_LONG1G_LIMT) ||
472 (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
473 agc > DBG_AGC_LONG1G_LIMT)) {
474 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
475 DBG_AZ_ANADECT_LONG);
476 val = alc_miiext_readreg(sc, MII_EXT_ANEG,
477 MII_EXT_ANEG_AFE);
478 val |= ANEG_AFEE_10BT_100M_TH;
479 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
480 val);
481 } else {
482 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
483 DBG_AZ_ANADECT_DEFAULT);
484 val = alc_miiext_readreg(sc, MII_EXT_ANEG,
485 MII_EXT_ANEG_AFE);
486 val &= ~ANEG_AFEE_10BT_100M_TH;
487 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
488 val);
489 }
490 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
491 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
492 if (media == IFM_1000_T) {
493 /*
494 * Giga link threshold, raise the tolerance of
495 * noise 50%.
496 */
497 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
498 val &= ~DBG_MSE20DB_TH_MASK;
499 val |= (DBG_MSE20DB_TH_HI <<
500 DBG_MSE20DB_TH_SHIFT);
501 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
502 } else if (media == IFM_100_TX)
503 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
504 DBG_MSE16DB_UP);
505 }
506 } else {
507 val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE);
508 val &= ~ANEG_AFEE_10BT_100M_TH;
509 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
510 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
511 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
512 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
513 DBG_MSE16DB_DOWN);
514 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
515 val &= ~DBG_MSE20DB_TH_MASK;
516 val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
517 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
518 }
519 }
520 }
521
522 static void
523 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
524 {
525 struct alc_softc *sc = ifp->if_softc;
526 struct mii_data *mii = &sc->sc_miibus;
527
528 if ((ifp->if_flags & IFF_UP) == 0)
529 return;
530
531 mii_pollstat(mii);
532 ifmr->ifm_status = mii->mii_media_status;
533 ifmr->ifm_active = mii->mii_media_active;
534 }
535
536 static int
537 alc_mediachange(struct ifnet *ifp)
538 {
539 struct alc_softc *sc = ifp->if_softc;
540 struct mii_data *mii = &sc->sc_miibus;
541 int error;
542
543 if (mii->mii_instance != 0) {
544 struct mii_softc *miisc;
545
546 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
547 mii_phy_reset(miisc);
548 }
549 error = mii_mediachg(mii);
550
551 return (error);
552 }
553
554 static struct alc_ident *
555 alc_find_ident(struct pci_attach_args *pa)
556 {
557 struct alc_ident *ident;
558 uint16_t vendor, devid;
559
560 vendor = PCI_VENDOR(pa->pa_id);
561 devid = PCI_PRODUCT(pa->pa_id);
562 for (ident = alc_ident_table; ident->name != NULL; ident++) {
563 if (vendor == ident->vendorid && devid == ident->deviceid)
564 return (ident);
565 }
566
567 return (NULL);
568 }
569
570 static int
571 alc_match(device_t dev, cfdata_t match, void *aux)
572 {
573 struct pci_attach_args *pa = aux;
574
575 return alc_find_ident(pa) != NULL;
576 }
577
578 static void
579 alc_get_macaddr(struct alc_softc *sc)
580 {
581
582 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
583 alc_get_macaddr_816x(sc);
584 else
585 alc_get_macaddr_813x(sc);
586 }
587
588 static void
589 alc_get_macaddr_813x(struct alc_softc *sc)
590 {
591 uint32_t opt;
592 uint16_t val;
593 int eeprom, i;
594
595 eeprom = 0;
596 opt = CSR_READ_4(sc, ALC_OPT_CFG);
597 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
598 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
599 /*
600 * EEPROM found, let TWSI reload EEPROM configuration.
601 * This will set ethernet address of controller.
602 */
603 eeprom++;
604 switch (sc->alc_ident->deviceid) {
605 case PCI_PRODUCT_ATTANSIC_AR8131:
606 case PCI_PRODUCT_ATTANSIC_AR8132:
607 if ((opt & OPT_CFG_CLK_ENB) == 0) {
608 opt |= OPT_CFG_CLK_ENB;
609 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
610 CSR_READ_4(sc, ALC_OPT_CFG);
611 DELAY(1000);
612 }
613 break;
614 case PCI_PRODUCT_ATTANSIC_AR8151:
615 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
616 case PCI_PRODUCT_ATTANSIC_AR8152_B:
617 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
619 ALC_MII_DBG_ADDR, 0x00);
620 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
621 ALC_MII_DBG_DATA);
622 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
623 ALC_MII_DBG_DATA, val & 0xFF7F);
624 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
625 ALC_MII_DBG_ADDR, 0x3B);
626 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
627 ALC_MII_DBG_DATA);
628 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
629 ALC_MII_DBG_DATA, val | 0x0008);
630 DELAY(20);
631 break;
632 }
633
634 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
635 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
636 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
637 CSR_READ_4(sc, ALC_WOL_CFG);
638
639 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
640 TWSI_CFG_SW_LD_START);
641 for (i = 100; i > 0; i--) {
642 DELAY(1000);
643 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
644 TWSI_CFG_SW_LD_START) == 0)
645 break;
646 }
647 if (i == 0)
648 printf("%s: reloading EEPROM timeout!\n",
649 device_xname(sc->sc_dev));
650 } else {
651 if (alcdebug)
652 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
653 }
654 if (eeprom != 0) {
655 switch (sc->alc_ident->deviceid) {
656 case PCI_PRODUCT_ATTANSIC_AR8131:
657 case PCI_PRODUCT_ATTANSIC_AR8132:
658 if ((opt & OPT_CFG_CLK_ENB) != 0) {
659 opt &= ~OPT_CFG_CLK_ENB;
660 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
661 CSR_READ_4(sc, ALC_OPT_CFG);
662 DELAY(1000);
663 }
664 break;
665 case PCI_PRODUCT_ATTANSIC_AR8151:
666 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
667 case PCI_PRODUCT_ATTANSIC_AR8152_B:
668 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
669 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
670 ALC_MII_DBG_ADDR, 0x00);
671 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
672 ALC_MII_DBG_DATA);
673 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
674 ALC_MII_DBG_DATA, val | 0x0080);
675 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
676 ALC_MII_DBG_ADDR, 0x3B);
677 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
678 ALC_MII_DBG_DATA);
679 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
680 ALC_MII_DBG_DATA, val & 0xFFF7);
681 DELAY(20);
682 break;
683 }
684 }
685
686 alc_get_macaddr_par(sc);
687 }
688
689 static void
690 alc_get_macaddr_816x(struct alc_softc *sc)
691 {
692 uint32_t reg;
693 int i, reloaded;
694
695 reloaded = 0;
696 /* Try to reload station address via TWSI. */
697 for (i = 100; i > 0; i--) {
698 reg = CSR_READ_4(sc, ALC_SLD);
699 if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
700 break;
701 DELAY(1000);
702 }
703 if (i != 0) {
704 CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
705 for (i = 100; i > 0; i--) {
706 DELAY(1000);
707 reg = CSR_READ_4(sc, ALC_SLD);
708 if ((reg & SLD_START) == 0)
709 break;
710 }
711 if (i != 0)
712 reloaded++;
713 else if (alcdebug)
714 printf("%s: reloading station address via TWSI timed out!\n",
715 device_xname(sc->sc_dev));
716 }
717
718 /* Try to reload station address from EEPROM or FLASH. */
719 if (reloaded == 0) {
720 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
721 if ((reg & (EEPROM_LD_EEPROM_EXIST |
722 EEPROM_LD_FLASH_EXIST)) != 0) {
723 for (i = 100; i > 0; i--) {
724 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
725 if ((reg & (EEPROM_LD_PROGRESS |
726 EEPROM_LD_START)) == 0)
727 break;
728 DELAY(1000);
729 }
730 if (i != 0) {
731 CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
732 EEPROM_LD_START);
733 for (i = 100; i > 0; i--) {
734 DELAY(1000);
735 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
736 if ((reg & EEPROM_LD_START) == 0)
737 break;
738 }
739 } else if (alcdebug)
740 printf("%s: reloading EEPROM/FLASH timed out!\n",
741 device_xname(sc->sc_dev));
742 }
743 }
744
745 alc_get_macaddr_par(sc);
746 }
747
748
749 static void
750 alc_get_macaddr_par(struct alc_softc *sc)
751 {
752 uint32_t ea[2];
753
754 ea[0] = CSR_READ_4(sc, ALC_PAR0);
755 ea[1] = CSR_READ_4(sc, ALC_PAR1);
756 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
757 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
758 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
759 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
760 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
761 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
762 }
763
764 static void
765 alc_disable_l0s_l1(struct alc_softc *sc)
766 {
767 uint32_t pmcfg;
768
769 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
770 /* Another magic from vendor. */
771 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
772 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
773 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
774 PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
775 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
776 PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
777 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
778 }
779 }
780
781 static void
782 alc_phy_reset(struct alc_softc *sc)
783 {
784
785 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
786 alc_phy_reset_816x(sc);
787 else
788 alc_phy_reset_813x(sc);
789 }
790
791 static void
792 alc_phy_reset_813x(struct alc_softc *sc)
793 {
794 uint16_t data;
795
796 /* Reset magic from Linux. */
797 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
798 CSR_READ_2(sc, ALC_GPHY_CFG);
799 DELAY(10 * 1000);
800
801 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
802 GPHY_CFG_SEL_ANA_RESET);
803 CSR_READ_2(sc, ALC_GPHY_CFG);
804 DELAY(10 * 1000);
805
806 /* DSP fixup, Vendor magic. */
807 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
808 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
809 ALC_MII_DBG_ADDR, 0x000A);
810 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
811 ALC_MII_DBG_DATA);
812 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
813 ALC_MII_DBG_DATA, data & 0xDFFF);
814 }
815 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
816 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
817 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
818 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
819 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
820 ALC_MII_DBG_ADDR, 0x003B);
821 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
822 ALC_MII_DBG_DATA);
823 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
824 ALC_MII_DBG_DATA, data & 0xFFF7);
825 DELAY(20 * 1000);
826 }
827 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
828 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
829 ALC_MII_DBG_ADDR, 0x0029);
830 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 ALC_MII_DBG_DATA, 0x929D);
832 }
833 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
834 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
835 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
836 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
837 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
838 ALC_MII_DBG_ADDR, 0x0029);
839 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
840 ALC_MII_DBG_DATA, 0xB6DD);
841 }
842
843 /* Load DSP codes, vendor magic. */
844 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
845 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
846 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
847 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
848 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
849 ALC_MII_DBG_DATA, data);
850
851 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
852 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
853 ANA_SERDES_EN_LCKDT;
854 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
855 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
856 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
857 ALC_MII_DBG_DATA, data);
858
859 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
860 ANA_LONG_CABLE_TH_100_MASK) |
861 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
862 ANA_SHORT_CABLE_TH_100_SHIFT) |
863 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
864 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
865 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
866 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
867 ALC_MII_DBG_DATA, data);
868
869 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
870 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
871 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
872 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
873 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
874 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
875 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
876 ALC_MII_DBG_DATA, data);
877
878 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
879 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
880 ANA_OEN_125M;
881 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
882 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
883 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
884 ALC_MII_DBG_DATA, data);
885 DELAY(1000);
886
887 /* Disable hibernation. */
888 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
889 0x0029);
890 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
891 ALC_MII_DBG_DATA);
892 data &= ~0x8000;
893 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
894 data);
895
896 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
897 0x000B);
898 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
899 ALC_MII_DBG_DATA);
900 data &= ~0x8000;
901 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
902 data);
903 }
904
905 static void
906 alc_phy_reset_816x(struct alc_softc *sc)
907 {
908 uint32_t val;
909
910 val = CSR_READ_4(sc, ALC_GPHY_CFG);
911 val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
912 GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
913 GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
914 val |= GPHY_CFG_SEL_ANA_RESET;
915 #ifdef notyet
916 val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
917 #else
918 /* Disable PHY hibernation. */
919 val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
920 #endif
921 CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
922 DELAY(10);
923 CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
924 DELAY(800);
925
926 /* Vendor PHY magic. */
927 #ifdef notyet
928 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
929 alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
930 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
931 EXT_VDRVBIAS_DEFAULT);
932 #else
933 /* Disable PHY hibernation. */
934 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
935 DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
936 alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
937 DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
938 alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
939 #endif
940
941 /* XXX Disable EEE. */
942 val = CSR_READ_4(sc, ALC_LPI_CTL);
943 val &= ~LPI_CTL_ENB;
944 CSR_WRITE_4(sc, ALC_LPI_CTL, val);
945 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
946
947 /* PHY power saving. */
948 alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
949 alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
950 alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
951 alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
952 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
953 val &= ~DBG_GREENCFG2_GATE_DFSE_EN;
954 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
955
956 /* RTL8139C, 120m issue. */
957 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
958 ANEG_NLP78_120M_DEFAULT);
959 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
960 ANEG_S3DIG10_DEFAULT);
961
962 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
963 /* Turn off half amplitude. */
964 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3);
965 val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
966 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val);
967 /* Turn off Green feature. */
968 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
969 val |= DBG_GREENCFG2_BP_GREEN;
970 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
971 /* Turn off half bias. */
972 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5);
973 val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
974 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val);
975 }
976 }
977
978 static void
979 alc_phy_down(struct alc_softc *sc)
980 {
981 uint32_t gphy;
982
983 switch (sc->alc_ident->deviceid) {
984 case PCI_PRODUCT_ATTANSIC_AR8161:
985 case PCI_PRODUCT_ATTANSIC_E2200:
986 case PCI_PRODUCT_ATTANSIC_AR8162:
987 case PCI_PRODUCT_ATTANSIC_AR8171:
988 case PCI_PRODUCT_ATTANSIC_AR8172:
989 gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
990 gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
991 GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
992 gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
993 GPHY_CFG_SEL_ANA_RESET;
994 gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
995 CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
996 break;
997 case PCI_PRODUCT_ATTANSIC_AR8151:
998 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
999 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1000 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1001 /*
1002 * GPHY power down caused more problems on AR8151 v2.0.
1003 * When driver is reloaded after GPHY power down,
1004 * accesses to PHY/MAC registers hung the system. Only
1005 * cold boot recovered from it. I'm not sure whether
1006 * AR8151 v1.0 also requires this one though. I don't
1007 * have AR8151 v1.0 controller in hand.
1008 * The only option left is to isolate the PHY and
1009 * initiates power down the PHY which in turn saves
1010 * more power when driver is unloaded.
1011 */
1012 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1013 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1014 break;
1015 default:
1016 /* Force PHY down. */
1017 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1018 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1019 GPHY_CFG_PWDOWN_HW);
1020 DELAY(1000);
1021 break;
1022 }
1023 }
1024
1025 static void
1026 alc_aspm(struct alc_softc *sc, int init, int media)
1027 {
1028
1029 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1030 alc_aspm_816x(sc, init);
1031 else
1032 alc_aspm_813x(sc, media);
1033 }
1034
1035 static void
1036 alc_aspm_813x(struct alc_softc *sc, int media)
1037 {
1038 uint32_t pmcfg;
1039 uint16_t linkcfg;
1040
1041 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1042 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1043 (ALC_FLAG_APS | ALC_FLAG_PCIE))
1044 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1045 PCIE_LCSR);
1046 else
1047 linkcfg = 0;
1048 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1049 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1050 pmcfg |= PM_CFG_MAC_ASPM_CHK;
1051 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1052 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1053
1054 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1055 /* Disable extended sync except AR8152 B v1.0 */
1056 linkcfg &= ~0x80;
1057 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1058 sc->alc_rev == ATHEROS_AR8152_B_V10)
1059 linkcfg |= 0x80;
1060 CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1061 linkcfg);
1062 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1063 PM_CFG_HOTRST);
1064 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1065 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1066 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1067 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1068 PM_CFG_PM_REQ_TIMER_SHIFT);
1069 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1070 }
1071
1072 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1073 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1074 pmcfg |= PM_CFG_ASPM_L0S_ENB;
1075 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1076 pmcfg |= PM_CFG_ASPM_L1_ENB;
1077 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1078 if (sc->alc_ident->deviceid ==
1079 PCI_PRODUCT_ATTANSIC_AR8152_B)
1080 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1081 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1082 PM_CFG_SERDES_PLL_L1_ENB |
1083 PM_CFG_SERDES_BUDS_RX_L1_ENB);
1084 pmcfg |= PM_CFG_CLK_SWH_L1;
1085 if (media == IFM_100_TX || media == IFM_1000_T) {
1086 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1087 switch (sc->alc_ident->deviceid) {
1088 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1089 pmcfg |= (7 <<
1090 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 break;
1092 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1093 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1094 pmcfg |= (4 <<
1095 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1096 break;
1097 default:
1098 pmcfg |= (15 <<
1099 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1100 break;
1101 }
1102 }
1103 } else {
1104 pmcfg |= PM_CFG_SERDES_L1_ENB |
1105 PM_CFG_SERDES_PLL_L1_ENB |
1106 PM_CFG_SERDES_BUDS_RX_L1_ENB;
1107 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1108 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1109 }
1110 } else {
1111 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1112 PM_CFG_SERDES_PLL_L1_ENB);
1113 pmcfg |= PM_CFG_CLK_SWH_L1;
1114 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1115 pmcfg |= PM_CFG_ASPM_L1_ENB;
1116 }
1117 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1118 }
1119
1120 static void
1121 alc_aspm_816x(struct alc_softc *sc, int init)
1122 {
1123 uint32_t pmcfg;
1124
1125 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1126 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1127 pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1128 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1129 pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1130 pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1131 pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1132 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1133 pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1134 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1135 PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1136 PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1137 PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1138 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1139 (sc->alc_rev & 0x01) != 0)
1140 pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1141 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1142 /* Link up, enable both L0s, L1s. */
1143 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1144 PM_CFG_MAC_ASPM_CHK;
1145 } else {
1146 if (init != 0)
1147 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1148 PM_CFG_MAC_ASPM_CHK;
1149 else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1150 pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1151 }
1152 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1153 }
1154
1155 static void
1156 alc_attach(device_t parent, device_t self, void *aux)
1157 {
1158
1159 struct alc_softc *sc = device_private(self);
1160 struct pci_attach_args *pa = aux;
1161 pci_chipset_tag_t pc = pa->pa_pc;
1162 pci_intr_handle_t ih;
1163 const char *intrstr;
1164 struct ifnet *ifp;
1165 pcireg_t memtype;
1166 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1167 uint16_t burst;
1168 int base, mii_flags, state, error = 0;
1169 uint32_t cap, ctl, val;
1170 char intrbuf[PCI_INTRSTR_LEN];
1171
1172 sc->alc_ident = alc_find_ident(pa);
1173
1174 aprint_naive("\n");
1175 aprint_normal(": %s\n", sc->alc_ident->name);
1176
1177 sc->sc_dev = self;
1178 sc->sc_dmat = pa->pa_dmat;
1179 sc->sc_pct = pa->pa_pc;
1180 sc->sc_pcitag = pa->pa_tag;
1181
1182 /*
1183 * Allocate IO memory
1184 */
1185 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1186 switch (memtype) {
1187 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1188 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1189 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1190 break;
1191 default:
1192 aprint_error_dev(self, "invalid base address register\n");
1193 break;
1194 }
1195
1196 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1197 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1198 aprint_error_dev(self, "could not map mem space\n");
1199 return;
1200 }
1201
1202 if (pci_intr_map(pa, &ih) != 0) {
1203 printf(": can't map interrupt\n");
1204 goto fail;
1205 }
1206
1207 /*
1208 * Allocate IRQ
1209 */
1210 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1211 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
1212 if (sc->sc_irq_handle == NULL) {
1213 printf(": could not establish interrupt");
1214 if (intrstr != NULL)
1215 printf(" at %s", intrstr);
1216 printf("\n");
1217 goto fail;
1218 }
1219 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1220
1221 /* Set PHY address. */
1222 sc->alc_phyaddr = ALC_PHY_ADDR;
1223
1224 /* Initialize DMA parameters. */
1225 sc->alc_dma_rd_burst = 0;
1226 sc->alc_dma_wr_burst = 0;
1227 sc->alc_rcb = DMA_CFG_RCB_64;
1228 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1229 &base, NULL)) {
1230 sc->alc_flags |= ALC_FLAG_PCIE;
1231 sc->alc_expcap = base;
1232 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1233 base + PCIE_DCSR) >> 16;
1234 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1235 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1236 if (alcdebug) {
1237 printf("%s: Read request size : %u bytes.\n",
1238 device_xname(sc->sc_dev),
1239 alc_dma_burst[sc->alc_dma_rd_burst]);
1240 printf("%s: TLP payload size : %u bytes.\n",
1241 device_xname(sc->sc_dev),
1242 alc_dma_burst[sc->alc_dma_wr_burst]);
1243 }
1244 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1245 sc->alc_dma_rd_burst = 3;
1246 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1247 sc->alc_dma_wr_burst = 3;
1248
1249 /* Clear data link and flow-control protocol error. */
1250 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1251 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1252 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1253
1254 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1255 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1256 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1257 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1258 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1259 PCIE_PHYMISC_FORCE_RCV_DET);
1260 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1261 sc->alc_rev == ATHEROS_AR8152_B_V10) {
1262 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1263 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1264 PCIE_PHYMISC2_SERDES_TH_MASK);
1265 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1266 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1267 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1268 }
1269 /* Disable ASPM L0S and L1. */
1270 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1271 base + PCIE_LCAP) >> 16;
1272 if ((cap & PCIE_LCAP_ASPM) != 0) {
1273 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1274 base + PCIE_LCSR) >> 16;
1275 if ((ctl & 0x08) != 0)
1276 sc->alc_rcb = DMA_CFG_RCB_128;
1277 if (alcdebug)
1278 printf("%s: RCB %u bytes\n",
1279 device_xname(sc->sc_dev),
1280 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1281 state = ctl & 0x03;
1282 if (state & 0x01)
1283 sc->alc_flags |= ALC_FLAG_L0S;
1284 if (state & 0x02)
1285 sc->alc_flags |= ALC_FLAG_L1S;
1286 if (alcdebug)
1287 printf("%s: ASPM %s %s\n",
1288 device_xname(sc->sc_dev),
1289 aspm_state[state],
1290 state == 0 ? "disabled" : "enabled");
1291 alc_disable_l0s_l1(sc);
1292 } else {
1293 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1294 }
1295 } else {
1296 val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1297 val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1298 CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1299 val = CSR_READ_4(sc, ALC_MASTER_CFG);
1300 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1301 (sc->alc_rev & 0x01) != 0) {
1302 if ((val & MASTER_WAKEN_25M) == 0 ||
1303 (val & MASTER_CLK_SEL_DIS) == 0) {
1304 val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1305 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1306 }
1307 } else {
1308 if ((val & MASTER_WAKEN_25M) == 0 ||
1309 (val & MASTER_CLK_SEL_DIS) != 0) {
1310 val |= MASTER_WAKEN_25M;
1311 val &= ~MASTER_CLK_SEL_DIS;
1312 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1313 }
1314 }
1315 }
1316 alc_aspm(sc, 1, IFM_UNKNOWN);
1317 }
1318
1319 /* Reset PHY. */
1320 alc_phy_reset(sc);
1321
1322 /* Reset the ethernet controller. */
1323 alc_stop_mac(sc);
1324 alc_reset(sc);
1325
1326 /*
1327 * One odd thing is AR8132 uses the same PHY hardware(F1
1328 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1329 * the PHY supports 1000Mbps but that's not true. The PHY
1330 * used in AR8132 can't establish gigabit link even if it
1331 * shows the same PHY model/revision number of AR8131.
1332 */
1333 switch (sc->alc_ident->deviceid) {
1334 case PCI_PRODUCT_ATTANSIC_AR8161:
1335 if (PCI_SUBSYS_ID(pci_conf_read(
1336 sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1337 sc->alc_rev == 0)
1338 sc->alc_flags |= ALC_FLAG_LINK_WAR;
1339 /* FALLTHROUGH */
1340 case PCI_PRODUCT_ATTANSIC_E2200:
1341 case PCI_PRODUCT_ATTANSIC_AR8171:
1342 sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1343 break;
1344 case PCI_PRODUCT_ATTANSIC_AR8162:
1345 case PCI_PRODUCT_ATTANSIC_AR8172:
1346 sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1347 break;
1348 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1349 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1350 sc->alc_flags |= ALC_FLAG_APS;
1351 /* FALLTHROUGH */
1352 case PCI_PRODUCT_ATTANSIC_AR8132:
1353 sc->alc_flags |= ALC_FLAG_FASTETHER;
1354 break;
1355 case PCI_PRODUCT_ATTANSIC_AR8151:
1356 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1357 sc->alc_flags |= ALC_FLAG_APS;
1358 /* FALLTHROUGH */
1359 default:
1360 break;
1361 }
1362 sc->alc_flags |= ALC_FLAG_JUMBO;
1363
1364 /*
1365 * It seems that AR813x/AR815x has silicon bug for SMB. In
1366 * addition, Atheros said that enabling SMB wouldn't improve
1367 * performance. However I think it's bad to access lots of
1368 * registers to extract MAC statistics.
1369 */
1370 sc->alc_flags |= ALC_FLAG_SMB_BUG;
1371 /*
1372 * Don't use Tx CMB. It is known to have silicon bug.
1373 */
1374 sc->alc_flags |= ALC_FLAG_CMB_BUG;
1375 sc->alc_rev = PCI_REVISION(pa->pa_class);
1376 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1377 MASTER_CHIP_REV_SHIFT;
1378 if (alcdebug) {
1379 printf("%s: PCI device revision : 0x%04x\n",
1380 device_xname(sc->sc_dev), sc->alc_rev);
1381 printf("%s: Chip id/revision : 0x%04x\n",
1382 device_xname(sc->sc_dev), sc->alc_chip_rev);
1383 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1384 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1385 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1386 }
1387
1388 error = alc_dma_alloc(sc);
1389 if (error)
1390 goto fail;
1391
1392 callout_init(&sc->sc_tick_ch, 0);
1393 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1394
1395 /* Load station address. */
1396 alc_get_macaddr(sc);
1397
1398 aprint_normal_dev(self, "Ethernet address %s\n",
1399 ether_sprintf(sc->alc_eaddr));
1400
1401 ifp = &sc->sc_ec.ec_if;
1402 ifp->if_softc = sc;
1403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 ifp->if_init = alc_init;
1405 ifp->if_ioctl = alc_ioctl;
1406 ifp->if_start = alc_start;
1407 ifp->if_stop = alc_stop;
1408 ifp->if_watchdog = alc_watchdog;
1409 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1410 IFQ_SET_READY(&ifp->if_snd);
1411 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1412
1413 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1414
1415 #ifdef ALC_CHECKSUM
1416 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1417 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1418 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1419 #endif
1420
1421 #if NVLAN > 0
1422 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1423 #endif
1424
1425 /*
1426 * XXX
1427 * It seems enabling Tx checksum offloading makes more trouble.
1428 * Sometimes the controller does not receive any frames when
1429 * Tx checksum offloading is enabled. I'm not sure whether this
1430 * is a bug in Tx checksum offloading logic or I got broken
1431 * sample boards. To safety, don't enable Tx checksum offloading
1432 * by default but give chance to users to toggle it if they know
1433 * their controllers work without problems.
1434 * Fortunately, Tx checksum offloading for AR816x family
1435 * seems to work.
1436 */
1437 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1438 ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1439 ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1440 }
1441
1442 /* Set up MII bus. */
1443 sc->sc_miibus.mii_ifp = ifp;
1444 sc->sc_miibus.mii_readreg = alc_miibus_readreg;
1445 sc->sc_miibus.mii_writereg = alc_miibus_writereg;
1446 sc->sc_miibus.mii_statchg = alc_miibus_statchg;
1447
1448 sc->sc_ec.ec_mii = &sc->sc_miibus;
1449 ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
1450 alc_mediastatus);
1451 mii_flags = 0;
1452 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1453 mii_flags |= MIIF_DOPAUSE;
1454 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
1455 MII_OFFSET_ANY, mii_flags);
1456
1457 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
1458 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1459 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
1460 0, NULL);
1461 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
1462 } else
1463 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
1464
1465 if_attach(ifp);
1466 if_deferred_start_init(ifp, NULL);
1467 ether_ifattach(ifp, sc->alc_eaddr);
1468
1469 if (!pmf_device_register(self, NULL, NULL))
1470 aprint_error_dev(self, "couldn't establish power handler\n");
1471 else
1472 pmf_class_network_register(self, ifp);
1473
1474 return;
1475 fail:
1476 alc_dma_free(sc);
1477 if (sc->sc_irq_handle != NULL) {
1478 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1479 sc->sc_irq_handle = NULL;
1480 }
1481 if (sc->sc_mem_size) {
1482 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1483 sc->sc_mem_size = 0;
1484 }
1485 }
1486
1487 static int
1488 alc_detach(device_t self, int flags)
1489 {
1490 struct alc_softc *sc = device_private(self);
1491 struct ifnet *ifp = &sc->sc_ec.ec_if;
1492 int s;
1493
1494 s = splnet();
1495 alc_stop(ifp, 0);
1496 splx(s);
1497
1498 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1499
1500 /* Delete all remaining media. */
1501 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1502
1503 ether_ifdetach(ifp);
1504 if_detach(ifp);
1505 alc_dma_free(sc);
1506
1507 alc_phy_down(sc);
1508 if (sc->sc_irq_handle != NULL) {
1509 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1510 sc->sc_irq_handle = NULL;
1511 }
1512 if (sc->sc_mem_size) {
1513 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1514 sc->sc_mem_size = 0;
1515 }
1516
1517 return (0);
1518 }
1519
1520 static int
1521 alc_dma_alloc(struct alc_softc *sc)
1522 {
1523 struct alc_txdesc *txd;
1524 struct alc_rxdesc *rxd;
1525 int nsegs, error, i;
1526
1527 /*
1528 * Create DMA stuffs for TX ring
1529 */
1530 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1531 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1532 if (error) {
1533 sc->alc_cdata.alc_tx_ring_map = NULL;
1534 return (ENOBUFS);
1535 }
1536
1537 /* Allocate DMA'able memory for TX ring */
1538 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1539 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1540 &nsegs, BUS_DMA_NOWAIT);
1541 if (error) {
1542 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1543 device_xname(sc->sc_dev));
1544 return error;
1545 }
1546
1547 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1548 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1549 BUS_DMA_NOWAIT);
1550 if (error)
1551 return (ENOBUFS);
1552
1553 /* Load the DMA map for Tx ring. */
1554 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1555 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1556 if (error) {
1557 printf("%s: could not load DMA'able memory for Tx ring.\n",
1558 device_xname(sc->sc_dev));
1559 bus_dmamem_free(sc->sc_dmat,
1560 &sc->alc_rdata.alc_tx_ring_seg, 1);
1561 return error;
1562 }
1563
1564 sc->alc_rdata.alc_tx_ring_paddr =
1565 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1566
1567 /*
1568 * Create DMA stuffs for RX ring
1569 */
1570 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1571 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1572 if (error)
1573 return (ENOBUFS);
1574
1575 /* Allocate DMA'able memory for RX ring */
1576 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1577 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1578 &nsegs, BUS_DMA_NOWAIT);
1579 if (error) {
1580 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1581 device_xname(sc->sc_dev));
1582 return error;
1583 }
1584
1585 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1586 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1587 BUS_DMA_NOWAIT);
1588 if (error)
1589 return (ENOBUFS);
1590
1591 /* Load the DMA map for Rx ring. */
1592 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1593 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1594 if (error) {
1595 printf("%s: could not load DMA'able memory for Rx ring.\n",
1596 device_xname(sc->sc_dev));
1597 bus_dmamem_free(sc->sc_dmat,
1598 &sc->alc_rdata.alc_rx_ring_seg, 1);
1599 return error;
1600 }
1601
1602 sc->alc_rdata.alc_rx_ring_paddr =
1603 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1604
1605 /*
1606 * Create DMA stuffs for RX return ring
1607 */
1608 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1609 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1610 if (error)
1611 return (ENOBUFS);
1612
1613 /* Allocate DMA'able memory for RX return ring */
1614 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1615 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1616 &nsegs, BUS_DMA_NOWAIT);
1617 if (error) {
1618 printf("%s: could not allocate DMA'able memory for Rx "
1619 "return ring.\n", device_xname(sc->sc_dev));
1620 return error;
1621 }
1622
1623 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1624 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1625 BUS_DMA_NOWAIT);
1626 if (error)
1627 return (ENOBUFS);
1628
1629 /* Load the DMA map for Rx return ring. */
1630 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1631 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1632 if (error) {
1633 printf("%s: could not load DMA'able memory for Rx return ring."
1634 "\n", device_xname(sc->sc_dev));
1635 bus_dmamem_free(sc->sc_dmat,
1636 &sc->alc_rdata.alc_rr_ring_seg, 1);
1637 return error;
1638 }
1639
1640 sc->alc_rdata.alc_rr_ring_paddr =
1641 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1642
1643 /*
1644 * Create DMA stuffs for CMB block
1645 */
1646 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1647 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1648 &sc->alc_cdata.alc_cmb_map);
1649 if (error)
1650 return (ENOBUFS);
1651
1652 /* Allocate DMA'able memory for CMB block */
1653 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1654 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1655 &nsegs, BUS_DMA_NOWAIT);
1656 if (error) {
1657 printf("%s: could not allocate DMA'able memory for "
1658 "CMB block\n", device_xname(sc->sc_dev));
1659 return error;
1660 }
1661
1662 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1663 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1664 BUS_DMA_NOWAIT);
1665 if (error)
1666 return (ENOBUFS);
1667
1668 /* Load the DMA map for CMB block. */
1669 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1670 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1671 BUS_DMA_WAITOK);
1672 if (error) {
1673 printf("%s: could not load DMA'able memory for CMB block\n",
1674 device_xname(sc->sc_dev));
1675 bus_dmamem_free(sc->sc_dmat,
1676 &sc->alc_rdata.alc_cmb_seg, 1);
1677 return error;
1678 }
1679
1680 sc->alc_rdata.alc_cmb_paddr =
1681 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1682
1683 /*
1684 * Create DMA stuffs for SMB block
1685 */
1686 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1687 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1688 &sc->alc_cdata.alc_smb_map);
1689 if (error)
1690 return (ENOBUFS);
1691
1692 /* Allocate DMA'able memory for SMB block */
1693 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1694 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1695 &nsegs, BUS_DMA_NOWAIT);
1696 if (error) {
1697 printf("%s: could not allocate DMA'able memory for "
1698 "SMB block\n", device_xname(sc->sc_dev));
1699 return error;
1700 }
1701
1702 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1703 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1704 BUS_DMA_NOWAIT);
1705 if (error)
1706 return (ENOBUFS);
1707
1708 /* Load the DMA map for SMB block */
1709 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1710 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1711 BUS_DMA_WAITOK);
1712 if (error) {
1713 printf("%s: could not load DMA'able memory for SMB block\n",
1714 device_xname(sc->sc_dev));
1715 bus_dmamem_free(sc->sc_dmat,
1716 &sc->alc_rdata.alc_smb_seg, 1);
1717 return error;
1718 }
1719
1720 sc->alc_rdata.alc_smb_paddr =
1721 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1722
1723
1724 /* Create DMA maps for Tx buffers. */
1725 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1726 txd = &sc->alc_cdata.alc_txdesc[i];
1727 txd->tx_m = NULL;
1728 txd->tx_dmamap = NULL;
1729 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1730 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1731 &txd->tx_dmamap);
1732 if (error) {
1733 printf("%s: could not create Tx dmamap.\n",
1734 device_xname(sc->sc_dev));
1735 return error;
1736 }
1737 }
1738
1739 /* Create DMA maps for Rx buffers. */
1740 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1741 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1742 if (error) {
1743 printf("%s: could not create spare Rx dmamap.\n",
1744 device_xname(sc->sc_dev));
1745 return error;
1746 }
1747
1748 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1749 rxd = &sc->alc_cdata.alc_rxdesc[i];
1750 rxd->rx_m = NULL;
1751 rxd->rx_dmamap = NULL;
1752 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1753 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1754 if (error) {
1755 printf("%s: could not create Rx dmamap.\n",
1756 device_xname(sc->sc_dev));
1757 return error;
1758 }
1759 }
1760
1761 return (0);
1762 }
1763
1764
1765 static void
1766 alc_dma_free(struct alc_softc *sc)
1767 {
1768 struct alc_txdesc *txd;
1769 struct alc_rxdesc *rxd;
1770 int i;
1771
1772 /* Tx buffers */
1773 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1774 txd = &sc->alc_cdata.alc_txdesc[i];
1775 if (txd->tx_dmamap != NULL) {
1776 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1777 txd->tx_dmamap = NULL;
1778 }
1779 }
1780 /* Rx buffers */
1781 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1782 rxd = &sc->alc_cdata.alc_rxdesc[i];
1783 if (rxd->rx_dmamap != NULL) {
1784 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1785 rxd->rx_dmamap = NULL;
1786 }
1787 }
1788 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1789 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1790 sc->alc_cdata.alc_rx_sparemap = NULL;
1791 }
1792
1793 /* Tx ring. */
1794 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1795 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1796 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1797 sc->alc_rdata.alc_tx_ring != NULL)
1798 bus_dmamem_free(sc->sc_dmat,
1799 &sc->alc_rdata.alc_tx_ring_seg, 1);
1800 sc->alc_rdata.alc_tx_ring = NULL;
1801 sc->alc_cdata.alc_tx_ring_map = NULL;
1802
1803 /* Rx ring. */
1804 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1805 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1806 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1807 sc->alc_rdata.alc_rx_ring != NULL)
1808 bus_dmamem_free(sc->sc_dmat,
1809 &sc->alc_rdata.alc_rx_ring_seg, 1);
1810 sc->alc_rdata.alc_rx_ring = NULL;
1811 sc->alc_cdata.alc_rx_ring_map = NULL;
1812
1813 /* Rx return ring. */
1814 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1815 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1816 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1817 sc->alc_rdata.alc_rr_ring != NULL)
1818 bus_dmamem_free(sc->sc_dmat,
1819 &sc->alc_rdata.alc_rr_ring_seg, 1);
1820 sc->alc_rdata.alc_rr_ring = NULL;
1821 sc->alc_cdata.alc_rr_ring_map = NULL;
1822
1823 /* CMB block */
1824 if (sc->alc_cdata.alc_cmb_map != NULL)
1825 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1826 if (sc->alc_cdata.alc_cmb_map != NULL &&
1827 sc->alc_rdata.alc_cmb != NULL)
1828 bus_dmamem_free(sc->sc_dmat,
1829 &sc->alc_rdata.alc_cmb_seg, 1);
1830 sc->alc_rdata.alc_cmb = NULL;
1831 sc->alc_cdata.alc_cmb_map = NULL;
1832
1833 /* SMB block */
1834 if (sc->alc_cdata.alc_smb_map != NULL)
1835 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1836 if (sc->alc_cdata.alc_smb_map != NULL &&
1837 sc->alc_rdata.alc_smb != NULL)
1838 bus_dmamem_free(sc->sc_dmat,
1839 &sc->alc_rdata.alc_smb_seg, 1);
1840 sc->alc_rdata.alc_smb = NULL;
1841 sc->alc_cdata.alc_smb_map = NULL;
1842 }
1843
1844 static int
1845 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1846 {
1847 struct alc_txdesc *txd, *txd_last;
1848 struct tx_desc *desc;
1849 struct mbuf *m;
1850 bus_dmamap_t map;
1851 uint32_t cflags, poff, vtag;
1852 int error, idx, nsegs, prod;
1853
1854 m = *m_head;
1855 cflags = vtag = 0;
1856 poff = 0;
1857
1858 prod = sc->alc_cdata.alc_tx_prod;
1859 txd = &sc->alc_cdata.alc_txdesc[prod];
1860 txd_last = txd;
1861 map = txd->tx_dmamap;
1862
1863 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1864
1865 if (error == EFBIG) {
1866 error = 0;
1867
1868 *m_head = m_pullup(*m_head, MHLEN);
1869 if (*m_head == NULL) {
1870 printf("%s: can't defrag TX mbuf\n",
1871 device_xname(sc->sc_dev));
1872 return ENOBUFS;
1873 }
1874
1875 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1876 BUS_DMA_NOWAIT);
1877
1878 if (error != 0) {
1879 printf("%s: could not load defragged TX mbuf\n",
1880 device_xname(sc->sc_dev));
1881 m_freem(*m_head);
1882 *m_head = NULL;
1883 return error;
1884 }
1885 } else if (error) {
1886 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1887 return (error);
1888 }
1889
1890 nsegs = map->dm_nsegs;
1891
1892 if (nsegs == 0) {
1893 m_freem(*m_head);
1894 *m_head = NULL;
1895 return (EIO);
1896 }
1897
1898 /* Check descriptor overrun. */
1899 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1900 bus_dmamap_unload(sc->sc_dmat, map);
1901 return (ENOBUFS);
1902 }
1903 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1904 BUS_DMASYNC_PREWRITE);
1905
1906 m = *m_head;
1907 desc = NULL;
1908 idx = 0;
1909 #if NVLAN > 0
1910 /* Configure VLAN hardware tag insertion. */
1911 if (vlan_has_tag(m)) {
1912 vtag = htons(vlan_get_tag(m));
1913 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1914 cflags |= TD_INS_VLAN_TAG;
1915 }
1916 #endif
1917 /* Configure Tx checksum offload. */
1918 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1919 cflags |= TD_CUSTOM_CSUM;
1920 /* Set checksum start offset. */
1921 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1922 TD_PLOAD_OFFSET_MASK;
1923 }
1924 for (; idx < nsegs; idx++) {
1925 desc = &sc->alc_rdata.alc_tx_ring[prod];
1926 desc->len =
1927 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1928 desc->flags = htole32(cflags);
1929 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1930 sc->alc_cdata.alc_tx_cnt++;
1931 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1932 }
1933 /* Update producer index. */
1934 sc->alc_cdata.alc_tx_prod = prod;
1935
1936 /* Finally set EOP on the last descriptor. */
1937 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1938 desc = &sc->alc_rdata.alc_tx_ring[prod];
1939 desc->flags |= htole32(TD_EOP);
1940
1941 /* Swap dmamap of the first and the last. */
1942 txd = &sc->alc_cdata.alc_txdesc[prod];
1943 map = txd_last->tx_dmamap;
1944 txd_last->tx_dmamap = txd->tx_dmamap;
1945 txd->tx_dmamap = map;
1946 txd->tx_m = m;
1947
1948 return (0);
1949 }
1950
1951 static void
1952 alc_start(struct ifnet *ifp)
1953 {
1954 struct alc_softc *sc = ifp->if_softc;
1955 struct mbuf *m_head;
1956 int enq;
1957
1958 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1959 return;
1960 if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
1961 return;
1962 if (IFQ_IS_EMPTY(&ifp->if_snd))
1963 return;
1964
1965 /* Reclaim transmitted frames. */
1966 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1967 alc_txeof(sc);
1968
1969 enq = 0;
1970 for (;;) {
1971 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1972 if (m_head == NULL)
1973 break;
1974
1975 /*
1976 * Pack the data into the transmit ring. If we
1977 * don't have room, set the OACTIVE flag and wait
1978 * for the NIC to drain the ring.
1979 */
1980 if (alc_encap(sc, &m_head)) {
1981 if (m_head == NULL)
1982 break;
1983 ifp->if_flags |= IFF_OACTIVE;
1984 break;
1985 }
1986 enq = 1;
1987
1988 /*
1989 * If there's a BPF listener, bounce a copy of this frame
1990 * to him.
1991 */
1992 bpf_mtap(ifp, m_head, BPF_D_OUT);
1993 }
1994
1995 if (enq) {
1996 /* Sync descriptors. */
1997 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1998 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1999 BUS_DMASYNC_PREWRITE);
2000 /* Kick. Assume we're using normal Tx priority queue. */
2001 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2002 (sc->alc_cdata.alc_tx_prod <<
2003 MBOX_TD_PROD_LO_IDX_SHIFT) &
2004 MBOX_TD_PROD_LO_IDX_MASK);
2005 /* Set a timeout in case the chip goes out to lunch. */
2006 ifp->if_timer = ALC_TX_TIMEOUT;
2007 }
2008 }
2009
2010 static void
2011 alc_watchdog(struct ifnet *ifp)
2012 {
2013 struct alc_softc *sc = ifp->if_softc;
2014
2015 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2016 printf("%s: watchdog timeout (missed link)\n",
2017 device_xname(sc->sc_dev));
2018 ifp->if_oerrors++;
2019 alc_init_backend(ifp, false);
2020 return;
2021 }
2022
2023 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2024 ifp->if_oerrors++;
2025 alc_init_backend(ifp, false);
2026 alc_start(ifp);
2027 }
2028
2029 static int
2030 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2031 {
2032 struct alc_softc *sc = ifp->if_softc;
2033 struct mii_data *mii = &sc->sc_miibus;
2034 struct ifreq *ifr = (struct ifreq *)data;
2035 int s, error = 0;
2036
2037 s = splnet();
2038
2039 error = ether_ioctl(ifp, cmd, data);
2040 switch (cmd) {
2041 case SIOCSIFADDR:
2042 ifp->if_flags |= IFF_UP;
2043 if (!(ifp->if_flags & IFF_RUNNING))
2044 alc_init(ifp);
2045 break;
2046
2047 case SIOCSIFFLAGS:
2048 if (ifp->if_flags & IFF_UP) {
2049 if (ifp->if_flags & IFF_RUNNING)
2050 error = ENETRESET;
2051 else
2052 alc_init(ifp);
2053 } else {
2054 if (ifp->if_flags & IFF_RUNNING)
2055 alc_stop(ifp, 0);
2056 }
2057 break;
2058
2059 case SIOCSIFMEDIA:
2060 case SIOCGIFMEDIA:
2061 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2062 break;
2063
2064 default:
2065 error = ether_ioctl(ifp, cmd, data);
2066 break;
2067 }
2068
2069 if (error == ENETRESET) {
2070 if (ifp->if_flags & IFF_RUNNING)
2071 alc_iff(sc);
2072 error = 0;
2073 }
2074
2075 splx(s);
2076 return (error);
2077 }
2078
2079 static void
2080 alc_mac_config(struct alc_softc *sc)
2081 {
2082 struct mii_data *mii;
2083 uint32_t reg;
2084
2085 mii = &sc->sc_miibus;
2086 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2087 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2088 MAC_CFG_SPEED_MASK);
2089 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2090 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2091 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2092 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2093 /* Reprogram MAC with resolved speed/duplex. */
2094 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2095 case IFM_10_T:
2096 case IFM_100_TX:
2097 reg |= MAC_CFG_SPEED_10_100;
2098 break;
2099 case IFM_1000_T:
2100 reg |= MAC_CFG_SPEED_1000;
2101 break;
2102 }
2103 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2104 reg |= MAC_CFG_FULL_DUPLEX;
2105 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2106 reg |= MAC_CFG_TX_FC;
2107 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2108 reg |= MAC_CFG_RX_FC;
2109 }
2110 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2111 }
2112
2113 static void
2114 alc_stats_clear(struct alc_softc *sc)
2115 {
2116 struct smb sb, *smb;
2117 uint32_t *reg;
2118 int i;
2119
2120 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2121 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2122 sc->alc_cdata.alc_smb_map->dm_mapsize,
2123 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2124 smb = sc->alc_rdata.alc_smb;
2125 /* Update done, clear. */
2126 smb->updated = 0;
2127 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2128 sc->alc_cdata.alc_smb_map->dm_mapsize,
2129 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2130 } else {
2131 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2132 reg++) {
2133 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2134 i += sizeof(uint32_t);
2135 }
2136 /* Read Tx statistics. */
2137 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2138 reg++) {
2139 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2140 i += sizeof(uint32_t);
2141 }
2142 }
2143 }
2144
2145 static void
2146 alc_stats_update(struct alc_softc *sc)
2147 {
2148 struct ifnet *ifp = &sc->sc_ec.ec_if;
2149 struct alc_hw_stats *stat;
2150 struct smb sb, *smb;
2151 uint32_t *reg;
2152 int i;
2153
2154 stat = &sc->alc_stats;
2155 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2156 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2157 sc->alc_cdata.alc_smb_map->dm_mapsize,
2158 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2159 smb = sc->alc_rdata.alc_smb;
2160 if (smb->updated == 0)
2161 return;
2162 } else {
2163 smb = &sb;
2164 /* Read Rx statistics. */
2165 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2166 reg++) {
2167 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2168 i += sizeof(uint32_t);
2169 }
2170 /* Read Tx statistics. */
2171 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2172 reg++) {
2173 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2174 i += sizeof(uint32_t);
2175 }
2176 }
2177
2178 /* Rx stats. */
2179 stat->rx_frames += smb->rx_frames;
2180 stat->rx_bcast_frames += smb->rx_bcast_frames;
2181 stat->rx_mcast_frames += smb->rx_mcast_frames;
2182 stat->rx_pause_frames += smb->rx_pause_frames;
2183 stat->rx_control_frames += smb->rx_control_frames;
2184 stat->rx_crcerrs += smb->rx_crcerrs;
2185 stat->rx_lenerrs += smb->rx_lenerrs;
2186 stat->rx_bytes += smb->rx_bytes;
2187 stat->rx_runts += smb->rx_runts;
2188 stat->rx_fragments += smb->rx_fragments;
2189 stat->rx_pkts_64 += smb->rx_pkts_64;
2190 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2191 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2192 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2193 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2194 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2195 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2196 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2197 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2198 stat->rx_rrs_errs += smb->rx_rrs_errs;
2199 stat->rx_alignerrs += smb->rx_alignerrs;
2200 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2201 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2202 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2203
2204 /* Tx stats. */
2205 stat->tx_frames += smb->tx_frames;
2206 stat->tx_bcast_frames += smb->tx_bcast_frames;
2207 stat->tx_mcast_frames += smb->tx_mcast_frames;
2208 stat->tx_pause_frames += smb->tx_pause_frames;
2209 stat->tx_excess_defer += smb->tx_excess_defer;
2210 stat->tx_control_frames += smb->tx_control_frames;
2211 stat->tx_deferred += smb->tx_deferred;
2212 stat->tx_bytes += smb->tx_bytes;
2213 stat->tx_pkts_64 += smb->tx_pkts_64;
2214 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2215 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2216 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2217 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2218 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2219 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2220 stat->tx_single_colls += smb->tx_single_colls;
2221 stat->tx_multi_colls += smb->tx_multi_colls;
2222 stat->tx_late_colls += smb->tx_late_colls;
2223 stat->tx_excess_colls += smb->tx_excess_colls;
2224 stat->tx_underrun += smb->tx_underrun;
2225 stat->tx_desc_underrun += smb->tx_desc_underrun;
2226 stat->tx_lenerrs += smb->tx_lenerrs;
2227 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2228 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2229 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2230
2231 /* Update counters in ifnet. */
2232 ifp->if_opackets += smb->tx_frames;
2233
2234 ifp->if_collisions += smb->tx_single_colls +
2235 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2236 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2237
2238 ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2239 smb->tx_underrun + smb->tx_pkts_truncated;
2240
2241 ifp->if_ipackets += smb->rx_frames;
2242
2243 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2244 smb->rx_runts + smb->rx_pkts_truncated +
2245 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2246 smb->rx_alignerrs;
2247
2248 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2249 /* Update done, clear. */
2250 smb->updated = 0;
2251 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2252 sc->alc_cdata.alc_smb_map->dm_mapsize,
2253 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2254 }
2255 }
2256
2257 static int
2258 alc_intr(void *arg)
2259 {
2260 struct alc_softc *sc = arg;
2261 struct ifnet *ifp = &sc->sc_ec.ec_if;
2262 uint32_t status;
2263
2264 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2265 if ((status & ALC_INTRS) == 0)
2266 return (0);
2267
2268 /* Acknowledge and disable interrupts. */
2269 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2270
2271 if (ifp->if_flags & IFF_RUNNING) {
2272 if (status & INTR_RX_PKT) {
2273 int error;
2274
2275 error = alc_rxintr(sc);
2276 if (error) {
2277 alc_init_backend(ifp, false);
2278 return (0);
2279 }
2280 }
2281
2282 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2283 INTR_TXQ_TO_RST)) {
2284 if (status & INTR_DMA_RD_TO_RST)
2285 printf("%s: DMA read error! -- resetting\n",
2286 device_xname(sc->sc_dev));
2287 if (status & INTR_DMA_WR_TO_RST)
2288 printf("%s: DMA write error! -- resetting\n",
2289 device_xname(sc->sc_dev));
2290 if (status & INTR_TXQ_TO_RST)
2291 printf("%s: TxQ reset! -- resetting\n",
2292 device_xname(sc->sc_dev));
2293 alc_init_backend(ifp, false);
2294 return (0);
2295 }
2296
2297 alc_txeof(sc);
2298 if_schedule_deferred_start(ifp);
2299 }
2300
2301 /* Re-enable interrupts. */
2302 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2303 return (1);
2304 }
2305
2306 static void
2307 alc_txeof(struct alc_softc *sc)
2308 {
2309 struct ifnet *ifp = &sc->sc_ec.ec_if;
2310 struct alc_txdesc *txd;
2311 uint32_t cons, prod;
2312 int prog;
2313
2314 if (sc->alc_cdata.alc_tx_cnt == 0)
2315 return;
2316 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2317 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2318 BUS_DMASYNC_POSTREAD);
2319 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2320 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2321 sc->alc_cdata.alc_cmb_map->dm_mapsize,
2322 BUS_DMASYNC_POSTREAD);
2323 prod = sc->alc_rdata.alc_cmb->cons;
2324 } else
2325 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2326 /* Assume we're using normal Tx priority queue. */
2327 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2328 MBOX_TD_CONS_LO_IDX_SHIFT;
2329 cons = sc->alc_cdata.alc_tx_cons;
2330 /*
2331 * Go through our Tx list and free mbufs for those
2332 * frames which have been transmitted.
2333 */
2334 for (prog = 0; cons != prod; prog++,
2335 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2336 if (sc->alc_cdata.alc_tx_cnt <= 0)
2337 break;
2338 prog++;
2339 ifp->if_flags &= ~IFF_OACTIVE;
2340 sc->alc_cdata.alc_tx_cnt--;
2341 txd = &sc->alc_cdata.alc_txdesc[cons];
2342 if (txd->tx_m != NULL) {
2343 /* Reclaim transmitted mbufs. */
2344 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2345 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2346 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2347 m_freem(txd->tx_m);
2348 txd->tx_m = NULL;
2349 }
2350 }
2351
2352 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2353 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2354 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2355 sc->alc_cdata.alc_tx_cons = cons;
2356 /*
2357 * Unarm watchdog timer only when there is no pending
2358 * frames in Tx queue.
2359 */
2360 if (sc->alc_cdata.alc_tx_cnt == 0)
2361 ifp->if_timer = 0;
2362 }
2363
2364 static int
2365 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2366 {
2367 struct mbuf *m;
2368 bus_dmamap_t map;
2369 int error;
2370
2371 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2372 if (m == NULL)
2373 return (ENOBUFS);
2374 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2375 if (!(m->m_flags & M_EXT)) {
2376 m_freem(m);
2377 return (ENOBUFS);
2378 }
2379
2380 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2381
2382 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2383 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2384
2385 if (error != 0) {
2386 m_freem(m);
2387
2388 if (init)
2389 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2390
2391 return (error);
2392 }
2393
2394 if (rxd->rx_m != NULL) {
2395 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2396 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2397 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2398 }
2399 map = rxd->rx_dmamap;
2400 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2401 sc->alc_cdata.alc_rx_sparemap = map;
2402 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2403 BUS_DMASYNC_PREREAD);
2404 rxd->rx_m = m;
2405 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2406 return (0);
2407 }
2408
2409 static int
2410 alc_rxintr(struct alc_softc *sc)
2411 {
2412 struct ifnet *ifp = &sc->sc_ec.ec_if;
2413 struct rx_rdesc *rrd;
2414 uint32_t nsegs, status;
2415 int rr_cons, prog;
2416
2417 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2418 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2419 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2420 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2421 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2422 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2423 rr_cons = sc->alc_cdata.alc_rr_cons;
2424 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2425 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2426 status = le32toh(rrd->status);
2427 if ((status & RRD_VALID) == 0)
2428 break;
2429 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2430 if (nsegs == 0) {
2431 /* This should not happen! */
2432 if (alcdebug)
2433 printf("%s: unexpected segment count -- "
2434 "resetting\n", device_xname(sc->sc_dev));
2435 return (EIO);
2436 }
2437 alc_rxeof(sc, rrd);
2438 /* Clear Rx return status. */
2439 rrd->status = 0;
2440 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2441 sc->alc_cdata.alc_rx_cons += nsegs;
2442 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2443 prog += nsegs;
2444 }
2445
2446 if (prog > 0) {
2447 /* Update the consumer index. */
2448 sc->alc_cdata.alc_rr_cons = rr_cons;
2449 /* Sync Rx return descriptors. */
2450 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2451 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2452 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2453 /*
2454 * Sync updated Rx descriptors such that controller see
2455 * modified buffer addresses.
2456 */
2457 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2458 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2459 BUS_DMASYNC_PREWRITE);
2460 /*
2461 * Let controller know availability of new Rx buffers.
2462 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2463 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2464 * only when Rx buffer pre-fetching is required. In
2465 * addition we already set ALC_RX_RD_FREE_THRESH to
2466 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2467 * it still seems that pre-fetching needs more
2468 * experimentation.
2469 */
2470 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2471 sc->alc_cdata.alc_rx_cons);
2472 }
2473
2474 return (0);
2475 }
2476
2477 /* Receive a frame. */
2478 static void
2479 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2480 {
2481 struct ifnet *ifp = &sc->sc_ec.ec_if;
2482 struct alc_rxdesc *rxd;
2483 struct mbuf *mp, *m;
2484 uint32_t rdinfo, status;
2485 int count, nsegs, rx_cons;
2486
2487 status = le32toh(rrd->status);
2488 rdinfo = le32toh(rrd->rdinfo);
2489 rx_cons = RRD_RD_IDX(rdinfo);
2490 nsegs = RRD_RD_CNT(rdinfo);
2491
2492 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2493 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2494 /*
2495 * We want to pass the following frames to upper
2496 * layer regardless of error status of Rx return
2497 * ring.
2498 *
2499 * o IP/TCP/UDP checksum is bad.
2500 * o frame length and protocol specific length
2501 * does not match.
2502 *
2503 * Force network stack compute checksum for
2504 * errored frames.
2505 */
2506 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2507 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2508 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2509 return;
2510 }
2511
2512 for (count = 0; count < nsegs; count++,
2513 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2514 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2515 mp = rxd->rx_m;
2516 /* Add a new receive buffer to the ring. */
2517 if (alc_newbuf(sc, rxd, false) != 0) {
2518 ifp->if_iqdrops++;
2519 /* Reuse Rx buffers. */
2520 if (sc->alc_cdata.alc_rxhead != NULL)
2521 m_freem(sc->alc_cdata.alc_rxhead);
2522 break;
2523 }
2524
2525 /*
2526 * Assume we've received a full sized frame.
2527 * Actual size is fixed when we encounter the end of
2528 * multi-segmented frame.
2529 */
2530 mp->m_len = sc->alc_buf_size;
2531
2532 /* Chain received mbufs. */
2533 if (sc->alc_cdata.alc_rxhead == NULL) {
2534 sc->alc_cdata.alc_rxhead = mp;
2535 sc->alc_cdata.alc_rxtail = mp;
2536 } else {
2537 m_remove_pkthdr(mp);
2538 sc->alc_cdata.alc_rxprev_tail =
2539 sc->alc_cdata.alc_rxtail;
2540 sc->alc_cdata.alc_rxtail->m_next = mp;
2541 sc->alc_cdata.alc_rxtail = mp;
2542 }
2543
2544 if (count == nsegs - 1) {
2545 /* Last desc. for this frame. */
2546 m = sc->alc_cdata.alc_rxhead;
2547 KASSERT(m->m_flags & M_PKTHDR);
2548 /*
2549 * It seems that L1C/L2C controller has no way
2550 * to tell hardware to strip CRC bytes.
2551 */
2552 m->m_pkthdr.len =
2553 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2554 if (nsegs > 1) {
2555 /* Set last mbuf size. */
2556 mp->m_len = sc->alc_cdata.alc_rxlen -
2557 (nsegs - 1) * sc->alc_buf_size;
2558 /* Remove the CRC bytes in chained mbufs. */
2559 if (mp->m_len <= ETHER_CRC_LEN) {
2560 sc->alc_cdata.alc_rxtail =
2561 sc->alc_cdata.alc_rxprev_tail;
2562 sc->alc_cdata.alc_rxtail->m_len -=
2563 (ETHER_CRC_LEN - mp->m_len);
2564 sc->alc_cdata.alc_rxtail->m_next = NULL;
2565 m_freem(mp);
2566 } else {
2567 mp->m_len -= ETHER_CRC_LEN;
2568 }
2569 } else
2570 m->m_len = m->m_pkthdr.len;
2571 m_set_rcvif(m, ifp);
2572 #if NVLAN > 0
2573 /*
2574 * Due to hardware bugs, Rx checksum offloading
2575 * was intentionally disabled.
2576 */
2577 if (status & RRD_VLAN_TAG) {
2578 u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2579 vlan_set_tag(m, ntohs(vtag));
2580 }
2581 #endif
2582
2583 /* Pass it on. */
2584 if_percpuq_enqueue(ifp->if_percpuq, m);
2585 }
2586 }
2587 /* Reset mbuf chains. */
2588 ALC_RXCHAIN_RESET(sc);
2589 }
2590
2591 static void
2592 alc_tick(void *xsc)
2593 {
2594 struct alc_softc *sc = xsc;
2595 struct mii_data *mii = &sc->sc_miibus;
2596 int s;
2597
2598 s = splnet();
2599 mii_tick(mii);
2600 alc_stats_update(sc);
2601 splx(s);
2602
2603 callout_schedule(&sc->sc_tick_ch, hz);
2604 }
2605
2606 static void
2607 alc_osc_reset(struct alc_softc *sc)
2608 {
2609 uint32_t reg;
2610
2611 reg = CSR_READ_4(sc, ALC_MISC3);
2612 reg &= ~MISC3_25M_BY_SW;
2613 reg |= MISC3_25M_NOTO_INTNL;
2614 CSR_WRITE_4(sc, ALC_MISC3, reg);
2615
2616 reg = CSR_READ_4(sc, ALC_MISC);
2617 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2618 /*
2619 * Restore over-current protection default value.
2620 * This value could be reset by MAC reset.
2621 */
2622 reg &= ~MISC_PSW_OCP_MASK;
2623 reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2624 reg &= ~MISC_INTNLOSC_OPEN;
2625 CSR_WRITE_4(sc, ALC_MISC, reg);
2626 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2627 reg = CSR_READ_4(sc, ALC_MISC2);
2628 reg &= ~MISC2_CALB_START;
2629 CSR_WRITE_4(sc, ALC_MISC2, reg);
2630 CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2631
2632 } else {
2633 reg &= ~MISC_INTNLOSC_OPEN;
2634 /* Disable isolate for revision A devices. */
2635 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2636 reg &= ~MISC_ISO_ENB;
2637 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2638 CSR_WRITE_4(sc, ALC_MISC, reg);
2639 }
2640
2641 DELAY(20);
2642 }
2643
2644 static void
2645 alc_reset(struct alc_softc *sc)
2646 {
2647 uint32_t pmcfg, reg;
2648 int i;
2649
2650 pmcfg = 0;
2651 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2652 /* Reset workaround. */
2653 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2654 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2655 (sc->alc_rev & 0x01) != 0) {
2656 /* Disable L0s/L1s before reset. */
2657 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2658 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2659 != 0) {
2660 pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2661 PM_CFG_ASPM_L1_ENB);
2662 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2663 }
2664 }
2665 }
2666 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2667 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2668 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2669
2670 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2671 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2672 DELAY(10);
2673 if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2674 break;
2675 }
2676 if (i == 0)
2677 printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2678 }
2679 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2680 DELAY(10);
2681 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2682 break;
2683 }
2684 if (i == 0)
2685 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2686
2687 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2688 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2689 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2690 IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2691 break;
2692 DELAY(10);
2693 }
2694 if (i == 0)
2695 printf("%s: reset timeout(0x%08x)!\n",
2696 device_xname(sc->sc_dev), reg);
2697
2698 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2699 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2700 (sc->alc_rev & 0x01) != 0) {
2701 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2702 reg |= MASTER_CLK_SEL_DIS;
2703 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2704 /* Restore L0s/L1s config. */
2705 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2706 != 0)
2707 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2708 }
2709
2710 alc_osc_reset(sc);
2711 reg = CSR_READ_4(sc, ALC_MISC3);
2712 reg &= ~MISC3_25M_BY_SW;
2713 reg |= MISC3_25M_NOTO_INTNL;
2714 CSR_WRITE_4(sc, ALC_MISC3, reg);
2715 reg = CSR_READ_4(sc, ALC_MISC);
2716 reg &= ~MISC_INTNLOSC_OPEN;
2717 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2718 reg &= ~MISC_ISO_ENB;
2719 CSR_WRITE_4(sc, ALC_MISC, reg);
2720 DELAY(20);
2721 }
2722 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2723 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2724 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2725 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2726 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2727 SERDES_PHY_CLK_SLOWDOWN);
2728 }
2729
2730 static int
2731 alc_init(struct ifnet *ifp)
2732 {
2733
2734 return alc_init_backend(ifp, true);
2735 }
2736
2737 static int
2738 alc_init_backend(struct ifnet *ifp, bool init)
2739 {
2740 struct alc_softc *sc = ifp->if_softc;
2741 struct mii_data *mii;
2742 uint8_t eaddr[ETHER_ADDR_LEN];
2743 bus_addr_t paddr;
2744 uint32_t reg, rxf_hi, rxf_lo;
2745 int error;
2746
2747 /*
2748 * Cancel any pending I/O.
2749 */
2750 alc_stop(ifp, 0);
2751 /*
2752 * Reset the chip to a known state.
2753 */
2754 alc_reset(sc);
2755
2756 /* Initialize Rx descriptors. */
2757 error = alc_init_rx_ring(sc, init);
2758 if (error != 0) {
2759 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2760 alc_stop(ifp, 0);
2761 return (error);
2762 }
2763 alc_init_rr_ring(sc);
2764 alc_init_tx_ring(sc);
2765 alc_init_cmb(sc);
2766 alc_init_smb(sc);
2767
2768 /* Enable all clocks. */
2769 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2770 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2771 CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2772 CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2773 CLK_GATING_RXMAC_ENB);
2774 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2775 CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2776 IDLE_DECISN_TIMER_DEFAULT_1MS);
2777 } else
2778 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2779
2780
2781 /* Reprogram the station address. */
2782 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2783 CSR_WRITE_4(sc, ALC_PAR0,
2784 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2785 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2786 /*
2787 * Clear WOL status and disable all WOL feature as WOL
2788 * would interfere Rx operation under normal environments.
2789 */
2790 CSR_READ_4(sc, ALC_WOL_CFG);
2791 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2792 /* Set Tx descriptor base addresses. */
2793 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2794 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2795 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2796 /* We don't use high priority ring. */
2797 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2798 /* Set Tx descriptor counter. */
2799 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2800 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2801 /* Set Rx descriptor base addresses. */
2802 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2803 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2804 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2805 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2806 /* We use one Rx ring. */
2807 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2808 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2809 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2810 }
2811 /* Set Rx descriptor counter. */
2812 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2813 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2814
2815 /*
2816 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2817 * if it do not fit the buffer size. Rx return descriptor holds
2818 * a counter that indicates how many fragments were made by the
2819 * hardware. The buffer size should be multiple of 8 bytes.
2820 * Since hardware has limit on the size of buffer size, always
2821 * use the maximum value.
2822 * For strict-alignment architectures make sure to reduce buffer
2823 * size by 8 bytes to make room for alignment fixup.
2824 */
2825 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2826 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2827
2828 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2829 /* Set Rx return descriptor base addresses. */
2830 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2831 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2832 /* We use one Rx return ring. */
2833 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2834 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2835 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2836 }\
2837 /* Set Rx return descriptor counter. */
2838 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2839 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2840 paddr = sc->alc_rdata.alc_cmb_paddr;
2841 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2842 paddr = sc->alc_rdata.alc_smb_paddr;
2843 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2844 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2845
2846 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2847 /* Reconfigure SRAM - Vendor magic. */
2848 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2849 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2850 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2851 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2852 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2853 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2854 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2855 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2856 }
2857
2858 /* Tell hardware that we're ready to load DMA blocks. */
2859 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2860
2861 /* Configure interrupt moderation timer. */
2862 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2863 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2864 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2865 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2866 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2867 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2868 /*
2869 * We don't want to automatic interrupt clear as task queue
2870 * for the interrupt should know interrupt status.
2871 */
2872 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2873 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2874 reg |= MASTER_SA_TIMER_ENB;
2875 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2876 reg |= MASTER_IM_RX_TIMER_ENB;
2877 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2878 ALC_USECS(sc->alc_int_tx_mod) != 0)
2879 reg |= MASTER_IM_TX_TIMER_ENB;
2880 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2881 /*
2882 * Disable interrupt re-trigger timer. We don't want automatic
2883 * re-triggering of un-ACKed interrupts.
2884 */
2885 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2886 /* Configure CMB. */
2887 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2888 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2889 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2890 ALC_USECS(sc->alc_int_tx_mod));
2891 } else {
2892 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2893 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2894 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2895 } else
2896 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2897 }
2898 /*
2899 * Hardware can be configured to issue SMB interrupt based
2900 * on programmed interval. Since there is a callout that is
2901 * invoked for every hz in driver we use that instead of
2902 * relying on periodic SMB interrupt.
2903 */
2904 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2905 /* Clear MAC statistics. */
2906 alc_stats_clear(sc);
2907
2908 /*
2909 * Always use maximum frame size that controller can support.
2910 * Otherwise received frames that has larger frame length
2911 * than alc(4) MTU would be silently dropped in hardware. This
2912 * would make path-MTU discovery hard as sender wouldn't get
2913 * any responses from receiver. alc(4) supports
2914 * multi-fragmented frames on Rx path so it has no issue on
2915 * assembling fragmented frames. Using maximum frame size also
2916 * removes the need to reinitialize hardware when interface
2917 * MTU configuration was changed.
2918 *
2919 * Be conservative in what you do, be liberal in what you
2920 * accept from others - RFC 793.
2921 */
2922 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2923
2924 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2925 /* Disable header split(?) */
2926 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2927
2928 /* Configure IPG/IFG parameters. */
2929 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2930 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2931 IPG_IFG_IPGT_MASK) |
2932 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2933 IPG_IFG_MIFG_MASK) |
2934 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2935 IPG_IFG_IPG1_MASK) |
2936 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2937 IPG_IFG_IPG2_MASK));
2938 /* Set parameters for half-duplex media. */
2939 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2940 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2941 HDPX_CFG_LCOL_MASK) |
2942 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2943 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2944 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2945 HDPX_CFG_ABEBT_MASK) |
2946 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2947 HDPX_CFG_JAMIPG_MASK));
2948 }
2949
2950 /*
2951 * Set TSO/checksum offload threshold. For frames that is
2952 * larger than this threshold, hardware wouldn't do
2953 * TSO/checksum offloading.
2954 */
2955 reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2956 TSO_OFFLOAD_THRESH_MASK;
2957 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2958 reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2959 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2960 /* Configure TxQ. */
2961 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2962 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2963 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2964 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2965 reg >>= 1;
2966 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2967 TXQ_CFG_TD_BURST_MASK;
2968 reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
2969 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2970 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2971 reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
2972 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
2973 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
2974 HQTD_CFG_BURST_ENB);
2975 CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
2976 reg = WRR_PRI_RESTRICT_NONE;
2977 reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
2978 WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
2979 WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
2980 WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
2981 CSR_WRITE_4(sc, ALC_WRR, reg);
2982 } else {
2983 /* Configure Rx free descriptor pre-fetching. */
2984 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2985 ((RX_RD_FREE_THRESH_HI_DEFAULT <<
2986 RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
2987 ((RX_RD_FREE_THRESH_LO_DEFAULT <<
2988 RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
2989 }
2990
2991 /*
2992 * Configure flow control parameters.
2993 * XON : 80% of Rx FIFO
2994 * XOFF : 30% of Rx FIFO
2995 */
2996 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2997 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2998 reg &= SRAM_RX_FIFO_LEN_MASK;
2999 reg *= 8;
3000 if (reg > 8 * 1024)
3001 reg -= RX_FIFO_PAUSE_816X_RSVD;
3002 else
3003 reg -= RX_BUF_SIZE_MAX;
3004 reg /= 8;
3005 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3006 ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3007 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3008 (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3009 RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3010 RX_FIFO_PAUSE_THRESH_HI_MASK));
3011 } else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3012 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3013 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3014 rxf_hi = (reg * 8) / 10;
3015 rxf_lo = (reg * 3) / 10;
3016 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3017 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3018 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3019 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3020 RX_FIFO_PAUSE_THRESH_HI_MASK));
3021 }
3022
3023 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3024 /* Disable RSS until I understand L1C/L2C's RSS logic. */
3025 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3026 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3027 }
3028
3029 /* Configure RxQ. */
3030 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3031 RXQ_CFG_RD_BURST_MASK;
3032 reg |= RXQ_CFG_RSS_MODE_DIS;
3033 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3034 reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3035 RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3036 RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3037 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3038 sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3039 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3040 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3041
3042 /* Configure DMA parameters. */
3043 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3044 reg |= sc->alc_rcb;
3045 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3046 reg |= DMA_CFG_CMB_ENB;
3047 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3048 reg |= DMA_CFG_SMB_ENB;
3049 else
3050 reg |= DMA_CFG_SMB_DIS;
3051 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3052 DMA_CFG_RD_BURST_SHIFT;
3053 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3054 DMA_CFG_WR_BURST_SHIFT;
3055 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3056 DMA_CFG_RD_DELAY_CNT_MASK;
3057 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3058 DMA_CFG_WR_DELAY_CNT_MASK;
3059 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3060 switch (AR816X_REV(sc->alc_rev)) {
3061 case AR816X_REV_A0:
3062 case AR816X_REV_A1:
3063 reg |= DMA_CFG_RD_CHNL_SEL_1;
3064 break;
3065 case AR816X_REV_B0:
3066 /* FALLTHROUGH */
3067 default:
3068 reg |= DMA_CFG_RD_CHNL_SEL_3;
3069 break;
3070 }
3071 }
3072 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3073
3074 /*
3075 * Configure Tx/Rx MACs.
3076 * - Auto-padding for short frames.
3077 * - Enable CRC generation.
3078 * Actual reconfiguration of MAC for resolved speed/duplex
3079 * is followed after detection of link establishment.
3080 * AR813x/AR815x always does checksum computation regardless
3081 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3082 * have bug in protocol field in Rx return structure so
3083 * these controllers can't handle fragmented frames. Disable
3084 * Rx checksum offloading until there is a newer controller
3085 * that has sane implementation.
3086 */
3087 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3088 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3089 MAC_CFG_PREAMBLE_MASK);
3090 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3091 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3092 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3093 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3094 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3095 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3096 reg |= MAC_CFG_SPEED_10_100;
3097 else
3098 reg |= MAC_CFG_SPEED_1000;
3099 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3100
3101 /* Set up the receive filter. */
3102 alc_iff(sc);
3103 alc_rxvlan(sc);
3104
3105 /* Acknowledge all pending interrupts and clear it. */
3106 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3107 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3108 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3109
3110 sc->alc_flags &= ~ALC_FLAG_LINK;
3111 /* Switch to the current media. */
3112 mii = &sc->sc_miibus;
3113 mii_mediachg(mii);
3114
3115 callout_schedule(&sc->sc_tick_ch, hz);
3116
3117 ifp->if_flags |= IFF_RUNNING;
3118 ifp->if_flags &= ~IFF_OACTIVE;
3119
3120 return (0);
3121 }
3122
3123 static void
3124 alc_stop(struct ifnet *ifp, int disable)
3125 {
3126 struct alc_softc *sc = ifp->if_softc;
3127 struct alc_txdesc *txd;
3128 struct alc_rxdesc *rxd;
3129 uint32_t reg;
3130 int i;
3131
3132 callout_stop(&sc->sc_tick_ch);
3133
3134 /*
3135 * Mark the interface down and cancel the watchdog timer.
3136 */
3137 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3138 ifp->if_timer = 0;
3139
3140 sc->alc_flags &= ~ALC_FLAG_LINK;
3141
3142 alc_stats_update(sc);
3143
3144 mii_down(&sc->sc_miibus);
3145
3146 /* Disable interrupts. */
3147 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3148 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3149
3150 /* Disable DMA. */
3151 reg = CSR_READ_4(sc, ALC_DMA_CFG);
3152 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3153 reg |= DMA_CFG_SMB_DIS;
3154 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3155 DELAY(1000);
3156
3157 /* Stop Rx/Tx MACs. */
3158 alc_stop_mac(sc);
3159
3160 /* Disable interrupts which might be touched in taskq handler. */
3161 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3162
3163 /* Disable L0s/L1s */
3164 alc_aspm(sc, 0, IFM_UNKNOWN);
3165
3166 /* Reclaim Rx buffers that have been processed. */
3167 if (sc->alc_cdata.alc_rxhead != NULL)
3168 m_freem(sc->alc_cdata.alc_rxhead);
3169 ALC_RXCHAIN_RESET(sc);
3170 /*
3171 * Free Tx/Rx mbufs still in the queues.
3172 */
3173 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3174 rxd = &sc->alc_cdata.alc_rxdesc[i];
3175 if (rxd->rx_m != NULL) {
3176 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3177 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3178 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3179 m_freem(rxd->rx_m);
3180 rxd->rx_m = NULL;
3181 }
3182 }
3183 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3184 txd = &sc->alc_cdata.alc_txdesc[i];
3185 if (txd->tx_m != NULL) {
3186 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3187 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3188 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3189 m_freem(txd->tx_m);
3190 txd->tx_m = NULL;
3191 }
3192 }
3193 }
3194
3195 static void
3196 alc_stop_mac(struct alc_softc *sc)
3197 {
3198 uint32_t reg;
3199 int i;
3200
3201 alc_stop_queue(sc);
3202 /* Disable Rx/Tx MAC. */
3203 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3204 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3205 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3206 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3207 }
3208 for (i = ALC_TIMEOUT; i > 0; i--) {
3209 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3210 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3211 break;
3212 DELAY(10);
3213 }
3214 if (i == 0)
3215 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3216 device_xname(sc->sc_dev), reg);
3217 }
3218
3219 static void
3220 alc_start_queue(struct alc_softc *sc)
3221 {
3222 uint32_t qcfg[] = {
3223 0,
3224 RXQ_CFG_QUEUE0_ENB,
3225 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3226 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3227 RXQ_CFG_ENB
3228 };
3229 uint32_t cfg;
3230
3231 /* Enable RxQ. */
3232 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3233 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3234 cfg &= ~RXQ_CFG_ENB;
3235 cfg |= qcfg[1];
3236 } else
3237 cfg |= RXQ_CFG_QUEUE0_ENB;
3238 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3239 /* Enable TxQ. */
3240 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3241 cfg |= TXQ_CFG_ENB;
3242 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3243 }
3244
3245 static void
3246 alc_stop_queue(struct alc_softc *sc)
3247 {
3248 uint32_t reg;
3249 int i;
3250
3251 /* Disable RxQ. */
3252 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3253 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3254 if ((reg & RXQ_CFG_ENB) != 0) {
3255 reg &= ~RXQ_CFG_ENB;
3256 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3257 }
3258 } else {
3259 if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3260 reg &= ~RXQ_CFG_QUEUE0_ENB;
3261 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3262 }
3263 }
3264 /* Disable TxQ. */
3265 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3266 if ((reg & TXQ_CFG_ENB) != 0) {
3267 reg &= ~TXQ_CFG_ENB;
3268 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3269 }
3270 DELAY(40);
3271 for (i = ALC_TIMEOUT; i > 0; i--) {
3272 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3273 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3274 break;
3275 DELAY(10);
3276 }
3277 if (i == 0)
3278 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3279 device_xname(sc->sc_dev), reg);
3280 }
3281
3282 static void
3283 alc_init_tx_ring(struct alc_softc *sc)
3284 {
3285 struct alc_ring_data *rd;
3286 struct alc_txdesc *txd;
3287 int i;
3288
3289 sc->alc_cdata.alc_tx_prod = 0;
3290 sc->alc_cdata.alc_tx_cons = 0;
3291 sc->alc_cdata.alc_tx_cnt = 0;
3292
3293 rd = &sc->alc_rdata;
3294 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3295 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3296 txd = &sc->alc_cdata.alc_txdesc[i];
3297 txd->tx_m = NULL;
3298 }
3299
3300 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3301 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3302 }
3303
3304 static int
3305 alc_init_rx_ring(struct alc_softc *sc, bool init)
3306 {
3307 struct alc_ring_data *rd;
3308 struct alc_rxdesc *rxd;
3309 int i;
3310
3311 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3312 rd = &sc->alc_rdata;
3313 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3314 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3315 rxd = &sc->alc_cdata.alc_rxdesc[i];
3316 rxd->rx_m = NULL;
3317 rxd->rx_desc = &rd->alc_rx_ring[i];
3318 if (alc_newbuf(sc, rxd, init) != 0)
3319 return (ENOBUFS);
3320 }
3321
3322 /*
3323 * Since controller does not update Rx descriptors, driver
3324 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3325 * is enough to ensure coherence.
3326 */
3327 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3328 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3329 /* Let controller know availability of new Rx buffers. */
3330 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3331
3332 return (0);
3333 }
3334
3335 static void
3336 alc_init_rr_ring(struct alc_softc *sc)
3337 {
3338 struct alc_ring_data *rd;
3339
3340 sc->alc_cdata.alc_rr_cons = 0;
3341 ALC_RXCHAIN_RESET(sc);
3342
3343 rd = &sc->alc_rdata;
3344 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3345 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3346 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3347 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3348 }
3349
3350 static void
3351 alc_init_cmb(struct alc_softc *sc)
3352 {
3353 struct alc_ring_data *rd;
3354
3355 rd = &sc->alc_rdata;
3356 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3357 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3358 sc->alc_cdata.alc_cmb_map->dm_mapsize,
3359 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3360 }
3361
3362 static void
3363 alc_init_smb(struct alc_softc *sc)
3364 {
3365 struct alc_ring_data *rd;
3366
3367 rd = &sc->alc_rdata;
3368 memset(rd->alc_smb, 0, ALC_SMB_SZ);
3369 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3370 sc->alc_cdata.alc_smb_map->dm_mapsize,
3371 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3372 }
3373
3374 static void
3375 alc_rxvlan(struct alc_softc *sc)
3376 {
3377 uint32_t reg;
3378
3379 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3380 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3381 reg |= MAC_CFG_VLAN_TAG_STRIP;
3382 else
3383 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3384 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3385 }
3386
3387 static void
3388 alc_iff(struct alc_softc *sc)
3389 {
3390 struct ethercom *ec = &sc->sc_ec;
3391 struct ifnet *ifp = &ec->ec_if;
3392 struct ether_multi *enm;
3393 struct ether_multistep step;
3394 uint32_t crc;
3395 uint32_t mchash[2];
3396 uint32_t rxcfg;
3397
3398 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3399 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3400 ifp->if_flags &= ~IFF_ALLMULTI;
3401
3402 /*
3403 * Always accept broadcast frames.
3404 */
3405 rxcfg |= MAC_CFG_BCAST;
3406
3407 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
3408 ifp->if_flags |= IFF_ALLMULTI;
3409 if (ifp->if_flags & IFF_PROMISC)
3410 rxcfg |= MAC_CFG_PROMISC;
3411 else
3412 rxcfg |= MAC_CFG_ALLMULTI;
3413 mchash[0] = mchash[1] = 0xFFFFFFFF;
3414 } else {
3415 /* Program new filter. */
3416 memset(mchash, 0, sizeof(mchash));
3417
3418 ETHER_FIRST_MULTI(step, ec, enm);
3419 while (enm != NULL) {
3420 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3421 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3422 ETHER_NEXT_MULTI(step, enm);
3423 }
3424 }
3425
3426 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3427 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3428 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3429 }
3430
3431 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3432
3433 #ifdef _MODULE
3434 #include "ioconf.c"
3435 #endif
3436
3437 static int
3438 if_alc_modcmd(modcmd_t cmd, void *opaque)
3439 {
3440 int error = 0;
3441
3442 switch (cmd) {
3443 case MODULE_CMD_INIT:
3444 #ifdef _MODULE
3445 error = config_init_component(cfdriver_ioconf_if_alc,
3446 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3447 #endif
3448 return error;
3449 case MODULE_CMD_FINI:
3450 #ifdef _MODULE
3451 error = config_fini_component(cfdriver_ioconf_if_alc,
3452 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3453 #endif
3454 return error;
3455 default:
3456 return ENOTTY;
3457 }
3458 }
3459