if_alc.c revision 1.46 1 /* $NetBSD: if_alc.c,v 1.46 2019/12/18 13:25:00 msaitoh Exp $ */
2 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
3 /*-
4 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49
50 #include <sys/bus.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_alcreg.h>
77
78 /*
79 * Devices supported by this driver.
80 */
81 static struct alc_ident alc_ident_table[] = {
82 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
83 "Atheros AR8131 PCIe Gigabit Ethernet" },
84 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
85 "Atheros AR8132 PCIe Fast Ethernet" },
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
87 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
89 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
91 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
93 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
95 "Atheros AR8161 PCIe Gigabit Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
97 "Atheros AR8162 PCIe Fast Ethernet" },
98 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
99 "Atheros AR8171 PCIe Gigabit Ethernet" },
100 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
101 "Atheros AR8172 PCIe Fast Ethernet" },
102 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
103 "Killer E2200 Gigabit Ethernet" },
104 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2400, 9 * 1024,
105 "Killer E2400 Gigabit Ethernet" },
106 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2500, 9 * 1024,
107 "Killer E2500 Gigabit Ethernet" },
108 { 0, 0, 0, NULL },
109 };
110
111 static int alc_match(device_t, cfdata_t, void *);
112 static void alc_attach(device_t, device_t, void *);
113 static int alc_detach(device_t, int);
114
115 static int alc_init(struct ifnet *);
116 static int alc_init_backend(struct ifnet *, bool);
117 static void alc_start(struct ifnet *);
118 static int alc_ioctl(struct ifnet *, u_long, void *);
119 static void alc_watchdog(struct ifnet *);
120 static int alc_mediachange(struct ifnet *);
121 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
122
123 static void alc_aspm(struct alc_softc *, int, int);
124 static void alc_aspm_813x(struct alc_softc *, int);
125 static void alc_aspm_816x(struct alc_softc *, int);
126 static void alc_disable_l0s_l1(struct alc_softc *);
127 static int alc_dma_alloc(struct alc_softc *);
128 static void alc_dma_free(struct alc_softc *);
129 static void alc_dsp_fixup(struct alc_softc *, int);
130 static int alc_encap(struct alc_softc *, struct mbuf **);
131 static struct alc_ident *
132 alc_find_ident(struct pci_attach_args *);
133 static void alc_get_macaddr(struct alc_softc *);
134 static void alc_get_macaddr_813x(struct alc_softc *);
135 static void alc_get_macaddr_816x(struct alc_softc *);
136 static void alc_get_macaddr_par(struct alc_softc *);
137 static void alc_init_cmb(struct alc_softc *);
138 static void alc_init_rr_ring(struct alc_softc *);
139 static int alc_init_rx_ring(struct alc_softc *, bool);
140 static void alc_init_smb(struct alc_softc *);
141 static void alc_init_tx_ring(struct alc_softc *);
142 static int alc_intr(void *);
143 static void alc_mac_config(struct alc_softc *);
144 static int alc_mii_readreg_813x(struct alc_softc *, int, int, uint16_t *);
145 static int alc_mii_readreg_816x(struct alc_softc *, int, int, uint16_t *);
146 static int alc_mii_writereg_813x(struct alc_softc *, int, int, uint16_t);
147 static int alc_mii_writereg_816x(struct alc_softc *, int, int, uint16_t);
148 static int alc_miibus_readreg(device_t, int, int, uint16_t *);
149 static void alc_miibus_statchg(struct ifnet *);
150 static int alc_miibus_writereg(device_t, int, int, uint16_t);
151 static int alc_miidbg_readreg(struct alc_softc *, int, uint16_t *);
152 static int alc_miidbg_writereg(struct alc_softc *, int, uint16_t);
153 static int alc_miiext_readreg(struct alc_softc *, int, int, uint16_t *);
154 static int alc_miiext_writereg(struct alc_softc *, int, int, uint16_t);
155 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
156 static void alc_phy_down(struct alc_softc *);
157 static void alc_phy_reset(struct alc_softc *);
158 static void alc_phy_reset_813x(struct alc_softc *);
159 static void alc_phy_reset_816x(struct alc_softc *);
160 static void alc_reset(struct alc_softc *);
161 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
162 static int alc_rxintr(struct alc_softc *);
163 static void alc_iff(struct alc_softc *);
164 static void alc_rxvlan(struct alc_softc *);
165 static void alc_start_queue(struct alc_softc *);
166 static void alc_stats_clear(struct alc_softc *);
167 static void alc_stats_update(struct alc_softc *);
168 static void alc_stop(struct ifnet *, int);
169 static void alc_stop_mac(struct alc_softc *);
170 static void alc_stop_queue(struct alc_softc *);
171 static void alc_tick(void *);
172 static void alc_txeof(struct alc_softc *);
173 static void alc_init_pcie(struct alc_softc *);
174
175 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0, 0 };
176
177 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
178 alc_match, alc_attach, alc_detach, NULL);
179
180 int alcdebug = 0;
181 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
182
183 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
184
185 static int
186 alc_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
187 {
188 struct alc_softc *sc = device_private(dev);
189 int v;
190
191 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
192 v = alc_mii_readreg_816x(sc, phy, reg, val);
193 else
194 v = alc_mii_readreg_813x(sc, phy, reg, val);
195 return (v);
196 }
197
198 static int
199 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
200 {
201 uint32_t v;
202 int i;
203
204 if (phy != sc->alc_phyaddr)
205 return -1;
206
207 /*
208 * For AR8132 fast ethernet controller, do not report 1000baseT
209 * capability to mii(4). Even though AR8132 uses the same
210 * model/revision number of F1 gigabit PHY, the PHY has no
211 * ability to establish 1000baseT link.
212 */
213 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) {
214 *val = 0;
215 return 0;
216 }
217
218 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
221 DELAY(5);
222 v = CSR_READ_4(sc, ALC_MDIO);
223 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 break;
225 }
226
227 if (i == 0) {
228 printf("%s: phy read timeout: phy %d, reg %d\n",
229 device_xname(sc->sc_dev), phy, reg);
230 return ETIMEDOUT;
231 }
232
233 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
234 return 0;
235 }
236
237 static int
238 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
239 {
240 uint32_t clk, v;
241 int i;
242
243 if (phy != sc->alc_phyaddr)
244 return -1;
245
246 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
247 clk = MDIO_CLK_25_128;
248 else
249 clk = MDIO_CLK_25_4;
250 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
251 MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
252 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
253 DELAY(5);
254 v = CSR_READ_4(sc, ALC_MDIO);
255 if ((v & MDIO_OP_BUSY) == 0)
256 break;
257 }
258
259 if (i == 0) {
260 printf("%s: phy read timeout: phy %d, reg %d\n",
261 device_xname(sc->sc_dev), phy, reg);
262 return ETIMEDOUT;
263 }
264
265 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
266 return 0;
267 }
268
269 static int
270 alc_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
271 {
272 struct alc_softc *sc = device_private(dev);
273 int rv;
274
275 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
276 rv = alc_mii_writereg_816x(sc, phy, reg, val);
277 else
278 rv = alc_mii_writereg_813x(sc, phy, reg, val);
279
280 return rv;
281 }
282
283 static int
284 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, uint16_t val)
285 {
286 uint32_t v;
287 int i;
288
289 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
290 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
291 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
292 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
293 DELAY(5);
294 v = CSR_READ_4(sc, ALC_MDIO);
295 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
296 break;
297 }
298
299 if (i == 0) {
300 printf("%s: phy write timeout: phy %d, reg %d\n",
301 device_xname(sc->sc_dev), phy, reg);
302 return ETIMEDOUT;
303 }
304
305 return 0;
306 }
307
308 static int
309 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, uint16_t val)
310 {
311 uint32_t clk, v;
312 int i;
313
314 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
315 clk = MDIO_CLK_25_128;
316 else
317 clk = MDIO_CLK_25_4;
318 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
319 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
320 MDIO_SUP_PREAMBLE | clk);
321 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
322 DELAY(5);
323 v = CSR_READ_4(sc, ALC_MDIO);
324 if ((v & MDIO_OP_BUSY) == 0)
325 break;
326 }
327
328 if (i == 0) {
329 printf("%s: phy write timeout: phy %d, reg %d\n",
330 device_xname(sc->sc_dev), phy, reg);
331 return ETIMEDOUT;
332 }
333
334 return 0;
335 }
336
337 static void
338 alc_miibus_statchg(struct ifnet *ifp)
339 {
340 struct alc_softc *sc = ifp->if_softc;
341 struct mii_data *mii = &sc->sc_miibus;
342 uint32_t reg;
343
344 if ((ifp->if_flags & IFF_RUNNING) == 0)
345 return;
346
347 sc->alc_flags &= ~ALC_FLAG_LINK;
348 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
349 (IFM_ACTIVE | IFM_AVALID)) {
350 switch (IFM_SUBTYPE(mii->mii_media_active)) {
351 case IFM_10_T:
352 case IFM_100_TX:
353 sc->alc_flags |= ALC_FLAG_LINK;
354 break;
355 case IFM_1000_T:
356 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
357 sc->alc_flags |= ALC_FLAG_LINK;
358 break;
359 default:
360 break;
361 }
362 }
363 /* Stop Rx/Tx MACs. */
364 alc_stop_mac(sc);
365
366 /* Program MACs with resolved speed/duplex/flow-control. */
367 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
368 alc_start_queue(sc);
369 alc_mac_config(sc);
370 /* Re-enable Tx/Rx MACs. */
371 reg = CSR_READ_4(sc, ALC_MAC_CFG);
372 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
373 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
374 }
375 alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
376 alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
377 }
378
379 static int
380 alc_miidbg_readreg(struct alc_softc *sc, int reg, uint16_t *val)
381 {
382 int rv;
383
384 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
385 reg);
386 if (rv != 0)
387 return rv;
388
389 return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
390 ALC_MII_DBG_DATA, val));
391 }
392
393 static int
394 alc_miidbg_writereg(struct alc_softc *sc, int reg, uint16_t val)
395 {
396 int rv;
397
398 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
399 reg);
400 if (rv != 0)
401 return rv;
402
403 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
404 val);
405
406 return rv;
407 }
408
409 static int
410 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg, uint16_t *val)
411 {
412 uint32_t clk, v;
413 int i;
414
415 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
416 EXT_MDIO_DEVADDR(devaddr));
417 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
418 clk = MDIO_CLK_25_128;
419 else
420 clk = MDIO_CLK_25_4;
421 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
422 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
423 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
424 DELAY(5);
425 v = CSR_READ_4(sc, ALC_MDIO);
426 if ((v & MDIO_OP_BUSY) == 0)
427 break;
428 }
429
430 if (i == 0) {
431 printf("%s: phy ext read timeout: %d\n",
432 device_xname(sc->sc_dev), reg);
433 return ETIMEDOUT;
434 }
435
436 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
437 return 0;
438 }
439
440 static int
441 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, uint16_t val)
442 {
443 uint32_t clk, v;
444 int i;
445
446 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
447 EXT_MDIO_DEVADDR(devaddr));
448 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
449 clk = MDIO_CLK_25_128;
450 else
451 clk = MDIO_CLK_25_4;
452 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
453 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
454 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
455 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
456 DELAY(5);
457 v = CSR_READ_4(sc, ALC_MDIO);
458 if ((v & MDIO_OP_BUSY) == 0)
459 break;
460 }
461
462 if (i == 0) {
463 printf("%s: phy ext write timeout: reg %d\n",
464 device_xname(sc->sc_dev), reg);
465 return ETIMEDOUT;
466 }
467
468 return 0;
469 }
470
471 static void
472 alc_dsp_fixup(struct alc_softc *sc, int media)
473 {
474 uint16_t agc, len, val;
475
476 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
477 return;
478 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
479 return;
480
481 /*
482 * Vendor PHY magic.
483 * 1000BT/AZ, wrong cable length
484 */
485 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
486 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6, &len);
487 len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
488 EXT_CLDCTL6_CAB_LEN_MASK;
489 /* XXX: used to be (alc >> shift) & mask which is 0 */
490 alc_miidbg_readreg(sc, MII_DBG_AGC, &agc);
491 agc &= DBG_AGC_2_VGA_MASK;
492 agc >>= DBG_AGC_2_VGA_SHIFT;
493 if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
494 agc > DBG_AGC_LONG1G_LIMT) ||
495 (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
496 agc > DBG_AGC_LONG1G_LIMT)) {
497 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
498 DBG_AZ_ANADECT_LONG);
499 alc_miiext_readreg(sc, MII_EXT_ANEG,
500 MII_EXT_ANEG_AFE, &val);
501 val |= ANEG_AFEE_10BT_100M_TH;
502 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
503 val);
504 } else {
505 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
506 DBG_AZ_ANADECT_DEFAULT);
507 alc_miiext_readreg(sc, MII_EXT_ANEG,
508 MII_EXT_ANEG_AFE, &val);
509 val &= ~ANEG_AFEE_10BT_100M_TH;
510 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
511 val);
512 }
513 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 if (media == IFM_1000_T) {
516 /*
517 * Giga link threshold, raise the tolerance of
518 * noise 50%.
519 */
520 alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
521 val &= ~DBG_MSE20DB_TH_MASK;
522 val |= (DBG_MSE20DB_TH_HI <<
523 DBG_MSE20DB_TH_SHIFT);
524 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
525 } else if (media == IFM_100_TX)
526 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
527 DBG_MSE16DB_UP);
528 }
529 } else {
530 alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, &val);
531 val &= ~ANEG_AFEE_10BT_100M_TH;
532 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
533 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
534 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
535 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
536 DBG_MSE16DB_DOWN);
537 alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
538 val &= ~DBG_MSE20DB_TH_MASK;
539 val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
540 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
541 }
542 }
543 }
544
545 static void
546 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
547 {
548 struct alc_softc *sc = ifp->if_softc;
549 struct mii_data *mii = &sc->sc_miibus;
550
551 if ((ifp->if_flags & IFF_UP) == 0)
552 return;
553
554 mii_pollstat(mii);
555 ifmr->ifm_status = mii->mii_media_status;
556 ifmr->ifm_active = mii->mii_media_active;
557 }
558
559 static int
560 alc_mediachange(struct ifnet *ifp)
561 {
562 struct alc_softc *sc = ifp->if_softc;
563 struct mii_data *mii = &sc->sc_miibus;
564 int error;
565
566 if (mii->mii_instance != 0) {
567 struct mii_softc *miisc;
568
569 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
570 mii_phy_reset(miisc);
571 }
572 error = mii_mediachg(mii);
573
574 return (error);
575 }
576
577 static struct alc_ident *
578 alc_find_ident(struct pci_attach_args *pa)
579 {
580 struct alc_ident *ident;
581 uint16_t vendor, devid;
582
583 vendor = PCI_VENDOR(pa->pa_id);
584 devid = PCI_PRODUCT(pa->pa_id);
585 for (ident = alc_ident_table; ident->name != NULL; ident++) {
586 if (vendor == ident->vendorid && devid == ident->deviceid)
587 return (ident);
588 }
589
590 return (NULL);
591 }
592
593 static int
594 alc_match(device_t dev, cfdata_t match, void *aux)
595 {
596 struct pci_attach_args *pa = aux;
597
598 return alc_find_ident(pa) != NULL;
599 }
600
601 static void
602 alc_get_macaddr(struct alc_softc *sc)
603 {
604
605 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
606 alc_get_macaddr_816x(sc);
607 else
608 alc_get_macaddr_813x(sc);
609 }
610
611 static void
612 alc_get_macaddr_813x(struct alc_softc *sc)
613 {
614 uint32_t opt;
615 uint16_t val;
616 int eeprom, i;
617
618 eeprom = 0;
619 opt = CSR_READ_4(sc, ALC_OPT_CFG);
620 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
621 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
622 /*
623 * EEPROM found, let TWSI reload EEPROM configuration.
624 * This will set ethernet address of controller.
625 */
626 eeprom++;
627 switch (sc->alc_ident->deviceid) {
628 case PCI_PRODUCT_ATTANSIC_AR8131:
629 case PCI_PRODUCT_ATTANSIC_AR8132:
630 if ((opt & OPT_CFG_CLK_ENB) == 0) {
631 opt |= OPT_CFG_CLK_ENB;
632 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
633 CSR_READ_4(sc, ALC_OPT_CFG);
634 DELAY(1000);
635 }
636 break;
637 case PCI_PRODUCT_ATTANSIC_AR8151:
638 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
639 case PCI_PRODUCT_ATTANSIC_AR8152_B:
640 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
641 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
642 ALC_MII_DBG_ADDR, 0x00);
643 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
644 ALC_MII_DBG_DATA, &val);
645 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
646 ALC_MII_DBG_DATA, val & 0xFF7F);
647 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
648 ALC_MII_DBG_ADDR, 0x3B);
649 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
650 ALC_MII_DBG_DATA, &val);
651 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
652 ALC_MII_DBG_DATA, val | 0x0008);
653 DELAY(20);
654 break;
655 }
656
657 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
658 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
659 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
660 CSR_READ_4(sc, ALC_WOL_CFG);
661
662 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
663 TWSI_CFG_SW_LD_START);
664 for (i = 100; i > 0; i--) {
665 DELAY(1000);
666 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
667 TWSI_CFG_SW_LD_START) == 0)
668 break;
669 }
670 if (i == 0)
671 printf("%s: reloading EEPROM timeout!\n",
672 device_xname(sc->sc_dev));
673 } else {
674 if (alcdebug)
675 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
676 }
677 if (eeprom != 0) {
678 switch (sc->alc_ident->deviceid) {
679 case PCI_PRODUCT_ATTANSIC_AR8131:
680 case PCI_PRODUCT_ATTANSIC_AR8132:
681 if ((opt & OPT_CFG_CLK_ENB) != 0) {
682 opt &= ~OPT_CFG_CLK_ENB;
683 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
684 CSR_READ_4(sc, ALC_OPT_CFG);
685 DELAY(1000);
686 }
687 break;
688 case PCI_PRODUCT_ATTANSIC_AR8151:
689 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
690 case PCI_PRODUCT_ATTANSIC_AR8152_B:
691 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
692 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
693 ALC_MII_DBG_ADDR, 0x00);
694 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
695 ALC_MII_DBG_DATA, &val);
696 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
697 ALC_MII_DBG_DATA, val | 0x0080);
698 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
699 ALC_MII_DBG_ADDR, 0x3B);
700 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
701 ALC_MII_DBG_DATA, &val);
702 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
703 ALC_MII_DBG_DATA, val & 0xFFF7);
704 DELAY(20);
705 break;
706 }
707 }
708
709 alc_get_macaddr_par(sc);
710 }
711
712 static void
713 alc_get_macaddr_816x(struct alc_softc *sc)
714 {
715 uint32_t reg;
716 int i, reloaded;
717
718 reloaded = 0;
719 /* Try to reload station address via TWSI. */
720 for (i = 100; i > 0; i--) {
721 reg = CSR_READ_4(sc, ALC_SLD);
722 if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
723 break;
724 DELAY(1000);
725 }
726 if (i != 0) {
727 CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
728 for (i = 100; i > 0; i--) {
729 DELAY(1000);
730 reg = CSR_READ_4(sc, ALC_SLD);
731 if ((reg & SLD_START) == 0)
732 break;
733 }
734 if (i != 0)
735 reloaded++;
736 else if (alcdebug)
737 printf("%s: reloading station address via TWSI timed out!\n",
738 device_xname(sc->sc_dev));
739 }
740
741 /* Try to reload station address from EEPROM or FLASH. */
742 if (reloaded == 0) {
743 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
744 if ((reg & (EEPROM_LD_EEPROM_EXIST |
745 EEPROM_LD_FLASH_EXIST)) != 0) {
746 for (i = 100; i > 0; i--) {
747 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
748 if ((reg & (EEPROM_LD_PROGRESS |
749 EEPROM_LD_START)) == 0)
750 break;
751 DELAY(1000);
752 }
753 if (i != 0) {
754 CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
755 EEPROM_LD_START);
756 for (i = 100; i > 0; i--) {
757 DELAY(1000);
758 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
759 if ((reg & EEPROM_LD_START) == 0)
760 break;
761 }
762 } else if (alcdebug)
763 printf("%s: reloading EEPROM/FLASH timed out!\n",
764 device_xname(sc->sc_dev));
765 }
766 }
767
768 alc_get_macaddr_par(sc);
769 }
770
771 static void
772 alc_get_macaddr_par(struct alc_softc *sc)
773 {
774 uint32_t ea[2];
775
776 ea[0] = CSR_READ_4(sc, ALC_PAR0);
777 ea[1] = CSR_READ_4(sc, ALC_PAR1);
778 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
779 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
780 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
781 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
782 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
783 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
784 }
785
786 static void
787 alc_disable_l0s_l1(struct alc_softc *sc)
788 {
789 uint32_t pmcfg;
790
791 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
792 /* Another magic from vendor. */
793 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
794 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
795 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
796 PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
797 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
798 PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
799 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
800 }
801 }
802
803 static void
804 alc_phy_reset(struct alc_softc *sc)
805 {
806
807 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
808 alc_phy_reset_816x(sc);
809 else
810 alc_phy_reset_813x(sc);
811 }
812
813 static void
814 alc_phy_reset_813x(struct alc_softc *sc)
815 {
816 uint16_t data;
817
818 /* Reset magic from Linux. */
819 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
820 CSR_READ_2(sc, ALC_GPHY_CFG);
821 DELAY(10 * 1000);
822
823 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
824 GPHY_CFG_SEL_ANA_RESET);
825 CSR_READ_2(sc, ALC_GPHY_CFG);
826 DELAY(10 * 1000);
827
828 /* DSP fixup, Vendor magic. */
829 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
830 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 ALC_MII_DBG_ADDR, 0x000A);
832 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
833 ALC_MII_DBG_DATA, &data);
834 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
835 ALC_MII_DBG_DATA, data & 0xDFFF);
836 }
837 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
838 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
839 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
840 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
841 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
842 ALC_MII_DBG_ADDR, 0x003B);
843 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
844 ALC_MII_DBG_DATA, &data);
845 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
846 ALC_MII_DBG_DATA, data & 0xFFF7);
847 DELAY(20 * 1000);
848 }
849 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
850 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
851 ALC_MII_DBG_ADDR, 0x0029);
852 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
853 ALC_MII_DBG_DATA, 0x929D);
854 }
855 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
856 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
857 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
858 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
859 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
860 ALC_MII_DBG_ADDR, 0x0029);
861 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
862 ALC_MII_DBG_DATA, 0xB6DD);
863 }
864
865 /* Load DSP codes, vendor magic. */
866 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
867 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
868 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
869 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
870 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
871 ALC_MII_DBG_DATA, data);
872
873 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
874 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
875 ANA_SERDES_EN_LCKDT;
876 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
877 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
878 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
879 ALC_MII_DBG_DATA, data);
880
881 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
882 ANA_LONG_CABLE_TH_100_MASK) |
883 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
884 ANA_SHORT_CABLE_TH_100_SHIFT) |
885 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
886 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
887 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
888 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
889 ALC_MII_DBG_DATA, data);
890
891 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
892 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
893 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
894 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
895 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
896 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
897 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
898 ALC_MII_DBG_DATA, data);
899
900 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
901 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
902 ANA_OEN_125M;
903 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
904 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
905 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
906 ALC_MII_DBG_DATA, data);
907 DELAY(1000);
908
909 /* Disable hibernation. */
910 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
911 0x0029);
912 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
913 ALC_MII_DBG_DATA, &data);
914 data &= ~0x8000;
915 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
916 data);
917
918 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
919 0x000B);
920 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
921 ALC_MII_DBG_DATA, &data);
922 data &= ~0x8000;
923 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
924 data);
925 }
926
927 static void
928 alc_phy_reset_816x(struct alc_softc *sc)
929 {
930 uint32_t val;
931 uint16_t phyval;
932
933 val = CSR_READ_4(sc, ALC_GPHY_CFG);
934 val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
935 GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
936 GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
937 val |= GPHY_CFG_SEL_ANA_RESET;
938 #ifdef notyet
939 val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
940 #else
941 /* Disable PHY hibernation. */
942 val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
943 #endif
944 CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
945 DELAY(10);
946 CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
947 DELAY(800);
948
949 /* Vendor PHY magic. */
950 #ifdef notyet
951 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
952 alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
953 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
954 EXT_VDRVBIAS_DEFAULT);
955 #else
956 /* Disable PHY hibernation. */
957 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
958 DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
959 alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
960 DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
961 alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
962 #endif
963
964 /* XXX Disable EEE. */
965 val = CSR_READ_4(sc, ALC_LPI_CTL);
966 val &= ~LPI_CTL_ENB;
967 CSR_WRITE_4(sc, ALC_LPI_CTL, val);
968 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
969
970 /* PHY power saving. */
971 alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
972 alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
973 alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
974 alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
975 alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
976 phyval &= ~DBG_GREENCFG2_GATE_DFSE_EN;
977 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
978
979 /* RTL8139C, 120m issue. */
980 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
981 ANEG_NLP78_120M_DEFAULT);
982 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
983 ANEG_S3DIG10_DEFAULT);
984
985 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
986 /* Turn off half amplitude. */
987 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, &phyval);
988 phyval |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
989 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, phyval);
990 /* Turn off Green feature. */
991 alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
992 phyval |= DBG_GREENCFG2_BP_GREEN;
993 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
994 /* Turn off half bias. */
995 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, &phyval);
996 val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
997 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, phyval);
998 }
999 }
1000
1001 static void
1002 alc_phy_down(struct alc_softc *sc)
1003 {
1004 uint32_t gphy;
1005
1006 switch (sc->alc_ident->deviceid) {
1007 case PCI_PRODUCT_ATTANSIC_AR8161:
1008 case PCI_PRODUCT_ATTANSIC_E2200:
1009 case PCI_PRODUCT_ATTANSIC_E2400:
1010 case PCI_PRODUCT_ATTANSIC_E2500:
1011 case PCI_PRODUCT_ATTANSIC_AR8162:
1012 case PCI_PRODUCT_ATTANSIC_AR8171:
1013 case PCI_PRODUCT_ATTANSIC_AR8172:
1014 gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
1015 gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
1016 GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
1017 gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
1018 GPHY_CFG_SEL_ANA_RESET;
1019 gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
1020 CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
1021 break;
1022 case PCI_PRODUCT_ATTANSIC_AR8151:
1023 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1024 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1025 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1026 /*
1027 * GPHY power down caused more problems on AR8151 v2.0.
1028 * When driver is reloaded after GPHY power down,
1029 * accesses to PHY/MAC registers hung the system. Only
1030 * cold boot recovered from it. I'm not sure whether
1031 * AR8151 v1.0 also requires this one though. I don't
1032 * have AR8151 v1.0 controller in hand.
1033 * The only option left is to isolate the PHY and
1034 * initiates power down the PHY which in turn saves
1035 * more power when driver is unloaded.
1036 */
1037 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1038 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1039 break;
1040 default:
1041 /* Force PHY down. */
1042 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1043 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1044 GPHY_CFG_PWDOWN_HW);
1045 DELAY(1000);
1046 break;
1047 }
1048 }
1049
1050 static void
1051 alc_aspm(struct alc_softc *sc, int init, int media)
1052 {
1053
1054 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1055 alc_aspm_816x(sc, init);
1056 else
1057 alc_aspm_813x(sc, media);
1058 }
1059
1060 static void
1061 alc_aspm_813x(struct alc_softc *sc, int media)
1062 {
1063 uint32_t pmcfg;
1064 uint16_t linkcfg;
1065
1066 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1067 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1068 (ALC_FLAG_APS | ALC_FLAG_PCIE))
1069 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1070 PCIE_LCSR);
1071 else
1072 linkcfg = 0;
1073 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1074 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1075 pmcfg |= PM_CFG_MAC_ASPM_CHK;
1076 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1077 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1078
1079 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1080 /* Disable extended sync except AR8152 B v1.0 */
1081 linkcfg &= ~0x80;
1082 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1083 sc->alc_rev == ATHEROS_AR8152_B_V10)
1084 linkcfg |= 0x80;
1085 CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1086 linkcfg);
1087 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1088 PM_CFG_HOTRST);
1089 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1090 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1092 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1093 PM_CFG_PM_REQ_TIMER_SHIFT);
1094 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1095 }
1096
1097 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1098 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1099 pmcfg |= PM_CFG_ASPM_L0S_ENB;
1100 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1101 pmcfg |= PM_CFG_ASPM_L1_ENB;
1102 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1103 if (sc->alc_ident->deviceid ==
1104 PCI_PRODUCT_ATTANSIC_AR8152_B)
1105 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1106 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1107 PM_CFG_SERDES_PLL_L1_ENB |
1108 PM_CFG_SERDES_BUDS_RX_L1_ENB);
1109 pmcfg |= PM_CFG_CLK_SWH_L1;
1110 if (media == IFM_100_TX || media == IFM_1000_T) {
1111 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1112 switch (sc->alc_ident->deviceid) {
1113 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1114 pmcfg |= (7 <<
1115 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1116 break;
1117 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1118 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1119 pmcfg |= (4 <<
1120 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1121 break;
1122 default:
1123 pmcfg |= (15 <<
1124 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1125 break;
1126 }
1127 }
1128 } else {
1129 pmcfg |= PM_CFG_SERDES_L1_ENB |
1130 PM_CFG_SERDES_PLL_L1_ENB |
1131 PM_CFG_SERDES_BUDS_RX_L1_ENB;
1132 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1133 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1134 }
1135 } else {
1136 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1137 PM_CFG_SERDES_PLL_L1_ENB);
1138 pmcfg |= PM_CFG_CLK_SWH_L1;
1139 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1140 pmcfg |= PM_CFG_ASPM_L1_ENB;
1141 }
1142 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1143 }
1144
1145 static void
1146 alc_aspm_816x(struct alc_softc *sc, int init)
1147 {
1148 uint32_t pmcfg;
1149
1150 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1151 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1152 pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1153 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1154 pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1155 pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1156 pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1157 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1158 pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1159 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1160 PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1161 PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1162 PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1163 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1164 (sc->alc_rev & 0x01) != 0)
1165 pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1166 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1167 /* Link up, enable both L0s, L1s. */
1168 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1169 PM_CFG_MAC_ASPM_CHK;
1170 } else {
1171 if (init != 0)
1172 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1173 PM_CFG_MAC_ASPM_CHK;
1174 else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1175 pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1176 }
1177 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1178 }
1179
1180 static void
1181 alc_init_pcie(struct alc_softc *sc)
1182 {
1183 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1184 uint32_t cap, ctl, val;
1185 int state;
1186
1187 /* Clear data link and flow-control protocol error. */
1188 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1189 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1190 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1191
1192 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1193 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1194 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1195 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1196 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1197 PCIE_PHYMISC_FORCE_RCV_DET);
1198 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1199 sc->alc_rev == ATHEROS_AR8152_B_V10) {
1200 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1201 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1202 PCIE_PHYMISC2_SERDES_TH_MASK);
1203 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1204 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1205 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1206 }
1207 /* Disable ASPM L0S and L1. */
1208 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1209 sc->alc_expcap + PCIE_LCAP) >> 16;
1210 if ((cap & PCIE_LCAP_ASPM) != 0) {
1211 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1212 sc->alc_expcap + PCIE_LCSR) >> 16;
1213 if ((ctl & 0x08) != 0)
1214 sc->alc_rcb = DMA_CFG_RCB_128;
1215 if (alcdebug)
1216 printf("%s: RCB %u bytes\n",
1217 device_xname(sc->sc_dev),
1218 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1219 state = ctl & 0x03;
1220 if (state & 0x01)
1221 sc->alc_flags |= ALC_FLAG_L0S;
1222 if (state & 0x02)
1223 sc->alc_flags |= ALC_FLAG_L1S;
1224 if (alcdebug)
1225 printf("%s: ASPM %s %s\n",
1226 device_xname(sc->sc_dev),
1227 aspm_state[state],
1228 state == 0 ? "disabled" : "enabled");
1229 alc_disable_l0s_l1(sc);
1230 } else {
1231 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1232 }
1233 } else {
1234 val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1235 val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1236 CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1237 val = CSR_READ_4(sc, ALC_MASTER_CFG);
1238 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1239 (sc->alc_rev & 0x01) != 0) {
1240 if ((val & MASTER_WAKEN_25M) == 0 ||
1241 (val & MASTER_CLK_SEL_DIS) == 0) {
1242 val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1243 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1244 }
1245 } else {
1246 if ((val & MASTER_WAKEN_25M) == 0 ||
1247 (val & MASTER_CLK_SEL_DIS) != 0) {
1248 val |= MASTER_WAKEN_25M;
1249 val &= ~MASTER_CLK_SEL_DIS;
1250 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1251 }
1252 }
1253 }
1254 alc_aspm(sc, 1, IFM_UNKNOWN);
1255 }
1256
1257 static void
1258 alc_attach(device_t parent, device_t self, void *aux)
1259 {
1260
1261 struct alc_softc *sc = device_private(self);
1262 struct pci_attach_args *pa = aux;
1263 pci_chipset_tag_t pc = pa->pa_pc;
1264 pci_intr_handle_t ih;
1265 const char *intrstr;
1266 struct ifnet *ifp;
1267 struct mii_data * const mii = &sc->sc_miibus;
1268 pcireg_t memtype;
1269 uint16_t burst;
1270 int base, mii_flags, error = 0;
1271 char intrbuf[PCI_INTRSTR_LEN];
1272
1273 sc->alc_ident = alc_find_ident(pa);
1274 sc->alc_rev = PCI_REVISION(pa->pa_class);
1275
1276 aprint_naive("\n");
1277 aprint_normal(": %s\n", sc->alc_ident->name);
1278
1279 sc->sc_dev = self;
1280 sc->sc_dmat = pa->pa_dmat;
1281 sc->sc_pct = pa->pa_pc;
1282 sc->sc_pcitag = pa->pa_tag;
1283
1284 /*
1285 * Allocate IO memory
1286 */
1287 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1288 switch (memtype) {
1289 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1290 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1291 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1292 break;
1293 default:
1294 aprint_error_dev(self, "invalid base address register\n");
1295 break;
1296 }
1297
1298 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1299 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1300 aprint_error_dev(self, "could not map mem space\n");
1301 return;
1302 }
1303
1304 if (pci_intr_map(pa, &ih) != 0) {
1305 printf(": can't map interrupt\n");
1306 goto fail;
1307 }
1308
1309 /*
1310 * Allocate IRQ
1311 */
1312 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1313 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, alc_intr,
1314 sc, device_xname(self));
1315 if (sc->sc_irq_handle == NULL) {
1316 printf(": could not establish interrupt");
1317 if (intrstr != NULL)
1318 printf(" at %s", intrstr);
1319 printf("\n");
1320 goto fail;
1321 }
1322 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1323
1324 /* Set PHY address. */
1325 sc->alc_phyaddr = ALC_PHY_ADDR;
1326
1327 /* Initialize DMA parameters. */
1328 sc->alc_dma_rd_burst = 0;
1329 sc->alc_dma_wr_burst = 0;
1330 sc->alc_rcb = DMA_CFG_RCB_64;
1331 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1332 &base, NULL)) {
1333 sc->alc_flags |= ALC_FLAG_PCIE;
1334 sc->alc_expcap = base;
1335 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1336 base + PCIE_DCSR) >> 16;
1337 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1338 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1339 if (alcdebug) {
1340 printf("%s: Read request size : %u bytes.\n",
1341 device_xname(sc->sc_dev),
1342 alc_dma_burst[sc->alc_dma_rd_burst]);
1343 printf("%s: TLP payload size : %u bytes.\n",
1344 device_xname(sc->sc_dev),
1345 alc_dma_burst[sc->alc_dma_wr_burst]);
1346 }
1347 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1348 sc->alc_dma_rd_burst = 3;
1349 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1350 sc->alc_dma_wr_burst = 3;
1351 /*
1352 * Force maximum payload size to 128 bytes for
1353 * E2200/E2400/E2500.
1354 * Otherwise it triggers DMA write error.
1355 */
1356 if ((sc->alc_flags & ALC_FLAG_E2X00) != 0)
1357 sc->alc_dma_wr_burst = 0;
1358 alc_init_pcie(sc);
1359 }
1360
1361 /* Reset PHY. */
1362 alc_phy_reset(sc);
1363
1364 /* Reset the ethernet controller. */
1365 alc_stop_mac(sc);
1366 alc_reset(sc);
1367
1368 /*
1369 * One odd thing is AR8132 uses the same PHY hardware(F1
1370 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1371 * the PHY supports 1000Mbps but that's not true. The PHY
1372 * used in AR8132 can't establish gigabit link even if it
1373 * shows the same PHY model/revision number of AR8131.
1374 */
1375 switch (sc->alc_ident->deviceid) {
1376 case PCI_PRODUCT_ATTANSIC_E2200:
1377 case PCI_PRODUCT_ATTANSIC_E2400:
1378 case PCI_PRODUCT_ATTANSIC_E2500:
1379 sc->alc_flags |= ALC_FLAG_E2X00;
1380 /* FALLTHROUGH */
1381 case PCI_PRODUCT_ATTANSIC_AR8161:
1382 if (PCI_SUBSYS_ID(pci_conf_read(
1383 sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1384 sc->alc_rev == 0)
1385 sc->alc_flags |= ALC_FLAG_LINK_WAR;
1386 /* FALLTHROUGH */
1387 case PCI_PRODUCT_ATTANSIC_AR8171:
1388 sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1389 break;
1390 case PCI_PRODUCT_ATTANSIC_AR8162:
1391 case PCI_PRODUCT_ATTANSIC_AR8172:
1392 sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1393 break;
1394 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1395 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1396 sc->alc_flags |= ALC_FLAG_APS;
1397 /* FALLTHROUGH */
1398 case PCI_PRODUCT_ATTANSIC_AR8132:
1399 sc->alc_flags |= ALC_FLAG_FASTETHER;
1400 break;
1401 case PCI_PRODUCT_ATTANSIC_AR8151:
1402 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1403 sc->alc_flags |= ALC_FLAG_APS;
1404 /* FALLTHROUGH */
1405 default:
1406 break;
1407 }
1408 sc->alc_flags |= ALC_FLAG_JUMBO;
1409
1410 /*
1411 * It seems that AR813x/AR815x has silicon bug for SMB. In
1412 * addition, Atheros said that enabling SMB wouldn't improve
1413 * performance. However I think it's bad to access lots of
1414 * registers to extract MAC statistics.
1415 */
1416 sc->alc_flags |= ALC_FLAG_SMB_BUG;
1417 /*
1418 * Don't use Tx CMB. It is known to have silicon bug.
1419 */
1420 sc->alc_flags |= ALC_FLAG_CMB_BUG;
1421 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1422 MASTER_CHIP_REV_SHIFT;
1423 if (alcdebug) {
1424 printf("%s: PCI device revision : 0x%04x\n",
1425 device_xname(sc->sc_dev), sc->alc_rev);
1426 printf("%s: Chip id/revision : 0x%04x\n",
1427 device_xname(sc->sc_dev), sc->alc_chip_rev);
1428 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1429 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1430 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1431 }
1432
1433 error = alc_dma_alloc(sc);
1434 if (error)
1435 goto fail;
1436
1437 callout_init(&sc->sc_tick_ch, 0);
1438 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1439
1440 /* Load station address. */
1441 alc_get_macaddr(sc);
1442
1443 aprint_normal_dev(self, "Ethernet address %s\n",
1444 ether_sprintf(sc->alc_eaddr));
1445
1446 ifp = &sc->sc_ec.ec_if;
1447 ifp->if_softc = sc;
1448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1449 ifp->if_init = alc_init;
1450 ifp->if_ioctl = alc_ioctl;
1451 ifp->if_start = alc_start;
1452 ifp->if_stop = alc_stop;
1453 ifp->if_watchdog = alc_watchdog;
1454 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1455 IFQ_SET_READY(&ifp->if_snd);
1456 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1457
1458 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1459
1460 #ifdef ALC_CHECKSUM
1461 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1462 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1463 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1464 #endif
1465
1466 #if NVLAN > 0
1467 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1468 sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1469 #endif
1470
1471 /*
1472 * XXX
1473 * It seems enabling Tx checksum offloading makes more trouble.
1474 * Sometimes the controller does not receive any frames when
1475 * Tx checksum offloading is enabled. I'm not sure whether this
1476 * is a bug in Tx checksum offloading logic or I got broken
1477 * sample boards. To safety, don't enable Tx checksum offloading
1478 * by default but give chance to users to toggle it if they know
1479 * their controllers work without problems.
1480 * Fortunately, Tx checksum offloading for AR816x family
1481 * seems to work.
1482 */
1483 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1484 ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1485 ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1486 }
1487
1488 /* Set up MII bus. */
1489 mii->mii_ifp = ifp;
1490 mii->mii_readreg = alc_miibus_readreg;
1491 mii->mii_writereg = alc_miibus_writereg;
1492 mii->mii_statchg = alc_miibus_statchg;
1493
1494 sc->sc_ec.ec_mii = mii;
1495 ifmedia_init(&mii->mii_media, 0, alc_mediachange, alc_mediastatus);
1496 mii_flags = 0;
1497 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1498 mii_flags |= MIIF_DOPAUSE;
1499 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1500 MII_OFFSET_ANY, mii_flags);
1501
1502 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1503 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1504 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1505 0, NULL);
1506 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1507 } else
1508 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1509
1510 if_attach(ifp);
1511 if_deferred_start_init(ifp, NULL);
1512 ether_ifattach(ifp, sc->alc_eaddr);
1513
1514 if (!pmf_device_register(self, NULL, NULL))
1515 aprint_error_dev(self, "couldn't establish power handler\n");
1516 else
1517 pmf_class_network_register(self, ifp);
1518
1519 return;
1520 fail:
1521 alc_dma_free(sc);
1522 if (sc->sc_irq_handle != NULL) {
1523 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1524 sc->sc_irq_handle = NULL;
1525 }
1526 if (sc->sc_mem_size) {
1527 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1528 sc->sc_mem_size = 0;
1529 }
1530 }
1531
1532 static int
1533 alc_detach(device_t self, int flags)
1534 {
1535 struct alc_softc *sc = device_private(self);
1536 struct ifnet *ifp = &sc->sc_ec.ec_if;
1537 int s;
1538
1539 s = splnet();
1540 alc_stop(ifp, 0);
1541 splx(s);
1542
1543 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1544
1545 /* Delete all remaining media. */
1546 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1547
1548 ether_ifdetach(ifp);
1549 if_detach(ifp);
1550 alc_dma_free(sc);
1551
1552 alc_phy_down(sc);
1553 if (sc->sc_irq_handle != NULL) {
1554 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1555 sc->sc_irq_handle = NULL;
1556 }
1557 if (sc->sc_mem_size) {
1558 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1559 sc->sc_mem_size = 0;
1560 }
1561
1562 return (0);
1563 }
1564
1565 static int
1566 alc_dma_alloc(struct alc_softc *sc)
1567 {
1568 struct alc_txdesc *txd;
1569 struct alc_rxdesc *rxd;
1570 int nsegs, error, i;
1571
1572 /*
1573 * Create DMA stuffs for TX ring
1574 */
1575 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1576 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1577 if (error) {
1578 sc->alc_cdata.alc_tx_ring_map = NULL;
1579 return (ENOBUFS);
1580 }
1581
1582 /* Allocate DMA'able memory for TX ring */
1583 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1584 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1585 &nsegs, BUS_DMA_NOWAIT);
1586 if (error) {
1587 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1588 device_xname(sc->sc_dev));
1589 return error;
1590 }
1591
1592 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1593 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1594 BUS_DMA_NOWAIT);
1595 if (error)
1596 return (ENOBUFS);
1597
1598 /* Load the DMA map for Tx ring. */
1599 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1600 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1601 if (error) {
1602 printf("%s: could not load DMA'able memory for Tx ring.\n",
1603 device_xname(sc->sc_dev));
1604 bus_dmamem_free(sc->sc_dmat,
1605 &sc->alc_rdata.alc_tx_ring_seg, 1);
1606 return error;
1607 }
1608
1609 sc->alc_rdata.alc_tx_ring_paddr =
1610 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1611
1612 /*
1613 * Create DMA stuffs for RX ring
1614 */
1615 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1616 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1617 if (error)
1618 return (ENOBUFS);
1619
1620 /* Allocate DMA'able memory for RX ring */
1621 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1622 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1623 &nsegs, BUS_DMA_NOWAIT);
1624 if (error) {
1625 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1626 device_xname(sc->sc_dev));
1627 return error;
1628 }
1629
1630 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1631 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1632 BUS_DMA_NOWAIT);
1633 if (error)
1634 return (ENOBUFS);
1635
1636 /* Load the DMA map for Rx ring. */
1637 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1638 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1639 if (error) {
1640 printf("%s: could not load DMA'able memory for Rx ring.\n",
1641 device_xname(sc->sc_dev));
1642 bus_dmamem_free(sc->sc_dmat,
1643 &sc->alc_rdata.alc_rx_ring_seg, 1);
1644 return error;
1645 }
1646
1647 sc->alc_rdata.alc_rx_ring_paddr =
1648 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1649
1650 /*
1651 * Create DMA stuffs for RX return ring
1652 */
1653 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1654 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1655 if (error)
1656 return (ENOBUFS);
1657
1658 /* Allocate DMA'able memory for RX return ring */
1659 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1660 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1661 &nsegs, BUS_DMA_NOWAIT);
1662 if (error) {
1663 printf("%s: could not allocate DMA'able memory for Rx "
1664 "return ring.\n", device_xname(sc->sc_dev));
1665 return error;
1666 }
1667
1668 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1669 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1670 BUS_DMA_NOWAIT);
1671 if (error)
1672 return (ENOBUFS);
1673
1674 /* Load the DMA map for Rx return ring. */
1675 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1676 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1677 if (error) {
1678 printf("%s: could not load DMA'able memory for Rx return ring."
1679 "\n", device_xname(sc->sc_dev));
1680 bus_dmamem_free(sc->sc_dmat,
1681 &sc->alc_rdata.alc_rr_ring_seg, 1);
1682 return error;
1683 }
1684
1685 sc->alc_rdata.alc_rr_ring_paddr =
1686 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1687
1688 /*
1689 * Create DMA stuffs for CMB block
1690 */
1691 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1692 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1693 &sc->alc_cdata.alc_cmb_map);
1694 if (error)
1695 return (ENOBUFS);
1696
1697 /* Allocate DMA'able memory for CMB block */
1698 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1699 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1700 &nsegs, BUS_DMA_NOWAIT);
1701 if (error) {
1702 printf("%s: could not allocate DMA'able memory for "
1703 "CMB block\n", device_xname(sc->sc_dev));
1704 return error;
1705 }
1706
1707 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1708 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1709 BUS_DMA_NOWAIT);
1710 if (error)
1711 return (ENOBUFS);
1712
1713 /* Load the DMA map for CMB block. */
1714 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1715 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1716 BUS_DMA_WAITOK);
1717 if (error) {
1718 printf("%s: could not load DMA'able memory for CMB block\n",
1719 device_xname(sc->sc_dev));
1720 bus_dmamem_free(sc->sc_dmat,
1721 &sc->alc_rdata.alc_cmb_seg, 1);
1722 return error;
1723 }
1724
1725 sc->alc_rdata.alc_cmb_paddr =
1726 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1727
1728 /*
1729 * Create DMA stuffs for SMB block
1730 */
1731 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1732 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1733 &sc->alc_cdata.alc_smb_map);
1734 if (error)
1735 return (ENOBUFS);
1736
1737 /* Allocate DMA'able memory for SMB block */
1738 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1739 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1740 &nsegs, BUS_DMA_NOWAIT);
1741 if (error) {
1742 printf("%s: could not allocate DMA'able memory for "
1743 "SMB block\n", device_xname(sc->sc_dev));
1744 return error;
1745 }
1746
1747 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1748 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1749 BUS_DMA_NOWAIT);
1750 if (error)
1751 return (ENOBUFS);
1752
1753 /* Load the DMA map for SMB block */
1754 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1755 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1756 BUS_DMA_WAITOK);
1757 if (error) {
1758 printf("%s: could not load DMA'able memory for SMB block\n",
1759 device_xname(sc->sc_dev));
1760 bus_dmamem_free(sc->sc_dmat,
1761 &sc->alc_rdata.alc_smb_seg, 1);
1762 return error;
1763 }
1764
1765 sc->alc_rdata.alc_smb_paddr =
1766 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1767
1768
1769 /* Create DMA maps for Tx buffers. */
1770 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1771 txd = &sc->alc_cdata.alc_txdesc[i];
1772 txd->tx_m = NULL;
1773 txd->tx_dmamap = NULL;
1774 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1775 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1776 &txd->tx_dmamap);
1777 if (error) {
1778 printf("%s: could not create Tx dmamap.\n",
1779 device_xname(sc->sc_dev));
1780 return error;
1781 }
1782 }
1783
1784 /* Create DMA maps for Rx buffers. */
1785 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1786 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1787 if (error) {
1788 printf("%s: could not create spare Rx dmamap.\n",
1789 device_xname(sc->sc_dev));
1790 return error;
1791 }
1792
1793 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1794 rxd = &sc->alc_cdata.alc_rxdesc[i];
1795 rxd->rx_m = NULL;
1796 rxd->rx_dmamap = NULL;
1797 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1798 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1799 if (error) {
1800 printf("%s: could not create Rx dmamap.\n",
1801 device_xname(sc->sc_dev));
1802 return error;
1803 }
1804 }
1805
1806 return (0);
1807 }
1808
1809 static void
1810 alc_dma_free(struct alc_softc *sc)
1811 {
1812 struct alc_txdesc *txd;
1813 struct alc_rxdesc *rxd;
1814 int i;
1815
1816 /* Tx buffers */
1817 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1818 txd = &sc->alc_cdata.alc_txdesc[i];
1819 if (txd->tx_dmamap != NULL) {
1820 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1821 txd->tx_dmamap = NULL;
1822 }
1823 }
1824 /* Rx buffers */
1825 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1826 rxd = &sc->alc_cdata.alc_rxdesc[i];
1827 if (rxd->rx_dmamap != NULL) {
1828 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1829 rxd->rx_dmamap = NULL;
1830 }
1831 }
1832 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1833 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1834 sc->alc_cdata.alc_rx_sparemap = NULL;
1835 }
1836
1837 /* Tx ring. */
1838 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1839 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1840 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1841 sc->alc_rdata.alc_tx_ring != NULL)
1842 bus_dmamem_free(sc->sc_dmat,
1843 &sc->alc_rdata.alc_tx_ring_seg, 1);
1844 sc->alc_rdata.alc_tx_ring = NULL;
1845 sc->alc_cdata.alc_tx_ring_map = NULL;
1846
1847 /* Rx ring. */
1848 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1849 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1850 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1851 sc->alc_rdata.alc_rx_ring != NULL)
1852 bus_dmamem_free(sc->sc_dmat,
1853 &sc->alc_rdata.alc_rx_ring_seg, 1);
1854 sc->alc_rdata.alc_rx_ring = NULL;
1855 sc->alc_cdata.alc_rx_ring_map = NULL;
1856
1857 /* Rx return ring. */
1858 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1859 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1860 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1861 sc->alc_rdata.alc_rr_ring != NULL)
1862 bus_dmamem_free(sc->sc_dmat,
1863 &sc->alc_rdata.alc_rr_ring_seg, 1);
1864 sc->alc_rdata.alc_rr_ring = NULL;
1865 sc->alc_cdata.alc_rr_ring_map = NULL;
1866
1867 /* CMB block */
1868 if (sc->alc_cdata.alc_cmb_map != NULL)
1869 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1870 if (sc->alc_cdata.alc_cmb_map != NULL &&
1871 sc->alc_rdata.alc_cmb != NULL)
1872 bus_dmamem_free(sc->sc_dmat,
1873 &sc->alc_rdata.alc_cmb_seg, 1);
1874 sc->alc_rdata.alc_cmb = NULL;
1875 sc->alc_cdata.alc_cmb_map = NULL;
1876
1877 /* SMB block */
1878 if (sc->alc_cdata.alc_smb_map != NULL)
1879 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1880 if (sc->alc_cdata.alc_smb_map != NULL &&
1881 sc->alc_rdata.alc_smb != NULL)
1882 bus_dmamem_free(sc->sc_dmat,
1883 &sc->alc_rdata.alc_smb_seg, 1);
1884 sc->alc_rdata.alc_smb = NULL;
1885 sc->alc_cdata.alc_smb_map = NULL;
1886 }
1887
1888 static int
1889 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1890 {
1891 struct alc_txdesc *txd, *txd_last;
1892 struct tx_desc *desc;
1893 struct mbuf *m;
1894 bus_dmamap_t map;
1895 uint32_t cflags, poff, vtag;
1896 int error, idx, nsegs, prod;
1897
1898 m = *m_head;
1899 cflags = vtag = 0;
1900 poff = 0;
1901
1902 prod = sc->alc_cdata.alc_tx_prod;
1903 txd = &sc->alc_cdata.alc_txdesc[prod];
1904 txd_last = txd;
1905 map = txd->tx_dmamap;
1906
1907 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1908
1909 if (error == EFBIG) {
1910 error = 0;
1911
1912 *m_head = m_pullup(*m_head, MHLEN);
1913 if (*m_head == NULL) {
1914 printf("%s: can't defrag TX mbuf\n",
1915 device_xname(sc->sc_dev));
1916 return ENOBUFS;
1917 }
1918
1919 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1920 BUS_DMA_NOWAIT);
1921
1922 if (error != 0) {
1923 printf("%s: could not load defragged TX mbuf\n",
1924 device_xname(sc->sc_dev));
1925 m_freem(*m_head);
1926 *m_head = NULL;
1927 return error;
1928 }
1929 } else if (error) {
1930 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1931 return (error);
1932 }
1933
1934 nsegs = map->dm_nsegs;
1935
1936 if (nsegs == 0) {
1937 m_freem(*m_head);
1938 *m_head = NULL;
1939 return (EIO);
1940 }
1941
1942 /* Check descriptor overrun. */
1943 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1944 bus_dmamap_unload(sc->sc_dmat, map);
1945 return (ENOBUFS);
1946 }
1947 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1948 BUS_DMASYNC_PREWRITE);
1949
1950 m = *m_head;
1951 desc = NULL;
1952 idx = 0;
1953 #if NVLAN > 0
1954 /* Configure VLAN hardware tag insertion. */
1955 if (vlan_has_tag(m)) {
1956 vtag = htons(vlan_get_tag(m));
1957 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1958 cflags |= TD_INS_VLAN_TAG;
1959 }
1960 #endif
1961 /* Configure Tx checksum offload. */
1962 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1963 cflags |= TD_CUSTOM_CSUM;
1964 /* Set checksum start offset. */
1965 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1966 TD_PLOAD_OFFSET_MASK;
1967 }
1968 for (; idx < nsegs; idx++) {
1969 desc = &sc->alc_rdata.alc_tx_ring[prod];
1970 desc->len =
1971 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1972 desc->flags = htole32(cflags);
1973 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1974 sc->alc_cdata.alc_tx_cnt++;
1975 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1976 }
1977 /* Update producer index. */
1978 sc->alc_cdata.alc_tx_prod = prod;
1979
1980 /* Finally set EOP on the last descriptor. */
1981 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1982 desc = &sc->alc_rdata.alc_tx_ring[prod];
1983 desc->flags |= htole32(TD_EOP);
1984
1985 /* Swap dmamap of the first and the last. */
1986 txd = &sc->alc_cdata.alc_txdesc[prod];
1987 map = txd_last->tx_dmamap;
1988 txd_last->tx_dmamap = txd->tx_dmamap;
1989 txd->tx_dmamap = map;
1990 txd->tx_m = m;
1991
1992 return (0);
1993 }
1994
1995 static void
1996 alc_start(struct ifnet *ifp)
1997 {
1998 struct alc_softc *sc = ifp->if_softc;
1999 struct mbuf *m_head;
2000 int enq;
2001
2002 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2003 return;
2004 if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
2005 return;
2006 if (IFQ_IS_EMPTY(&ifp->if_snd))
2007 return;
2008
2009 /* Reclaim transmitted frames. */
2010 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2011 alc_txeof(sc);
2012
2013 enq = 0;
2014 for (;;) {
2015 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2016 if (m_head == NULL)
2017 break;
2018
2019 /*
2020 * Pack the data into the transmit ring. If we
2021 * don't have room, set the OACTIVE flag and wait
2022 * for the NIC to drain the ring.
2023 */
2024 if (alc_encap(sc, &m_head)) {
2025 if (m_head == NULL)
2026 break;
2027 ifp->if_flags |= IFF_OACTIVE;
2028 break;
2029 }
2030 enq = 1;
2031
2032 /*
2033 * If there's a BPF listener, bounce a copy of this frame
2034 * to him.
2035 */
2036 bpf_mtap(ifp, m_head, BPF_D_OUT);
2037 }
2038
2039 if (enq) {
2040 /* Sync descriptors. */
2041 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2042 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2043 BUS_DMASYNC_PREWRITE);
2044 /* Kick. Assume we're using normal Tx priority queue. */
2045 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2046 (sc->alc_cdata.alc_tx_prod <<
2047 MBOX_TD_PROD_LO_IDX_SHIFT) &
2048 MBOX_TD_PROD_LO_IDX_MASK);
2049 /* Set a timeout in case the chip goes out to lunch. */
2050 ifp->if_timer = ALC_TX_TIMEOUT;
2051 }
2052 }
2053
2054 static void
2055 alc_watchdog(struct ifnet *ifp)
2056 {
2057 struct alc_softc *sc = ifp->if_softc;
2058
2059 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2060 printf("%s: watchdog timeout (missed link)\n",
2061 device_xname(sc->sc_dev));
2062 ifp->if_oerrors++;
2063 alc_init_backend(ifp, false);
2064 return;
2065 }
2066
2067 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2068 ifp->if_oerrors++;
2069 alc_init_backend(ifp, false);
2070 alc_start(ifp);
2071 }
2072
2073 static int
2074 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2075 {
2076 struct alc_softc *sc = ifp->if_softc;
2077 int s, error = 0;
2078
2079 s = splnet();
2080
2081 switch (cmd) {
2082 case SIOCSIFADDR:
2083 error = ether_ioctl(ifp, cmd, data);
2084 ifp->if_flags |= IFF_UP;
2085 if (!(ifp->if_flags & IFF_RUNNING))
2086 alc_init(ifp);
2087 break;
2088
2089 case SIOCSIFFLAGS:
2090 error = ether_ioctl(ifp, cmd, data);
2091 if (ifp->if_flags & IFF_UP) {
2092 if (ifp->if_flags & IFF_RUNNING)
2093 error = ENETRESET;
2094 else
2095 alc_init(ifp);
2096 } else {
2097 if (ifp->if_flags & IFF_RUNNING)
2098 alc_stop(ifp, 0);
2099 }
2100 break;
2101
2102 default:
2103 error = ether_ioctl(ifp, cmd, data);
2104 break;
2105 }
2106
2107 if (error == ENETRESET) {
2108 if (ifp->if_flags & IFF_RUNNING)
2109 alc_iff(sc);
2110 error = 0;
2111 }
2112
2113 splx(s);
2114 return (error);
2115 }
2116
2117 static void
2118 alc_mac_config(struct alc_softc *sc)
2119 {
2120 struct mii_data *mii;
2121 uint32_t reg;
2122
2123 mii = &sc->sc_miibus;
2124 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2125 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2126 MAC_CFG_SPEED_MASK);
2127 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2128 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2129 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2130 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2131 /* Reprogram MAC with resolved speed/duplex. */
2132 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2133 case IFM_10_T:
2134 case IFM_100_TX:
2135 reg |= MAC_CFG_SPEED_10_100;
2136 break;
2137 case IFM_1000_T:
2138 reg |= MAC_CFG_SPEED_1000;
2139 break;
2140 }
2141 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2142 reg |= MAC_CFG_FULL_DUPLEX;
2143 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2144 reg |= MAC_CFG_TX_FC;
2145 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2146 reg |= MAC_CFG_RX_FC;
2147 }
2148 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2149 }
2150
2151 static void
2152 alc_stats_clear(struct alc_softc *sc)
2153 {
2154 struct smb sb, *smb;
2155 uint32_t *reg;
2156 int i;
2157
2158 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2159 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2160 sc->alc_cdata.alc_smb_map->dm_mapsize,
2161 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2162 smb = sc->alc_rdata.alc_smb;
2163 /* Update done, clear. */
2164 smb->updated = 0;
2165 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2166 sc->alc_cdata.alc_smb_map->dm_mapsize,
2167 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2168 } else {
2169 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2170 reg++) {
2171 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2172 i += sizeof(uint32_t);
2173 }
2174 /* Read Tx statistics. */
2175 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2176 reg++) {
2177 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2178 i += sizeof(uint32_t);
2179 }
2180 }
2181 }
2182
2183 static void
2184 alc_stats_update(struct alc_softc *sc)
2185 {
2186 struct ifnet *ifp = &sc->sc_ec.ec_if;
2187 struct alc_hw_stats *stat;
2188 struct smb sb, *smb;
2189 uint32_t *reg;
2190 int i;
2191
2192 stat = &sc->alc_stats;
2193 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2194 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2195 sc->alc_cdata.alc_smb_map->dm_mapsize,
2196 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197 smb = sc->alc_rdata.alc_smb;
2198 if (smb->updated == 0)
2199 return;
2200 } else {
2201 smb = &sb;
2202 /* Read Rx statistics. */
2203 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2204 reg++) {
2205 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2206 i += sizeof(uint32_t);
2207 }
2208 /* Read Tx statistics. */
2209 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2210 reg++) {
2211 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2212 i += sizeof(uint32_t);
2213 }
2214 }
2215
2216 /* Rx stats. */
2217 stat->rx_frames += smb->rx_frames;
2218 stat->rx_bcast_frames += smb->rx_bcast_frames;
2219 stat->rx_mcast_frames += smb->rx_mcast_frames;
2220 stat->rx_pause_frames += smb->rx_pause_frames;
2221 stat->rx_control_frames += smb->rx_control_frames;
2222 stat->rx_crcerrs += smb->rx_crcerrs;
2223 stat->rx_lenerrs += smb->rx_lenerrs;
2224 stat->rx_bytes += smb->rx_bytes;
2225 stat->rx_runts += smb->rx_runts;
2226 stat->rx_fragments += smb->rx_fragments;
2227 stat->rx_pkts_64 += smb->rx_pkts_64;
2228 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2229 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2230 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2231 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2232 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2233 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2234 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2235 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2236 stat->rx_rrs_errs += smb->rx_rrs_errs;
2237 stat->rx_alignerrs += smb->rx_alignerrs;
2238 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2239 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2240 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2241
2242 /* Tx stats. */
2243 stat->tx_frames += smb->tx_frames;
2244 stat->tx_bcast_frames += smb->tx_bcast_frames;
2245 stat->tx_mcast_frames += smb->tx_mcast_frames;
2246 stat->tx_pause_frames += smb->tx_pause_frames;
2247 stat->tx_excess_defer += smb->tx_excess_defer;
2248 stat->tx_control_frames += smb->tx_control_frames;
2249 stat->tx_deferred += smb->tx_deferred;
2250 stat->tx_bytes += smb->tx_bytes;
2251 stat->tx_pkts_64 += smb->tx_pkts_64;
2252 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2253 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2254 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2255 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2256 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2257 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2258 stat->tx_single_colls += smb->tx_single_colls;
2259 stat->tx_multi_colls += smb->tx_multi_colls;
2260 stat->tx_late_colls += smb->tx_late_colls;
2261 stat->tx_excess_colls += smb->tx_excess_colls;
2262 stat->tx_underrun += smb->tx_underrun;
2263 stat->tx_desc_underrun += smb->tx_desc_underrun;
2264 stat->tx_lenerrs += smb->tx_lenerrs;
2265 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2266 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2267 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2268
2269 /* Update counters in ifnet. */
2270 ifp->if_opackets += smb->tx_frames;
2271
2272 ifp->if_collisions += smb->tx_single_colls +
2273 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2274 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2275
2276 ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2277 smb->tx_underrun + smb->tx_pkts_truncated;
2278
2279 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2280 smb->rx_runts + smb->rx_pkts_truncated +
2281 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2282 smb->rx_alignerrs;
2283
2284 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2285 /* Update done, clear. */
2286 smb->updated = 0;
2287 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2288 sc->alc_cdata.alc_smb_map->dm_mapsize,
2289 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2290 }
2291 }
2292
2293 static int
2294 alc_intr(void *arg)
2295 {
2296 struct alc_softc *sc = arg;
2297 struct ifnet *ifp = &sc->sc_ec.ec_if;
2298 uint32_t status;
2299
2300 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2301 if ((status & ALC_INTRS) == 0)
2302 return (0);
2303
2304 /* Acknowledge and disable interrupts. */
2305 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2306
2307 if (ifp->if_flags & IFF_RUNNING) {
2308 if (status & INTR_RX_PKT) {
2309 int error;
2310
2311 error = alc_rxintr(sc);
2312 if (error) {
2313 alc_init_backend(ifp, false);
2314 return (0);
2315 }
2316 }
2317
2318 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2319 INTR_TXQ_TO_RST)) {
2320 if (status & INTR_DMA_RD_TO_RST)
2321 printf("%s: DMA read error! -- resetting\n",
2322 device_xname(sc->sc_dev));
2323 if (status & INTR_DMA_WR_TO_RST)
2324 printf("%s: DMA write error! -- resetting\n",
2325 device_xname(sc->sc_dev));
2326 if (status & INTR_TXQ_TO_RST)
2327 printf("%s: TxQ reset! -- resetting\n",
2328 device_xname(sc->sc_dev));
2329 alc_init_backend(ifp, false);
2330 return (0);
2331 }
2332
2333 alc_txeof(sc);
2334 if_schedule_deferred_start(ifp);
2335 }
2336
2337 /* Re-enable interrupts. */
2338 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2339 return (1);
2340 }
2341
2342 static void
2343 alc_txeof(struct alc_softc *sc)
2344 {
2345 struct ifnet *ifp = &sc->sc_ec.ec_if;
2346 struct alc_txdesc *txd;
2347 uint32_t cons, prod;
2348 int prog;
2349
2350 if (sc->alc_cdata.alc_tx_cnt == 0)
2351 return;
2352 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2353 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2354 BUS_DMASYNC_POSTREAD);
2355 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2356 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2357 sc->alc_cdata.alc_cmb_map->dm_mapsize,
2358 BUS_DMASYNC_POSTREAD);
2359 prod = sc->alc_rdata.alc_cmb->cons;
2360 } else
2361 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2362 /* Assume we're using normal Tx priority queue. */
2363 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2364 MBOX_TD_CONS_LO_IDX_SHIFT;
2365 cons = sc->alc_cdata.alc_tx_cons;
2366 /*
2367 * Go through our Tx list and free mbufs for those
2368 * frames which have been transmitted.
2369 */
2370 for (prog = 0; cons != prod; prog++,
2371 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2372 if (sc->alc_cdata.alc_tx_cnt <= 0)
2373 break;
2374 prog++;
2375 ifp->if_flags &= ~IFF_OACTIVE;
2376 sc->alc_cdata.alc_tx_cnt--;
2377 txd = &sc->alc_cdata.alc_txdesc[cons];
2378 if (txd->tx_m != NULL) {
2379 /* Reclaim transmitted mbufs. */
2380 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2381 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2382 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2383 m_freem(txd->tx_m);
2384 txd->tx_m = NULL;
2385 }
2386 }
2387
2388 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2389 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2390 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2391 sc->alc_cdata.alc_tx_cons = cons;
2392 /*
2393 * Unarm watchdog timer only when there is no pending
2394 * frames in Tx queue.
2395 */
2396 if (sc->alc_cdata.alc_tx_cnt == 0)
2397 ifp->if_timer = 0;
2398 }
2399
2400 static int
2401 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2402 {
2403 struct mbuf *m;
2404 bus_dmamap_t map;
2405 int error;
2406
2407 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2408 if (m == NULL)
2409 return (ENOBUFS);
2410 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2411 if (!(m->m_flags & M_EXT)) {
2412 m_freem(m);
2413 return (ENOBUFS);
2414 }
2415
2416 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2417
2418 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2419 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2420
2421 if (error != 0) {
2422 m_freem(m);
2423
2424 if (init)
2425 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2426
2427 return (error);
2428 }
2429
2430 if (rxd->rx_m != NULL) {
2431 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2432 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2433 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2434 }
2435 map = rxd->rx_dmamap;
2436 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2437 sc->alc_cdata.alc_rx_sparemap = map;
2438 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2439 BUS_DMASYNC_PREREAD);
2440 rxd->rx_m = m;
2441 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2442 return (0);
2443 }
2444
2445 static int
2446 alc_rxintr(struct alc_softc *sc)
2447 {
2448 struct ifnet *ifp = &sc->sc_ec.ec_if;
2449 struct rx_rdesc *rrd;
2450 uint32_t nsegs, status;
2451 int rr_cons, prog;
2452
2453 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2454 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2455 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2456 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2457 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2458 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2459 rr_cons = sc->alc_cdata.alc_rr_cons;
2460 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2461 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2462 status = le32toh(rrd->status);
2463 if ((status & RRD_VALID) == 0)
2464 break;
2465 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2466 if (nsegs == 0) {
2467 /* This should not happen! */
2468 if (alcdebug)
2469 printf("%s: unexpected segment count -- "
2470 "resetting\n", device_xname(sc->sc_dev));
2471 return (EIO);
2472 }
2473 alc_rxeof(sc, rrd);
2474 /* Clear Rx return status. */
2475 rrd->status = 0;
2476 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2477 sc->alc_cdata.alc_rx_cons += nsegs;
2478 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2479 prog += nsegs;
2480 }
2481
2482 if (prog > 0) {
2483 /* Update the consumer index. */
2484 sc->alc_cdata.alc_rr_cons = rr_cons;
2485 /* Sync Rx return descriptors. */
2486 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2487 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2488 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2489 /*
2490 * Sync updated Rx descriptors such that controller see
2491 * modified buffer addresses.
2492 */
2493 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2494 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2495 BUS_DMASYNC_PREWRITE);
2496 /*
2497 * Let controller know availability of new Rx buffers.
2498 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2499 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2500 * only when Rx buffer pre-fetching is required. In
2501 * addition we already set ALC_RX_RD_FREE_THRESH to
2502 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2503 * it still seems that pre-fetching needs more
2504 * experimentation.
2505 */
2506 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2507 sc->alc_cdata.alc_rx_cons);
2508 }
2509
2510 return (0);
2511 }
2512
2513 /* Receive a frame. */
2514 static void
2515 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2516 {
2517 struct ifnet *ifp = &sc->sc_ec.ec_if;
2518 struct alc_rxdesc *rxd;
2519 struct mbuf *mp, *m;
2520 uint32_t rdinfo, status;
2521 int count, nsegs, rx_cons;
2522
2523 status = le32toh(rrd->status);
2524 rdinfo = le32toh(rrd->rdinfo);
2525 rx_cons = RRD_RD_IDX(rdinfo);
2526 nsegs = RRD_RD_CNT(rdinfo);
2527
2528 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2529 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2530 /*
2531 * We want to pass the following frames to upper
2532 * layer regardless of error status of Rx return
2533 * ring.
2534 *
2535 * o IP/TCP/UDP checksum is bad.
2536 * o frame length and protocol specific length
2537 * does not match.
2538 *
2539 * Force network stack compute checksum for
2540 * errored frames.
2541 */
2542 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2543 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2544 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2545 return;
2546 }
2547
2548 for (count = 0; count < nsegs; count++,
2549 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2550 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2551 mp = rxd->rx_m;
2552 /* Add a new receive buffer to the ring. */
2553 if (alc_newbuf(sc, rxd, false) != 0) {
2554 ifp->if_iqdrops++;
2555 /* Reuse Rx buffers. */
2556 if (sc->alc_cdata.alc_rxhead != NULL)
2557 m_freem(sc->alc_cdata.alc_rxhead);
2558 break;
2559 }
2560
2561 /*
2562 * Assume we've received a full sized frame.
2563 * Actual size is fixed when we encounter the end of
2564 * multi-segmented frame.
2565 */
2566 mp->m_len = sc->alc_buf_size;
2567
2568 /* Chain received mbufs. */
2569 if (sc->alc_cdata.alc_rxhead == NULL) {
2570 sc->alc_cdata.alc_rxhead = mp;
2571 sc->alc_cdata.alc_rxtail = mp;
2572 } else {
2573 m_remove_pkthdr(mp);
2574 sc->alc_cdata.alc_rxprev_tail =
2575 sc->alc_cdata.alc_rxtail;
2576 sc->alc_cdata.alc_rxtail->m_next = mp;
2577 sc->alc_cdata.alc_rxtail = mp;
2578 }
2579
2580 if (count == nsegs - 1) {
2581 /* Last desc. for this frame. */
2582 m = sc->alc_cdata.alc_rxhead;
2583 KASSERT(m->m_flags & M_PKTHDR);
2584 /*
2585 * It seems that L1C/L2C controller has no way
2586 * to tell hardware to strip CRC bytes.
2587 */
2588 m->m_pkthdr.len =
2589 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2590 if (nsegs > 1) {
2591 /* Set last mbuf size. */
2592 mp->m_len = sc->alc_cdata.alc_rxlen -
2593 (nsegs - 1) * sc->alc_buf_size;
2594 /* Remove the CRC bytes in chained mbufs. */
2595 if (mp->m_len <= ETHER_CRC_LEN) {
2596 sc->alc_cdata.alc_rxtail =
2597 sc->alc_cdata.alc_rxprev_tail;
2598 sc->alc_cdata.alc_rxtail->m_len -=
2599 (ETHER_CRC_LEN - mp->m_len);
2600 sc->alc_cdata.alc_rxtail->m_next = NULL;
2601 m_freem(mp);
2602 } else {
2603 mp->m_len -= ETHER_CRC_LEN;
2604 }
2605 } else
2606 m->m_len = m->m_pkthdr.len;
2607 m_set_rcvif(m, ifp);
2608 #if NVLAN > 0
2609 /*
2610 * Due to hardware bugs, Rx checksum offloading
2611 * was intentionally disabled.
2612 */
2613 if (status & RRD_VLAN_TAG) {
2614 uint32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2615 vlan_set_tag(m, ntohs(vtag));
2616 }
2617 #endif
2618
2619 /* Pass it on. */
2620 if_percpuq_enqueue(ifp->if_percpuq, m);
2621 }
2622 }
2623 /* Reset mbuf chains. */
2624 ALC_RXCHAIN_RESET(sc);
2625 }
2626
2627 static void
2628 alc_tick(void *xsc)
2629 {
2630 struct alc_softc *sc = xsc;
2631 struct mii_data *mii = &sc->sc_miibus;
2632 int s;
2633
2634 s = splnet();
2635 mii_tick(mii);
2636 alc_stats_update(sc);
2637 splx(s);
2638
2639 callout_schedule(&sc->sc_tick_ch, hz);
2640 }
2641
2642 static void
2643 alc_osc_reset(struct alc_softc *sc)
2644 {
2645 uint32_t reg;
2646
2647 reg = CSR_READ_4(sc, ALC_MISC3);
2648 reg &= ~MISC3_25M_BY_SW;
2649 reg |= MISC3_25M_NOTO_INTNL;
2650 CSR_WRITE_4(sc, ALC_MISC3, reg);
2651
2652 reg = CSR_READ_4(sc, ALC_MISC);
2653 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2654 /*
2655 * Restore over-current protection default value.
2656 * This value could be reset by MAC reset.
2657 */
2658 reg &= ~MISC_PSW_OCP_MASK;
2659 reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2660 reg &= ~MISC_INTNLOSC_OPEN;
2661 CSR_WRITE_4(sc, ALC_MISC, reg);
2662 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2663 reg = CSR_READ_4(sc, ALC_MISC2);
2664 reg &= ~MISC2_CALB_START;
2665 CSR_WRITE_4(sc, ALC_MISC2, reg);
2666 CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2667
2668 } else {
2669 reg &= ~MISC_INTNLOSC_OPEN;
2670 /* Disable isolate for revision A devices. */
2671 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2672 reg &= ~MISC_ISO_ENB;
2673 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2674 CSR_WRITE_4(sc, ALC_MISC, reg);
2675 }
2676
2677 DELAY(20);
2678 }
2679
2680 static void
2681 alc_reset(struct alc_softc *sc)
2682 {
2683 uint32_t pmcfg, reg;
2684 int i;
2685
2686 pmcfg = 0;
2687 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2688 /* Reset workaround. */
2689 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2690 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2691 (sc->alc_rev & 0x01) != 0) {
2692 /* Disable L0s/L1s before reset. */
2693 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2694 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2695 != 0) {
2696 pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2697 PM_CFG_ASPM_L1_ENB);
2698 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2699 }
2700 }
2701 }
2702 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2703 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2704 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2705
2706 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2707 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2708 DELAY(10);
2709 if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2710 break;
2711 }
2712 if (i == 0)
2713 printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2714 }
2715 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2716 DELAY(10);
2717 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2718 break;
2719 }
2720 if (i == 0)
2721 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2722
2723 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2724 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2725 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2726 IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2727 break;
2728 DELAY(10);
2729 }
2730 if (i == 0)
2731 printf("%s: reset timeout(0x%08x)!\n",
2732 device_xname(sc->sc_dev), reg);
2733
2734 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2735 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2736 (sc->alc_rev & 0x01) != 0) {
2737 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2738 reg |= MASTER_CLK_SEL_DIS;
2739 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2740 /* Restore L0s/L1s config. */
2741 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2742 != 0)
2743 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2744 }
2745
2746 alc_osc_reset(sc);
2747 reg = CSR_READ_4(sc, ALC_MISC3);
2748 reg &= ~MISC3_25M_BY_SW;
2749 reg |= MISC3_25M_NOTO_INTNL;
2750 CSR_WRITE_4(sc, ALC_MISC3, reg);
2751 reg = CSR_READ_4(sc, ALC_MISC);
2752 reg &= ~MISC_INTNLOSC_OPEN;
2753 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2754 reg &= ~MISC_ISO_ENB;
2755 CSR_WRITE_4(sc, ALC_MISC, reg);
2756 DELAY(20);
2757 }
2758 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2759 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2760 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2761 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2762 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2763 SERDES_PHY_CLK_SLOWDOWN);
2764 }
2765
2766 static int
2767 alc_init(struct ifnet *ifp)
2768 {
2769
2770 return alc_init_backend(ifp, true);
2771 }
2772
2773 static int
2774 alc_init_backend(struct ifnet *ifp, bool init)
2775 {
2776 struct alc_softc *sc = ifp->if_softc;
2777 struct mii_data *mii;
2778 uint8_t eaddr[ETHER_ADDR_LEN];
2779 bus_addr_t paddr;
2780 uint32_t reg, rxf_hi, rxf_lo;
2781 int error;
2782
2783 /*
2784 * Cancel any pending I/O.
2785 */
2786 alc_stop(ifp, 0);
2787 /*
2788 * Reset the chip to a known state.
2789 */
2790 alc_reset(sc);
2791
2792 /* Initialize Rx descriptors. */
2793 error = alc_init_rx_ring(sc, init);
2794 if (error != 0) {
2795 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2796 alc_stop(ifp, 0);
2797 return (error);
2798 }
2799 alc_init_rr_ring(sc);
2800 alc_init_tx_ring(sc);
2801 alc_init_cmb(sc);
2802 alc_init_smb(sc);
2803
2804 /* Enable all clocks. */
2805 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2806 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2807 CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2808 CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2809 CLK_GATING_RXMAC_ENB);
2810 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2811 CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2812 IDLE_DECISN_TIMER_DEFAULT_1MS);
2813 } else
2814 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2815
2816 /* Reprogram the station address. */
2817 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2818 CSR_WRITE_4(sc, ALC_PAR0, (uint32_t)eaddr[2] << 24
2819 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2820 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2821 /*
2822 * Clear WOL status and disable all WOL feature as WOL
2823 * would interfere Rx operation under normal environments.
2824 */
2825 CSR_READ_4(sc, ALC_WOL_CFG);
2826 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2827 /* Set Tx descriptor base addresses. */
2828 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2829 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2830 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2831 /* We don't use high priority ring. */
2832 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2833 /* Set Tx descriptor counter. */
2834 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2835 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2836 /* Set Rx descriptor base addresses. */
2837 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2838 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2839 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2840 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2841 /* We use one Rx ring. */
2842 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2843 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2844 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2845 }
2846 /* Set Rx descriptor counter. */
2847 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2848 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2849
2850 /*
2851 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2852 * if it do not fit the buffer size. Rx return descriptor holds
2853 * a counter that indicates how many fragments were made by the
2854 * hardware. The buffer size should be multiple of 8 bytes.
2855 * Since hardware has limit on the size of buffer size, always
2856 * use the maximum value.
2857 * For strict-alignment architectures make sure to reduce buffer
2858 * size by 8 bytes to make room for alignment fixup.
2859 */
2860 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2861 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2862
2863 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2864 /* Set Rx return descriptor base addresses. */
2865 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2866 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2867 /* We use one Rx return ring. */
2868 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2869 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2870 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2871 }
2872 /* Set Rx return descriptor counter. */
2873 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2874 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2875 paddr = sc->alc_rdata.alc_cmb_paddr;
2876 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2877 paddr = sc->alc_rdata.alc_smb_paddr;
2878 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2879 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2880
2881 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2882 /* Reconfigure SRAM - Vendor magic. */
2883 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2884 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2885 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2886 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2887 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2888 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2889 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2890 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2891 }
2892
2893 /* Tell hardware that we're ready to load DMA blocks. */
2894 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2895
2896 /* Configure interrupt moderation timer. */
2897 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2898 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2899 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2900 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2901 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2902 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2903 /*
2904 * We don't want to automatic interrupt clear as task queue
2905 * for the interrupt should know interrupt status.
2906 */
2907 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2908 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2909 reg |= MASTER_SA_TIMER_ENB;
2910 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2911 reg |= MASTER_IM_RX_TIMER_ENB;
2912 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2913 ALC_USECS(sc->alc_int_tx_mod) != 0)
2914 reg |= MASTER_IM_TX_TIMER_ENB;
2915 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2916 /*
2917 * Disable interrupt re-trigger timer. We don't want automatic
2918 * re-triggering of un-ACKed interrupts.
2919 */
2920 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2921 /* Configure CMB. */
2922 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2923 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2924 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2925 ALC_USECS(sc->alc_int_tx_mod));
2926 } else {
2927 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2928 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2929 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2930 } else
2931 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2932 }
2933 /*
2934 * Hardware can be configured to issue SMB interrupt based
2935 * on programmed interval. Since there is a callout that is
2936 * invoked for every hz in driver we use that instead of
2937 * relying on periodic SMB interrupt.
2938 */
2939 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2940 /* Clear MAC statistics. */
2941 alc_stats_clear(sc);
2942
2943 /*
2944 * Always use maximum frame size that controller can support.
2945 * Otherwise received frames that has larger frame length
2946 * than alc(4) MTU would be silently dropped in hardware. This
2947 * would make path-MTU discovery hard as sender wouldn't get
2948 * any responses from receiver. alc(4) supports
2949 * multi-fragmented frames on Rx path so it has no issue on
2950 * assembling fragmented frames. Using maximum frame size also
2951 * removes the need to reinitialize hardware when interface
2952 * MTU configuration was changed.
2953 *
2954 * Be conservative in what you do, be liberal in what you
2955 * accept from others - RFC 793.
2956 */
2957 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2958
2959 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2960 /* Disable header split(?) */
2961 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2962
2963 /* Configure IPG/IFG parameters. */
2964 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2965 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2966 IPG_IFG_IPGT_MASK) |
2967 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2968 IPG_IFG_MIFG_MASK) |
2969 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2970 IPG_IFG_IPG1_MASK) |
2971 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2972 IPG_IFG_IPG2_MASK));
2973 /* Set parameters for half-duplex media. */
2974 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2975 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2976 HDPX_CFG_LCOL_MASK) |
2977 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2978 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2979 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2980 HDPX_CFG_ABEBT_MASK) |
2981 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2982 HDPX_CFG_JAMIPG_MASK));
2983 }
2984
2985 /*
2986 * Set TSO/checksum offload threshold. For frames that is
2987 * larger than this threshold, hardware wouldn't do
2988 * TSO/checksum offloading.
2989 */
2990 reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2991 TSO_OFFLOAD_THRESH_MASK;
2992 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2993 reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2994 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2995 /* Configure TxQ. */
2996 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2997 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2998 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2999 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3000 reg >>= 1;
3001 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3002 TXQ_CFG_TD_BURST_MASK;
3003 reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
3004 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3005 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3006 reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
3007 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
3008 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
3009 HQTD_CFG_BURST_ENB);
3010 CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
3011 reg = WRR_PRI_RESTRICT_NONE;
3012 reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
3013 WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
3014 WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
3015 WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
3016 CSR_WRITE_4(sc, ALC_WRR, reg);
3017 } else {
3018 /* Configure Rx free descriptor pre-fetching. */
3019 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3020 ((RX_RD_FREE_THRESH_HI_DEFAULT <<
3021 RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
3022 ((RX_RD_FREE_THRESH_LO_DEFAULT <<
3023 RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
3024 }
3025
3026 /*
3027 * Configure flow control parameters.
3028 * XON : 80% of Rx FIFO
3029 * XOFF : 30% of Rx FIFO
3030 */
3031 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3032 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3033 reg &= SRAM_RX_FIFO_LEN_MASK;
3034 reg *= 8;
3035 if (reg > 8 * 1024)
3036 reg -= RX_FIFO_PAUSE_816X_RSVD;
3037 else
3038 reg -= RX_BUF_SIZE_MAX;
3039 reg /= 8;
3040 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3041 ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3042 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3043 (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3044 RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3045 RX_FIFO_PAUSE_THRESH_HI_MASK));
3046 } else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3047 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3048 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3049 rxf_hi = (reg * 8) / 10;
3050 rxf_lo = (reg * 3) / 10;
3051 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3052 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3053 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3054 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3055 RX_FIFO_PAUSE_THRESH_HI_MASK));
3056 }
3057
3058 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3059 /* Disable RSS until I understand L1C/L2C's RSS logic. */
3060 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3061 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3062 }
3063
3064 /* Configure RxQ. */
3065 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3066 RXQ_CFG_RD_BURST_MASK;
3067 reg |= RXQ_CFG_RSS_MODE_DIS;
3068 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3069 reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3070 RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3071 RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3072 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
3073 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3074 } else {
3075 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3076 sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3077 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3078 }
3079 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3080
3081 /* Configure DMA parameters. */
3082 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3083 reg |= sc->alc_rcb;
3084 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3085 reg |= DMA_CFG_CMB_ENB;
3086 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3087 reg |= DMA_CFG_SMB_ENB;
3088 else
3089 reg |= DMA_CFG_SMB_DIS;
3090 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3091 DMA_CFG_RD_BURST_SHIFT;
3092 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3093 DMA_CFG_WR_BURST_SHIFT;
3094 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3095 DMA_CFG_RD_DELAY_CNT_MASK;
3096 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3097 DMA_CFG_WR_DELAY_CNT_MASK;
3098 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3099 switch (AR816X_REV(sc->alc_rev)) {
3100 case AR816X_REV_A0:
3101 case AR816X_REV_A1:
3102 reg |= DMA_CFG_RD_CHNL_SEL_2;
3103 break;
3104 case AR816X_REV_B0:
3105 /* FALLTHROUGH */
3106 default:
3107 reg |= DMA_CFG_RD_CHNL_SEL_4;
3108 break;
3109 }
3110 }
3111 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3112
3113 /*
3114 * Configure Tx/Rx MACs.
3115 * - Auto-padding for short frames.
3116 * - Enable CRC generation.
3117 * Actual reconfiguration of MAC for resolved speed/duplex
3118 * is followed after detection of link establishment.
3119 * AR813x/AR815x always does checksum computation regardless
3120 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3121 * have bug in protocol field in Rx return structure so
3122 * these controllers can't handle fragmented frames. Disable
3123 * Rx checksum offloading until there is a newer controller
3124 * that has sane implementation.
3125 */
3126 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3127 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3128 MAC_CFG_PREAMBLE_MASK);
3129 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3130 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3131 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3132 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3133 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3134 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3135 reg |= MAC_CFG_SPEED_10_100;
3136 else
3137 reg |= MAC_CFG_SPEED_1000;
3138 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3139
3140 /* Set up the receive filter. */
3141 alc_iff(sc);
3142 alc_rxvlan(sc);
3143
3144 /* Acknowledge all pending interrupts and clear it. */
3145 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3146 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3147 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3148
3149 sc->alc_flags &= ~ALC_FLAG_LINK;
3150 /* Switch to the current media. */
3151 mii = &sc->sc_miibus;
3152 mii_mediachg(mii);
3153
3154 callout_schedule(&sc->sc_tick_ch, hz);
3155
3156 ifp->if_flags |= IFF_RUNNING;
3157 ifp->if_flags &= ~IFF_OACTIVE;
3158
3159 return (0);
3160 }
3161
3162 static void
3163 alc_stop(struct ifnet *ifp, int disable)
3164 {
3165 struct alc_softc *sc = ifp->if_softc;
3166 struct alc_txdesc *txd;
3167 struct alc_rxdesc *rxd;
3168 uint32_t reg;
3169 int i;
3170
3171 callout_stop(&sc->sc_tick_ch);
3172
3173 /*
3174 * Mark the interface down and cancel the watchdog timer.
3175 */
3176 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3177 ifp->if_timer = 0;
3178
3179 sc->alc_flags &= ~ALC_FLAG_LINK;
3180
3181 alc_stats_update(sc);
3182
3183 mii_down(&sc->sc_miibus);
3184
3185 /* Disable interrupts. */
3186 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3187 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3188
3189 /* Disable DMA. */
3190 reg = CSR_READ_4(sc, ALC_DMA_CFG);
3191 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3192 reg |= DMA_CFG_SMB_DIS;
3193 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3194 DELAY(1000);
3195
3196 /* Stop Rx/Tx MACs. */
3197 alc_stop_mac(sc);
3198
3199 /* Disable interrupts which might be touched in taskq handler. */
3200 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3201
3202 /* Disable L0s/L1s */
3203 alc_aspm(sc, 0, IFM_UNKNOWN);
3204
3205 /* Reclaim Rx buffers that have been processed. */
3206 if (sc->alc_cdata.alc_rxhead != NULL)
3207 m_freem(sc->alc_cdata.alc_rxhead);
3208 ALC_RXCHAIN_RESET(sc);
3209 /*
3210 * Free Tx/Rx mbufs still in the queues.
3211 */
3212 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3213 rxd = &sc->alc_cdata.alc_rxdesc[i];
3214 if (rxd->rx_m != NULL) {
3215 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3216 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3217 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3218 m_freem(rxd->rx_m);
3219 rxd->rx_m = NULL;
3220 }
3221 }
3222 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3223 txd = &sc->alc_cdata.alc_txdesc[i];
3224 if (txd->tx_m != NULL) {
3225 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3226 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3227 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3228 m_freem(txd->tx_m);
3229 txd->tx_m = NULL;
3230 }
3231 }
3232 }
3233
3234 static void
3235 alc_stop_mac(struct alc_softc *sc)
3236 {
3237 uint32_t reg;
3238 int i;
3239
3240 alc_stop_queue(sc);
3241 /* Disable Rx/Tx MAC. */
3242 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3243 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3244 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3245 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3246 }
3247 for (i = ALC_TIMEOUT; i > 0; i--) {
3248 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3249 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3250 break;
3251 DELAY(10);
3252 }
3253 if (i == 0)
3254 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3255 device_xname(sc->sc_dev), reg);
3256 }
3257
3258 static void
3259 alc_start_queue(struct alc_softc *sc)
3260 {
3261 uint32_t qcfg[] = {
3262 0,
3263 RXQ_CFG_QUEUE0_ENB,
3264 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3265 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3266 RXQ_CFG_ENB
3267 };
3268 uint32_t cfg;
3269
3270 /* Enable RxQ. */
3271 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3272 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3273 cfg &= ~RXQ_CFG_ENB;
3274 cfg |= qcfg[1];
3275 } else
3276 cfg |= RXQ_CFG_QUEUE0_ENB;
3277 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3278 /* Enable TxQ. */
3279 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3280 cfg |= TXQ_CFG_ENB;
3281 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3282 }
3283
3284 static void
3285 alc_stop_queue(struct alc_softc *sc)
3286 {
3287 uint32_t reg;
3288 int i;
3289
3290 /* Disable RxQ. */
3291 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3292 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3293 if ((reg & RXQ_CFG_ENB) != 0) {
3294 reg &= ~RXQ_CFG_ENB;
3295 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3296 }
3297 } else {
3298 if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3299 reg &= ~RXQ_CFG_QUEUE0_ENB;
3300 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3301 }
3302 }
3303 /* Disable TxQ. */
3304 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3305 if ((reg & TXQ_CFG_ENB) != 0) {
3306 reg &= ~TXQ_CFG_ENB;
3307 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3308 }
3309 DELAY(40);
3310 for (i = ALC_TIMEOUT; i > 0; i--) {
3311 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3312 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3313 break;
3314 DELAY(10);
3315 }
3316 if (i == 0)
3317 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3318 device_xname(sc->sc_dev), reg);
3319 }
3320
3321 static void
3322 alc_init_tx_ring(struct alc_softc *sc)
3323 {
3324 struct alc_ring_data *rd;
3325 struct alc_txdesc *txd;
3326 int i;
3327
3328 sc->alc_cdata.alc_tx_prod = 0;
3329 sc->alc_cdata.alc_tx_cons = 0;
3330 sc->alc_cdata.alc_tx_cnt = 0;
3331
3332 rd = &sc->alc_rdata;
3333 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3334 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3335 txd = &sc->alc_cdata.alc_txdesc[i];
3336 txd->tx_m = NULL;
3337 }
3338
3339 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3340 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3341 }
3342
3343 static int
3344 alc_init_rx_ring(struct alc_softc *sc, bool init)
3345 {
3346 struct alc_ring_data *rd;
3347 struct alc_rxdesc *rxd;
3348 int i;
3349
3350 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3351 rd = &sc->alc_rdata;
3352 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3353 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3354 rxd = &sc->alc_cdata.alc_rxdesc[i];
3355 rxd->rx_m = NULL;
3356 rxd->rx_desc = &rd->alc_rx_ring[i];
3357 if (alc_newbuf(sc, rxd, init) != 0)
3358 return (ENOBUFS);
3359 }
3360
3361 /*
3362 * Since controller does not update Rx descriptors, driver
3363 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3364 * is enough to ensure coherence.
3365 */
3366 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3367 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3368 /* Let controller know availability of new Rx buffers. */
3369 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3370
3371 return (0);
3372 }
3373
3374 static void
3375 alc_init_rr_ring(struct alc_softc *sc)
3376 {
3377 struct alc_ring_data *rd;
3378
3379 sc->alc_cdata.alc_rr_cons = 0;
3380 ALC_RXCHAIN_RESET(sc);
3381
3382 rd = &sc->alc_rdata;
3383 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3384 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3385 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3386 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3387 }
3388
3389 static void
3390 alc_init_cmb(struct alc_softc *sc)
3391 {
3392 struct alc_ring_data *rd;
3393
3394 rd = &sc->alc_rdata;
3395 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3396 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3397 sc->alc_cdata.alc_cmb_map->dm_mapsize,
3398 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3399 }
3400
3401 static void
3402 alc_init_smb(struct alc_softc *sc)
3403 {
3404 struct alc_ring_data *rd;
3405
3406 rd = &sc->alc_rdata;
3407 memset(rd->alc_smb, 0, ALC_SMB_SZ);
3408 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3409 sc->alc_cdata.alc_smb_map->dm_mapsize,
3410 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3411 }
3412
3413 static void
3414 alc_rxvlan(struct alc_softc *sc)
3415 {
3416 uint32_t reg;
3417
3418 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3419 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3420 reg |= MAC_CFG_VLAN_TAG_STRIP;
3421 else
3422 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3423 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3424 }
3425
3426 static void
3427 alc_iff(struct alc_softc *sc)
3428 {
3429 struct ethercom *ec = &sc->sc_ec;
3430 struct ifnet *ifp = &ec->ec_if;
3431 struct ether_multi *enm;
3432 struct ether_multistep step;
3433 uint32_t crc;
3434 uint32_t mchash[2];
3435 uint32_t rxcfg;
3436
3437 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3438 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3439 ifp->if_flags &= ~IFF_ALLMULTI;
3440
3441 /*
3442 * Always accept broadcast frames.
3443 */
3444 rxcfg |= MAC_CFG_BCAST;
3445
3446 /* Program new filter. */
3447 if ((ifp->if_flags & IFF_PROMISC) != 0)
3448 goto update;
3449
3450 memset(mchash, 0, sizeof(mchash));
3451
3452 ETHER_LOCK(ec);
3453 ETHER_FIRST_MULTI(step, ec, enm);
3454 while (enm != NULL) {
3455 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3456 /* XXX Use ETHER_F_ALLMULTI in future. */
3457 ifp->if_flags |= IFF_ALLMULTI;
3458 ETHER_UNLOCK(ec);
3459 goto update;
3460 }
3461 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3462 mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
3463 ETHER_NEXT_MULTI(step, enm);
3464 }
3465 ETHER_UNLOCK(ec);
3466
3467 update:
3468 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3469 if (ifp->if_flags & IFF_PROMISC) {
3470 rxcfg |= MAC_CFG_PROMISC;
3471 /* XXX Use ETHER_F_ALLMULTI in future. */
3472 ifp->if_flags |= IFF_ALLMULTI;
3473 } else
3474 rxcfg |= MAC_CFG_ALLMULTI;
3475 mchash[0] = mchash[1] = 0xFFFFFFFF;
3476 }
3477 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3478 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3479 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3480 }
3481
3482 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3483
3484 #ifdef _MODULE
3485 #include "ioconf.c"
3486 #endif
3487
3488 static int
3489 if_alc_modcmd(modcmd_t cmd, void *opaque)
3490 {
3491 int error = 0;
3492
3493 switch (cmd) {
3494 case MODULE_CMD_INIT:
3495 #ifdef _MODULE
3496 error = config_init_component(cfdriver_ioconf_if_alc,
3497 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3498 #endif
3499 return error;
3500 case MODULE_CMD_FINI:
3501 #ifdef _MODULE
3502 error = config_fini_component(cfdriver_ioconf_if_alc,
3503 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3504 #endif
3505 return error;
3506 default:
3507 return ENOTTY;
3508 }
3509 }
3510