Home | History | Annotate | Line # | Download | only in pci
if_alc.c revision 1.5
      1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
      2 /*-
      3  * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice unmodified, this list of conditions, and the following
     11  *    disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "vlan.h"
     33 #endif
     34 
     35 #include <sys/param.h>
     36 #include <sys/proc.h>
     37 #include <sys/endian.h>
     38 #include <sys/systm.h>
     39 #include <sys/types.h>
     40 #include <sys/sockio.h>
     41 #include <sys/mbuf.h>
     42 #include <sys/queue.h>
     43 #include <sys/kernel.h>
     44 #include <sys/device.h>
     45 #include <sys/callout.h>
     46 #include <sys/socket.h>
     47 #include <sys/module.h>
     48 
     49 #include <sys/bus.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_llc.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <netinet/ip.h>
     64 #endif
     65 
     66 #include <net/if_types.h>
     67 #include <net/if_vlanvar.h>
     68 
     69 #include <net/bpf.h>
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_alcreg.h>
     81 
     82 /*
     83  * Devices supported by this driver.
     84  */
     85 static struct alc_ident alc_ident_table[] = {
     86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
     87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
     88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
     89 		"Atheros AR8132 PCIe Fast Ethernet" },
     90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
     91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
     92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
     93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
     94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
     95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
     96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
     97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
     98 	{ 0, 0, 0, NULL },
     99 };
    100 
    101 static int	alc_match(device_t, cfdata_t, void *);
    102 static void	alc_attach(device_t, device_t, void *);
    103 static int	alc_detach(device_t, int);
    104 
    105 static int	alc_init(struct ifnet *);
    106 static void	alc_start(struct ifnet *);
    107 static int	alc_ioctl(struct ifnet *, u_long, void *);
    108 static void	alc_watchdog(struct ifnet *);
    109 static int	alc_mediachange(struct ifnet *);
    110 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
    111 
    112 static void	alc_aspm(struct alc_softc *, int);
    113 static void	alc_disable_l0s_l1(struct alc_softc *);
    114 static int	alc_dma_alloc(struct alc_softc *);
    115 static void	alc_dma_free(struct alc_softc *);
    116 static int	alc_encap(struct alc_softc *, struct mbuf **);
    117 static struct alc_ident *
    118 		alc_find_ident(struct pci_attach_args *);
    119 static void	alc_get_macaddr(struct alc_softc *);
    120 static void	alc_init_cmb(struct alc_softc *);
    121 static void	alc_init_rr_ring(struct alc_softc *);
    122 static int	alc_init_rx_ring(struct alc_softc *);
    123 static void	alc_init_smb(struct alc_softc *);
    124 static void	alc_init_tx_ring(struct alc_softc *);
    125 static int	alc_intr(void *);
    126 static void	alc_mac_config(struct alc_softc *);
    127 static int	alc_miibus_readreg(device_t, int, int);
    128 static void	alc_miibus_statchg(device_t);
    129 static void	alc_miibus_writereg(device_t, int, int, int);
    130 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, int);
    131 static void	alc_phy_down(struct alc_softc *);
    132 static void	alc_phy_reset(struct alc_softc *);
    133 static void	alc_reset(struct alc_softc *);
    134 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
    135 static int	alc_rxintr(struct alc_softc *);
    136 static void	alc_iff(struct alc_softc *);
    137 static void	alc_rxvlan(struct alc_softc *);
    138 static void	alc_start_queue(struct alc_softc *);
    139 static void	alc_stats_clear(struct alc_softc *);
    140 static void	alc_stats_update(struct alc_softc *);
    141 static void	alc_stop(struct ifnet *, int);
    142 static void	alc_stop_mac(struct alc_softc *);
    143 static void	alc_stop_queue(struct alc_softc *);
    144 static void	alc_tick(void *);
    145 static void	alc_txeof(struct alc_softc *);
    146 
    147 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
    148 
    149 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
    150     alc_match, alc_attach, alc_detach, NULL);
    151 
    152 int alcdebug = 0;
    153 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
    154 
    155 #define ETHER_ALIGN		2
    156 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    157 
    158 static int
    159 alc_miibus_readreg(device_t dev, int phy, int reg)
    160 {
    161 	struct alc_softc *sc = device_private(dev);
    162 	uint32_t v;
    163 	int i;
    164 
    165 	if (phy != sc->alc_phyaddr)
    166 		return (0);
    167 
    168 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    169 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    170 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    171 		DELAY(5);
    172 		v = CSR_READ_4(sc, ALC_MDIO);
    173 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    174 			break;
    175 	}
    176 
    177 	if (i == 0) {
    178 		printf("%s: phy read timeout: phy %d, reg %d\n",
    179 		    device_xname(sc->sc_dev), phy, reg);
    180 		return (0);
    181 	}
    182 
    183 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    184 }
    185 
    186 static void
    187 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
    188 {
    189 	struct alc_softc *sc = device_private(dev);
    190 	uint32_t v;
    191 	int i;
    192 
    193 	if (phy != sc->alc_phyaddr)
    194 		return;
    195 
    196 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    197 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    198 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    199 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    200 		DELAY(5);
    201 		v = CSR_READ_4(sc, ALC_MDIO);
    202 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    203 			break;
    204 	}
    205 
    206 	if (i == 0)
    207 		printf("%s: phy write timeout: phy %d, reg %d\n",
    208 		    device_xname(sc->sc_dev), phy, reg);
    209 }
    210 
    211 static void
    212 alc_miibus_statchg(device_t dev)
    213 {
    214 	struct alc_softc *sc = device_private(dev);
    215 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    216 	struct mii_data *mii;
    217 	uint32_t reg;
    218 
    219 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    220 		return;
    221 
    222 	mii = &sc->sc_miibus;
    223 
    224 	sc->alc_flags &= ~ALC_FLAG_LINK;
    225 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    226 	    (IFM_ACTIVE | IFM_AVALID)) {
    227 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    228 		case IFM_10_T:
    229 		case IFM_100_TX:
    230 			sc->alc_flags |= ALC_FLAG_LINK;
    231 			break;
    232 		case IFM_1000_T:
    233 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
    234 				sc->alc_flags |= ALC_FLAG_LINK;
    235 			break;
    236 		default:
    237 			break;
    238 		}
    239 	}
    240 	alc_stop_queue(sc);
    241 	/* Stop Rx/Tx MACs. */
    242 	alc_stop_mac(sc);
    243 
    244 	/* Program MACs with resolved speed/duplex/flow-control. */
    245 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    246 		alc_start_queue(sc);
    247 		alc_mac_config(sc);
    248 		/* Re-enable Tx/Rx MACs. */
    249 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
    250 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    251 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
    252 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
    253 	}
    254 }
    255 
    256 static void
    257 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    258 {
    259 	struct alc_softc *sc = ifp->if_softc;
    260 	struct mii_data *mii = &sc->sc_miibus;
    261 
    262 	mii_pollstat(mii);
    263 	ifmr->ifm_status = mii->mii_media_status;
    264 	ifmr->ifm_active = mii->mii_media_active;
    265 }
    266 
    267 static int
    268 alc_mediachange(struct ifnet *ifp)
    269 {
    270 	struct alc_softc *sc = ifp->if_softc;
    271 	struct mii_data *mii = &sc->sc_miibus;
    272 	int error;
    273 
    274 	if (mii->mii_instance != 0) {
    275 		struct mii_softc *miisc;
    276 
    277 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    278 			mii_phy_reset(miisc);
    279 	}
    280 	error = mii_mediachg(mii);
    281 
    282 	return (error);
    283 }
    284 
    285 static struct alc_ident *
    286 alc_find_ident(struct pci_attach_args *pa)
    287 {
    288 	struct alc_ident *ident;
    289 	uint16_t vendor, devid;
    290 
    291 	vendor = PCI_VENDOR(pa->pa_id);
    292 	devid = PCI_PRODUCT(pa->pa_id);
    293 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
    294 		if (vendor == ident->vendorid && devid == ident->deviceid)
    295 			return (ident);
    296 	}
    297 
    298 	return (NULL);
    299 }
    300 
    301 static int
    302 alc_match(device_t dev, cfdata_t match, void *aux)
    303 {
    304 	struct pci_attach_args *pa = aux;
    305 
    306 	return alc_find_ident(pa) != NULL;
    307 }
    308 
    309 static void
    310 alc_get_macaddr(struct alc_softc *sc)
    311 {
    312 	uint32_t ea[2], opt;
    313 	uint16_t val;
    314 	int eeprom, i;
    315 
    316 	eeprom = 0;
    317 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
    318 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
    319 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
    320 		/*
    321 		 * EEPROM found, let TWSI reload EEPROM configuration.
    322 		 * This will set ethernet address of controller.
    323 		 */
    324 		eeprom++;
    325 		switch (sc->alc_ident->deviceid) {
    326 		case PCI_PRODUCT_ATTANSIC_AR8131:
    327 		case PCI_PRODUCT_ATTANSIC_AR8132:
    328 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
    329 				opt |= OPT_CFG_CLK_ENB;
    330 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    331 				CSR_READ_4(sc, ALC_OPT_CFG);
    332 				DELAY(1000);
    333 			}
    334 			break;
    335 		case PCI_PRODUCT_ATTANSIC_AR8151:
    336 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    337 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    338 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    339 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    340 			    ALC_MII_DBG_ADDR, 0x00);
    341 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    342 			    ALC_MII_DBG_DATA);
    343 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    344 			    ALC_MII_DBG_DATA, val & 0xFF7F);
    345 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    346 			    ALC_MII_DBG_ADDR, 0x3B);
    347 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    348 			    ALC_MII_DBG_DATA);
    349 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    350 			    ALC_MII_DBG_DATA, val | 0x0008);
    351 			DELAY(20);
    352 			break;
    353 		}
    354 
    355 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    356 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    357 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
    358 		CSR_READ_4(sc, ALC_WOL_CFG);
    359 
    360 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
    361 		    TWSI_CFG_SW_LD_START);
    362 		for (i = 100; i > 0; i--) {
    363 			DELAY(1000);
    364 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
    365 			    TWSI_CFG_SW_LD_START) == 0)
    366 				break;
    367 		}
    368 		if (i == 0)
    369 			printf("%s: reloading EEPROM timeout!\n",
    370 			    device_xname(sc->sc_dev));
    371 	} else {
    372 		if (alcdebug)
    373 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
    374 	}
    375 	if (eeprom != 0) {
    376 		switch (sc->alc_ident->deviceid) {
    377 		case PCI_PRODUCT_ATTANSIC_AR8131:
    378 		case PCI_PRODUCT_ATTANSIC_AR8132:
    379 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
    380 				opt &= ~OPT_CFG_CLK_ENB;
    381 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    382 				CSR_READ_4(sc, ALC_OPT_CFG);
    383 				DELAY(1000);
    384 			}
    385 			break;
    386 		case PCI_PRODUCT_ATTANSIC_AR8151:
    387 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    388 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    389 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    390 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    391 			    ALC_MII_DBG_ADDR, 0x00);
    392 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    393 			    ALC_MII_DBG_DATA);
    394 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    395 			    ALC_MII_DBG_DATA, val | 0x0080);
    396 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    397 			    ALC_MII_DBG_ADDR, 0x3B);
    398 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    399 			    ALC_MII_DBG_DATA);
    400 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    401 			    ALC_MII_DBG_DATA, val & 0xFFF7);
    402 			DELAY(20);
    403 			break;
    404 		}
    405 	}
    406 
    407 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
    408 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
    409 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
    410 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
    411 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
    412 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
    413 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
    414 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
    415 }
    416 
    417 static void
    418 alc_disable_l0s_l1(struct alc_softc *sc)
    419 {
    420 	uint32_t pmcfg;
    421 
    422 	/* Another magic from vendor. */
    423 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    424 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
    425 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
    426 	    PM_CFG_SERDES_PD_EX_L1);
    427 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
    428 	    PM_CFG_SERDES_L1_ENB;
    429 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    430 }
    431 
    432 static void
    433 alc_phy_reset(struct alc_softc *sc)
    434 {
    435 	uint16_t data;
    436 
    437 	/* Reset magic from Linux. */
    438 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    439 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
    440 	CSR_READ_2(sc, ALC_GPHY_CFG);
    441 	DELAY(10 * 1000);
    442 
    443 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    444 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    445 	    GPHY_CFG_SEL_ANA_RESET);
    446 	CSR_READ_2(sc, ALC_GPHY_CFG);
    447 	DELAY(10 * 1000);
    448 
    449 	/* DSP fixup, Vendor magic. */
    450 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
    451 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    452 		    ALC_MII_DBG_ADDR, 0x000A);
    453 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    454 		    ALC_MII_DBG_DATA);
    455 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    456 		    ALC_MII_DBG_DATA, data & 0xDFFF);
    457 	}
    458 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
    459 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    460 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
    461 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    462 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    463 		    ALC_MII_DBG_ADDR, 0x003B);
    464 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    465 		    ALC_MII_DBG_DATA);
    466 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    467 		    ALC_MII_DBG_DATA, data & 0xFFF7);
    468 		DELAY(20 * 1000);
    469 	}
    470 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
    471 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    472 		    ALC_MII_DBG_ADDR, 0x0029);
    473 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    474 		    ALC_MII_DBG_DATA, 0x929D);
    475 	}
    476 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
    477 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
    478 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    479 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    480 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    481 		    ALC_MII_DBG_ADDR, 0x0029);
    482 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    483 		    ALC_MII_DBG_DATA, 0xB6DD);
    484 	}
    485 
    486 	/* Load DSP codes, vendor magic. */
    487 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
    488 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
    489 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    490 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
    491 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    492 	    ALC_MII_DBG_DATA, data);
    493 
    494 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
    495 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
    496 	    ANA_SERDES_EN_LCKDT;
    497 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    498 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
    499 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    500 	    ALC_MII_DBG_DATA, data);
    501 
    502 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
    503 	    ANA_LONG_CABLE_TH_100_MASK) |
    504 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
    505 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
    506 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
    507 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    508 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
    509 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    510 	    ALC_MII_DBG_DATA, data);
    511 
    512 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
    513 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
    514 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
    515 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
    516 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    517 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
    518 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    519 	    ALC_MII_DBG_DATA, data);
    520 
    521 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
    522 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
    523 	    ANA_OEN_125M;
    524 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    525 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
    526 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    527 	    ALC_MII_DBG_DATA, data);
    528 	DELAY(1000);
    529 }
    530 
    531 static void
    532 alc_phy_down(struct alc_softc *sc)
    533 {
    534 	switch (sc->alc_ident->deviceid) {
    535 	case PCI_PRODUCT_ATTANSIC_AR8151:
    536 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    537 		/*
    538 		 * GPHY power down caused more problems on AR8151 v2.0.
    539 		 * When driver is reloaded after GPHY power down,
    540 		 * accesses to PHY/MAC registers hung the system. Only
    541 		 * cold boot recovered from it.  I'm not sure whether
    542 		 * AR8151 v1.0 also requires this one though.  I don't
    543 		 * have AR8151 v1.0 controller in hand.
    544 		 * The only option left is to isolate the PHY and
    545 		 * initiates power down the PHY which in turn saves
    546 		 * more power when driver is unloaded.
    547 		 */
    548 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    549 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
    550 		break;
    551 	default:
    552 		/* Force PHY down. */
    553 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
    554 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    555 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
    556 		    GPHY_CFG_PWDOWN_HW);
    557 		DELAY(1000);
    558 		break;
    559 	}
    560 }
    561 
    562 static void
    563 alc_aspm(struct alc_softc *sc, int media)
    564 {
    565 	uint32_t pmcfg;
    566 	uint16_t linkcfg;
    567 
    568 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    569 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
    570 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
    571 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
    572 		    PCI_PCIE_LCSR);
    573 	else
    574 		linkcfg = 0;
    575 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
    576 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
    577 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
    578 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
    579 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    580 
    581 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    582 		/* Disable extended sync except AR8152 B v1.0 */
    583 		linkcfg &= ~0x80;
    584 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    585 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
    586 			linkcfg |= 0x80;
    587 		CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
    588 		    linkcfg);
    589 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
    590 		    PM_CFG_HOTRST);
    591 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
    592 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    593 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
    594 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
    595 		    PM_CFG_PM_REQ_TIMER_SHIFT);
    596 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
    597 	}
    598 
    599 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    600 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
    601 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
    602 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    603 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    604 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    605 			if (sc->alc_ident->deviceid ==
    606 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
    607 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
    608 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
    609 			    PM_CFG_SERDES_PLL_L1_ENB |
    610 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
    611 			pmcfg |= PM_CFG_CLK_SWH_L1;
    612 			if (media == IFM_100_TX || media == IFM_1000_T) {
    613 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
    614 				switch (sc->alc_ident->deviceid) {
    615 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
    616 					pmcfg |= (7 <<
    617 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    618 					break;
    619 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    620 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    621 					pmcfg |= (4 <<
    622 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    623 					break;
    624 				default:
    625 					pmcfg |= (15 <<
    626 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    627 					break;
    628 				}
    629 			}
    630 		} else {
    631 			pmcfg |= PM_CFG_SERDES_L1_ENB |
    632 			    PM_CFG_SERDES_PLL_L1_ENB |
    633 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
    634 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
    635 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    636 		}
    637 	} else {
    638 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
    639 		    PM_CFG_SERDES_PLL_L1_ENB);
    640 		pmcfg |= PM_CFG_CLK_SWH_L1;
    641 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    642 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    643 	}
    644 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    645 }
    646 
    647 static void
    648 alc_attach(device_t parent, device_t self, void *aux)
    649 {
    650 
    651 	struct alc_softc *sc = device_private(self);
    652 	struct pci_attach_args *pa = aux;
    653 	pci_chipset_tag_t pc = pa->pa_pc;
    654 	pci_intr_handle_t ih;
    655 	const char *intrstr;
    656 	struct ifnet *ifp;
    657 	pcireg_t memtype;
    658 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
    659 	uint16_t burst;
    660 	int base, mii_flags, state, error = 0;
    661 	uint32_t cap, ctl, val;
    662 
    663 	sc->alc_ident = alc_find_ident(pa);
    664 
    665 	aprint_naive("\n");
    666 	aprint_normal(": %s\n", sc->alc_ident->name);
    667 
    668 	sc->sc_dev = self;
    669 	sc->sc_dmat = pa->pa_dmat;
    670 	sc->sc_pct = pa->pa_pc;
    671 	sc->sc_pcitag = pa->pa_tag;
    672 
    673 	/*
    674 	 * Allocate IO memory
    675 	 */
    676 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
    677 	switch (memtype) {
    678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    680 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    681 		break;
    682 	default:
    683 		aprint_error_dev(self, "invalid base address register\n");
    684 		break;
    685 	}
    686 
    687 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    688 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
    689 		aprint_error_dev(self, "could not map mem space\n");
    690 		return;
    691 	}
    692 
    693 	if (pci_intr_map(pa, &ih) != 0) {
    694 		printf(": can't map interrupt\n");
    695 		goto fail;
    696 	}
    697 
    698 	/*
    699 	 * Allocate IRQ
    700 	 */
    701 	intrstr = pci_intr_string(sc->sc_pct, ih);
    702 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
    703 	if (sc->sc_irq_handle == NULL) {
    704 		printf(": could not establish interrupt");
    705 		if (intrstr != NULL)
    706 			printf(" at %s", intrstr);
    707 		printf("\n");
    708 		goto fail;
    709 	}
    710 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    711 
    712 	/* Set PHY address. */
    713 	sc->alc_phyaddr = ALC_PHY_ADDR;
    714 
    715 	/* Initialize DMA parameters. */
    716 	sc->alc_dma_rd_burst = 0;
    717 	sc->alc_dma_wr_burst = 0;
    718 	sc->alc_rcb = DMA_CFG_RCB_64;
    719 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    720 	    &base, NULL)) {
    721 		sc->alc_flags |= ALC_FLAG_PCIE;
    722 		sc->alc_expcap = base;
    723 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    724 		    base + PCI_PCIE_DCSR) >> 16;
    725 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
    726 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
    727 		if (alcdebug) {
    728 			printf("%s: Read request size : %u bytes.\n",
    729 			    device_xname(sc->sc_dev),
    730 			    alc_dma_burst[sc->alc_dma_rd_burst]);
    731 			printf("%s: TLP payload size : %u bytes.\n",
    732 			    device_xname(sc->sc_dev),
    733 			    alc_dma_burst[sc->alc_dma_wr_burst]);
    734 		}
    735 		/* Clear data link and flow-control protocol error. */
    736 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
    737 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
    738 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
    739 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    740 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    741 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
    742 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
    743 		    PCIE_PHYMISC_FORCE_RCV_DET);
    744 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    745 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
    746 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
    747 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
    748 			    PCIE_PHYMISC2_SERDES_TH_MASK);
    749 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
    750 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
    751 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
    752 		}
    753 		/* Disable ASPM L0S and L1. */
    754 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    755 		    base + PCI_PCIE_LCAP) >> 16;
    756 		if ((cap & 0x00000c00) != 0) {
    757 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    758 			    base + PCI_PCIE_LCSR) >> 16;
    759 			if ((ctl & 0x08) != 0)
    760 				sc->alc_rcb = DMA_CFG_RCB_128;
    761 			if (alcdebug)
    762 				printf("%s: RCB %u bytes\n",
    763 				    device_xname(sc->sc_dev),
    764 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
    765 			state = ctl & 0x03;
    766 			if (state & 0x01)
    767 				sc->alc_flags |= ALC_FLAG_L0S;
    768 			if (state & 0x02)
    769 				sc->alc_flags |= ALC_FLAG_L1S;
    770 			if (alcdebug)
    771 				printf("%s: ASPM %s %s\n",
    772 				    device_xname(sc->sc_dev),
    773 				    aspm_state[state],
    774 				    state == 0 ? "disabled" : "enabled");
    775 			alc_disable_l0s_l1(sc);
    776 		} else {
    777 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
    778 		}
    779 	}
    780 
    781 	/* Reset PHY. */
    782 	alc_phy_reset(sc);
    783 
    784 	/* Reset the ethernet controller. */
    785 	alc_reset(sc);
    786 
    787 	/*
    788 	 * One odd thing is AR8132 uses the same PHY hardware(F1
    789 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
    790 	 * the PHY supports 1000Mbps but that's not true. The PHY
    791 	 * used in AR8132 can't establish gigabit link even if it
    792 	 * shows the same PHY model/revision number of AR8131.
    793 	 */
    794 	switch (sc->alc_ident->deviceid) {
    795 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
    796 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    797 		sc->alc_flags |= ALC_FLAG_APS;
    798 		/* FALLTHROUGH */
    799 	case PCI_PRODUCT_ATTANSIC_AR8132:
    800 		sc->alc_flags |= ALC_FLAG_FASTETHER;
    801 		break;
    802 	case PCI_PRODUCT_ATTANSIC_AR8151:
    803 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    804 		sc->alc_flags |= ALC_FLAG_APS;
    805 		/* FALLTHROUGH */
    806 	default:
    807 		break;
    808 	}
    809 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
    810 
    811 	/*
    812 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
    813 	 * addition, Atheros said that enabling SMB wouldn't improve
    814 	 * performance. However I think it's bad to access lots of
    815 	 * registers to extract MAC statistics.
    816 	 */
    817 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
    818 	/*
    819 	 * Don't use Tx CMB. It is known to have silicon bug.
    820 	 */
    821 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
    822 	sc->alc_rev = PCI_REVISION(pa->pa_class);
    823 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
    824 	    MASTER_CHIP_REV_SHIFT;
    825 	if (alcdebug) {
    826 		printf("%s: PCI device revision : 0x%04x\n",
    827 		    device_xname(sc->sc_dev), sc->alc_rev);
    828 		printf("%s: Chip id/revision : 0x%04x\n",
    829 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
    830 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
    831 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
    832 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
    833 	}
    834 
    835 	error = alc_dma_alloc(sc);
    836 	if (error)
    837 		goto fail;
    838 
    839 	callout_init(&sc->sc_tick_ch, 0);
    840 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
    841 
    842 	/* Load station address. */
    843 	alc_get_macaddr(sc);
    844 
    845 	aprint_normal_dev(self, "Ethernet address %s\n",
    846 	    ether_sprintf(sc->alc_eaddr));
    847 
    848 	ifp = &sc->sc_ec.ec_if;
    849 	ifp->if_softc = sc;
    850 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    851 	ifp->if_init = alc_init;
    852 	ifp->if_ioctl = alc_ioctl;
    853 	ifp->if_start = alc_start;
    854 	ifp->if_stop = alc_stop;
    855 	ifp->if_watchdog = alc_watchdog;
    856 	ifp->if_baudrate = IF_Gbps(1);
    857 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
    858 	IFQ_SET_READY(&ifp->if_snd);
    859 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    860 
    861 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    862 
    863 #ifdef ALC_CHECKSUM
    864 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    865 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    866 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    867 #endif
    868 
    869 #if NVLAN > 0
    870 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    871 #endif
    872 
    873 	/* Set up MII bus. */
    874 	sc->sc_miibus.mii_ifp = ifp;
    875 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
    876 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
    877 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
    878 
    879 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    880 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
    881 	    alc_mediastatus);
    882 	mii_flags = 0;
    883 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
    884 		mii_flags |= MIIF_DOPAUSE;
    885 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    886 		MII_OFFSET_ANY, mii_flags);
    887 
    888 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    889 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
    890 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    891 		    0, NULL);
    892 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    893 	} else
    894 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    895 
    896 	if_attach(ifp);
    897 	ether_ifattach(ifp, sc->alc_eaddr);
    898 
    899 	if (!pmf_device_register(self, NULL, NULL))
    900 		aprint_error_dev(self, "couldn't establish power handler\n");
    901 	else
    902 		pmf_class_network_register(self, ifp);
    903 
    904 	return;
    905 fail:
    906 	alc_dma_free(sc);
    907 	if (sc->sc_irq_handle != NULL) {
    908 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    909 		sc->sc_irq_handle = NULL;
    910 	}
    911 	if (sc->sc_mem_size) {
    912 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    913 		sc->sc_mem_size = 0;
    914 	}
    915 }
    916 
    917 static int
    918 alc_detach(device_t self, int flags)
    919 {
    920 	struct alc_softc *sc = device_private(self);
    921 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    922 	int s;
    923 
    924 	s = splnet();
    925 	alc_stop(ifp, 0);
    926 	splx(s);
    927 
    928 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    929 
    930 	/* Delete all remaining media. */
    931 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    932 
    933 	ether_ifdetach(ifp);
    934 	if_detach(ifp);
    935 	alc_dma_free(sc);
    936 
    937 	alc_phy_down(sc);
    938 	if (sc->sc_irq_handle != NULL) {
    939 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    940 		sc->sc_irq_handle = NULL;
    941 	}
    942 	if (sc->sc_mem_size) {
    943 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    944 		sc->sc_mem_size = 0;
    945 	}
    946 
    947 	return (0);
    948 }
    949 
    950 static int
    951 alc_dma_alloc(struct alc_softc *sc)
    952 {
    953 	struct alc_txdesc *txd;
    954 	struct alc_rxdesc *rxd;
    955 	int nsegs, error, i;
    956 
    957 	/*
    958 	 * Create DMA stuffs for TX ring
    959 	 */
    960 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
    961 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
    962 	if (error) {
    963 		sc->alc_cdata.alc_tx_ring_map = NULL;
    964 		return (ENOBUFS);
    965 	}
    966 
    967 	/* Allocate DMA'able memory for TX ring */
    968 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
    969 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
    970 	    &nsegs, BUS_DMA_NOWAIT);
    971 	if (error) {
    972 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    973 		    device_xname(sc->sc_dev));
    974 		return error;
    975 	}
    976 
    977 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
    978 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
    979 	    BUS_DMA_NOWAIT);
    980 	if (error)
    981 		return (ENOBUFS);
    982 
    983 	/* Load the DMA map for Tx ring. */
    984 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
    985 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    986 	if (error) {
    987 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    988 		    device_xname(sc->sc_dev));
    989 		bus_dmamem_free(sc->sc_dmat,
    990 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
    991 		return error;
    992 	}
    993 
    994 	sc->alc_rdata.alc_tx_ring_paddr =
    995 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
    996 
    997 	/*
    998 	 * Create DMA stuffs for RX ring
    999 	 */
   1000 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
   1001 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
   1002 	if (error)
   1003 		return (ENOBUFS);
   1004 
   1005 	/* Allocate DMA'able memory for RX ring */
   1006 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
   1007 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
   1008 	    &nsegs, BUS_DMA_NOWAIT);
   1009 	if (error) {
   1010 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
   1011 		    device_xname(sc->sc_dev));
   1012 		return error;
   1013 	}
   1014 
   1015 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
   1016 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
   1017 	    BUS_DMA_NOWAIT);
   1018 	if (error)
   1019 		return (ENOBUFS);
   1020 
   1021 	/* Load the DMA map for Rx ring. */
   1022 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
   1023 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
   1024 	if (error) {
   1025 		printf("%s: could not load DMA'able memory for Rx ring.\n",
   1026 		    device_xname(sc->sc_dev));
   1027 		bus_dmamem_free(sc->sc_dmat,
   1028 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1029 		return error;
   1030 	}
   1031 
   1032 	sc->alc_rdata.alc_rx_ring_paddr =
   1033 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
   1034 
   1035 	/*
   1036 	 * Create DMA stuffs for RX return ring
   1037 	 */
   1038 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
   1039 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
   1040 	if (error)
   1041 		return (ENOBUFS);
   1042 
   1043 	/* Allocate DMA'able memory for RX return ring */
   1044 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
   1045 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
   1046 	    &nsegs, BUS_DMA_NOWAIT);
   1047 	if (error) {
   1048 		printf("%s: could not allocate DMA'able memory for Rx "
   1049 		    "return ring.\n", device_xname(sc->sc_dev));
   1050 		return error;
   1051 	}
   1052 
   1053 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
   1054 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
   1055 	    BUS_DMA_NOWAIT);
   1056 	if (error)
   1057 		return (ENOBUFS);
   1058 
   1059 	/*  Load the DMA map for Rx return ring. */
   1060 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
   1061 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
   1062 	if (error) {
   1063 		printf("%s: could not load DMA'able memory for Rx return ring."
   1064 		    "\n", device_xname(sc->sc_dev));
   1065 		bus_dmamem_free(sc->sc_dmat,
   1066 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1067 		return error;
   1068 	}
   1069 
   1070 	sc->alc_rdata.alc_rr_ring_paddr =
   1071 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
   1072 
   1073 	/*
   1074 	 * Create DMA stuffs for CMB block
   1075 	 */
   1076 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
   1077 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
   1078 	    &sc->alc_cdata.alc_cmb_map);
   1079 	if (error)
   1080 		return (ENOBUFS);
   1081 
   1082 	/* Allocate DMA'able memory for CMB block */
   1083 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
   1084 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
   1085 	    &nsegs, BUS_DMA_NOWAIT);
   1086 	if (error) {
   1087 		printf("%s: could not allocate DMA'able memory for "
   1088 		    "CMB block\n", device_xname(sc->sc_dev));
   1089 		return error;
   1090 	}
   1091 
   1092 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
   1093 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
   1094 	    BUS_DMA_NOWAIT);
   1095 	if (error)
   1096 		return (ENOBUFS);
   1097 
   1098 	/*  Load the DMA map for CMB block. */
   1099 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
   1100 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
   1101 	    BUS_DMA_WAITOK);
   1102 	if (error) {
   1103 		printf("%s: could not load DMA'able memory for CMB block\n",
   1104 		    device_xname(sc->sc_dev));
   1105 		bus_dmamem_free(sc->sc_dmat,
   1106 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1107 		return error;
   1108 	}
   1109 
   1110 	sc->alc_rdata.alc_cmb_paddr =
   1111 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
   1112 
   1113 	/*
   1114 	 * Create DMA stuffs for SMB block
   1115 	 */
   1116 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
   1117 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
   1118 	    &sc->alc_cdata.alc_smb_map);
   1119 	if (error)
   1120 		return (ENOBUFS);
   1121 
   1122 	/* Allocate DMA'able memory for SMB block */
   1123 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
   1124 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
   1125 	    &nsegs, BUS_DMA_NOWAIT);
   1126 	if (error) {
   1127 		printf("%s: could not allocate DMA'able memory for "
   1128 		    "SMB block\n", device_xname(sc->sc_dev));
   1129 		return error;
   1130 	}
   1131 
   1132 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
   1133 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
   1134 	    BUS_DMA_NOWAIT);
   1135 	if (error)
   1136 		return (ENOBUFS);
   1137 
   1138 	/*  Load the DMA map for SMB block */
   1139 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
   1140 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
   1141 	    BUS_DMA_WAITOK);
   1142 	if (error) {
   1143 		printf("%s: could not load DMA'able memory for SMB block\n",
   1144 		    device_xname(sc->sc_dev));
   1145 		bus_dmamem_free(sc->sc_dmat,
   1146 		    &sc->alc_rdata.alc_smb_seg, 1);
   1147 		return error;
   1148 	}
   1149 
   1150 	sc->alc_rdata.alc_smb_paddr =
   1151 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
   1152 
   1153 
   1154 	/* Create DMA maps for Tx buffers. */
   1155 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1156 		txd = &sc->alc_cdata.alc_txdesc[i];
   1157 		txd->tx_m = NULL;
   1158 		txd->tx_dmamap = NULL;
   1159 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
   1160 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
   1161 		    &txd->tx_dmamap);
   1162 		if (error) {
   1163 			printf("%s: could not create Tx dmamap.\n",
   1164 			    device_xname(sc->sc_dev));
   1165 			return error;
   1166 		}
   1167 	}
   1168 
   1169 	/* Create DMA maps for Rx buffers. */
   1170 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
   1171 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
   1172 	if (error) {
   1173 		printf("%s: could not create spare Rx dmamap.\n",
   1174 		    device_xname(sc->sc_dev));
   1175 		return error;
   1176 	}
   1177 
   1178 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1179 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1180 		rxd->rx_m = NULL;
   1181 		rxd->rx_dmamap = NULL;
   1182 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1183 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
   1184 		if (error) {
   1185 			printf("%s: could not create Rx dmamap.\n",
   1186 			    device_xname(sc->sc_dev));
   1187 			return error;
   1188 		}
   1189 	}
   1190 
   1191 	return (0);
   1192 }
   1193 
   1194 
   1195 static void
   1196 alc_dma_free(struct alc_softc *sc)
   1197 {
   1198 	struct alc_txdesc *txd;
   1199 	struct alc_rxdesc *rxd;
   1200 	int i;
   1201 
   1202 	/* Tx buffers */
   1203 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1204 		txd = &sc->alc_cdata.alc_txdesc[i];
   1205 		if (txd->tx_dmamap != NULL) {
   1206 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
   1207 			txd->tx_dmamap = NULL;
   1208 		}
   1209 	}
   1210 	/* Rx buffers */
   1211 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1212 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1213 		if (rxd->rx_dmamap != NULL) {
   1214 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
   1215 			rxd->rx_dmamap = NULL;
   1216 		}
   1217 	}
   1218 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
   1219 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
   1220 		sc->alc_cdata.alc_rx_sparemap = NULL;
   1221 	}
   1222 
   1223 	/* Tx ring. */
   1224 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
   1225 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
   1226 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
   1227 	    sc->alc_rdata.alc_tx_ring != NULL)
   1228 		bus_dmamem_free(sc->sc_dmat,
   1229 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
   1230 	sc->alc_rdata.alc_tx_ring = NULL;
   1231 	sc->alc_cdata.alc_tx_ring_map = NULL;
   1232 
   1233 	/* Rx ring. */
   1234 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
   1235 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
   1236 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
   1237 	    sc->alc_rdata.alc_rx_ring != NULL)
   1238 		bus_dmamem_free(sc->sc_dmat,
   1239 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1240 	sc->alc_rdata.alc_rx_ring = NULL;
   1241 	sc->alc_cdata.alc_rx_ring_map = NULL;
   1242 
   1243 	/* Rx return ring. */
   1244 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
   1245 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
   1246 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
   1247 	    sc->alc_rdata.alc_rr_ring != NULL)
   1248 		bus_dmamem_free(sc->sc_dmat,
   1249 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1250 	sc->alc_rdata.alc_rr_ring = NULL;
   1251 	sc->alc_cdata.alc_rr_ring_map = NULL;
   1252 
   1253 	/* CMB block */
   1254 	if (sc->alc_cdata.alc_cmb_map != NULL)
   1255 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
   1256 	if (sc->alc_cdata.alc_cmb_map != NULL &&
   1257 	    sc->alc_rdata.alc_cmb != NULL)
   1258 		bus_dmamem_free(sc->sc_dmat,
   1259 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1260 	sc->alc_rdata.alc_cmb = NULL;
   1261 	sc->alc_cdata.alc_cmb_map = NULL;
   1262 
   1263 	/* SMB block */
   1264 	if (sc->alc_cdata.alc_smb_map != NULL)
   1265 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
   1266 	if (sc->alc_cdata.alc_smb_map != NULL &&
   1267 	    sc->alc_rdata.alc_smb != NULL)
   1268 		bus_dmamem_free(sc->sc_dmat,
   1269 		    &sc->alc_rdata.alc_smb_seg, 1);
   1270 	sc->alc_rdata.alc_smb = NULL;
   1271 	sc->alc_cdata.alc_smb_map = NULL;
   1272 }
   1273 
   1274 static int
   1275 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
   1276 {
   1277 	struct alc_txdesc *txd, *txd_last;
   1278 	struct tx_desc *desc;
   1279 	struct mbuf *m;
   1280 	bus_dmamap_t map;
   1281 	uint32_t cflags, poff, vtag;
   1282 	int error, idx, nsegs, prod;
   1283 #if NVLAN > 0
   1284 	struct m_tag *mtag;
   1285 #endif
   1286 
   1287 	m = *m_head;
   1288 	cflags = vtag = 0;
   1289 	poff = 0;
   1290 
   1291 	prod = sc->alc_cdata.alc_tx_prod;
   1292 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1293 	txd_last = txd;
   1294 	map = txd->tx_dmamap;
   1295 
   1296 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1297 
   1298 	if (error == EFBIG) {
   1299 		error = 0;
   1300 
   1301 		*m_head = m_pullup(*m_head, MHLEN);
   1302 		if (*m_head == NULL) {
   1303 			printf("%s: can't defrag TX mbuf\n",
   1304 			    device_xname(sc->sc_dev));
   1305 			return ENOBUFS;
   1306 		}
   1307 
   1308 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1309 		    BUS_DMA_NOWAIT);
   1310 
   1311 		if (error != 0) {
   1312 			printf("%s: could not load defragged TX mbuf\n",
   1313 			    device_xname(sc->sc_dev));
   1314 			m_freem(*m_head);
   1315 			*m_head = NULL;
   1316 			return error;
   1317 		}
   1318 	} else if (error) {
   1319 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1320 		return (error);
   1321 	}
   1322 
   1323 	nsegs = map->dm_nsegs;
   1324 
   1325 	if (nsegs == 0) {
   1326 		m_freem(*m_head);
   1327 		*m_head = NULL;
   1328 		return (EIO);
   1329 	}
   1330 
   1331 	/* Check descriptor overrun. */
   1332 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
   1333 		bus_dmamap_unload(sc->sc_dmat, map);
   1334 		return (ENOBUFS);
   1335 	}
   1336 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1337 	    BUS_DMASYNC_PREWRITE);
   1338 
   1339 	m = *m_head;
   1340 	desc = NULL;
   1341 	idx = 0;
   1342 #if NVLAN > 0
   1343 	/* Configure VLAN hardware tag insertion. */
   1344 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1345 		vtag = htons(VLAN_TAG_VALUE(mtag));
   1346 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
   1347 		cflags |= TD_INS_VLAN_TAG;
   1348 	}
   1349 #endif
   1350 	/* Configure Tx checksum offload. */
   1351 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
   1352 		cflags |= TD_CUSTOM_CSUM;
   1353 		/* Set checksum start offset. */
   1354 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
   1355 		    TD_PLOAD_OFFSET_MASK;
   1356 	}
   1357 	for (; idx < nsegs; idx++) {
   1358 		desc = &sc->alc_rdata.alc_tx_ring[prod];
   1359 		desc->len =
   1360 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
   1361 		desc->flags = htole32(cflags);
   1362 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
   1363 		sc->alc_cdata.alc_tx_cnt++;
   1364 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
   1365 	}
   1366 	/* Update producer index. */
   1367 	sc->alc_cdata.alc_tx_prod = prod;
   1368 
   1369 	/* Finally set EOP on the last descriptor. */
   1370 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
   1371 	desc = &sc->alc_rdata.alc_tx_ring[prod];
   1372 	desc->flags |= htole32(TD_EOP);
   1373 
   1374 	/* Swap dmamap of the first and the last. */
   1375 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1376 	map = txd_last->tx_dmamap;
   1377 	txd_last->tx_dmamap = txd->tx_dmamap;
   1378 	txd->tx_dmamap = map;
   1379 	txd->tx_m = m;
   1380 
   1381 	return (0);
   1382 }
   1383 
   1384 static void
   1385 alc_start(struct ifnet *ifp)
   1386 {
   1387 	struct alc_softc *sc = ifp->if_softc;
   1388 	struct mbuf *m_head;
   1389 	int enq;
   1390 
   1391 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1392 		return;
   1393 
   1394 	/* Reclaim transmitted frames. */
   1395 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
   1396 		alc_txeof(sc);
   1397 
   1398 	enq = 0;
   1399 	for (;;) {
   1400 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1401 		if (m_head == NULL)
   1402 			break;
   1403 
   1404 		/*
   1405 		 * Pack the data into the transmit ring. If we
   1406 		 * don't have room, set the OACTIVE flag and wait
   1407 		 * for the NIC to drain the ring.
   1408 		 */
   1409 		if (alc_encap(sc, &m_head)) {
   1410 			if (m_head == NULL)
   1411 				break;
   1412 			ifp->if_flags |= IFF_OACTIVE;
   1413 			break;
   1414 		}
   1415 		enq = 1;
   1416 
   1417 		/*
   1418 		 * If there's a BPF listener, bounce a copy of this frame
   1419 		 * to him.
   1420 		 */
   1421 		bpf_mtap(ifp, m_head);
   1422 	}
   1423 
   1424 	if (enq) {
   1425 		/* Sync descriptors. */
   1426 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1427 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1428 		    BUS_DMASYNC_PREWRITE);
   1429 		/* Kick. Assume we're using normal Tx priority queue. */
   1430 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
   1431 		    (sc->alc_cdata.alc_tx_prod <<
   1432 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
   1433 		    MBOX_TD_PROD_LO_IDX_MASK);
   1434 		/* Set a timeout in case the chip goes out to lunch. */
   1435 		ifp->if_timer = ALC_TX_TIMEOUT;
   1436 	}
   1437 }
   1438 
   1439 static void
   1440 alc_watchdog(struct ifnet *ifp)
   1441 {
   1442 	struct alc_softc *sc = ifp->if_softc;
   1443 
   1444 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
   1445 		printf("%s: watchdog timeout (missed link)\n",
   1446 		    device_xname(sc->sc_dev));
   1447 		ifp->if_oerrors++;
   1448 		alc_init(ifp);
   1449 		return;
   1450 	}
   1451 
   1452 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1453 	ifp->if_oerrors++;
   1454 	alc_init(ifp);
   1455 
   1456 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1457 		 alc_start(ifp);
   1458 }
   1459 
   1460 static int
   1461 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1462 {
   1463 	struct alc_softc *sc = ifp->if_softc;
   1464 	int s, error = 0;
   1465 
   1466 	s = splnet();
   1467 
   1468 	error = ether_ioctl(ifp, cmd, data);
   1469 	if (error == ENETRESET) {
   1470 		if (ifp->if_flags & IFF_RUNNING)
   1471 			alc_iff(sc);
   1472 		error = 0;
   1473 	}
   1474 
   1475 	splx(s);
   1476 	return (error);
   1477 }
   1478 
   1479 static void
   1480 alc_mac_config(struct alc_softc *sc)
   1481 {
   1482 	struct mii_data *mii;
   1483 	uint32_t reg;
   1484 
   1485 	mii = &sc->sc_miibus;
   1486 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   1487 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
   1488 	    MAC_CFG_SPEED_MASK);
   1489 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   1490 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   1491 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   1492 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   1493 	/* Reprogram MAC with resolved speed/duplex. */
   1494 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1495 	case IFM_10_T:
   1496 	case IFM_100_TX:
   1497 		reg |= MAC_CFG_SPEED_10_100;
   1498 		break;
   1499 	case IFM_1000_T:
   1500 		reg |= MAC_CFG_SPEED_1000;
   1501 		break;
   1502 	}
   1503 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1504 		reg |= MAC_CFG_FULL_DUPLEX;
   1505 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1506 			reg |= MAC_CFG_TX_FC;
   1507 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1508 			reg |= MAC_CFG_RX_FC;
   1509 	}
   1510 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   1511 }
   1512 
   1513 static void
   1514 alc_stats_clear(struct alc_softc *sc)
   1515 {
   1516 	struct smb sb, *smb;
   1517 	uint32_t *reg;
   1518 	int i;
   1519 
   1520 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1521 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1522 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1523 		    BUS_DMASYNC_POSTREAD);
   1524 		smb = sc->alc_rdata.alc_smb;
   1525 		/* Update done, clear. */
   1526 		smb->updated = 0;
   1527 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1528 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1529 		    BUS_DMASYNC_PREWRITE);
   1530 	} else {
   1531 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1532 		    reg++) {
   1533 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1534 			i += sizeof(uint32_t);
   1535 		}
   1536 		/* Read Tx statistics. */
   1537 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1538 		    reg++) {
   1539 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1540 			i += sizeof(uint32_t);
   1541 		}
   1542 	}
   1543 }
   1544 
   1545 static void
   1546 alc_stats_update(struct alc_softc *sc)
   1547 {
   1548 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1549 	struct alc_hw_stats *stat;
   1550 	struct smb sb, *smb;
   1551 	uint32_t *reg;
   1552 	int i;
   1553 
   1554 	stat = &sc->alc_stats;
   1555 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1556 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1557 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1558 		    BUS_DMASYNC_POSTREAD);
   1559 		smb = sc->alc_rdata.alc_smb;
   1560 		if (smb->updated == 0)
   1561 			return;
   1562 	} else {
   1563 		smb = &sb;
   1564 		/* Read Rx statistics. */
   1565 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1566 		    reg++) {
   1567 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1568 			i += sizeof(uint32_t);
   1569 		}
   1570 		/* Read Tx statistics. */
   1571 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1572 		    reg++) {
   1573 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1574 			i += sizeof(uint32_t);
   1575 		}
   1576 	}
   1577 
   1578 	/* Rx stats. */
   1579 	stat->rx_frames += smb->rx_frames;
   1580 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1581 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1582 	stat->rx_pause_frames += smb->rx_pause_frames;
   1583 	stat->rx_control_frames += smb->rx_control_frames;
   1584 	stat->rx_crcerrs += smb->rx_crcerrs;
   1585 	stat->rx_lenerrs += smb->rx_lenerrs;
   1586 	stat->rx_bytes += smb->rx_bytes;
   1587 	stat->rx_runts += smb->rx_runts;
   1588 	stat->rx_fragments += smb->rx_fragments;
   1589 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1590 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1591 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1592 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1593 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1594 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1595 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1596 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1597 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   1598 	stat->rx_rrs_errs += smb->rx_rrs_errs;
   1599 	stat->rx_alignerrs += smb->rx_alignerrs;
   1600 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   1601 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   1602 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   1603 
   1604 	/* Tx stats. */
   1605 	stat->tx_frames += smb->tx_frames;
   1606 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   1607 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   1608 	stat->tx_pause_frames += smb->tx_pause_frames;
   1609 	stat->tx_excess_defer += smb->tx_excess_defer;
   1610 	stat->tx_control_frames += smb->tx_control_frames;
   1611 	stat->tx_deferred += smb->tx_deferred;
   1612 	stat->tx_bytes += smb->tx_bytes;
   1613 	stat->tx_pkts_64 += smb->tx_pkts_64;
   1614 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   1615 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   1616 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   1617 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   1618 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   1619 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   1620 	stat->tx_single_colls += smb->tx_single_colls;
   1621 	stat->tx_multi_colls += smb->tx_multi_colls;
   1622 	stat->tx_late_colls += smb->tx_late_colls;
   1623 	stat->tx_excess_colls += smb->tx_excess_colls;
   1624 	stat->tx_abort += smb->tx_abort;
   1625 	stat->tx_underrun += smb->tx_underrun;
   1626 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   1627 	stat->tx_lenerrs += smb->tx_lenerrs;
   1628 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   1629 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   1630 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   1631 
   1632 	/* Update counters in ifnet. */
   1633 	ifp->if_opackets += smb->tx_frames;
   1634 
   1635 	ifp->if_collisions += smb->tx_single_colls +
   1636 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
   1637 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
   1638 
   1639 	/*
   1640 	 * XXX
   1641 	 * tx_pkts_truncated counter looks suspicious. It constantly
   1642 	 * increments with no sign of Tx errors. This may indicate
   1643 	 * the counter name is not correct one so I've removed the
   1644 	 * counter in output errors.
   1645 	 */
   1646 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
   1647 	    smb->tx_underrun;
   1648 
   1649 	ifp->if_ipackets += smb->rx_frames;
   1650 
   1651 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   1652 	    smb->rx_runts + smb->rx_pkts_truncated +
   1653 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
   1654 	    smb->rx_alignerrs;
   1655 
   1656 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1657 		/* Update done, clear. */
   1658 		smb->updated = 0;
   1659 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1660 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1661 	}
   1662 }
   1663 
   1664 static int
   1665 alc_intr(void *arg)
   1666 {
   1667 	struct alc_softc *sc = arg;
   1668 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1669 	uint32_t status;
   1670 
   1671 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
   1672 	if ((status & ALC_INTRS) == 0)
   1673 		return (0);
   1674 
   1675 	/* Acknowledge and disable interrupts. */
   1676 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
   1677 
   1678 	if (ifp->if_flags & IFF_RUNNING) {
   1679 		if (status & INTR_RX_PKT) {
   1680 			int error;
   1681 
   1682 			error = alc_rxintr(sc);
   1683 			if (error) {
   1684 				alc_init(ifp);
   1685 				return (0);
   1686 			}
   1687 		}
   1688 
   1689 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
   1690 		    INTR_TXQ_TO_RST)) {
   1691 			if (status & INTR_DMA_RD_TO_RST)
   1692 				printf("%s: DMA read error! -- resetting\n",
   1693 				    device_xname(sc->sc_dev));
   1694 			if (status & INTR_DMA_WR_TO_RST)
   1695 				printf("%s: DMA write error! -- resetting\n",
   1696 				    device_xname(sc->sc_dev));
   1697 			if (status & INTR_TXQ_TO_RST)
   1698 				printf("%s: TxQ reset! -- resetting\n",
   1699 				    device_xname(sc->sc_dev));
   1700 			alc_init(ifp);
   1701 			return (0);
   1702 		}
   1703 
   1704 		alc_txeof(sc);
   1705 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1706 			alc_start(ifp);
   1707 	}
   1708 
   1709 	/* Re-enable interrupts. */
   1710 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
   1711 	return (1);
   1712 }
   1713 
   1714 static void
   1715 alc_txeof(struct alc_softc *sc)
   1716 {
   1717 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1718 	struct alc_txdesc *txd;
   1719 	uint32_t cons, prod;
   1720 	int prog;
   1721 
   1722 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1723 		return;
   1724 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1725 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1726 	    BUS_DMASYNC_POSTREAD);
   1727 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
   1728 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1729 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
   1730 		    BUS_DMASYNC_POSTREAD);
   1731 		prod = sc->alc_rdata.alc_cmb->cons;
   1732 	} else
   1733 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
   1734 	/* Assume we're using normal Tx priority queue. */
   1735 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
   1736 	    MBOX_TD_CONS_LO_IDX_SHIFT;
   1737 	cons = sc->alc_cdata.alc_tx_cons;
   1738 	/*
   1739 	 * Go through our Tx list and free mbufs for those
   1740 	 * frames which have been transmitted.
   1741 	 */
   1742 	for (prog = 0; cons != prod; prog++,
   1743 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
   1744 		if (sc->alc_cdata.alc_tx_cnt <= 0)
   1745 			break;
   1746 		prog++;
   1747 		ifp->if_flags &= ~IFF_OACTIVE;
   1748 		sc->alc_cdata.alc_tx_cnt--;
   1749 		txd = &sc->alc_cdata.alc_txdesc[cons];
   1750 		if (txd->tx_m != NULL) {
   1751 			/* Reclaim transmitted mbufs. */
   1752 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1753 			m_freem(txd->tx_m);
   1754 			txd->tx_m = NULL;
   1755 		}
   1756 	}
   1757 
   1758 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   1759 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1760 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1761 	sc->alc_cdata.alc_tx_cons = cons;
   1762 	/*
   1763 	 * Unarm watchdog timer only when there is no pending
   1764 	 * frames in Tx queue.
   1765 	 */
   1766 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1767 		ifp->if_timer = 0;
   1768 }
   1769 
   1770 static int
   1771 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, int init)
   1772 {
   1773 	struct mbuf *m;
   1774 	bus_dmamap_t map;
   1775 	int error;
   1776 
   1777 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   1778 	if (m == NULL)
   1779 		return (ENOBUFS);
   1780 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   1781 	if (!(m->m_flags & M_EXT)) {
   1782 		m_freem(m);
   1783 		return (ENOBUFS);
   1784 	}
   1785 
   1786 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
   1787 
   1788 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1789 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
   1790 
   1791 	if (error != 0) {
   1792 		if (!error) {
   1793 			bus_dmamap_unload(sc->sc_dmat,
   1794 			    sc->alc_cdata.alc_rx_sparemap);
   1795 			error = EFBIG;
   1796 			printf("%s: too many segments?!\n",
   1797 			    device_xname(sc->sc_dev));
   1798 		}
   1799 		m_freem(m);
   1800 
   1801 		if (init)
   1802 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   1803 
   1804 		return (error);
   1805 	}
   1806 
   1807 	if (rxd->rx_m != NULL) {
   1808 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   1809 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1810 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1811 	}
   1812 	map = rxd->rx_dmamap;
   1813 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
   1814 	sc->alc_cdata.alc_rx_sparemap = map;
   1815 	rxd->rx_m = m;
   1816 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1817 	return (0);
   1818 }
   1819 
   1820 static int
   1821 alc_rxintr(struct alc_softc *sc)
   1822 {
   1823 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1824 	struct rx_rdesc *rrd;
   1825 	uint32_t nsegs, status;
   1826 	int rr_cons, prog;
   1827 
   1828 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1829 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1830 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1831 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1832 	rr_cons = sc->alc_cdata.alc_rr_cons;
   1833 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
   1834 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
   1835 		status = le32toh(rrd->status);
   1836 		if ((status & RRD_VALID) == 0)
   1837 			break;
   1838 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
   1839 		if (nsegs == 0) {
   1840 			/* This should not happen! */
   1841 			if (alcdebug)
   1842 				printf("%s: unexpected segment count -- "
   1843 				    "resetting\n", device_xname(sc->sc_dev));
   1844 			return (EIO);
   1845 		}
   1846 		alc_rxeof(sc, rrd);
   1847 		/* Clear Rx return status. */
   1848 		rrd->status = 0;
   1849 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
   1850 		sc->alc_cdata.alc_rx_cons += nsegs;
   1851 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
   1852 		prog += nsegs;
   1853 	}
   1854 
   1855 	if (prog > 0) {
   1856 		/* Update the consumer index. */
   1857 		sc->alc_cdata.alc_rr_cons = rr_cons;
   1858 		/* Sync Rx return descriptors. */
   1859 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1860 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
   1861 		    BUS_DMASYNC_PREWRITE);
   1862 		/*
   1863 		 * Sync updated Rx descriptors such that controller see
   1864 		 * modified buffer addresses.
   1865 		 */
   1866 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1867 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
   1868 		    BUS_DMASYNC_PREWRITE);
   1869 		/*
   1870 		 * Let controller know availability of new Rx buffers.
   1871 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
   1872 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
   1873 		 * only when Rx buffer pre-fetching is required. In
   1874 		 * addition we already set ALC_RX_RD_FREE_THRESH to
   1875 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
   1876 		 * it still seems that pre-fetching needs more
   1877 		 * experimentation.
   1878 		 */
   1879 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
   1880 		    sc->alc_cdata.alc_rx_cons);
   1881 	}
   1882 
   1883 	return (0);
   1884 }
   1885 
   1886 /* Receive a frame. */
   1887 static void
   1888 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
   1889 {
   1890 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1891 	struct alc_rxdesc *rxd;
   1892 	struct mbuf *mp, *m;
   1893 	uint32_t rdinfo, status;
   1894 	int count, nsegs, rx_cons;
   1895 
   1896 	status = le32toh(rrd->status);
   1897 	rdinfo = le32toh(rrd->rdinfo);
   1898 	rx_cons = RRD_RD_IDX(rdinfo);
   1899 	nsegs = RRD_RD_CNT(rdinfo);
   1900 
   1901 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
   1902 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
   1903 		/*
   1904 		 * We want to pass the following frames to upper
   1905 		 * layer regardless of error status of Rx return
   1906 		 * ring.
   1907 		 *
   1908 		 *  o IP/TCP/UDP checksum is bad.
   1909 		 *  o frame length and protocol specific length
   1910 		 *     does not match.
   1911 		 *
   1912 		 *  Force network stack compute checksum for
   1913 		 *  errored frames.
   1914 		 */
   1915 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
   1916 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
   1917 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
   1918 			return;
   1919 	}
   1920 
   1921 	for (count = 0; count < nsegs; count++,
   1922 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
   1923 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
   1924 		mp = rxd->rx_m;
   1925 		/* Add a new receive buffer to the ring. */
   1926 		if (alc_newbuf(sc, rxd, 0) != 0) {
   1927 			ifp->if_iqdrops++;
   1928 			/* Reuse Rx buffers. */
   1929 			if (sc->alc_cdata.alc_rxhead != NULL)
   1930 				m_freem(sc->alc_cdata.alc_rxhead);
   1931 			break;
   1932 		}
   1933 
   1934 		/*
   1935 		 * Assume we've received a full sized frame.
   1936 		 * Actual size is fixed when we encounter the end of
   1937 		 * multi-segmented frame.
   1938 		 */
   1939 		mp->m_len = sc->alc_buf_size;
   1940 
   1941 		/* Chain received mbufs. */
   1942 		if (sc->alc_cdata.alc_rxhead == NULL) {
   1943 			sc->alc_cdata.alc_rxhead = mp;
   1944 			sc->alc_cdata.alc_rxtail = mp;
   1945 		} else {
   1946 			mp->m_flags &= ~M_PKTHDR;
   1947 			sc->alc_cdata.alc_rxprev_tail =
   1948 			    sc->alc_cdata.alc_rxtail;
   1949 			sc->alc_cdata.alc_rxtail->m_next = mp;
   1950 			sc->alc_cdata.alc_rxtail = mp;
   1951 		}
   1952 
   1953 		if (count == nsegs - 1) {
   1954 			/* Last desc. for this frame. */
   1955 			m = sc->alc_cdata.alc_rxhead;
   1956 			m->m_flags |= M_PKTHDR;
   1957 			/*
   1958 			 * It seems that L1C/L2C controller has no way
   1959 			 * to tell hardware to strip CRC bytes.
   1960 			 */
   1961 			m->m_pkthdr.len =
   1962 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
   1963 			if (nsegs > 1) {
   1964 				/* Set last mbuf size. */
   1965 				mp->m_len = sc->alc_cdata.alc_rxlen -
   1966 				    (nsegs - 1) * sc->alc_buf_size;
   1967 				/* Remove the CRC bytes in chained mbufs. */
   1968 				if (mp->m_len <= ETHER_CRC_LEN) {
   1969 					sc->alc_cdata.alc_rxtail =
   1970 					    sc->alc_cdata.alc_rxprev_tail;
   1971 					sc->alc_cdata.alc_rxtail->m_len -=
   1972 					    (ETHER_CRC_LEN - mp->m_len);
   1973 					sc->alc_cdata.alc_rxtail->m_next = NULL;
   1974 					m_freem(mp);
   1975 				} else {
   1976 					mp->m_len -= ETHER_CRC_LEN;
   1977 				}
   1978 			} else
   1979 				m->m_len = m->m_pkthdr.len;
   1980 			m->m_pkthdr.rcvif = ifp;
   1981 #if NVLAN > 0
   1982 			/*
   1983 			 * Due to hardware bugs, Rx checksum offloading
   1984 			 * was intentionally disabled.
   1985 			 */
   1986 			if (status & RRD_VLAN_TAG) {
   1987 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
   1988 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
   1989 			}
   1990 #endif
   1991 
   1992 			bpf_mtap(ifp, m);
   1993 
   1994 			{
   1995 			/* Pass it on. */
   1996 			ether_input(ifp, m);
   1997 			}
   1998 		}
   1999 	}
   2000 	/* Reset mbuf chains. */
   2001 	ALC_RXCHAIN_RESET(sc);
   2002 }
   2003 
   2004 static void
   2005 alc_tick(void *xsc)
   2006 {
   2007 	struct alc_softc *sc = xsc;
   2008 	struct mii_data *mii = &sc->sc_miibus;
   2009 	int s;
   2010 
   2011 	s = splnet();
   2012 	mii_tick(mii);
   2013 	alc_stats_update(sc);
   2014 	splx(s);
   2015 
   2016 	callout_schedule(&sc->sc_tick_ch, hz);
   2017 }
   2018 
   2019 static void
   2020 alc_reset(struct alc_softc *sc)
   2021 {
   2022 	uint32_t reg;
   2023 	int i;
   2024 
   2025 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
   2026 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
   2027 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2028 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2029 		DELAY(10);
   2030 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
   2031 			break;
   2032 	}
   2033 	if (i == 0)
   2034 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   2035 
   2036 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2037 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
   2038 			break;
   2039 		DELAY(10);
   2040 	}
   2041 
   2042 	if (i == 0)
   2043 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   2044 		    reg);
   2045 }
   2046 
   2047 static int
   2048 alc_init(struct ifnet *ifp)
   2049 {
   2050 	struct alc_softc *sc = ifp->if_softc;
   2051 	struct mii_data *mii;
   2052 	uint8_t eaddr[ETHER_ADDR_LEN];
   2053 	bus_addr_t paddr;
   2054 	uint32_t reg, rxf_hi, rxf_lo;
   2055 	int error;
   2056 
   2057 	/*
   2058 	 * Cancel any pending I/O.
   2059 	 */
   2060 	alc_stop(ifp, 0);
   2061 	/*
   2062 	 * Reset the chip to a known state.
   2063 	 */
   2064 	alc_reset(sc);
   2065 
   2066 	/* Initialize Rx descriptors. */
   2067 	error = alc_init_rx_ring(sc);
   2068 	if (error != 0) {
   2069 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   2070 		alc_stop(ifp, 0);
   2071 		return (error);
   2072 	}
   2073 	alc_init_rr_ring(sc);
   2074 	alc_init_tx_ring(sc);
   2075 	alc_init_cmb(sc);
   2076 	alc_init_smb(sc);
   2077 
   2078 	/* Enable all clocks. */
   2079 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
   2080 
   2081 	/* Reprogram the station address. */
   2082 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   2083 	CSR_WRITE_4(sc, ALC_PAR0,
   2084 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   2085 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
   2086 	/*
   2087 	 * Clear WOL status and disable all WOL feature as WOL
   2088 	 * would interfere Rx operation under normal environments.
   2089 	 */
   2090 	CSR_READ_4(sc, ALC_WOL_CFG);
   2091 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
   2092 	/* Set Tx descriptor base addresses. */
   2093 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
   2094 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2095 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2096 	/* We don't use high priority ring. */
   2097 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
   2098 	/* Set Tx descriptor counter. */
   2099 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
   2100 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
   2101 	/* Set Rx descriptor base addresses. */
   2102 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
   2103 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2104 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2105 	/* We use one Rx ring. */
   2106 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
   2107 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
   2108 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
   2109 	/* Set Rx descriptor counter. */
   2110 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
   2111 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
   2112 
   2113 	/*
   2114 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
   2115 	 * if it do not fit the buffer size. Rx return descriptor holds
   2116 	 * a counter that indicates how many fragments were made by the
   2117 	 * hardware. The buffer size should be multiple of 8 bytes.
   2118 	 * Since hardware has limit on the size of buffer size, always
   2119 	 * use the maximum value.
   2120 	 * For strict-alignment architectures make sure to reduce buffer
   2121 	 * size by 8 bytes to make room for alignment fixup.
   2122 	 */
   2123 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
   2124 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
   2125 
   2126 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
   2127 	/* Set Rx return descriptor base addresses. */
   2128 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2129 	/* We use one Rx return ring. */
   2130 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
   2131 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
   2132 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
   2133 	/* Set Rx return descriptor counter. */
   2134 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
   2135 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
   2136 	paddr = sc->alc_rdata.alc_cmb_paddr;
   2137 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2138 	paddr = sc->alc_rdata.alc_smb_paddr;
   2139 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2140 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2141 
   2142 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
   2143 		/* Reconfigure SRAM - Vendor magic. */
   2144 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
   2145 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
   2146 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
   2147 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
   2148 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
   2149 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
   2150 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
   2151 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
   2152 	}
   2153 
   2154 	/* Tell hardware that we're ready to load DMA blocks. */
   2155 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
   2156 
   2157 	/* Configure interrupt moderation timer. */
   2158 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
   2159 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
   2160 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
   2161 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
   2162 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
   2163 	/*
   2164 	 * We don't want to automatic interrupt clear as task queue
   2165 	 * for the interrupt should know interrupt status.
   2166 	 */
   2167 	reg = MASTER_SA_TIMER_ENB;
   2168 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
   2169 		reg |= MASTER_IM_RX_TIMER_ENB;
   2170 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
   2171 		reg |= MASTER_IM_TX_TIMER_ENB;
   2172 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2173 	/*
   2174 	 * Disable interrupt re-trigger timer. We don't want automatic
   2175 	 * re-triggering of un-ACKed interrupts.
   2176 	 */
   2177 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
   2178 	/* Configure CMB. */
   2179 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
   2180 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2181 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
   2182 	else
   2183 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
   2184 	/*
   2185 	 * Hardware can be configured to issue SMB interrupt based
   2186 	 * on programmed interval. Since there is a callout that is
   2187 	 * invoked for every hz in driver we use that instead of
   2188 	 * relying on periodic SMB interrupt.
   2189 	 */
   2190 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
   2191 	/* Clear MAC statistics. */
   2192 	alc_stats_clear(sc);
   2193 
   2194 	/*
   2195 	 * Always use maximum frame size that controller can support.
   2196 	 * Otherwise received frames that has larger frame length
   2197 	 * than alc(4) MTU would be silently dropped in hardware. This
   2198 	 * would make path-MTU discovery hard as sender wouldn't get
   2199 	 * any responses from receiver. alc(4) supports
   2200 	 * multi-fragmented frames on Rx path so it has no issue on
   2201 	 * assembling fragmented frames. Using maximum frame size also
   2202 	 * removes the need to reinitialize hardware when interface
   2203 	 * MTU configuration was changed.
   2204 	 *
   2205 	 * Be conservative in what you do, be liberal in what you
   2206 	 * accept from others - RFC 793.
   2207 	 */
   2208 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
   2209 
   2210 	/* Disable header split(?) */
   2211 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
   2212 
   2213 	/* Configure IPG/IFG parameters. */
   2214 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
   2215 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
   2216 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   2217 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   2218 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
   2219 	/* Set parameters for half-duplex media. */
   2220 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
   2221 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   2222 	    HDPX_CFG_LCOL_MASK) |
   2223 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   2224 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   2225 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   2226 	    HDPX_CFG_ABEBT_MASK) |
   2227 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   2228 	    HDPX_CFG_JAMIPG_MASK));
   2229 	/*
   2230 	 * Set TSO/checksum offload threshold. For frames that is
   2231 	 * larger than this threshold, hardware wouldn't do
   2232 	 * TSO/checksum offloading.
   2233 	 */
   2234 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
   2235 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
   2236 	    TSO_OFFLOAD_THRESH_MASK);
   2237 	/* Configure TxQ. */
   2238 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
   2239 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
   2240 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2241 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2242 		reg >>= 1;
   2243 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
   2244 	    TXQ_CFG_TD_BURST_MASK;
   2245 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
   2246 
   2247 	/* Configure Rx free descriptor pre-fetching. */
   2248 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
   2249 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
   2250 	    RX_RD_FREE_THRESH_HI_MASK) |
   2251 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
   2252 	    RX_RD_FREE_THRESH_LO_MASK));
   2253 
   2254 	/*
   2255 	 * Configure flow control parameters.
   2256 	 * XON  : 80% of Rx FIFO
   2257 	 * XOFF : 30% of Rx FIFO
   2258 	 */
   2259 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
   2260 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
   2261 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
   2262 		rxf_hi = (reg * 8) / 10;
   2263 		rxf_lo = (reg * 3) / 10;
   2264 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
   2265 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
   2266 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
   2267 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
   2268 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
   2269 	}
   2270 
   2271 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2272 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
   2273 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
   2274 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
   2275 		    SERDES_PHY_CLK_SLOWDOWN);
   2276 
   2277 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
   2278 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
   2279 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
   2280 
   2281 	/* Configure RxQ. */
   2282 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   2283 	    RXQ_CFG_RD_BURST_MASK;
   2284 	reg |= RXQ_CFG_RSS_MODE_DIS;
   2285 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
   2286 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
   2287 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2288 
   2289 	/* Configure DMA parameters. */
   2290 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
   2291 	reg |= sc->alc_rcb;
   2292 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2293 		reg |= DMA_CFG_CMB_ENB;
   2294 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
   2295 		reg |= DMA_CFG_SMB_ENB;
   2296 	else
   2297 		reg |= DMA_CFG_SMB_DIS;
   2298 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
   2299 	    DMA_CFG_RD_BURST_SHIFT;
   2300 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
   2301 	    DMA_CFG_WR_BURST_SHIFT;
   2302 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
   2303 	    DMA_CFG_RD_DELAY_CNT_MASK;
   2304 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
   2305 	    DMA_CFG_WR_DELAY_CNT_MASK;
   2306 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2307 
   2308 	/*
   2309 	 * Configure Tx/Rx MACs.
   2310 	 *  - Auto-padding for short frames.
   2311 	 *  - Enable CRC generation.
   2312 	 *  Actual reconfiguration of MAC for resolved speed/duplex
   2313 	 *  is followed after detection of link establishment.
   2314 	 *  AR813x/AR815x always does checksum computation regardless
   2315 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
   2316 	 *  have bug in protocol field in Rx return structure so
   2317 	 *  these controllers can't handle fragmented frames. Disable
   2318 	 *  Rx checksum offloading until there is a newer controller
   2319 	 *  that has sane implementation.
   2320 	 */
   2321 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
   2322 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   2323 	    MAC_CFG_PREAMBLE_MASK);
   2324 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   2325 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   2326 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2327 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   2328 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
   2329 		reg |= MAC_CFG_SPEED_10_100;
   2330 	else
   2331 		reg |= MAC_CFG_SPEED_1000;
   2332 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2333 
   2334 	/* Set up the receive filter. */
   2335 	alc_iff(sc);
   2336 	alc_rxvlan(sc);
   2337 
   2338 	/* Acknowledge all pending interrupts and clear it. */
   2339 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
   2340 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2341 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
   2342 
   2343 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2344 	/* Switch to the current media. */
   2345 	mii = &sc->sc_miibus;
   2346 	mii_mediachg(mii);
   2347 
   2348 	callout_schedule(&sc->sc_tick_ch, hz);
   2349 
   2350 	ifp->if_flags |= IFF_RUNNING;
   2351 	ifp->if_flags &= ~IFF_OACTIVE;
   2352 
   2353 	return (0);
   2354 }
   2355 
   2356 static void
   2357 alc_stop(struct ifnet *ifp, int disable)
   2358 {
   2359 	struct alc_softc *sc = ifp->if_softc;
   2360 	struct alc_txdesc *txd;
   2361 	struct alc_rxdesc *rxd;
   2362 	uint32_t reg;
   2363 	int i;
   2364 
   2365 	callout_stop(&sc->sc_tick_ch);
   2366 
   2367 	/*
   2368 	 * Mark the interface down and cancel the watchdog timer.
   2369 	 */
   2370 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2371 	ifp->if_timer = 0;
   2372 
   2373 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2374 
   2375 	alc_stats_update(sc);
   2376 
   2377 	mii_down(&sc->sc_miibus);
   2378 
   2379 	/* Disable interrupts. */
   2380 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
   2381 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2382 	alc_stop_queue(sc);
   2383 
   2384 	/* Disable DMA. */
   2385 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
   2386 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
   2387 	reg |= DMA_CFG_SMB_DIS;
   2388 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2389 	DELAY(1000);
   2390 
   2391 	/* Stop Rx/Tx MACs. */
   2392 	alc_stop_mac(sc);
   2393 
   2394 	/* Disable interrupts which might be touched in taskq handler. */
   2395 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2396 
   2397 	/* Reclaim Rx buffers that have been processed. */
   2398 	if (sc->alc_cdata.alc_rxhead != NULL)
   2399 		m_freem(sc->alc_cdata.alc_rxhead);
   2400 	ALC_RXCHAIN_RESET(sc);
   2401 	/*
   2402 	 * Free Tx/Rx mbufs still in the queues.
   2403 	 */
   2404 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2405 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2406 		if (rxd->rx_m != NULL) {
   2407 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2408 			m_freem(rxd->rx_m);
   2409 			rxd->rx_m = NULL;
   2410 		}
   2411 	}
   2412 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2413 		txd = &sc->alc_cdata.alc_txdesc[i];
   2414 		if (txd->tx_m != NULL) {
   2415 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   2416 			m_freem(txd->tx_m);
   2417 			txd->tx_m = NULL;
   2418 		}
   2419 	}
   2420 }
   2421 
   2422 static void
   2423 alc_stop_mac(struct alc_softc *sc)
   2424 {
   2425 	uint32_t reg;
   2426 	int i;
   2427 
   2428 	/* Disable Rx/Tx MAC. */
   2429 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2430 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
   2431 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   2432 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2433 	}
   2434 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2435 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2436 		if (reg == 0)
   2437 			break;
   2438 		DELAY(10);
   2439 	}
   2440 	if (i == 0)
   2441 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
   2442 		    device_xname(sc->sc_dev), reg);
   2443 }
   2444 
   2445 static void
   2446 alc_start_queue(struct alc_softc *sc)
   2447 {
   2448 	uint32_t qcfg[] = {
   2449 		0,
   2450 		RXQ_CFG_QUEUE0_ENB,
   2451 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
   2452 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
   2453 		RXQ_CFG_ENB
   2454 	};
   2455 	uint32_t cfg;
   2456 
   2457 	/* Enable RxQ. */
   2458 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2459 	cfg &= ~RXQ_CFG_ENB;
   2460 	cfg |= qcfg[1];
   2461 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
   2462 	/* Enable TxQ. */
   2463 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2464 	cfg |= TXQ_CFG_ENB;
   2465 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
   2466 }
   2467 
   2468 static void
   2469 alc_stop_queue(struct alc_softc *sc)
   2470 {
   2471 	uint32_t reg;
   2472 	int i;
   2473 
   2474 	/* Disable RxQ. */
   2475 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2476 	if ((reg & RXQ_CFG_ENB) != 0) {
   2477 		reg &= ~RXQ_CFG_ENB;
   2478 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2479 	}
   2480 	/* Disable TxQ. */
   2481 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2482 	if ((reg & TXQ_CFG_ENB) != 0) {
   2483 		reg &= ~TXQ_CFG_ENB;
   2484 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
   2485 	}
   2486 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2487 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2488 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
   2489 			break;
   2490 		DELAY(10);
   2491 	}
   2492 	if (i == 0)
   2493 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
   2494 		    device_xname(sc->sc_dev), reg);
   2495 }
   2496 
   2497 static void
   2498 alc_init_tx_ring(struct alc_softc *sc)
   2499 {
   2500 	struct alc_ring_data *rd;
   2501 	struct alc_txdesc *txd;
   2502 	int i;
   2503 
   2504 	sc->alc_cdata.alc_tx_prod = 0;
   2505 	sc->alc_cdata.alc_tx_cons = 0;
   2506 	sc->alc_cdata.alc_tx_cnt = 0;
   2507 
   2508 	rd = &sc->alc_rdata;
   2509 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
   2510 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2511 		txd = &sc->alc_cdata.alc_txdesc[i];
   2512 		txd->tx_m = NULL;
   2513 	}
   2514 
   2515 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   2516 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2517 }
   2518 
   2519 static int
   2520 alc_init_rx_ring(struct alc_softc *sc)
   2521 {
   2522 	struct alc_ring_data *rd;
   2523 	struct alc_rxdesc *rxd;
   2524 	int i;
   2525 
   2526 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
   2527 	rd = &sc->alc_rdata;
   2528 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
   2529 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2530 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2531 		rxd->rx_m = NULL;
   2532 		rxd->rx_desc = &rd->alc_rx_ring[i];
   2533 		if (alc_newbuf(sc, rxd, 1) != 0)
   2534 			return (ENOBUFS);
   2535 	}
   2536 
   2537 	/*
   2538 	 * Since controller does not update Rx descriptors, driver
   2539 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
   2540 	 * is enough to ensure coherence.
   2541 	 */
   2542 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   2543 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2544 	/* Let controller know availability of new Rx buffers. */
   2545 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
   2546 
   2547 	return (0);
   2548 }
   2549 
   2550 static void
   2551 alc_init_rr_ring(struct alc_softc *sc)
   2552 {
   2553 	struct alc_ring_data *rd;
   2554 
   2555 	sc->alc_cdata.alc_rr_cons = 0;
   2556 	ALC_RXCHAIN_RESET(sc);
   2557 
   2558 	rd = &sc->alc_rdata;
   2559 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
   2560 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   2561 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2562 }
   2563 
   2564 static void
   2565 alc_init_cmb(struct alc_softc *sc)
   2566 {
   2567 	struct alc_ring_data *rd;
   2568 
   2569 	rd = &sc->alc_rdata;
   2570 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
   2571 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   2572 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2573 }
   2574 
   2575 static void
   2576 alc_init_smb(struct alc_softc *sc)
   2577 {
   2578 	struct alc_ring_data *rd;
   2579 
   2580 	rd = &sc->alc_rdata;
   2581 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
   2582 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   2583 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2584 }
   2585 
   2586 static void
   2587 alc_rxvlan(struct alc_softc *sc)
   2588 {
   2589 	uint32_t reg;
   2590 
   2591 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2592 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2593 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2594 	else
   2595 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2596 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2597 }
   2598 
   2599 static void
   2600 alc_iff(struct alc_softc *sc)
   2601 {
   2602 	struct ethercom *ec = &sc->sc_ec;
   2603 	struct ifnet *ifp = &ec->ec_if;
   2604 	struct ether_multi *enm;
   2605 	struct ether_multistep step;
   2606 	uint32_t crc;
   2607 	uint32_t mchash[2];
   2608 	uint32_t rxcfg;
   2609 
   2610 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
   2611 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2612 	ifp->if_flags &= ~IFF_ALLMULTI;
   2613 
   2614 	/*
   2615 	 * Always accept broadcast frames.
   2616 	 */
   2617 	rxcfg |= MAC_CFG_BCAST;
   2618 
   2619 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2620 		ifp->if_flags |= IFF_ALLMULTI;
   2621 		if (ifp->if_flags & IFF_PROMISC)
   2622 			rxcfg |= MAC_CFG_PROMISC;
   2623 		else
   2624 			rxcfg |= MAC_CFG_ALLMULTI;
   2625 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2626 	} else {
   2627 		/* Program new filter. */
   2628 		memset(mchash, 0, sizeof(mchash));
   2629 
   2630 		ETHER_FIRST_MULTI(step, ec, enm);
   2631 		while (enm != NULL) {
   2632 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2633 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2634 			ETHER_NEXT_MULTI(step, enm);
   2635 		}
   2636 	}
   2637 
   2638 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
   2639 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
   2640 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
   2641 }
   2642 
   2643 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
   2644 
   2645 #ifdef _MODULE
   2646 #include "ioconf.c"
   2647 #endif
   2648 
   2649 static int
   2650 if_alc_modcmd(modcmd_t cmd, void *opaque)
   2651 {
   2652 	int error = 0;
   2653 
   2654 	switch (cmd) {
   2655 	case MODULE_CMD_INIT:
   2656 #ifdef _MODULE
   2657 		error = config_init_component(cfdriver_ioconf_if_alc,
   2658 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2659 #endif
   2660 		return error;
   2661 	case MODULE_CMD_FINI:
   2662 #ifdef _MODULE
   2663 		error = config_fini_component(cfdriver_ioconf_if_alc,
   2664 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2665 #endif
   2666 		return error;
   2667 	default:
   2668 		return ENOTTY;
   2669 	}
   2670 }
   2671