if_alc.c revision 1.51 1 /* $NetBSD: if_alc.c,v 1.51 2020/03/01 03:00:31 thorpej Exp $ */
2 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
3 /*-
4 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49
50 #include <sys/bus.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_alcreg.h>
77
78 /*
79 * Devices supported by this driver.
80 */
81 static const struct alc_ident alc_ident_table[] = {
82 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
83 "Atheros AR8131 PCIe Gigabit Ethernet" },
84 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
85 "Atheros AR8132 PCIe Fast Ethernet" },
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
87 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
89 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
91 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
93 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
95 "Atheros AR8161 PCIe Gigabit Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
97 "Atheros AR8162 PCIe Fast Ethernet" },
98 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
99 "Atheros AR8171 PCIe Gigabit Ethernet" },
100 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
101 "Atheros AR8172 PCIe Fast Ethernet" },
102 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
103 "Killer E2200 Gigabit Ethernet" },
104 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2400, 9 * 1024,
105 "Killer E2400 Gigabit Ethernet" },
106 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2500, 9 * 1024,
107 "Killer E2500 Gigabit Ethernet" },
108 { 0, 0, 0, NULL },
109 };
110
111 static int alc_match(device_t, cfdata_t, void *);
112 static void alc_attach(device_t, device_t, void *);
113 static int alc_detach(device_t, int);
114
115 static int alc_init(struct ifnet *);
116 static int alc_init_backend(struct ifnet *, bool);
117 static void alc_start(struct ifnet *);
118 static int alc_ioctl(struct ifnet *, u_long, void *);
119 static void alc_watchdog(struct ifnet *);
120 static int alc_mediachange(struct ifnet *);
121 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
122
123 static void alc_aspm(struct alc_softc *, int, int);
124 static void alc_aspm_813x(struct alc_softc *, int);
125 static void alc_aspm_816x(struct alc_softc *, int);
126 static void alc_disable_l0s_l1(struct alc_softc *);
127 static int alc_dma_alloc(struct alc_softc *);
128 static void alc_dma_free(struct alc_softc *);
129 static void alc_dsp_fixup(struct alc_softc *, int);
130 static int alc_encap(struct alc_softc *, struct mbuf **);
131 static const struct alc_ident *
132 alc_find_ident(struct pci_attach_args *);
133 static void alc_get_macaddr(struct alc_softc *);
134 static void alc_get_macaddr_813x(struct alc_softc *);
135 static void alc_get_macaddr_816x(struct alc_softc *);
136 static void alc_get_macaddr_par(struct alc_softc *);
137 static void alc_init_cmb(struct alc_softc *);
138 static void alc_init_rr_ring(struct alc_softc *);
139 static int alc_init_rx_ring(struct alc_softc *, bool);
140 static void alc_init_smb(struct alc_softc *);
141 static void alc_init_tx_ring(struct alc_softc *);
142 static int alc_intr(void *);
143 static void alc_mac_config(struct alc_softc *);
144 static int alc_mii_readreg_813x(struct alc_softc *, int, int, uint16_t *);
145 static int alc_mii_readreg_816x(struct alc_softc *, int, int, uint16_t *);
146 static int alc_mii_writereg_813x(struct alc_softc *, int, int, uint16_t);
147 static int alc_mii_writereg_816x(struct alc_softc *, int, int, uint16_t);
148 static int alc_miibus_readreg(device_t, int, int, uint16_t *);
149 static void alc_miibus_statchg(struct ifnet *);
150 static int alc_miibus_writereg(device_t, int, int, uint16_t);
151 static int alc_miidbg_readreg(struct alc_softc *, int, uint16_t *);
152 static int alc_miidbg_writereg(struct alc_softc *, int, uint16_t);
153 static int alc_miiext_readreg(struct alc_softc *, int, int, uint16_t *);
154 static int alc_miiext_writereg(struct alc_softc *, int, int, uint16_t);
155 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
156 static void alc_phy_down(struct alc_softc *);
157 static void alc_phy_reset(struct alc_softc *);
158 static void alc_phy_reset_813x(struct alc_softc *);
159 static void alc_phy_reset_816x(struct alc_softc *);
160 static void alc_reset(struct alc_softc *);
161 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
162 static int alc_rxintr(struct alc_softc *);
163 static void alc_iff(struct alc_softc *);
164 static void alc_rxvlan(struct alc_softc *);
165 static void alc_start_queue(struct alc_softc *);
166 static void alc_stats_clear(struct alc_softc *);
167 static void alc_stats_update(struct alc_softc *);
168 static void alc_stop(struct ifnet *, int);
169 static void alc_stop_mac(struct alc_softc *);
170 static void alc_stop_queue(struct alc_softc *);
171 static void alc_tick(void *);
172 static void alc_txeof(struct alc_softc *);
173 static void alc_init_pcie(struct alc_softc *);
174
175 static const uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0, 0 };
176
177 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
178 alc_match, alc_attach, alc_detach, NULL);
179
180 int alcdebug = 0;
181 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
182
183 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
184
185 static int
186 alc_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
187 {
188 struct alc_softc *sc = device_private(dev);
189 int v;
190
191 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
192 v = alc_mii_readreg_816x(sc, phy, reg, val);
193 else
194 v = alc_mii_readreg_813x(sc, phy, reg, val);
195 return (v);
196 }
197
198 static int
199 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
200 {
201 uint32_t v;
202 int i;
203
204 if (phy != sc->alc_phyaddr)
205 return -1;
206
207 /*
208 * For AR8132 fast ethernet controller, do not report 1000baseT
209 * capability to mii(4). Even though AR8132 uses the same
210 * model/revision number of F1 gigabit PHY, the PHY has no
211 * ability to establish 1000baseT link.
212 */
213 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) {
214 *val = 0;
215 return 0;
216 }
217
218 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
221 DELAY(5);
222 v = CSR_READ_4(sc, ALC_MDIO);
223 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 break;
225 }
226
227 if (i == 0) {
228 printf("%s: phy read timeout: phy %d, reg %d\n",
229 device_xname(sc->sc_dev), phy, reg);
230 return ETIMEDOUT;
231 }
232
233 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
234 return 0;
235 }
236
237 static int
238 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
239 {
240 uint32_t clk, v;
241 int i;
242
243 if (phy != sc->alc_phyaddr)
244 return -1;
245
246 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
247 clk = MDIO_CLK_25_128;
248 else
249 clk = MDIO_CLK_25_4;
250 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
251 MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
252 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
253 DELAY(5);
254 v = CSR_READ_4(sc, ALC_MDIO);
255 if ((v & MDIO_OP_BUSY) == 0)
256 break;
257 }
258
259 if (i == 0) {
260 printf("%s: phy read timeout: phy %d, reg %d\n",
261 device_xname(sc->sc_dev), phy, reg);
262 return ETIMEDOUT;
263 }
264
265 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
266 return 0;
267 }
268
269 static int
270 alc_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
271 {
272 struct alc_softc *sc = device_private(dev);
273 int rv;
274
275 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
276 rv = alc_mii_writereg_816x(sc, phy, reg, val);
277 else
278 rv = alc_mii_writereg_813x(sc, phy, reg, val);
279
280 return rv;
281 }
282
283 static int
284 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, uint16_t val)
285 {
286 uint32_t v;
287 int i;
288
289 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
290 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
291 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
292 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
293 DELAY(5);
294 v = CSR_READ_4(sc, ALC_MDIO);
295 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
296 break;
297 }
298
299 if (i == 0) {
300 printf("%s: phy write timeout: phy %d, reg %d\n",
301 device_xname(sc->sc_dev), phy, reg);
302 return ETIMEDOUT;
303 }
304
305 return 0;
306 }
307
308 static int
309 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, uint16_t val)
310 {
311 uint32_t clk, v;
312 int i;
313
314 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
315 clk = MDIO_CLK_25_128;
316 else
317 clk = MDIO_CLK_25_4;
318 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
319 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
320 MDIO_SUP_PREAMBLE | clk);
321 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
322 DELAY(5);
323 v = CSR_READ_4(sc, ALC_MDIO);
324 if ((v & MDIO_OP_BUSY) == 0)
325 break;
326 }
327
328 if (i == 0) {
329 printf("%s: phy write timeout: phy %d, reg %d\n",
330 device_xname(sc->sc_dev), phy, reg);
331 return ETIMEDOUT;
332 }
333
334 return 0;
335 }
336
337 static void
338 alc_miibus_statchg(struct ifnet *ifp)
339 {
340 struct alc_softc *sc = ifp->if_softc;
341 struct mii_data *mii = &sc->sc_miibus;
342 uint32_t reg;
343
344 if ((ifp->if_flags & IFF_RUNNING) == 0)
345 return;
346
347 sc->alc_flags &= ~ALC_FLAG_LINK;
348 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
349 (IFM_ACTIVE | IFM_AVALID)) {
350 switch (IFM_SUBTYPE(mii->mii_media_active)) {
351 case IFM_10_T:
352 case IFM_100_TX:
353 sc->alc_flags |= ALC_FLAG_LINK;
354 break;
355 case IFM_1000_T:
356 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
357 sc->alc_flags |= ALC_FLAG_LINK;
358 break;
359 default:
360 break;
361 }
362 }
363 /* Stop Rx/Tx MACs. */
364 alc_stop_mac(sc);
365
366 /* Program MACs with resolved speed/duplex/flow-control. */
367 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
368 alc_start_queue(sc);
369 alc_mac_config(sc);
370 /* Re-enable Tx/Rx MACs. */
371 reg = CSR_READ_4(sc, ALC_MAC_CFG);
372 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
373 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
374 }
375 alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
376 alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
377 }
378
379 static int
380 alc_miidbg_readreg(struct alc_softc *sc, int reg, uint16_t *val)
381 {
382 int rv;
383
384 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
385 reg);
386 if (rv != 0)
387 return rv;
388
389 return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
390 ALC_MII_DBG_DATA, val));
391 }
392
393 static int
394 alc_miidbg_writereg(struct alc_softc *sc, int reg, uint16_t val)
395 {
396 int rv;
397
398 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
399 reg);
400 if (rv != 0)
401 return rv;
402
403 rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
404 val);
405
406 return rv;
407 }
408
409 static int
410 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg, uint16_t *val)
411 {
412 uint32_t clk, v;
413 int i;
414
415 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
416 EXT_MDIO_DEVADDR(devaddr));
417 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
418 clk = MDIO_CLK_25_128;
419 else
420 clk = MDIO_CLK_25_4;
421 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
422 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
423 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
424 DELAY(5);
425 v = CSR_READ_4(sc, ALC_MDIO);
426 if ((v & MDIO_OP_BUSY) == 0)
427 break;
428 }
429
430 if (i == 0) {
431 printf("%s: phy ext read timeout: %d\n",
432 device_xname(sc->sc_dev), reg);
433 return ETIMEDOUT;
434 }
435
436 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
437 return 0;
438 }
439
440 static int
441 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, uint16_t val)
442 {
443 uint32_t clk, v;
444 int i;
445
446 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
447 EXT_MDIO_DEVADDR(devaddr));
448 if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
449 clk = MDIO_CLK_25_128;
450 else
451 clk = MDIO_CLK_25_4;
452 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
453 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
454 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
455 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
456 DELAY(5);
457 v = CSR_READ_4(sc, ALC_MDIO);
458 if ((v & MDIO_OP_BUSY) == 0)
459 break;
460 }
461
462 if (i == 0) {
463 printf("%s: phy ext write timeout: reg %d\n",
464 device_xname(sc->sc_dev), reg);
465 return ETIMEDOUT;
466 }
467
468 return 0;
469 }
470
471 static void
472 alc_dsp_fixup(struct alc_softc *sc, int media)
473 {
474 uint16_t agc, len, val;
475
476 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
477 return;
478 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
479 return;
480
481 /*
482 * Vendor PHY magic.
483 * 1000BT/AZ, wrong cable length
484 */
485 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
486 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6, &len);
487 len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
488 EXT_CLDCTL6_CAB_LEN_MASK;
489 /* XXX: used to be (alc >> shift) & mask which is 0 */
490 alc_miidbg_readreg(sc, MII_DBG_AGC, &agc);
491 agc &= DBG_AGC_2_VGA_MASK;
492 agc >>= DBG_AGC_2_VGA_SHIFT;
493 if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
494 agc > DBG_AGC_LONG1G_LIMT) ||
495 (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
496 agc > DBG_AGC_LONG1G_LIMT)) {
497 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
498 DBG_AZ_ANADECT_LONG);
499 alc_miiext_readreg(sc, MII_EXT_ANEG,
500 MII_EXT_ANEG_AFE, &val);
501 val |= ANEG_AFEE_10BT_100M_TH;
502 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
503 val);
504 } else {
505 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
506 DBG_AZ_ANADECT_DEFAULT);
507 alc_miiext_readreg(sc, MII_EXT_ANEG,
508 MII_EXT_ANEG_AFE, &val);
509 val &= ~ANEG_AFEE_10BT_100M_TH;
510 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
511 val);
512 }
513 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 if (media == IFM_1000_T) {
516 /*
517 * Giga link threshold, raise the tolerance of
518 * noise 50%.
519 */
520 alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
521 val &= ~DBG_MSE20DB_TH_MASK;
522 val |= (DBG_MSE20DB_TH_HI <<
523 DBG_MSE20DB_TH_SHIFT);
524 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
525 } else if (media == IFM_100_TX)
526 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
527 DBG_MSE16DB_UP);
528 }
529 } else {
530 alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, &val);
531 val &= ~ANEG_AFEE_10BT_100M_TH;
532 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
533 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
534 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
535 alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
536 DBG_MSE16DB_DOWN);
537 alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
538 val &= ~DBG_MSE20DB_TH_MASK;
539 val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
540 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
541 }
542 }
543 }
544
545 static void
546 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
547 {
548 struct alc_softc *sc = ifp->if_softc;
549 struct mii_data *mii = &sc->sc_miibus;
550
551 if ((ifp->if_flags & IFF_UP) == 0)
552 return;
553
554 mii_pollstat(mii);
555 ifmr->ifm_status = mii->mii_media_status;
556 ifmr->ifm_active = mii->mii_media_active;
557 }
558
559 static int
560 alc_mediachange(struct ifnet *ifp)
561 {
562 struct alc_softc *sc = ifp->if_softc;
563 struct mii_data *mii = &sc->sc_miibus;
564 int error;
565
566 if (mii->mii_instance != 0) {
567 struct mii_softc *miisc;
568
569 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
570 mii_phy_reset(miisc);
571 }
572 error = mii_mediachg(mii);
573
574 return (error);
575 }
576
577 static const struct alc_ident *
578 alc_find_ident(struct pci_attach_args *pa)
579 {
580 const struct alc_ident *ident;
581 uint16_t vendor, devid;
582
583 vendor = PCI_VENDOR(pa->pa_id);
584 devid = PCI_PRODUCT(pa->pa_id);
585 for (ident = alc_ident_table; ident->name != NULL; ident++) {
586 if (vendor == ident->vendorid && devid == ident->deviceid)
587 return (ident);
588 }
589
590 return (NULL);
591 }
592
593 static int
594 alc_match(device_t dev, cfdata_t match, void *aux)
595 {
596 struct pci_attach_args *pa = aux;
597
598 return alc_find_ident(pa) != NULL;
599 }
600
601 static void
602 alc_get_macaddr(struct alc_softc *sc)
603 {
604
605 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
606 alc_get_macaddr_816x(sc);
607 else
608 alc_get_macaddr_813x(sc);
609 }
610
611 static void
612 alc_get_macaddr_813x(struct alc_softc *sc)
613 {
614 uint32_t opt;
615 uint16_t val;
616 int eeprom, i;
617
618 eeprom = 0;
619 opt = CSR_READ_4(sc, ALC_OPT_CFG);
620 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
621 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
622 /*
623 * EEPROM found, let TWSI reload EEPROM configuration.
624 * This will set ethernet address of controller.
625 */
626 eeprom++;
627 switch (sc->alc_ident->deviceid) {
628 case PCI_PRODUCT_ATTANSIC_AR8131:
629 case PCI_PRODUCT_ATTANSIC_AR8132:
630 if ((opt & OPT_CFG_CLK_ENB) == 0) {
631 opt |= OPT_CFG_CLK_ENB;
632 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
633 CSR_READ_4(sc, ALC_OPT_CFG);
634 DELAY(1000);
635 }
636 break;
637 case PCI_PRODUCT_ATTANSIC_AR8151:
638 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
639 case PCI_PRODUCT_ATTANSIC_AR8152_B:
640 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
641 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
642 ALC_MII_DBG_ADDR, 0x00);
643 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
644 ALC_MII_DBG_DATA, &val);
645 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
646 ALC_MII_DBG_DATA, val & 0xFF7F);
647 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
648 ALC_MII_DBG_ADDR, 0x3B);
649 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
650 ALC_MII_DBG_DATA, &val);
651 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
652 ALC_MII_DBG_DATA, val | 0x0008);
653 DELAY(20);
654 break;
655 }
656
657 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
658 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
659 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
660 CSR_READ_4(sc, ALC_WOL_CFG);
661
662 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
663 TWSI_CFG_SW_LD_START);
664 for (i = 100; i > 0; i--) {
665 DELAY(1000);
666 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
667 TWSI_CFG_SW_LD_START) == 0)
668 break;
669 }
670 if (i == 0)
671 printf("%s: reloading EEPROM timeout!\n",
672 device_xname(sc->sc_dev));
673 } else {
674 if (alcdebug)
675 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
676 }
677 if (eeprom != 0) {
678 switch (sc->alc_ident->deviceid) {
679 case PCI_PRODUCT_ATTANSIC_AR8131:
680 case PCI_PRODUCT_ATTANSIC_AR8132:
681 if ((opt & OPT_CFG_CLK_ENB) != 0) {
682 opt &= ~OPT_CFG_CLK_ENB;
683 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
684 CSR_READ_4(sc, ALC_OPT_CFG);
685 DELAY(1000);
686 }
687 break;
688 case PCI_PRODUCT_ATTANSIC_AR8151:
689 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
690 case PCI_PRODUCT_ATTANSIC_AR8152_B:
691 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
692 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
693 ALC_MII_DBG_ADDR, 0x00);
694 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
695 ALC_MII_DBG_DATA, &val);
696 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
697 ALC_MII_DBG_DATA, val | 0x0080);
698 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
699 ALC_MII_DBG_ADDR, 0x3B);
700 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
701 ALC_MII_DBG_DATA, &val);
702 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
703 ALC_MII_DBG_DATA, val & 0xFFF7);
704 DELAY(20);
705 break;
706 }
707 }
708
709 alc_get_macaddr_par(sc);
710 }
711
712 static void
713 alc_get_macaddr_816x(struct alc_softc *sc)
714 {
715 uint32_t reg;
716 int i, reloaded;
717
718 reloaded = 0;
719 /* Try to reload station address via TWSI. */
720 for (i = 100; i > 0; i--) {
721 reg = CSR_READ_4(sc, ALC_SLD);
722 if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
723 break;
724 DELAY(1000);
725 }
726 if (i != 0) {
727 CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
728 for (i = 100; i > 0; i--) {
729 DELAY(1000);
730 reg = CSR_READ_4(sc, ALC_SLD);
731 if ((reg & SLD_START) == 0)
732 break;
733 }
734 if (i != 0)
735 reloaded++;
736 else if (alcdebug)
737 printf("%s: reloading station address via TWSI timed out!\n",
738 device_xname(sc->sc_dev));
739 }
740
741 /* Try to reload station address from EEPROM or FLASH. */
742 if (reloaded == 0) {
743 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
744 if ((reg & (EEPROM_LD_EEPROM_EXIST |
745 EEPROM_LD_FLASH_EXIST)) != 0) {
746 for (i = 100; i > 0; i--) {
747 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
748 if ((reg & (EEPROM_LD_PROGRESS |
749 EEPROM_LD_START)) == 0)
750 break;
751 DELAY(1000);
752 }
753 if (i != 0) {
754 CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
755 EEPROM_LD_START);
756 for (i = 100; i > 0; i--) {
757 DELAY(1000);
758 reg = CSR_READ_4(sc, ALC_EEPROM_LD);
759 if ((reg & EEPROM_LD_START) == 0)
760 break;
761 }
762 } else if (alcdebug)
763 printf("%s: reloading EEPROM/FLASH timed out!\n",
764 device_xname(sc->sc_dev));
765 }
766 }
767
768 alc_get_macaddr_par(sc);
769 }
770
771 static void
772 alc_get_macaddr_par(struct alc_softc *sc)
773 {
774 uint32_t ea[2];
775
776 ea[0] = CSR_READ_4(sc, ALC_PAR0);
777 ea[1] = CSR_READ_4(sc, ALC_PAR1);
778 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
779 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
780 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
781 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
782 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
783 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
784 }
785
786 static void
787 alc_disable_l0s_l1(struct alc_softc *sc)
788 {
789 uint32_t pmcfg;
790
791 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
792 /* Another magic from vendor. */
793 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
794 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
795 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
796 PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
797 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
798 PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
799 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
800 }
801 }
802
803 static void
804 alc_phy_reset(struct alc_softc *sc)
805 {
806
807 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
808 alc_phy_reset_816x(sc);
809 else
810 alc_phy_reset_813x(sc);
811 }
812
813 static void
814 alc_phy_reset_813x(struct alc_softc *sc)
815 {
816 uint16_t data;
817
818 /* Reset magic from Linux. */
819 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
820 CSR_READ_2(sc, ALC_GPHY_CFG);
821 DELAY(10 * 1000);
822
823 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
824 GPHY_CFG_SEL_ANA_RESET);
825 CSR_READ_2(sc, ALC_GPHY_CFG);
826 DELAY(10 * 1000);
827
828 /* DSP fixup, Vendor magic. */
829 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
830 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 ALC_MII_DBG_ADDR, 0x000A);
832 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
833 ALC_MII_DBG_DATA, &data);
834 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
835 ALC_MII_DBG_DATA, data & 0xDFFF);
836 }
837 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
838 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
839 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
840 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
841 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
842 ALC_MII_DBG_ADDR, 0x003B);
843 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
844 ALC_MII_DBG_DATA, &data);
845 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
846 ALC_MII_DBG_DATA, data & 0xFFF7);
847 DELAY(20 * 1000);
848 }
849 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
850 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
851 ALC_MII_DBG_ADDR, 0x0029);
852 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
853 ALC_MII_DBG_DATA, 0x929D);
854 }
855 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
856 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
857 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
858 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
859 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
860 ALC_MII_DBG_ADDR, 0x0029);
861 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
862 ALC_MII_DBG_DATA, 0xB6DD);
863 }
864
865 /* Load DSP codes, vendor magic. */
866 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
867 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
868 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
869 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
870 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
871 ALC_MII_DBG_DATA, data);
872
873 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
874 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
875 ANA_SERDES_EN_LCKDT;
876 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
877 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
878 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
879 ALC_MII_DBG_DATA, data);
880
881 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
882 ANA_LONG_CABLE_TH_100_MASK) |
883 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
884 ANA_SHORT_CABLE_TH_100_SHIFT) |
885 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
886 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
887 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
888 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
889 ALC_MII_DBG_DATA, data);
890
891 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
892 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
893 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
894 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
895 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
896 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
897 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
898 ALC_MII_DBG_DATA, data);
899
900 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
901 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
902 ANA_OEN_125M;
903 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
904 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
905 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
906 ALC_MII_DBG_DATA, data);
907 DELAY(1000);
908
909 /* Disable hibernation. */
910 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
911 0x0029);
912 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
913 ALC_MII_DBG_DATA, &data);
914 data &= ~0x8000;
915 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
916 data);
917
918 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
919 0x000B);
920 alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
921 ALC_MII_DBG_DATA, &data);
922 data &= ~0x8000;
923 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
924 data);
925 }
926
927 static void
928 alc_phy_reset_816x(struct alc_softc *sc)
929 {
930 uint32_t val;
931 uint16_t phyval;
932
933 val = CSR_READ_4(sc, ALC_GPHY_CFG);
934 val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
935 GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
936 GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
937 val |= GPHY_CFG_SEL_ANA_RESET;
938 #ifdef notyet
939 val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
940 #else
941 /* Disable PHY hibernation. */
942 val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
943 #endif
944 CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
945 DELAY(10);
946 CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
947 DELAY(800);
948
949 /* Vendor PHY magic. */
950 #ifdef notyet
951 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
952 alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
953 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
954 EXT_VDRVBIAS_DEFAULT);
955 #else
956 /* Disable PHY hibernation. */
957 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
958 DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
959 alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
960 DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
961 alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
962 #endif
963
964 /* XXX Disable EEE. */
965 val = CSR_READ_4(sc, ALC_LPI_CTL);
966 val &= ~LPI_CTL_ENB;
967 CSR_WRITE_4(sc, ALC_LPI_CTL, val);
968 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
969
970 /* PHY power saving. */
971 alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
972 alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
973 alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
974 alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
975 alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
976 phyval &= ~DBG_GREENCFG2_GATE_DFSE_EN;
977 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
978
979 /* RTL8139C, 120m issue. */
980 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
981 ANEG_NLP78_120M_DEFAULT);
982 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
983 ANEG_S3DIG10_DEFAULT);
984
985 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
986 /* Turn off half amplitude. */
987 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, &phyval);
988 phyval |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
989 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, phyval);
990 /* Turn off Green feature. */
991 alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
992 phyval |= DBG_GREENCFG2_BP_GREEN;
993 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
994 /* Turn off half bias. */
995 alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, &phyval);
996 val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
997 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, phyval);
998 }
999 }
1000
1001 static void
1002 alc_phy_down(struct alc_softc *sc)
1003 {
1004 uint32_t gphy;
1005
1006 switch (sc->alc_ident->deviceid) {
1007 case PCI_PRODUCT_ATTANSIC_AR8161:
1008 case PCI_PRODUCT_ATTANSIC_E2200:
1009 case PCI_PRODUCT_ATTANSIC_E2400:
1010 case PCI_PRODUCT_ATTANSIC_E2500:
1011 case PCI_PRODUCT_ATTANSIC_AR8162:
1012 case PCI_PRODUCT_ATTANSIC_AR8171:
1013 case PCI_PRODUCT_ATTANSIC_AR8172:
1014 gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
1015 gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
1016 GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
1017 gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
1018 GPHY_CFG_SEL_ANA_RESET;
1019 gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
1020 CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
1021 break;
1022 case PCI_PRODUCT_ATTANSIC_AR8151:
1023 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1024 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1025 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1026 /*
1027 * GPHY power down caused more problems on AR8151 v2.0.
1028 * When driver is reloaded after GPHY power down,
1029 * accesses to PHY/MAC registers hung the system. Only
1030 * cold boot recovered from it. I'm not sure whether
1031 * AR8151 v1.0 also requires this one though. I don't
1032 * have AR8151 v1.0 controller in hand.
1033 * The only option left is to isolate the PHY and
1034 * initiates power down the PHY which in turn saves
1035 * more power when driver is unloaded.
1036 */
1037 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1038 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1039 break;
1040 default:
1041 /* Force PHY down. */
1042 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1043 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1044 GPHY_CFG_PWDOWN_HW);
1045 DELAY(1000);
1046 break;
1047 }
1048 }
1049
1050 static void
1051 alc_aspm(struct alc_softc *sc, int init, int media)
1052 {
1053
1054 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1055 alc_aspm_816x(sc, init);
1056 else
1057 alc_aspm_813x(sc, media);
1058 }
1059
1060 static void
1061 alc_aspm_813x(struct alc_softc *sc, int media)
1062 {
1063 uint32_t pmcfg;
1064 uint16_t linkcfg;
1065
1066 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1067 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1068 (ALC_FLAG_APS | ALC_FLAG_PCIE))
1069 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1070 PCIE_LCSR);
1071 else
1072 linkcfg = 0;
1073 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1074 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1075 pmcfg |= PM_CFG_MAC_ASPM_CHK;
1076 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1077 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1078
1079 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1080 /* Disable extended sync except AR8152 B v1.0 */
1081 linkcfg &= ~0x80;
1082 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1083 sc->alc_rev == ATHEROS_AR8152_B_V10)
1084 linkcfg |= 0x80;
1085 CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1086 linkcfg);
1087 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1088 PM_CFG_HOTRST);
1089 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1090 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1092 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1093 PM_CFG_PM_REQ_TIMER_SHIFT);
1094 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1095 }
1096
1097 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1098 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1099 pmcfg |= PM_CFG_ASPM_L0S_ENB;
1100 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1101 pmcfg |= PM_CFG_ASPM_L1_ENB;
1102 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1103 if (sc->alc_ident->deviceid ==
1104 PCI_PRODUCT_ATTANSIC_AR8152_B)
1105 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1106 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1107 PM_CFG_SERDES_PLL_L1_ENB |
1108 PM_CFG_SERDES_BUDS_RX_L1_ENB);
1109 pmcfg |= PM_CFG_CLK_SWH_L1;
1110 if (media == IFM_100_TX || media == IFM_1000_T) {
1111 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1112 switch (sc->alc_ident->deviceid) {
1113 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1114 pmcfg |= (7 <<
1115 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1116 break;
1117 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1118 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1119 pmcfg |= (4 <<
1120 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1121 break;
1122 default:
1123 pmcfg |= (15 <<
1124 PM_CFG_L1_ENTRY_TIMER_SHIFT);
1125 break;
1126 }
1127 }
1128 } else {
1129 pmcfg |= PM_CFG_SERDES_L1_ENB |
1130 PM_CFG_SERDES_PLL_L1_ENB |
1131 PM_CFG_SERDES_BUDS_RX_L1_ENB;
1132 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1133 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1134 }
1135 } else {
1136 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1137 PM_CFG_SERDES_PLL_L1_ENB);
1138 pmcfg |= PM_CFG_CLK_SWH_L1;
1139 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1140 pmcfg |= PM_CFG_ASPM_L1_ENB;
1141 }
1142 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1143 }
1144
1145 static void
1146 alc_aspm_816x(struct alc_softc *sc, int init)
1147 {
1148 uint32_t pmcfg;
1149
1150 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1151 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1152 pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1153 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1154 pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1155 pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1156 pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1157 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1158 pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1159 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1160 PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1161 PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1162 PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1163 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1164 (sc->alc_rev & 0x01) != 0)
1165 pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1166 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1167 /* Link up, enable both L0s, L1s. */
1168 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1169 PM_CFG_MAC_ASPM_CHK;
1170 } else {
1171 if (init != 0)
1172 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1173 PM_CFG_MAC_ASPM_CHK;
1174 else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1175 pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1176 }
1177 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1178 }
1179
1180 static void
1181 alc_init_pcie(struct alc_softc *sc)
1182 {
1183 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1184 uint32_t cap, ctl, val;
1185 int state;
1186
1187 /* Clear data link and flow-control protocol error. */
1188 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1189 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1190 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1191
1192 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1193 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1194 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1195 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1196 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1197 PCIE_PHYMISC_FORCE_RCV_DET);
1198 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1199 sc->alc_rev == ATHEROS_AR8152_B_V10) {
1200 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1201 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1202 PCIE_PHYMISC2_SERDES_TH_MASK);
1203 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1204 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1205 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1206 }
1207 /* Disable ASPM L0S and L1. */
1208 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1209 sc->alc_expcap + PCIE_LCAP) >> 16;
1210 if ((cap & PCIE_LCAP_ASPM) != 0) {
1211 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1212 sc->alc_expcap + PCIE_LCSR) >> 16;
1213 if ((ctl & 0x08) != 0)
1214 sc->alc_rcb = DMA_CFG_RCB_128;
1215 if (alcdebug)
1216 printf("%s: RCB %u bytes\n",
1217 device_xname(sc->sc_dev),
1218 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1219 state = ctl & 0x03;
1220 if (state & 0x01)
1221 sc->alc_flags |= ALC_FLAG_L0S;
1222 if (state & 0x02)
1223 sc->alc_flags |= ALC_FLAG_L1S;
1224 if (alcdebug)
1225 printf("%s: ASPM %s %s\n",
1226 device_xname(sc->sc_dev),
1227 aspm_state[state],
1228 state == 0 ? "disabled" : "enabled");
1229 alc_disable_l0s_l1(sc);
1230 } else {
1231 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1232 }
1233 } else {
1234 val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1235 val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1236 CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1237 val = CSR_READ_4(sc, ALC_MASTER_CFG);
1238 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1239 (sc->alc_rev & 0x01) != 0) {
1240 if ((val & MASTER_WAKEN_25M) == 0 ||
1241 (val & MASTER_CLK_SEL_DIS) == 0) {
1242 val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1243 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1244 }
1245 } else {
1246 if ((val & MASTER_WAKEN_25M) == 0 ||
1247 (val & MASTER_CLK_SEL_DIS) != 0) {
1248 val |= MASTER_WAKEN_25M;
1249 val &= ~MASTER_CLK_SEL_DIS;
1250 CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1251 }
1252 }
1253 }
1254 alc_aspm(sc, 1, IFM_UNKNOWN);
1255 }
1256
1257 static void
1258 alc_attach(device_t parent, device_t self, void *aux)
1259 {
1260
1261 struct alc_softc *sc = device_private(self);
1262 struct pci_attach_args *pa = aux;
1263 pci_chipset_tag_t pc = pa->pa_pc;
1264 pci_intr_handle_t ih;
1265 const char *intrstr;
1266 struct ifnet *ifp;
1267 struct mii_data * const mii = &sc->sc_miibus;
1268 pcireg_t memtype;
1269 uint16_t burst;
1270 int base, mii_flags, error = 0;
1271 char intrbuf[PCI_INTRSTR_LEN];
1272
1273 sc->alc_ident = alc_find_ident(pa);
1274 sc->alc_rev = PCI_REVISION(pa->pa_class);
1275
1276 aprint_naive("\n");
1277 aprint_normal(": %s\n", sc->alc_ident->name);
1278
1279 sc->sc_dev = self;
1280 sc->sc_pct = pa->pa_pc;
1281 sc->sc_pcitag = pa->pa_tag;
1282
1283 if (pci_dma64_available(pa))
1284 sc->sc_dmat = pa->pa_dmat64;
1285 else
1286 sc->sc_dmat = pa->pa_dmat;
1287
1288 /*
1289 * Allocate IO memory
1290 */
1291 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1292 switch (memtype) {
1293 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1294 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1295 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1296 break;
1297 default:
1298 aprint_error_dev(self, "invalid base address register\n");
1299 break;
1300 }
1301
1302 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1303 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1304 aprint_error_dev(self, "could not map mem space\n");
1305 return;
1306 }
1307
1308 if (pci_intr_map(pa, &ih) != 0) {
1309 printf(": can't map interrupt\n");
1310 goto fail;
1311 }
1312
1313 /*
1314 * Allocate IRQ
1315 */
1316 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1317 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, alc_intr,
1318 sc, device_xname(self));
1319 if (sc->sc_irq_handle == NULL) {
1320 printf(": could not establish interrupt");
1321 if (intrstr != NULL)
1322 printf(" at %s", intrstr);
1323 printf("\n");
1324 goto fail;
1325 }
1326 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1327
1328 /* Set PHY address. */
1329 sc->alc_phyaddr = ALC_PHY_ADDR;
1330
1331 /* Initialize DMA parameters. */
1332 sc->alc_dma_rd_burst = 0;
1333 sc->alc_dma_wr_burst = 0;
1334 sc->alc_rcb = DMA_CFG_RCB_64;
1335 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1336 &base, NULL)) {
1337 sc->alc_flags |= ALC_FLAG_PCIE;
1338 sc->alc_expcap = base;
1339 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1340 base + PCIE_DCSR) >> 16;
1341 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1342 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1343 if (alcdebug) {
1344 printf("%s: Read request size : %u bytes.\n",
1345 device_xname(sc->sc_dev),
1346 alc_dma_burst[sc->alc_dma_rd_burst]);
1347 printf("%s: TLP payload size : %u bytes.\n",
1348 device_xname(sc->sc_dev),
1349 alc_dma_burst[sc->alc_dma_wr_burst]);
1350 }
1351 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1352 sc->alc_dma_rd_burst = 3;
1353 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1354 sc->alc_dma_wr_burst = 3;
1355 /*
1356 * Force maximum payload size to 128 bytes for
1357 * E2200/E2400/E2500.
1358 * Otherwise it triggers DMA write error.
1359 */
1360 if ((sc->alc_flags & ALC_FLAG_E2X00) != 0)
1361 sc->alc_dma_wr_burst = 0;
1362 alc_init_pcie(sc);
1363 }
1364
1365 /* Reset PHY. */
1366 alc_phy_reset(sc);
1367
1368 /* Reset the ethernet controller. */
1369 alc_stop_mac(sc);
1370 alc_reset(sc);
1371
1372 /*
1373 * One odd thing is AR8132 uses the same PHY hardware(F1
1374 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1375 * the PHY supports 1000Mbps but that's not true. The PHY
1376 * used in AR8132 can't establish gigabit link even if it
1377 * shows the same PHY model/revision number of AR8131.
1378 */
1379 switch (sc->alc_ident->deviceid) {
1380 case PCI_PRODUCT_ATTANSIC_E2200:
1381 case PCI_PRODUCT_ATTANSIC_E2400:
1382 case PCI_PRODUCT_ATTANSIC_E2500:
1383 sc->alc_flags |= ALC_FLAG_E2X00;
1384 /* FALLTHROUGH */
1385 case PCI_PRODUCT_ATTANSIC_AR8161:
1386 if (PCI_SUBSYS_ID(pci_conf_read(
1387 sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1388 sc->alc_rev == 0)
1389 sc->alc_flags |= ALC_FLAG_LINK_WAR;
1390 /* FALLTHROUGH */
1391 case PCI_PRODUCT_ATTANSIC_AR8171:
1392 sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1393 break;
1394 case PCI_PRODUCT_ATTANSIC_AR8162:
1395 case PCI_PRODUCT_ATTANSIC_AR8172:
1396 sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1397 break;
1398 case PCI_PRODUCT_ATTANSIC_AR8152_B:
1399 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1400 sc->alc_flags |= ALC_FLAG_APS;
1401 /* FALLTHROUGH */
1402 case PCI_PRODUCT_ATTANSIC_AR8132:
1403 sc->alc_flags |= ALC_FLAG_FASTETHER;
1404 break;
1405 case PCI_PRODUCT_ATTANSIC_AR8151:
1406 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1407 sc->alc_flags |= ALC_FLAG_APS;
1408 /* FALLTHROUGH */
1409 default:
1410 break;
1411 }
1412 sc->alc_flags |= ALC_FLAG_JUMBO;
1413
1414 /*
1415 * It seems that AR813x/AR815x has silicon bug for SMB. In
1416 * addition, Atheros said that enabling SMB wouldn't improve
1417 * performance. However I think it's bad to access lots of
1418 * registers to extract MAC statistics.
1419 */
1420 sc->alc_flags |= ALC_FLAG_SMB_BUG;
1421 /*
1422 * Don't use Tx CMB. It is known to have silicon bug.
1423 */
1424 sc->alc_flags |= ALC_FLAG_CMB_BUG;
1425 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1426 MASTER_CHIP_REV_SHIFT;
1427 if (alcdebug) {
1428 printf("%s: PCI device revision : 0x%04x\n",
1429 device_xname(sc->sc_dev), sc->alc_rev);
1430 printf("%s: Chip id/revision : 0x%04x\n",
1431 device_xname(sc->sc_dev), sc->alc_chip_rev);
1432 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1433 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1434 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1435 }
1436
1437 error = alc_dma_alloc(sc);
1438 if (error)
1439 goto fail;
1440
1441 callout_init(&sc->sc_tick_ch, 0);
1442 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1443
1444 /* Load station address. */
1445 alc_get_macaddr(sc);
1446
1447 aprint_normal_dev(self, "Ethernet address %s\n",
1448 ether_sprintf(sc->alc_eaddr));
1449
1450 ifp = &sc->sc_ec.ec_if;
1451 ifp->if_softc = sc;
1452 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1453 ifp->if_init = alc_init;
1454 ifp->if_ioctl = alc_ioctl;
1455 ifp->if_start = alc_start;
1456 ifp->if_stop = alc_stop;
1457 ifp->if_watchdog = alc_watchdog;
1458 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1459 IFQ_SET_READY(&ifp->if_snd);
1460 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1461
1462 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1463
1464 #ifdef ALC_CHECKSUM
1465 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1466 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1467 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1468 #endif
1469
1470 #if NVLAN > 0
1471 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1472 sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1473 #endif
1474
1475 /*
1476 * XXX
1477 * It seems enabling Tx checksum offloading makes more trouble.
1478 * Sometimes the controller does not receive any frames when
1479 * Tx checksum offloading is enabled. I'm not sure whether this
1480 * is a bug in Tx checksum offloading logic or I got broken
1481 * sample boards. To safety, don't enable Tx checksum offloading
1482 * by default but give chance to users to toggle it if they know
1483 * their controllers work without problems.
1484 * Fortunately, Tx checksum offloading for AR816x family
1485 * seems to work.
1486 */
1487 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1488 ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1489 ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1490 }
1491
1492 /* Set up MII bus. */
1493 mii->mii_ifp = ifp;
1494 mii->mii_readreg = alc_miibus_readreg;
1495 mii->mii_writereg = alc_miibus_writereg;
1496 mii->mii_statchg = alc_miibus_statchg;
1497
1498 sc->sc_ec.ec_mii = mii;
1499 ifmedia_init(&mii->mii_media, 0, alc_mediachange, alc_mediastatus);
1500 mii_flags = 0;
1501 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1502 mii_flags |= MIIF_DOPAUSE;
1503 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1504 MII_OFFSET_ANY, mii_flags);
1505
1506 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1507 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1508 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1509 0, NULL);
1510 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1511 } else
1512 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1513
1514 if_attach(ifp);
1515 if_deferred_start_init(ifp, NULL);
1516 ether_ifattach(ifp, sc->alc_eaddr);
1517
1518 if (!pmf_device_register(self, NULL, NULL))
1519 aprint_error_dev(self, "couldn't establish power handler\n");
1520 else
1521 pmf_class_network_register(self, ifp);
1522
1523 return;
1524 fail:
1525 alc_dma_free(sc);
1526 if (sc->sc_irq_handle != NULL) {
1527 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1528 sc->sc_irq_handle = NULL;
1529 }
1530 if (sc->sc_mem_size) {
1531 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1532 sc->sc_mem_size = 0;
1533 }
1534 }
1535
1536 static int
1537 alc_detach(device_t self, int flags)
1538 {
1539 struct alc_softc *sc = device_private(self);
1540 struct ifnet *ifp = &sc->sc_ec.ec_if;
1541 int s;
1542
1543 s = splnet();
1544 alc_stop(ifp, 0);
1545 splx(s);
1546
1547 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1548
1549 ether_ifdetach(ifp);
1550 if_detach(ifp);
1551 alc_dma_free(sc);
1552
1553 /* Delete all remaining media. */
1554 ifmedia_fini(&sc->sc_miibus.mii_media);
1555
1556 alc_phy_down(sc);
1557 if (sc->sc_irq_handle != NULL) {
1558 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1559 sc->sc_irq_handle = NULL;
1560 }
1561 if (sc->sc_mem_size) {
1562 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1563 sc->sc_mem_size = 0;
1564 }
1565
1566 return (0);
1567 }
1568
1569 static int
1570 alc_dma_alloc(struct alc_softc *sc)
1571 {
1572 struct alc_txdesc *txd;
1573 struct alc_rxdesc *rxd;
1574 int nsegs, error, i;
1575
1576 /*
1577 * Create DMA stuffs for TX ring
1578 */
1579 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1580 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1581 if (error) {
1582 sc->alc_cdata.alc_tx_ring_map = NULL;
1583 return (ENOBUFS);
1584 }
1585
1586 /* Allocate DMA'able memory for TX ring */
1587 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1588 PAGE_SIZE, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1589 &nsegs, BUS_DMA_NOWAIT);
1590 if (error) {
1591 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1592 device_xname(sc->sc_dev));
1593 return error;
1594 }
1595
1596 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1597 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1598 BUS_DMA_NOWAIT);
1599 if (error)
1600 return (ENOBUFS);
1601
1602 /* Load the DMA map for Tx ring. */
1603 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1604 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1605 if (error) {
1606 printf("%s: could not load DMA'able memory for Tx ring.\n",
1607 device_xname(sc->sc_dev));
1608 bus_dmamem_free(sc->sc_dmat,
1609 &sc->alc_rdata.alc_tx_ring_seg, 1);
1610 return error;
1611 }
1612
1613 sc->alc_rdata.alc_tx_ring_paddr =
1614 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1615
1616 /*
1617 * NOTE: If we used more than one Rx / Rx Return ring,
1618 * we would need to ensure ALL of the Rx-related stuff
1619 * ended up in the same 4G segment, since the hardware
1620 * requires this.
1621 */
1622
1623 /*
1624 * Create DMA stuffs for RX ring
1625 */
1626 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1627 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1628 if (error)
1629 return (ENOBUFS);
1630
1631 /* Allocate DMA'able memory for RX ring */
1632 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1633 PAGE_SIZE, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1634 &nsegs, BUS_DMA_NOWAIT);
1635 if (error) {
1636 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1637 device_xname(sc->sc_dev));
1638 return error;
1639 }
1640
1641 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1642 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1643 BUS_DMA_NOWAIT);
1644 if (error)
1645 return (ENOBUFS);
1646
1647 /* Load the DMA map for Rx ring. */
1648 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1649 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1650 if (error) {
1651 printf("%s: could not load DMA'able memory for Rx ring.\n",
1652 device_xname(sc->sc_dev));
1653 bus_dmamem_free(sc->sc_dmat,
1654 &sc->alc_rdata.alc_rx_ring_seg, 1);
1655 return error;
1656 }
1657
1658 sc->alc_rdata.alc_rx_ring_paddr =
1659 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1660
1661 /*
1662 * Create DMA stuffs for RX return ring
1663 */
1664 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1665 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1666 if (error)
1667 return (ENOBUFS);
1668
1669 /* Allocate DMA'able memory for RX return ring */
1670 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1671 PAGE_SIZE, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1672 &nsegs, BUS_DMA_NOWAIT);
1673 if (error) {
1674 printf("%s: could not allocate DMA'able memory for Rx "
1675 "return ring.\n", device_xname(sc->sc_dev));
1676 return error;
1677 }
1678
1679 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1680 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1681 BUS_DMA_NOWAIT);
1682 if (error)
1683 return (ENOBUFS);
1684
1685 /* Load the DMA map for Rx return ring. */
1686 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1687 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1688 if (error) {
1689 printf("%s: could not load DMA'able memory for Rx return ring."
1690 "\n", device_xname(sc->sc_dev));
1691 bus_dmamem_free(sc->sc_dmat,
1692 &sc->alc_rdata.alc_rr_ring_seg, 1);
1693 return error;
1694 }
1695
1696 sc->alc_rdata.alc_rr_ring_paddr =
1697 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1698
1699 /*
1700 * Create DMA stuffs for CMB block
1701 */
1702 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1703 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1704 &sc->alc_cdata.alc_cmb_map);
1705 if (error)
1706 return (ENOBUFS);
1707
1708 /* Allocate DMA'able memory for CMB block */
1709 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1710 PAGE_SIZE, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1711 &nsegs, BUS_DMA_NOWAIT);
1712 if (error) {
1713 printf("%s: could not allocate DMA'able memory for "
1714 "CMB block\n", device_xname(sc->sc_dev));
1715 return error;
1716 }
1717
1718 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1719 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1720 BUS_DMA_NOWAIT);
1721 if (error)
1722 return (ENOBUFS);
1723
1724 /* Load the DMA map for CMB block. */
1725 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1726 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1727 BUS_DMA_WAITOK);
1728 if (error) {
1729 printf("%s: could not load DMA'able memory for CMB block\n",
1730 device_xname(sc->sc_dev));
1731 bus_dmamem_free(sc->sc_dmat,
1732 &sc->alc_rdata.alc_cmb_seg, 1);
1733 return error;
1734 }
1735
1736 sc->alc_rdata.alc_cmb_paddr =
1737 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1738
1739 /*
1740 * Create DMA stuffs for SMB block
1741 */
1742 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1743 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1744 &sc->alc_cdata.alc_smb_map);
1745 if (error)
1746 return (ENOBUFS);
1747
1748 /* Allocate DMA'able memory for SMB block */
1749 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1750 PAGE_SIZE, 0, &sc->alc_rdata.alc_smb_seg, 1,
1751 &nsegs, BUS_DMA_NOWAIT);
1752 if (error) {
1753 printf("%s: could not allocate DMA'able memory for "
1754 "SMB block\n", device_xname(sc->sc_dev));
1755 return error;
1756 }
1757
1758 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1759 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1760 BUS_DMA_NOWAIT);
1761 if (error)
1762 return (ENOBUFS);
1763
1764 /* Load the DMA map for SMB block */
1765 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1766 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1767 BUS_DMA_WAITOK);
1768 if (error) {
1769 printf("%s: could not load DMA'able memory for SMB block\n",
1770 device_xname(sc->sc_dev));
1771 bus_dmamem_free(sc->sc_dmat,
1772 &sc->alc_rdata.alc_smb_seg, 1);
1773 return error;
1774 }
1775
1776 sc->alc_rdata.alc_smb_paddr =
1777 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1778
1779
1780 /* Create DMA maps for Tx buffers. */
1781 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1782 txd = &sc->alc_cdata.alc_txdesc[i];
1783 txd->tx_m = NULL;
1784 txd->tx_dmamap = NULL;
1785 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1786 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1787 &txd->tx_dmamap);
1788 if (error) {
1789 printf("%s: could not create Tx dmamap.\n",
1790 device_xname(sc->sc_dev));
1791 return error;
1792 }
1793 }
1794
1795 /* Create DMA maps for Rx buffers. */
1796 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1797 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1798 if (error) {
1799 printf("%s: could not create spare Rx dmamap.\n",
1800 device_xname(sc->sc_dev));
1801 return error;
1802 }
1803
1804 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1805 rxd = &sc->alc_cdata.alc_rxdesc[i];
1806 rxd->rx_m = NULL;
1807 rxd->rx_dmamap = NULL;
1808 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1809 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1810 if (error) {
1811 printf("%s: could not create Rx dmamap.\n",
1812 device_xname(sc->sc_dev));
1813 return error;
1814 }
1815 }
1816
1817 return (0);
1818 }
1819
1820 static void
1821 alc_dma_free(struct alc_softc *sc)
1822 {
1823 struct alc_txdesc *txd;
1824 struct alc_rxdesc *rxd;
1825 int i;
1826
1827 /* Tx buffers */
1828 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1829 txd = &sc->alc_cdata.alc_txdesc[i];
1830 if (txd->tx_dmamap != NULL) {
1831 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1832 txd->tx_dmamap = NULL;
1833 }
1834 }
1835 /* Rx buffers */
1836 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1837 rxd = &sc->alc_cdata.alc_rxdesc[i];
1838 if (rxd->rx_dmamap != NULL) {
1839 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1840 rxd->rx_dmamap = NULL;
1841 }
1842 }
1843 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1844 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1845 sc->alc_cdata.alc_rx_sparemap = NULL;
1846 }
1847
1848 /* Tx ring. */
1849 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1850 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1851 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1852 sc->alc_rdata.alc_tx_ring != NULL)
1853 bus_dmamem_free(sc->sc_dmat,
1854 &sc->alc_rdata.alc_tx_ring_seg, 1);
1855 sc->alc_rdata.alc_tx_ring = NULL;
1856 sc->alc_cdata.alc_tx_ring_map = NULL;
1857
1858 /* Rx ring. */
1859 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1860 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1861 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1862 sc->alc_rdata.alc_rx_ring != NULL)
1863 bus_dmamem_free(sc->sc_dmat,
1864 &sc->alc_rdata.alc_rx_ring_seg, 1);
1865 sc->alc_rdata.alc_rx_ring = NULL;
1866 sc->alc_cdata.alc_rx_ring_map = NULL;
1867
1868 /* Rx return ring. */
1869 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1870 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1871 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1872 sc->alc_rdata.alc_rr_ring != NULL)
1873 bus_dmamem_free(sc->sc_dmat,
1874 &sc->alc_rdata.alc_rr_ring_seg, 1);
1875 sc->alc_rdata.alc_rr_ring = NULL;
1876 sc->alc_cdata.alc_rr_ring_map = NULL;
1877
1878 /* CMB block */
1879 if (sc->alc_cdata.alc_cmb_map != NULL)
1880 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1881 if (sc->alc_cdata.alc_cmb_map != NULL &&
1882 sc->alc_rdata.alc_cmb != NULL)
1883 bus_dmamem_free(sc->sc_dmat,
1884 &sc->alc_rdata.alc_cmb_seg, 1);
1885 sc->alc_rdata.alc_cmb = NULL;
1886 sc->alc_cdata.alc_cmb_map = NULL;
1887
1888 /* SMB block */
1889 if (sc->alc_cdata.alc_smb_map != NULL)
1890 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1891 if (sc->alc_cdata.alc_smb_map != NULL &&
1892 sc->alc_rdata.alc_smb != NULL)
1893 bus_dmamem_free(sc->sc_dmat,
1894 &sc->alc_rdata.alc_smb_seg, 1);
1895 sc->alc_rdata.alc_smb = NULL;
1896 sc->alc_cdata.alc_smb_map = NULL;
1897 }
1898
1899 static int
1900 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1901 {
1902 struct alc_txdesc *txd, *txd_last;
1903 struct tx_desc *desc;
1904 struct mbuf *m;
1905 bus_dmamap_t map;
1906 uint32_t cflags, poff, vtag;
1907 int error, idx, nsegs, prod;
1908
1909 m = *m_head;
1910 cflags = vtag = 0;
1911 poff = 0;
1912
1913 prod = sc->alc_cdata.alc_tx_prod;
1914 txd = &sc->alc_cdata.alc_txdesc[prod];
1915 txd_last = txd;
1916 map = txd->tx_dmamap;
1917
1918 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1919
1920 if (error == EFBIG) {
1921 error = 0;
1922
1923 *m_head = m_pullup(*m_head, MHLEN);
1924 if (*m_head == NULL) {
1925 printf("%s: can't defrag TX mbuf\n",
1926 device_xname(sc->sc_dev));
1927 return ENOBUFS;
1928 }
1929
1930 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1931 BUS_DMA_NOWAIT);
1932
1933 if (error != 0) {
1934 printf("%s: could not load defragged TX mbuf\n",
1935 device_xname(sc->sc_dev));
1936 m_freem(*m_head);
1937 *m_head = NULL;
1938 return error;
1939 }
1940 } else if (error) {
1941 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1942 return (error);
1943 }
1944
1945 nsegs = map->dm_nsegs;
1946
1947 if (nsegs == 0) {
1948 m_freem(*m_head);
1949 *m_head = NULL;
1950 return (EIO);
1951 }
1952
1953 /* Check descriptor overrun. */
1954 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1955 bus_dmamap_unload(sc->sc_dmat, map);
1956 return (ENOBUFS);
1957 }
1958 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1959 BUS_DMASYNC_PREWRITE);
1960
1961 m = *m_head;
1962 desc = NULL;
1963 idx = 0;
1964 #if NVLAN > 0
1965 /* Configure VLAN hardware tag insertion. */
1966 if (vlan_has_tag(m)) {
1967 vtag = htons(vlan_get_tag(m));
1968 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1969 cflags |= TD_INS_VLAN_TAG;
1970 }
1971 #endif
1972 /* Configure Tx checksum offload. */
1973 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1974 cflags |= TD_CUSTOM_CSUM;
1975 /* Set checksum start offset. */
1976 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1977 TD_PLOAD_OFFSET_MASK;
1978 }
1979 for (; idx < nsegs; idx++) {
1980 desc = &sc->alc_rdata.alc_tx_ring[prod];
1981 desc->len =
1982 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1983 desc->flags = htole32(cflags);
1984 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1985 sc->alc_cdata.alc_tx_cnt++;
1986 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1987 }
1988 /* Update producer index. */
1989 sc->alc_cdata.alc_tx_prod = prod;
1990
1991 /* Finally set EOP on the last descriptor. */
1992 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1993 desc = &sc->alc_rdata.alc_tx_ring[prod];
1994 desc->flags |= htole32(TD_EOP);
1995
1996 /* Swap dmamap of the first and the last. */
1997 txd = &sc->alc_cdata.alc_txdesc[prod];
1998 map = txd_last->tx_dmamap;
1999 txd_last->tx_dmamap = txd->tx_dmamap;
2000 txd->tx_dmamap = map;
2001 txd->tx_m = m;
2002
2003 return (0);
2004 }
2005
2006 static void
2007 alc_start(struct ifnet *ifp)
2008 {
2009 struct alc_softc *sc = ifp->if_softc;
2010 struct mbuf *m_head;
2011 int enq;
2012
2013 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2014 return;
2015 if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
2016 return;
2017 if (IFQ_IS_EMPTY(&ifp->if_snd))
2018 return;
2019
2020 /* Reclaim transmitted frames. */
2021 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2022 alc_txeof(sc);
2023
2024 enq = 0;
2025 for (;;) {
2026 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2027 if (m_head == NULL)
2028 break;
2029
2030 /*
2031 * Pack the data into the transmit ring. If we
2032 * don't have room, set the OACTIVE flag and wait
2033 * for the NIC to drain the ring.
2034 */
2035 if (alc_encap(sc, &m_head)) {
2036 if (m_head == NULL)
2037 break;
2038 ifp->if_flags |= IFF_OACTIVE;
2039 break;
2040 }
2041 enq = 1;
2042
2043 /*
2044 * If there's a BPF listener, bounce a copy of this frame
2045 * to him.
2046 */
2047 bpf_mtap(ifp, m_head, BPF_D_OUT);
2048 }
2049
2050 if (enq) {
2051 /* Sync descriptors. */
2052 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2053 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2054 BUS_DMASYNC_PREWRITE);
2055 /* Kick. Assume we're using normal Tx priority queue. */
2056 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2057 (sc->alc_cdata.alc_tx_prod <<
2058 MBOX_TD_PROD_LO_IDX_SHIFT) &
2059 MBOX_TD_PROD_LO_IDX_MASK);
2060 /* Set a timeout in case the chip goes out to lunch. */
2061 ifp->if_timer = ALC_TX_TIMEOUT;
2062 }
2063 }
2064
2065 static void
2066 alc_watchdog(struct ifnet *ifp)
2067 {
2068 struct alc_softc *sc = ifp->if_softc;
2069
2070 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2071 printf("%s: watchdog timeout (missed link)\n",
2072 device_xname(sc->sc_dev));
2073 if_statinc(ifp, if_oerrors);
2074 alc_init_backend(ifp, false);
2075 return;
2076 }
2077
2078 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2079 if_statinc(ifp, if_oerrors);
2080 alc_init_backend(ifp, false);
2081 alc_start(ifp);
2082 }
2083
2084 static int
2085 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2086 {
2087 struct alc_softc *sc = ifp->if_softc;
2088 int s, error = 0;
2089
2090 s = splnet();
2091
2092 switch (cmd) {
2093 case SIOCSIFADDR:
2094 error = ether_ioctl(ifp, cmd, data);
2095 ifp->if_flags |= IFF_UP;
2096 if (!(ifp->if_flags & IFF_RUNNING))
2097 alc_init(ifp);
2098 break;
2099
2100 case SIOCSIFFLAGS:
2101 error = ether_ioctl(ifp, cmd, data);
2102 if (ifp->if_flags & IFF_UP) {
2103 if (ifp->if_flags & IFF_RUNNING)
2104 error = ENETRESET;
2105 else
2106 alc_init(ifp);
2107 } else {
2108 if (ifp->if_flags & IFF_RUNNING)
2109 alc_stop(ifp, 0);
2110 }
2111 break;
2112
2113 default:
2114 error = ether_ioctl(ifp, cmd, data);
2115 break;
2116 }
2117
2118 if (error == ENETRESET) {
2119 if (ifp->if_flags & IFF_RUNNING)
2120 alc_iff(sc);
2121 error = 0;
2122 }
2123
2124 splx(s);
2125 return (error);
2126 }
2127
2128 static void
2129 alc_mac_config(struct alc_softc *sc)
2130 {
2131 struct mii_data *mii;
2132 uint32_t reg;
2133
2134 mii = &sc->sc_miibus;
2135 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2136 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2137 MAC_CFG_SPEED_MASK);
2138 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2139 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2140 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2141 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2142 /* Reprogram MAC with resolved speed/duplex. */
2143 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2144 case IFM_10_T:
2145 case IFM_100_TX:
2146 reg |= MAC_CFG_SPEED_10_100;
2147 break;
2148 case IFM_1000_T:
2149 reg |= MAC_CFG_SPEED_1000;
2150 break;
2151 }
2152 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2153 reg |= MAC_CFG_FULL_DUPLEX;
2154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2155 reg |= MAC_CFG_TX_FC;
2156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2157 reg |= MAC_CFG_RX_FC;
2158 }
2159 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2160 }
2161
2162 static void
2163 alc_stats_clear(struct alc_softc *sc)
2164 {
2165 struct smb sb, *smb;
2166 uint32_t *reg;
2167 int i;
2168
2169 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2170 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2171 sc->alc_cdata.alc_smb_map->dm_mapsize,
2172 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2173 smb = sc->alc_rdata.alc_smb;
2174 /* Update done, clear. */
2175 smb->updated = 0;
2176 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2177 sc->alc_cdata.alc_smb_map->dm_mapsize,
2178 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2179 } else {
2180 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2181 reg++) {
2182 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2183 i += sizeof(uint32_t);
2184 }
2185 /* Read Tx statistics. */
2186 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2187 reg++) {
2188 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2189 i += sizeof(uint32_t);
2190 }
2191 }
2192 }
2193
2194 static void
2195 alc_stats_update(struct alc_softc *sc)
2196 {
2197 struct ifnet *ifp = &sc->sc_ec.ec_if;
2198 struct alc_hw_stats *stat;
2199 struct smb sb, *smb;
2200 uint32_t *reg;
2201 int i;
2202
2203 stat = &sc->alc_stats;
2204 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2205 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2206 sc->alc_cdata.alc_smb_map->dm_mapsize,
2207 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2208 smb = sc->alc_rdata.alc_smb;
2209 if (smb->updated == 0)
2210 return;
2211 } else {
2212 smb = &sb;
2213 /* Read Rx statistics. */
2214 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2215 reg++) {
2216 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2217 i += sizeof(uint32_t);
2218 }
2219 /* Read Tx statistics. */
2220 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2221 reg++) {
2222 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2223 i += sizeof(uint32_t);
2224 }
2225 }
2226
2227 /* Rx stats. */
2228 stat->rx_frames += smb->rx_frames;
2229 stat->rx_bcast_frames += smb->rx_bcast_frames;
2230 stat->rx_mcast_frames += smb->rx_mcast_frames;
2231 stat->rx_pause_frames += smb->rx_pause_frames;
2232 stat->rx_control_frames += smb->rx_control_frames;
2233 stat->rx_crcerrs += smb->rx_crcerrs;
2234 stat->rx_lenerrs += smb->rx_lenerrs;
2235 stat->rx_bytes += smb->rx_bytes;
2236 stat->rx_runts += smb->rx_runts;
2237 stat->rx_fragments += smb->rx_fragments;
2238 stat->rx_pkts_64 += smb->rx_pkts_64;
2239 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2240 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2241 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2242 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2243 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2244 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2245 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2246 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2247 stat->rx_rrs_errs += smb->rx_rrs_errs;
2248 stat->rx_alignerrs += smb->rx_alignerrs;
2249 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2250 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2251 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2252
2253 /* Tx stats. */
2254 stat->tx_frames += smb->tx_frames;
2255 stat->tx_bcast_frames += smb->tx_bcast_frames;
2256 stat->tx_mcast_frames += smb->tx_mcast_frames;
2257 stat->tx_pause_frames += smb->tx_pause_frames;
2258 stat->tx_excess_defer += smb->tx_excess_defer;
2259 stat->tx_control_frames += smb->tx_control_frames;
2260 stat->tx_deferred += smb->tx_deferred;
2261 stat->tx_bytes += smb->tx_bytes;
2262 stat->tx_pkts_64 += smb->tx_pkts_64;
2263 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2264 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2265 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2266 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2267 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2268 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2269 stat->tx_single_colls += smb->tx_single_colls;
2270 stat->tx_multi_colls += smb->tx_multi_colls;
2271 stat->tx_late_colls += smb->tx_late_colls;
2272 stat->tx_excess_colls += smb->tx_excess_colls;
2273 stat->tx_underrun += smb->tx_underrun;
2274 stat->tx_desc_underrun += smb->tx_desc_underrun;
2275 stat->tx_lenerrs += smb->tx_lenerrs;
2276 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2277 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2278 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2279
2280 /* Update counters in ifnet. */
2281 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2282
2283 if_statadd_ref(nsr, if_opackets, smb->tx_frames);
2284
2285 if_statadd_ref(nsr, if_collisions,
2286 smb->tx_single_colls +
2287 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2288 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2289
2290 if_statadd_ref(nsr, if_oerrors,
2291 smb->tx_late_colls + smb->tx_excess_colls +
2292 smb->tx_underrun + smb->tx_pkts_truncated);
2293
2294 if_statadd_ref(nsr, if_ierrors,
2295 smb->rx_crcerrs + smb->rx_lenerrs +
2296 smb->rx_runts + smb->rx_pkts_truncated +
2297 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2298 smb->rx_alignerrs);
2299
2300 IF_STAT_PUTREF(ifp);
2301
2302 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2303 /* Update done, clear. */
2304 smb->updated = 0;
2305 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2306 sc->alc_cdata.alc_smb_map->dm_mapsize,
2307 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2308 }
2309 }
2310
2311 static int
2312 alc_intr(void *arg)
2313 {
2314 struct alc_softc *sc = arg;
2315 struct ifnet *ifp = &sc->sc_ec.ec_if;
2316 uint32_t status;
2317
2318 status = CSR_READ_4(sc, ALC_INTR_STATUS);
2319 if ((status & ALC_INTRS) == 0)
2320 return (0);
2321
2322 /* Acknowledge and disable interrupts. */
2323 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2324
2325 if (ifp->if_flags & IFF_RUNNING) {
2326 if (status & INTR_RX_PKT) {
2327 int error;
2328
2329 error = alc_rxintr(sc);
2330 if (error) {
2331 alc_init_backend(ifp, false);
2332 return (0);
2333 }
2334 }
2335
2336 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2337 INTR_TXQ_TO_RST)) {
2338 if (status & INTR_DMA_RD_TO_RST)
2339 printf("%s: DMA read error! -- resetting\n",
2340 device_xname(sc->sc_dev));
2341 if (status & INTR_DMA_WR_TO_RST)
2342 printf("%s: DMA write error! -- resetting\n",
2343 device_xname(sc->sc_dev));
2344 if (status & INTR_TXQ_TO_RST)
2345 printf("%s: TxQ reset! -- resetting\n",
2346 device_xname(sc->sc_dev));
2347 alc_init_backend(ifp, false);
2348 return (0);
2349 }
2350
2351 alc_txeof(sc);
2352 if_schedule_deferred_start(ifp);
2353 }
2354
2355 /* Re-enable interrupts. */
2356 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2357 return (1);
2358 }
2359
2360 static void
2361 alc_txeof(struct alc_softc *sc)
2362 {
2363 struct ifnet *ifp = &sc->sc_ec.ec_if;
2364 struct alc_txdesc *txd;
2365 uint32_t cons, prod;
2366 int prog;
2367
2368 if (sc->alc_cdata.alc_tx_cnt == 0)
2369 return;
2370 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2371 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2372 BUS_DMASYNC_POSTREAD);
2373 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2374 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2375 sc->alc_cdata.alc_cmb_map->dm_mapsize,
2376 BUS_DMASYNC_POSTREAD);
2377 prod = sc->alc_rdata.alc_cmb->cons;
2378 } else
2379 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2380 /* Assume we're using normal Tx priority queue. */
2381 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2382 MBOX_TD_CONS_LO_IDX_SHIFT;
2383 cons = sc->alc_cdata.alc_tx_cons;
2384 /*
2385 * Go through our Tx list and free mbufs for those
2386 * frames which have been transmitted.
2387 */
2388 for (prog = 0; cons != prod; prog++,
2389 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2390 if (sc->alc_cdata.alc_tx_cnt <= 0)
2391 break;
2392 prog++;
2393 ifp->if_flags &= ~IFF_OACTIVE;
2394 sc->alc_cdata.alc_tx_cnt--;
2395 txd = &sc->alc_cdata.alc_txdesc[cons];
2396 if (txd->tx_m != NULL) {
2397 /* Reclaim transmitted mbufs. */
2398 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2399 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2400 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2401 m_freem(txd->tx_m);
2402 txd->tx_m = NULL;
2403 }
2404 }
2405
2406 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2407 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2408 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2409 sc->alc_cdata.alc_tx_cons = cons;
2410 /*
2411 * Unarm watchdog timer only when there is no pending
2412 * frames in Tx queue.
2413 */
2414 if (sc->alc_cdata.alc_tx_cnt == 0)
2415 ifp->if_timer = 0;
2416 }
2417
2418 static int
2419 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2420 {
2421 struct mbuf *m;
2422 bus_dmamap_t map;
2423 int error;
2424
2425 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2426 if (m == NULL)
2427 return (ENOBUFS);
2428 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2429 if (!(m->m_flags & M_EXT)) {
2430 m_freem(m);
2431 return (ENOBUFS);
2432 }
2433
2434 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2435
2436 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2437 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2438
2439 if (error != 0) {
2440 m_freem(m);
2441
2442 if (init)
2443 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2444
2445 return (error);
2446 }
2447
2448 if (rxd->rx_m != NULL) {
2449 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2450 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2451 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2452 }
2453 map = rxd->rx_dmamap;
2454 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2455 sc->alc_cdata.alc_rx_sparemap = map;
2456 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2457 BUS_DMASYNC_PREREAD);
2458 rxd->rx_m = m;
2459 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2460 return (0);
2461 }
2462
2463 static int
2464 alc_rxintr(struct alc_softc *sc)
2465 {
2466 struct ifnet *ifp = &sc->sc_ec.ec_if;
2467 struct rx_rdesc *rrd;
2468 uint32_t nsegs, status;
2469 int rr_cons, prog;
2470
2471 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2472 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2473 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2474 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2475 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2476 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477 rr_cons = sc->alc_cdata.alc_rr_cons;
2478 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2479 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2480 status = le32toh(rrd->status);
2481 if ((status & RRD_VALID) == 0)
2482 break;
2483 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2484 if (nsegs == 0) {
2485 /* This should not happen! */
2486 if (alcdebug)
2487 printf("%s: unexpected segment count -- "
2488 "resetting\n", device_xname(sc->sc_dev));
2489 return (EIO);
2490 }
2491 alc_rxeof(sc, rrd);
2492 /* Clear Rx return status. */
2493 rrd->status = 0;
2494 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2495 sc->alc_cdata.alc_rx_cons += nsegs;
2496 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2497 prog += nsegs;
2498 }
2499
2500 if (prog > 0) {
2501 /* Update the consumer index. */
2502 sc->alc_cdata.alc_rr_cons = rr_cons;
2503 /* Sync Rx return descriptors. */
2504 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2505 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2506 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2507 /*
2508 * Sync updated Rx descriptors such that controller see
2509 * modified buffer addresses.
2510 */
2511 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2512 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2513 BUS_DMASYNC_PREWRITE);
2514 /*
2515 * Let controller know availability of new Rx buffers.
2516 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2517 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2518 * only when Rx buffer pre-fetching is required. In
2519 * addition we already set ALC_RX_RD_FREE_THRESH to
2520 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2521 * it still seems that pre-fetching needs more
2522 * experimentation.
2523 */
2524 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2525 sc->alc_cdata.alc_rx_cons);
2526 }
2527
2528 return (0);
2529 }
2530
2531 /* Receive a frame. */
2532 static void
2533 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2534 {
2535 struct ifnet *ifp = &sc->sc_ec.ec_if;
2536 struct alc_rxdesc *rxd;
2537 struct mbuf *mp, *m;
2538 uint32_t rdinfo, status;
2539 int count, nsegs, rx_cons;
2540
2541 status = le32toh(rrd->status);
2542 rdinfo = le32toh(rrd->rdinfo);
2543 rx_cons = RRD_RD_IDX(rdinfo);
2544 nsegs = RRD_RD_CNT(rdinfo);
2545
2546 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2547 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2548 /*
2549 * We want to pass the following frames to upper
2550 * layer regardless of error status of Rx return
2551 * ring.
2552 *
2553 * o IP/TCP/UDP checksum is bad.
2554 * o frame length and protocol specific length
2555 * does not match.
2556 *
2557 * Force network stack compute checksum for
2558 * errored frames.
2559 */
2560 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2561 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2562 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2563 return;
2564 }
2565
2566 for (count = 0; count < nsegs; count++,
2567 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2568 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2569 mp = rxd->rx_m;
2570 /* Add a new receive buffer to the ring. */
2571 if (alc_newbuf(sc, rxd, false) != 0) {
2572 if_statinc(ifp, if_iqdrops);
2573 /* Reuse Rx buffers. */
2574 if (sc->alc_cdata.alc_rxhead != NULL)
2575 m_freem(sc->alc_cdata.alc_rxhead);
2576 break;
2577 }
2578
2579 /*
2580 * Assume we've received a full sized frame.
2581 * Actual size is fixed when we encounter the end of
2582 * multi-segmented frame.
2583 */
2584 mp->m_len = sc->alc_buf_size;
2585
2586 /* Chain received mbufs. */
2587 if (sc->alc_cdata.alc_rxhead == NULL) {
2588 sc->alc_cdata.alc_rxhead = mp;
2589 sc->alc_cdata.alc_rxtail = mp;
2590 } else {
2591 m_remove_pkthdr(mp);
2592 sc->alc_cdata.alc_rxprev_tail =
2593 sc->alc_cdata.alc_rxtail;
2594 sc->alc_cdata.alc_rxtail->m_next = mp;
2595 sc->alc_cdata.alc_rxtail = mp;
2596 }
2597
2598 if (count == nsegs - 1) {
2599 /* Last desc. for this frame. */
2600 m = sc->alc_cdata.alc_rxhead;
2601 KASSERT(m->m_flags & M_PKTHDR);
2602 /*
2603 * It seems that L1C/L2C controller has no way
2604 * to tell hardware to strip CRC bytes.
2605 */
2606 m->m_pkthdr.len =
2607 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2608 if (nsegs > 1) {
2609 /* Set last mbuf size. */
2610 mp->m_len = sc->alc_cdata.alc_rxlen -
2611 (nsegs - 1) * sc->alc_buf_size;
2612 /* Remove the CRC bytes in chained mbufs. */
2613 if (mp->m_len <= ETHER_CRC_LEN) {
2614 sc->alc_cdata.alc_rxtail =
2615 sc->alc_cdata.alc_rxprev_tail;
2616 sc->alc_cdata.alc_rxtail->m_len -=
2617 (ETHER_CRC_LEN - mp->m_len);
2618 sc->alc_cdata.alc_rxtail->m_next = NULL;
2619 m_freem(mp);
2620 } else {
2621 mp->m_len -= ETHER_CRC_LEN;
2622 }
2623 } else
2624 m->m_len = m->m_pkthdr.len;
2625 m_set_rcvif(m, ifp);
2626 #if NVLAN > 0
2627 /*
2628 * Due to hardware bugs, Rx checksum offloading
2629 * was intentionally disabled.
2630 */
2631 if (status & RRD_VLAN_TAG) {
2632 uint32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2633 vlan_set_tag(m, ntohs(vtag));
2634 }
2635 #endif
2636
2637 /* Pass it on. */
2638 if_percpuq_enqueue(ifp->if_percpuq, m);
2639 }
2640 }
2641 /* Reset mbuf chains. */
2642 ALC_RXCHAIN_RESET(sc);
2643 }
2644
2645 static void
2646 alc_tick(void *xsc)
2647 {
2648 struct alc_softc *sc = xsc;
2649 struct mii_data *mii = &sc->sc_miibus;
2650 int s;
2651
2652 s = splnet();
2653 mii_tick(mii);
2654 alc_stats_update(sc);
2655 splx(s);
2656
2657 callout_schedule(&sc->sc_tick_ch, hz);
2658 }
2659
2660 static void
2661 alc_osc_reset(struct alc_softc *sc)
2662 {
2663 uint32_t reg;
2664
2665 reg = CSR_READ_4(sc, ALC_MISC3);
2666 reg &= ~MISC3_25M_BY_SW;
2667 reg |= MISC3_25M_NOTO_INTNL;
2668 CSR_WRITE_4(sc, ALC_MISC3, reg);
2669
2670 reg = CSR_READ_4(sc, ALC_MISC);
2671 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2672 /*
2673 * Restore over-current protection default value.
2674 * This value could be reset by MAC reset.
2675 */
2676 reg &= ~MISC_PSW_OCP_MASK;
2677 reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2678 reg &= ~MISC_INTNLOSC_OPEN;
2679 CSR_WRITE_4(sc, ALC_MISC, reg);
2680 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2681 reg = CSR_READ_4(sc, ALC_MISC2);
2682 reg &= ~MISC2_CALB_START;
2683 CSR_WRITE_4(sc, ALC_MISC2, reg);
2684 CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2685
2686 } else {
2687 reg &= ~MISC_INTNLOSC_OPEN;
2688 /* Disable isolate for revision A devices. */
2689 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2690 reg &= ~MISC_ISO_ENB;
2691 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2692 CSR_WRITE_4(sc, ALC_MISC, reg);
2693 }
2694
2695 DELAY(20);
2696 }
2697
2698 static void
2699 alc_reset(struct alc_softc *sc)
2700 {
2701 uint32_t pmcfg, reg;
2702 int i;
2703
2704 pmcfg = 0;
2705 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2706 /* Reset workaround. */
2707 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2708 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2709 (sc->alc_rev & 0x01) != 0) {
2710 /* Disable L0s/L1s before reset. */
2711 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2712 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2713 != 0) {
2714 pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2715 PM_CFG_ASPM_L1_ENB);
2716 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2717 }
2718 }
2719 }
2720 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2721 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2722 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2723
2724 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2725 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2726 DELAY(10);
2727 if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2728 break;
2729 }
2730 if (i == 0)
2731 printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2732 }
2733 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2734 DELAY(10);
2735 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2736 break;
2737 }
2738 if (i == 0)
2739 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2740
2741 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2742 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2743 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2744 IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2745 break;
2746 DELAY(10);
2747 }
2748 if (i == 0)
2749 printf("%s: reset timeout(0x%08x)!\n",
2750 device_xname(sc->sc_dev), reg);
2751
2752 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2753 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2754 (sc->alc_rev & 0x01) != 0) {
2755 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2756 reg |= MASTER_CLK_SEL_DIS;
2757 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2758 /* Restore L0s/L1s config. */
2759 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2760 != 0)
2761 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2762 }
2763
2764 alc_osc_reset(sc);
2765 reg = CSR_READ_4(sc, ALC_MISC3);
2766 reg &= ~MISC3_25M_BY_SW;
2767 reg |= MISC3_25M_NOTO_INTNL;
2768 CSR_WRITE_4(sc, ALC_MISC3, reg);
2769 reg = CSR_READ_4(sc, ALC_MISC);
2770 reg &= ~MISC_INTNLOSC_OPEN;
2771 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2772 reg &= ~MISC_ISO_ENB;
2773 CSR_WRITE_4(sc, ALC_MISC, reg);
2774 DELAY(20);
2775 }
2776 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2777 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2778 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2779 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2780 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2781 SERDES_PHY_CLK_SLOWDOWN);
2782 }
2783
2784 static int
2785 alc_init(struct ifnet *ifp)
2786 {
2787
2788 return alc_init_backend(ifp, true);
2789 }
2790
2791 static int
2792 alc_init_backend(struct ifnet *ifp, bool init)
2793 {
2794 struct alc_softc *sc = ifp->if_softc;
2795 struct mii_data *mii;
2796 uint8_t eaddr[ETHER_ADDR_LEN];
2797 bus_addr_t paddr;
2798 uint32_t reg, rxf_hi, rxf_lo;
2799 int error;
2800
2801 /*
2802 * Cancel any pending I/O.
2803 */
2804 alc_stop(ifp, 0);
2805 /*
2806 * Reset the chip to a known state.
2807 */
2808 alc_reset(sc);
2809
2810 /* Initialize Rx descriptors. */
2811 error = alc_init_rx_ring(sc, init);
2812 if (error != 0) {
2813 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2814 alc_stop(ifp, 0);
2815 return (error);
2816 }
2817 alc_init_rr_ring(sc);
2818 alc_init_tx_ring(sc);
2819 alc_init_cmb(sc);
2820 alc_init_smb(sc);
2821
2822 /* Enable all clocks. */
2823 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2824 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2825 CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2826 CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2827 CLK_GATING_RXMAC_ENB);
2828 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2829 CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2830 IDLE_DECISN_TIMER_DEFAULT_1MS);
2831 } else
2832 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2833
2834 /* Reprogram the station address. */
2835 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2836 CSR_WRITE_4(sc, ALC_PAR0, (uint32_t)eaddr[2] << 24
2837 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2838 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2839 /*
2840 * Clear WOL status and disable all WOL feature as WOL
2841 * would interfere Rx operation under normal environments.
2842 */
2843 CSR_READ_4(sc, ALC_WOL_CFG);
2844 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2845 /* Set Tx descriptor base addresses. */
2846 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2847 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2848 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2849 /* We don't use high priority ring. */
2850 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2851 /* Set Tx descriptor counter. */
2852 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2853 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2854 /* Set Rx descriptor base addresses. */
2855 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2856 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2857 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2858 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2859 /* We use one Rx ring. */
2860 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2861 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2862 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2863 }
2864 /* Set Rx descriptor counter. */
2865 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2866 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2867
2868 /*
2869 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2870 * if it do not fit the buffer size. Rx return descriptor holds
2871 * a counter that indicates how many fragments were made by the
2872 * hardware. The buffer size should be multiple of 8 bytes.
2873 * Since hardware has limit on the size of buffer size, always
2874 * use the maximum value.
2875 * For strict-alignment architectures make sure to reduce buffer
2876 * size by 8 bytes to make room for alignment fixup.
2877 */
2878 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2879 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2880
2881 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2882 /* Set Rx return descriptor base addresses. */
2883 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2884 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2885 /* We use one Rx return ring. */
2886 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2887 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2888 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2889 }
2890 /* Set Rx return descriptor counter. */
2891 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2892 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2893 paddr = sc->alc_rdata.alc_cmb_paddr;
2894 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2895 paddr = sc->alc_rdata.alc_smb_paddr;
2896 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2897 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2898
2899 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2900 /* Reconfigure SRAM - Vendor magic. */
2901 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2902 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2903 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2904 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2905 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2906 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2907 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2908 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2909 }
2910
2911 /* Tell hardware that we're ready to load DMA blocks. */
2912 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2913
2914 /* Configure interrupt moderation timer. */
2915 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2916 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2917 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2918 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2919 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2920 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2921 /*
2922 * We don't want to automatic interrupt clear as task queue
2923 * for the interrupt should know interrupt status.
2924 */
2925 reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2926 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2927 reg |= MASTER_SA_TIMER_ENB;
2928 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2929 reg |= MASTER_IM_RX_TIMER_ENB;
2930 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2931 ALC_USECS(sc->alc_int_tx_mod) != 0)
2932 reg |= MASTER_IM_TX_TIMER_ENB;
2933 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2934 /*
2935 * Disable interrupt re-trigger timer. We don't want automatic
2936 * re-triggering of un-ACKed interrupts.
2937 */
2938 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2939 /* Configure CMB. */
2940 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2941 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2942 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2943 ALC_USECS(sc->alc_int_tx_mod));
2944 } else {
2945 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2946 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2947 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2948 } else
2949 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2950 }
2951 /*
2952 * Hardware can be configured to issue SMB interrupt based
2953 * on programmed interval. Since there is a callout that is
2954 * invoked for every hz in driver we use that instead of
2955 * relying on periodic SMB interrupt.
2956 */
2957 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2958 /* Clear MAC statistics. */
2959 alc_stats_clear(sc);
2960
2961 /*
2962 * Always use maximum frame size that controller can support.
2963 * Otherwise received frames that has larger frame length
2964 * than alc(4) MTU would be silently dropped in hardware. This
2965 * would make path-MTU discovery hard as sender wouldn't get
2966 * any responses from receiver. alc(4) supports
2967 * multi-fragmented frames on Rx path so it has no issue on
2968 * assembling fragmented frames. Using maximum frame size also
2969 * removes the need to reinitialize hardware when interface
2970 * MTU configuration was changed.
2971 *
2972 * Be conservative in what you do, be liberal in what you
2973 * accept from others - RFC 793.
2974 */
2975 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2976
2977 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2978 /* Disable header split(?) */
2979 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2980
2981 /* Configure IPG/IFG parameters. */
2982 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2983 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2984 IPG_IFG_IPGT_MASK) |
2985 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2986 IPG_IFG_MIFG_MASK) |
2987 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2988 IPG_IFG_IPG1_MASK) |
2989 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2990 IPG_IFG_IPG2_MASK));
2991 /* Set parameters for half-duplex media. */
2992 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2993 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2994 HDPX_CFG_LCOL_MASK) |
2995 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2996 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2997 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2998 HDPX_CFG_ABEBT_MASK) |
2999 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3000 HDPX_CFG_JAMIPG_MASK));
3001 }
3002
3003 /*
3004 * Set TSO/checksum offload threshold. For frames that is
3005 * larger than this threshold, hardware wouldn't do
3006 * TSO/checksum offloading.
3007 */
3008 reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3009 TSO_OFFLOAD_THRESH_MASK;
3010 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3011 reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
3012 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
3013 /* Configure TxQ. */
3014 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3015 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3016 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
3017 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3018 reg >>= 1;
3019 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3020 TXQ_CFG_TD_BURST_MASK;
3021 reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
3022 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3023 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3024 reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
3025 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
3026 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
3027 HQTD_CFG_BURST_ENB);
3028 CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
3029 reg = WRR_PRI_RESTRICT_NONE;
3030 reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
3031 WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
3032 WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
3033 WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
3034 CSR_WRITE_4(sc, ALC_WRR, reg);
3035 } else {
3036 /* Configure Rx free descriptor pre-fetching. */
3037 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3038 ((RX_RD_FREE_THRESH_HI_DEFAULT <<
3039 RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
3040 ((RX_RD_FREE_THRESH_LO_DEFAULT <<
3041 RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
3042 }
3043
3044 /*
3045 * Configure flow control parameters.
3046 * XON : 80% of Rx FIFO
3047 * XOFF : 30% of Rx FIFO
3048 */
3049 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3050 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3051 reg &= SRAM_RX_FIFO_LEN_MASK;
3052 reg *= 8;
3053 if (reg > 8 * 1024)
3054 reg -= RX_FIFO_PAUSE_816X_RSVD;
3055 else
3056 reg -= RX_BUF_SIZE_MAX;
3057 reg /= 8;
3058 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3059 ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3060 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3061 (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3062 RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3063 RX_FIFO_PAUSE_THRESH_HI_MASK));
3064 } else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3065 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3066 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3067 rxf_hi = (reg * 8) / 10;
3068 rxf_lo = (reg * 3) / 10;
3069 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3070 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3071 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3072 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3073 RX_FIFO_PAUSE_THRESH_HI_MASK));
3074 }
3075
3076 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3077 /* Disable RSS until I understand L1C/L2C's RSS logic. */
3078 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3079 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3080 }
3081
3082 /* Configure RxQ. */
3083 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3084 RXQ_CFG_RD_BURST_MASK;
3085 reg |= RXQ_CFG_RSS_MODE_DIS;
3086 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3087 reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3088 RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3089 RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3090 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
3091 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3092 } else {
3093 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3094 sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3095 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3096 }
3097 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3098
3099 /* Configure DMA parameters. */
3100 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3101 reg |= sc->alc_rcb;
3102 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3103 reg |= DMA_CFG_CMB_ENB;
3104 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3105 reg |= DMA_CFG_SMB_ENB;
3106 else
3107 reg |= DMA_CFG_SMB_DIS;
3108 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3109 DMA_CFG_RD_BURST_SHIFT;
3110 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3111 DMA_CFG_WR_BURST_SHIFT;
3112 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3113 DMA_CFG_RD_DELAY_CNT_MASK;
3114 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3115 DMA_CFG_WR_DELAY_CNT_MASK;
3116 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3117 switch (AR816X_REV(sc->alc_rev)) {
3118 case AR816X_REV_A0:
3119 case AR816X_REV_A1:
3120 reg |= DMA_CFG_RD_CHNL_SEL_2;
3121 break;
3122 case AR816X_REV_B0:
3123 /* FALLTHROUGH */
3124 default:
3125 reg |= DMA_CFG_RD_CHNL_SEL_4;
3126 break;
3127 }
3128 }
3129 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3130
3131 /*
3132 * Configure Tx/Rx MACs.
3133 * - Auto-padding for short frames.
3134 * - Enable CRC generation.
3135 * Actual reconfiguration of MAC for resolved speed/duplex
3136 * is followed after detection of link establishment.
3137 * AR813x/AR815x always does checksum computation regardless
3138 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3139 * have bug in protocol field in Rx return structure so
3140 * these controllers can't handle fragmented frames. Disable
3141 * Rx checksum offloading until there is a newer controller
3142 * that has sane implementation.
3143 */
3144 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3145 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3146 MAC_CFG_PREAMBLE_MASK);
3147 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3148 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3149 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3150 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3151 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3152 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3153 reg |= MAC_CFG_SPEED_10_100;
3154 else
3155 reg |= MAC_CFG_SPEED_1000;
3156 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3157
3158 /* Set up the receive filter. */
3159 alc_iff(sc);
3160 alc_rxvlan(sc);
3161
3162 /* Acknowledge all pending interrupts and clear it. */
3163 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3164 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3165 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3166
3167 sc->alc_flags &= ~ALC_FLAG_LINK;
3168 /* Switch to the current media. */
3169 mii = &sc->sc_miibus;
3170 mii_mediachg(mii);
3171
3172 callout_schedule(&sc->sc_tick_ch, hz);
3173
3174 ifp->if_flags |= IFF_RUNNING;
3175 ifp->if_flags &= ~IFF_OACTIVE;
3176
3177 return (0);
3178 }
3179
3180 static void
3181 alc_stop(struct ifnet *ifp, int disable)
3182 {
3183 struct alc_softc *sc = ifp->if_softc;
3184 struct alc_txdesc *txd;
3185 struct alc_rxdesc *rxd;
3186 uint32_t reg;
3187 int i;
3188
3189 callout_stop(&sc->sc_tick_ch);
3190
3191 /*
3192 * Mark the interface down and cancel the watchdog timer.
3193 */
3194 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3195 ifp->if_timer = 0;
3196
3197 sc->alc_flags &= ~ALC_FLAG_LINK;
3198
3199 alc_stats_update(sc);
3200
3201 mii_down(&sc->sc_miibus);
3202
3203 /* Disable interrupts. */
3204 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3205 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3206
3207 /* Disable DMA. */
3208 reg = CSR_READ_4(sc, ALC_DMA_CFG);
3209 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3210 reg |= DMA_CFG_SMB_DIS;
3211 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3212 DELAY(1000);
3213
3214 /* Stop Rx/Tx MACs. */
3215 alc_stop_mac(sc);
3216
3217 /* Disable interrupts which might be touched in taskq handler. */
3218 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3219
3220 /* Disable L0s/L1s */
3221 alc_aspm(sc, 0, IFM_UNKNOWN);
3222
3223 /* Reclaim Rx buffers that have been processed. */
3224 if (sc->alc_cdata.alc_rxhead != NULL)
3225 m_freem(sc->alc_cdata.alc_rxhead);
3226 ALC_RXCHAIN_RESET(sc);
3227 /*
3228 * Free Tx/Rx mbufs still in the queues.
3229 */
3230 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3231 rxd = &sc->alc_cdata.alc_rxdesc[i];
3232 if (rxd->rx_m != NULL) {
3233 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3234 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3235 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3236 m_freem(rxd->rx_m);
3237 rxd->rx_m = NULL;
3238 }
3239 }
3240 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3241 txd = &sc->alc_cdata.alc_txdesc[i];
3242 if (txd->tx_m != NULL) {
3243 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3244 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3245 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3246 m_freem(txd->tx_m);
3247 txd->tx_m = NULL;
3248 }
3249 }
3250 }
3251
3252 static void
3253 alc_stop_mac(struct alc_softc *sc)
3254 {
3255 uint32_t reg;
3256 int i;
3257
3258 alc_stop_queue(sc);
3259 /* Disable Rx/Tx MAC. */
3260 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3261 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3262 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3263 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3264 }
3265 for (i = ALC_TIMEOUT; i > 0; i--) {
3266 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3267 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3268 break;
3269 DELAY(10);
3270 }
3271 if (i == 0)
3272 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3273 device_xname(sc->sc_dev), reg);
3274 }
3275
3276 static void
3277 alc_start_queue(struct alc_softc *sc)
3278 {
3279 uint32_t qcfg[] = {
3280 0,
3281 RXQ_CFG_QUEUE0_ENB,
3282 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3283 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3284 RXQ_CFG_ENB
3285 };
3286 uint32_t cfg;
3287
3288 /* Enable RxQ. */
3289 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3290 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3291 cfg &= ~RXQ_CFG_ENB;
3292 cfg |= qcfg[1];
3293 } else
3294 cfg |= RXQ_CFG_QUEUE0_ENB;
3295 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3296 /* Enable TxQ. */
3297 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3298 cfg |= TXQ_CFG_ENB;
3299 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3300 }
3301
3302 static void
3303 alc_stop_queue(struct alc_softc *sc)
3304 {
3305 uint32_t reg;
3306 int i;
3307
3308 /* Disable RxQ. */
3309 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3310 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3311 if ((reg & RXQ_CFG_ENB) != 0) {
3312 reg &= ~RXQ_CFG_ENB;
3313 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3314 }
3315 } else {
3316 if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3317 reg &= ~RXQ_CFG_QUEUE0_ENB;
3318 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3319 }
3320 }
3321 /* Disable TxQ. */
3322 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3323 if ((reg & TXQ_CFG_ENB) != 0) {
3324 reg &= ~TXQ_CFG_ENB;
3325 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3326 }
3327 DELAY(40);
3328 for (i = ALC_TIMEOUT; i > 0; i--) {
3329 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3330 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3331 break;
3332 DELAY(10);
3333 }
3334 if (i == 0)
3335 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3336 device_xname(sc->sc_dev), reg);
3337 }
3338
3339 static void
3340 alc_init_tx_ring(struct alc_softc *sc)
3341 {
3342 struct alc_ring_data *rd;
3343 struct alc_txdesc *txd;
3344 int i;
3345
3346 sc->alc_cdata.alc_tx_prod = 0;
3347 sc->alc_cdata.alc_tx_cons = 0;
3348 sc->alc_cdata.alc_tx_cnt = 0;
3349
3350 rd = &sc->alc_rdata;
3351 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3352 for (i = 0; i < ALC_TX_RING_CNT; i++) {
3353 txd = &sc->alc_cdata.alc_txdesc[i];
3354 txd->tx_m = NULL;
3355 }
3356
3357 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3358 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3359 }
3360
3361 static int
3362 alc_init_rx_ring(struct alc_softc *sc, bool init)
3363 {
3364 struct alc_ring_data *rd;
3365 struct alc_rxdesc *rxd;
3366 int i;
3367
3368 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3369 rd = &sc->alc_rdata;
3370 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3371 for (i = 0; i < ALC_RX_RING_CNT; i++) {
3372 rxd = &sc->alc_cdata.alc_rxdesc[i];
3373 rxd->rx_m = NULL;
3374 rxd->rx_desc = &rd->alc_rx_ring[i];
3375 if (alc_newbuf(sc, rxd, init) != 0)
3376 return (ENOBUFS);
3377 }
3378
3379 /*
3380 * Since controller does not update Rx descriptors, driver
3381 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3382 * is enough to ensure coherence.
3383 */
3384 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3385 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3386 /* Let controller know availability of new Rx buffers. */
3387 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3388
3389 return (0);
3390 }
3391
3392 static void
3393 alc_init_rr_ring(struct alc_softc *sc)
3394 {
3395 struct alc_ring_data *rd;
3396
3397 sc->alc_cdata.alc_rr_cons = 0;
3398 ALC_RXCHAIN_RESET(sc);
3399
3400 rd = &sc->alc_rdata;
3401 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3402 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3403 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3404 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3405 }
3406
3407 static void
3408 alc_init_cmb(struct alc_softc *sc)
3409 {
3410 struct alc_ring_data *rd;
3411
3412 rd = &sc->alc_rdata;
3413 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3414 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3415 sc->alc_cdata.alc_cmb_map->dm_mapsize,
3416 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3417 }
3418
3419 static void
3420 alc_init_smb(struct alc_softc *sc)
3421 {
3422 struct alc_ring_data *rd;
3423
3424 rd = &sc->alc_rdata;
3425 memset(rd->alc_smb, 0, ALC_SMB_SZ);
3426 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3427 sc->alc_cdata.alc_smb_map->dm_mapsize,
3428 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3429 }
3430
3431 static void
3432 alc_rxvlan(struct alc_softc *sc)
3433 {
3434 uint32_t reg;
3435
3436 reg = CSR_READ_4(sc, ALC_MAC_CFG);
3437 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3438 reg |= MAC_CFG_VLAN_TAG_STRIP;
3439 else
3440 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3441 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3442 }
3443
3444 static void
3445 alc_iff(struct alc_softc *sc)
3446 {
3447 struct ethercom *ec = &sc->sc_ec;
3448 struct ifnet *ifp = &ec->ec_if;
3449 struct ether_multi *enm;
3450 struct ether_multistep step;
3451 uint32_t crc;
3452 uint32_t mchash[2];
3453 uint32_t rxcfg;
3454
3455 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3456 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3457 ifp->if_flags &= ~IFF_ALLMULTI;
3458
3459 /*
3460 * Always accept broadcast frames.
3461 */
3462 rxcfg |= MAC_CFG_BCAST;
3463
3464 /* Program new filter. */
3465 if ((ifp->if_flags & IFF_PROMISC) != 0)
3466 goto update;
3467
3468 memset(mchash, 0, sizeof(mchash));
3469
3470 ETHER_LOCK(ec);
3471 ETHER_FIRST_MULTI(step, ec, enm);
3472 while (enm != NULL) {
3473 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3474 /* XXX Use ETHER_F_ALLMULTI in future. */
3475 ifp->if_flags |= IFF_ALLMULTI;
3476 ETHER_UNLOCK(ec);
3477 goto update;
3478 }
3479 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3480 mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
3481 ETHER_NEXT_MULTI(step, enm);
3482 }
3483 ETHER_UNLOCK(ec);
3484
3485 update:
3486 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3487 if (ifp->if_flags & IFF_PROMISC) {
3488 rxcfg |= MAC_CFG_PROMISC;
3489 /* XXX Use ETHER_F_ALLMULTI in future. */
3490 ifp->if_flags |= IFF_ALLMULTI;
3491 } else
3492 rxcfg |= MAC_CFG_ALLMULTI;
3493 mchash[0] = mchash[1] = 0xFFFFFFFF;
3494 }
3495 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3496 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3497 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3498 }
3499
3500 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3501
3502 #ifdef _MODULE
3503 #include "ioconf.c"
3504 #endif
3505
3506 static int
3507 if_alc_modcmd(modcmd_t cmd, void *opaque)
3508 {
3509 int error = 0;
3510
3511 switch (cmd) {
3512 case MODULE_CMD_INIT:
3513 #ifdef _MODULE
3514 error = config_init_component(cfdriver_ioconf_if_alc,
3515 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3516 #endif
3517 return error;
3518 case MODULE_CMD_FINI:
3519 #ifdef _MODULE
3520 error = config_fini_component(cfdriver_ioconf_if_alc,
3521 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3522 #endif
3523 return error;
3524 default:
3525 return ENOTTY;
3526 }
3527 }
3528