Home | History | Annotate | Line # | Download | only in pci
if_alc.c revision 1.6
      1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
      2 /*-
      3  * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice unmodified, this list of conditions, and the following
     11  *    disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "vlan.h"
     33 #endif
     34 
     35 #include <sys/param.h>
     36 #include <sys/proc.h>
     37 #include <sys/endian.h>
     38 #include <sys/systm.h>
     39 #include <sys/types.h>
     40 #include <sys/sockio.h>
     41 #include <sys/mbuf.h>
     42 #include <sys/queue.h>
     43 #include <sys/kernel.h>
     44 #include <sys/device.h>
     45 #include <sys/callout.h>
     46 #include <sys/socket.h>
     47 #include <sys/module.h>
     48 
     49 #include <sys/bus.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_llc.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <netinet/ip.h>
     64 #endif
     65 
     66 #include <net/if_types.h>
     67 #include <net/if_vlanvar.h>
     68 
     69 #include <net/bpf.h>
     70 
     71 #include <sys/rnd.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_alcreg.h>
     81 
     82 /*
     83  * Devices supported by this driver.
     84  */
     85 static struct alc_ident alc_ident_table[] = {
     86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
     87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
     88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
     89 		"Atheros AR8132 PCIe Fast Ethernet" },
     90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
     91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
     92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
     93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
     94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
     95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
     96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
     97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
     98 	{ 0, 0, 0, NULL },
     99 };
    100 
    101 static int	alc_match(device_t, cfdata_t, void *);
    102 static void	alc_attach(device_t, device_t, void *);
    103 static int	alc_detach(device_t, int);
    104 
    105 static int	alc_init(struct ifnet *);
    106 static void	alc_start(struct ifnet *);
    107 static int	alc_ioctl(struct ifnet *, u_long, void *);
    108 static void	alc_watchdog(struct ifnet *);
    109 static int	alc_mediachange(struct ifnet *);
    110 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
    111 
    112 static void	alc_aspm(struct alc_softc *, int);
    113 static void	alc_disable_l0s_l1(struct alc_softc *);
    114 static int	alc_dma_alloc(struct alc_softc *);
    115 static void	alc_dma_free(struct alc_softc *);
    116 static int	alc_encap(struct alc_softc *, struct mbuf **);
    117 static struct alc_ident *
    118 		alc_find_ident(struct pci_attach_args *);
    119 static void	alc_get_macaddr(struct alc_softc *);
    120 static void	alc_init_cmb(struct alc_softc *);
    121 static void	alc_init_rr_ring(struct alc_softc *);
    122 static int	alc_init_rx_ring(struct alc_softc *);
    123 static void	alc_init_smb(struct alc_softc *);
    124 static void	alc_init_tx_ring(struct alc_softc *);
    125 static int	alc_intr(void *);
    126 static void	alc_mac_config(struct alc_softc *);
    127 static int	alc_miibus_readreg(device_t, int, int);
    128 static void	alc_miibus_statchg(struct ifnet *);
    129 static void	alc_miibus_writereg(device_t, int, int, int);
    130 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, int);
    131 static void	alc_phy_down(struct alc_softc *);
    132 static void	alc_phy_reset(struct alc_softc *);
    133 static void	alc_reset(struct alc_softc *);
    134 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
    135 static int	alc_rxintr(struct alc_softc *);
    136 static void	alc_iff(struct alc_softc *);
    137 static void	alc_rxvlan(struct alc_softc *);
    138 static void	alc_start_queue(struct alc_softc *);
    139 static void	alc_stats_clear(struct alc_softc *);
    140 static void	alc_stats_update(struct alc_softc *);
    141 static void	alc_stop(struct ifnet *, int);
    142 static void	alc_stop_mac(struct alc_softc *);
    143 static void	alc_stop_queue(struct alc_softc *);
    144 static void	alc_tick(void *);
    145 static void	alc_txeof(struct alc_softc *);
    146 
    147 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
    148 
    149 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
    150     alc_match, alc_attach, alc_detach, NULL);
    151 
    152 int alcdebug = 0;
    153 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
    154 
    155 #define ETHER_ALIGN		2
    156 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    157 
    158 static int
    159 alc_miibus_readreg(device_t dev, int phy, int reg)
    160 {
    161 	struct alc_softc *sc = device_private(dev);
    162 	uint32_t v;
    163 	int i;
    164 
    165 	if (phy != sc->alc_phyaddr)
    166 		return (0);
    167 
    168 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    169 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    170 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    171 		DELAY(5);
    172 		v = CSR_READ_4(sc, ALC_MDIO);
    173 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    174 			break;
    175 	}
    176 
    177 	if (i == 0) {
    178 		printf("%s: phy read timeout: phy %d, reg %d\n",
    179 		    device_xname(sc->sc_dev), phy, reg);
    180 		return (0);
    181 	}
    182 
    183 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
    184 }
    185 
    186 static void
    187 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
    188 {
    189 	struct alc_softc *sc = device_private(dev);
    190 	uint32_t v;
    191 	int i;
    192 
    193 	if (phy != sc->alc_phyaddr)
    194 		return;
    195 
    196 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    197 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    198 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    199 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
    200 		DELAY(5);
    201 		v = CSR_READ_4(sc, ALC_MDIO);
    202 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    203 			break;
    204 	}
    205 
    206 	if (i == 0)
    207 		printf("%s: phy write timeout: phy %d, reg %d\n",
    208 		    device_xname(sc->sc_dev), phy, reg);
    209 }
    210 
    211 static void
    212 alc_miibus_statchg(struct ifnet *ifp)
    213 {
    214 	struct alc_softc *sc = ifp->if_softc;
    215 	struct mii_data *mii = &sc->sc_miibus;
    216 	uint32_t reg;
    217 
    218 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    219 		return;
    220 
    221 	sc->alc_flags &= ~ALC_FLAG_LINK;
    222 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    223 	    (IFM_ACTIVE | IFM_AVALID)) {
    224 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    225 		case IFM_10_T:
    226 		case IFM_100_TX:
    227 			sc->alc_flags |= ALC_FLAG_LINK;
    228 			break;
    229 		case IFM_1000_T:
    230 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
    231 				sc->alc_flags |= ALC_FLAG_LINK;
    232 			break;
    233 		default:
    234 			break;
    235 		}
    236 	}
    237 	alc_stop_queue(sc);
    238 	/* Stop Rx/Tx MACs. */
    239 	alc_stop_mac(sc);
    240 
    241 	/* Program MACs with resolved speed/duplex/flow-control. */
    242 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    243 		alc_start_queue(sc);
    244 		alc_mac_config(sc);
    245 		/* Re-enable Tx/Rx MACs. */
    246 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
    247 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    248 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
    249 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
    250 	}
    251 }
    252 
    253 static void
    254 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    255 {
    256 	struct alc_softc *sc = ifp->if_softc;
    257 	struct mii_data *mii = &sc->sc_miibus;
    258 
    259 	mii_pollstat(mii);
    260 	ifmr->ifm_status = mii->mii_media_status;
    261 	ifmr->ifm_active = mii->mii_media_active;
    262 }
    263 
    264 static int
    265 alc_mediachange(struct ifnet *ifp)
    266 {
    267 	struct alc_softc *sc = ifp->if_softc;
    268 	struct mii_data *mii = &sc->sc_miibus;
    269 	int error;
    270 
    271 	if (mii->mii_instance != 0) {
    272 		struct mii_softc *miisc;
    273 
    274 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    275 			mii_phy_reset(miisc);
    276 	}
    277 	error = mii_mediachg(mii);
    278 
    279 	return (error);
    280 }
    281 
    282 static struct alc_ident *
    283 alc_find_ident(struct pci_attach_args *pa)
    284 {
    285 	struct alc_ident *ident;
    286 	uint16_t vendor, devid;
    287 
    288 	vendor = PCI_VENDOR(pa->pa_id);
    289 	devid = PCI_PRODUCT(pa->pa_id);
    290 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
    291 		if (vendor == ident->vendorid && devid == ident->deviceid)
    292 			return (ident);
    293 	}
    294 
    295 	return (NULL);
    296 }
    297 
    298 static int
    299 alc_match(device_t dev, cfdata_t match, void *aux)
    300 {
    301 	struct pci_attach_args *pa = aux;
    302 
    303 	return alc_find_ident(pa) != NULL;
    304 }
    305 
    306 static void
    307 alc_get_macaddr(struct alc_softc *sc)
    308 {
    309 	uint32_t ea[2], opt;
    310 	uint16_t val;
    311 	int eeprom, i;
    312 
    313 	eeprom = 0;
    314 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
    315 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
    316 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
    317 		/*
    318 		 * EEPROM found, let TWSI reload EEPROM configuration.
    319 		 * This will set ethernet address of controller.
    320 		 */
    321 		eeprom++;
    322 		switch (sc->alc_ident->deviceid) {
    323 		case PCI_PRODUCT_ATTANSIC_AR8131:
    324 		case PCI_PRODUCT_ATTANSIC_AR8132:
    325 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
    326 				opt |= OPT_CFG_CLK_ENB;
    327 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    328 				CSR_READ_4(sc, ALC_OPT_CFG);
    329 				DELAY(1000);
    330 			}
    331 			break;
    332 		case PCI_PRODUCT_ATTANSIC_AR8151:
    333 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    334 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    335 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    336 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    337 			    ALC_MII_DBG_ADDR, 0x00);
    338 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    339 			    ALC_MII_DBG_DATA);
    340 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    341 			    ALC_MII_DBG_DATA, val & 0xFF7F);
    342 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    343 			    ALC_MII_DBG_ADDR, 0x3B);
    344 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    345 			    ALC_MII_DBG_DATA);
    346 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    347 			    ALC_MII_DBG_DATA, val | 0x0008);
    348 			DELAY(20);
    349 			break;
    350 		}
    351 
    352 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    353 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    354 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
    355 		CSR_READ_4(sc, ALC_WOL_CFG);
    356 
    357 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
    358 		    TWSI_CFG_SW_LD_START);
    359 		for (i = 100; i > 0; i--) {
    360 			DELAY(1000);
    361 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
    362 			    TWSI_CFG_SW_LD_START) == 0)
    363 				break;
    364 		}
    365 		if (i == 0)
    366 			printf("%s: reloading EEPROM timeout!\n",
    367 			    device_xname(sc->sc_dev));
    368 	} else {
    369 		if (alcdebug)
    370 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
    371 	}
    372 	if (eeprom != 0) {
    373 		switch (sc->alc_ident->deviceid) {
    374 		case PCI_PRODUCT_ATTANSIC_AR8131:
    375 		case PCI_PRODUCT_ATTANSIC_AR8132:
    376 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
    377 				opt &= ~OPT_CFG_CLK_ENB;
    378 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
    379 				CSR_READ_4(sc, ALC_OPT_CFG);
    380 				DELAY(1000);
    381 			}
    382 			break;
    383 		case PCI_PRODUCT_ATTANSIC_AR8151:
    384 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    385 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
    386 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    387 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    388 			    ALC_MII_DBG_ADDR, 0x00);
    389 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    390 			    ALC_MII_DBG_DATA);
    391 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    392 			    ALC_MII_DBG_DATA, val | 0x0080);
    393 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    394 			    ALC_MII_DBG_ADDR, 0x3B);
    395 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    396 			    ALC_MII_DBG_DATA);
    397 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    398 			    ALC_MII_DBG_DATA, val & 0xFFF7);
    399 			DELAY(20);
    400 			break;
    401 		}
    402 	}
    403 
    404 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
    405 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
    406 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
    407 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
    408 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
    409 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
    410 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
    411 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
    412 }
    413 
    414 static void
    415 alc_disable_l0s_l1(struct alc_softc *sc)
    416 {
    417 	uint32_t pmcfg;
    418 
    419 	/* Another magic from vendor. */
    420 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    421 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
    422 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
    423 	    PM_CFG_SERDES_PD_EX_L1);
    424 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
    425 	    PM_CFG_SERDES_L1_ENB;
    426 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    427 }
    428 
    429 static void
    430 alc_phy_reset(struct alc_softc *sc)
    431 {
    432 	uint16_t data;
    433 
    434 	/* Reset magic from Linux. */
    435 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    436 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
    437 	CSR_READ_2(sc, ALC_GPHY_CFG);
    438 	DELAY(10 * 1000);
    439 
    440 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
    441 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    442 	    GPHY_CFG_SEL_ANA_RESET);
    443 	CSR_READ_2(sc, ALC_GPHY_CFG);
    444 	DELAY(10 * 1000);
    445 
    446 	/* DSP fixup, Vendor magic. */
    447 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
    448 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    449 		    ALC_MII_DBG_ADDR, 0x000A);
    450 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    451 		    ALC_MII_DBG_DATA);
    452 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    453 		    ALC_MII_DBG_DATA, data & 0xDFFF);
    454 	}
    455 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
    456 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    457 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
    458 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    459 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    460 		    ALC_MII_DBG_ADDR, 0x003B);
    461 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
    462 		    ALC_MII_DBG_DATA);
    463 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    464 		    ALC_MII_DBG_DATA, data & 0xFFF7);
    465 		DELAY(20 * 1000);
    466 	}
    467 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
    468 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    469 		    ALC_MII_DBG_ADDR, 0x0029);
    470 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    471 		    ALC_MII_DBG_DATA, 0x929D);
    472 	}
    473 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
    474 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
    475 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
    476 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
    477 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    478 		    ALC_MII_DBG_ADDR, 0x0029);
    479 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    480 		    ALC_MII_DBG_DATA, 0xB6DD);
    481 	}
    482 
    483 	/* Load DSP codes, vendor magic. */
    484 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
    485 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
    486 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    487 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
    488 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    489 	    ALC_MII_DBG_DATA, data);
    490 
    491 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
    492 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
    493 	    ANA_SERDES_EN_LCKDT;
    494 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    495 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
    496 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    497 	    ALC_MII_DBG_DATA, data);
    498 
    499 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
    500 	    ANA_LONG_CABLE_TH_100_MASK) |
    501 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
    502 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
    503 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
    504 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    505 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
    506 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    507 	    ALC_MII_DBG_DATA, data);
    508 
    509 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
    510 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
    511 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
    512 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
    513 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    514 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
    515 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    516 	    ALC_MII_DBG_DATA, data);
    517 
    518 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
    519 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
    520 	    ANA_OEN_125M;
    521 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    522 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
    523 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    524 	    ALC_MII_DBG_DATA, data);
    525 	DELAY(1000);
    526 }
    527 
    528 static void
    529 alc_phy_down(struct alc_softc *sc)
    530 {
    531 	switch (sc->alc_ident->deviceid) {
    532 	case PCI_PRODUCT_ATTANSIC_AR8151:
    533 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    534 		/*
    535 		 * GPHY power down caused more problems on AR8151 v2.0.
    536 		 * When driver is reloaded after GPHY power down,
    537 		 * accesses to PHY/MAC registers hung the system. Only
    538 		 * cold boot recovered from it.  I'm not sure whether
    539 		 * AR8151 v1.0 also requires this one though.  I don't
    540 		 * have AR8151 v1.0 controller in hand.
    541 		 * The only option left is to isolate the PHY and
    542 		 * initiates power down the PHY which in turn saves
    543 		 * more power when driver is unloaded.
    544 		 */
    545 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
    546 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
    547 		break;
    548 	default:
    549 		/* Force PHY down. */
    550 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
    551 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
    552 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
    553 		    GPHY_CFG_PWDOWN_HW);
    554 		DELAY(1000);
    555 		break;
    556 	}
    557 }
    558 
    559 static void
    560 alc_aspm(struct alc_softc *sc, int media)
    561 {
    562 	uint32_t pmcfg;
    563 	uint16_t linkcfg;
    564 
    565 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
    566 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
    567 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
    568 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
    569 		    PCI_PCIE_LCSR);
    570 	else
    571 		linkcfg = 0;
    572 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
    573 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
    574 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
    575 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
    576 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    577 
    578 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    579 		/* Disable extended sync except AR8152 B v1.0 */
    580 		linkcfg &= ~0x80;
    581 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    582 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
    583 			linkcfg |= 0x80;
    584 		CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
    585 		    linkcfg);
    586 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
    587 		    PM_CFG_HOTRST);
    588 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
    589 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    590 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
    591 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
    592 		    PM_CFG_PM_REQ_TIMER_SHIFT);
    593 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
    594 	}
    595 
    596 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
    597 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
    598 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
    599 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    600 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    601 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
    602 			if (sc->alc_ident->deviceid ==
    603 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
    604 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
    605 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
    606 			    PM_CFG_SERDES_PLL_L1_ENB |
    607 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
    608 			pmcfg |= PM_CFG_CLK_SWH_L1;
    609 			if (media == IFM_100_TX || media == IFM_1000_T) {
    610 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
    611 				switch (sc->alc_ident->deviceid) {
    612 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
    613 					pmcfg |= (7 <<
    614 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    615 					break;
    616 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    617 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    618 					pmcfg |= (4 <<
    619 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    620 					break;
    621 				default:
    622 					pmcfg |= (15 <<
    623 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
    624 					break;
    625 				}
    626 			}
    627 		} else {
    628 			pmcfg |= PM_CFG_SERDES_L1_ENB |
    629 			    PM_CFG_SERDES_PLL_L1_ENB |
    630 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
    631 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
    632 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
    633 		}
    634 	} else {
    635 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
    636 		    PM_CFG_SERDES_PLL_L1_ENB);
    637 		pmcfg |= PM_CFG_CLK_SWH_L1;
    638 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
    639 			pmcfg |= PM_CFG_ASPM_L1_ENB;
    640 	}
    641 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
    642 }
    643 
    644 static void
    645 alc_attach(device_t parent, device_t self, void *aux)
    646 {
    647 
    648 	struct alc_softc *sc = device_private(self);
    649 	struct pci_attach_args *pa = aux;
    650 	pci_chipset_tag_t pc = pa->pa_pc;
    651 	pci_intr_handle_t ih;
    652 	const char *intrstr;
    653 	struct ifnet *ifp;
    654 	pcireg_t memtype;
    655 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
    656 	uint16_t burst;
    657 	int base, mii_flags, state, error = 0;
    658 	uint32_t cap, ctl, val;
    659 
    660 	sc->alc_ident = alc_find_ident(pa);
    661 
    662 	aprint_naive("\n");
    663 	aprint_normal(": %s\n", sc->alc_ident->name);
    664 
    665 	sc->sc_dev = self;
    666 	sc->sc_dmat = pa->pa_dmat;
    667 	sc->sc_pct = pa->pa_pc;
    668 	sc->sc_pcitag = pa->pa_tag;
    669 
    670 	/*
    671 	 * Allocate IO memory
    672 	 */
    673 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
    674 	switch (memtype) {
    675 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    676 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    677 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    678 		break;
    679 	default:
    680 		aprint_error_dev(self, "invalid base address register\n");
    681 		break;
    682 	}
    683 
    684 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    685 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
    686 		aprint_error_dev(self, "could not map mem space\n");
    687 		return;
    688 	}
    689 
    690 	if (pci_intr_map(pa, &ih) != 0) {
    691 		printf(": can't map interrupt\n");
    692 		goto fail;
    693 	}
    694 
    695 	/*
    696 	 * Allocate IRQ
    697 	 */
    698 	intrstr = pci_intr_string(sc->sc_pct, ih);
    699 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
    700 	if (sc->sc_irq_handle == NULL) {
    701 		printf(": could not establish interrupt");
    702 		if (intrstr != NULL)
    703 			printf(" at %s", intrstr);
    704 		printf("\n");
    705 		goto fail;
    706 	}
    707 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    708 
    709 	/* Set PHY address. */
    710 	sc->alc_phyaddr = ALC_PHY_ADDR;
    711 
    712 	/* Initialize DMA parameters. */
    713 	sc->alc_dma_rd_burst = 0;
    714 	sc->alc_dma_wr_burst = 0;
    715 	sc->alc_rcb = DMA_CFG_RCB_64;
    716 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    717 	    &base, NULL)) {
    718 		sc->alc_flags |= ALC_FLAG_PCIE;
    719 		sc->alc_expcap = base;
    720 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    721 		    base + PCI_PCIE_DCSR) >> 16;
    722 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
    723 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
    724 		if (alcdebug) {
    725 			printf("%s: Read request size : %u bytes.\n",
    726 			    device_xname(sc->sc_dev),
    727 			    alc_dma_burst[sc->alc_dma_rd_burst]);
    728 			printf("%s: TLP payload size : %u bytes.\n",
    729 			    device_xname(sc->sc_dev),
    730 			    alc_dma_burst[sc->alc_dma_wr_burst]);
    731 		}
    732 		/* Clear data link and flow-control protocol error. */
    733 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
    734 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
    735 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
    736 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
    737 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
    738 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
    739 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
    740 		    PCIE_PHYMISC_FORCE_RCV_DET);
    741 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
    742 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
    743 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
    744 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
    745 			    PCIE_PHYMISC2_SERDES_TH_MASK);
    746 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
    747 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
    748 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
    749 		}
    750 		/* Disable ASPM L0S and L1. */
    751 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    752 		    base + PCI_PCIE_LCAP) >> 16;
    753 		if ((cap & 0x00000c00) != 0) {
    754 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
    755 			    base + PCI_PCIE_LCSR) >> 16;
    756 			if ((ctl & 0x08) != 0)
    757 				sc->alc_rcb = DMA_CFG_RCB_128;
    758 			if (alcdebug)
    759 				printf("%s: RCB %u bytes\n",
    760 				    device_xname(sc->sc_dev),
    761 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
    762 			state = ctl & 0x03;
    763 			if (state & 0x01)
    764 				sc->alc_flags |= ALC_FLAG_L0S;
    765 			if (state & 0x02)
    766 				sc->alc_flags |= ALC_FLAG_L1S;
    767 			if (alcdebug)
    768 				printf("%s: ASPM %s %s\n",
    769 				    device_xname(sc->sc_dev),
    770 				    aspm_state[state],
    771 				    state == 0 ? "disabled" : "enabled");
    772 			alc_disable_l0s_l1(sc);
    773 		} else {
    774 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
    775 		}
    776 	}
    777 
    778 	/* Reset PHY. */
    779 	alc_phy_reset(sc);
    780 
    781 	/* Reset the ethernet controller. */
    782 	alc_reset(sc);
    783 
    784 	/*
    785 	 * One odd thing is AR8132 uses the same PHY hardware(F1
    786 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
    787 	 * the PHY supports 1000Mbps but that's not true. The PHY
    788 	 * used in AR8132 can't establish gigabit link even if it
    789 	 * shows the same PHY model/revision number of AR8131.
    790 	 */
    791 	switch (sc->alc_ident->deviceid) {
    792 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
    793 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
    794 		sc->alc_flags |= ALC_FLAG_APS;
    795 		/* FALLTHROUGH */
    796 	case PCI_PRODUCT_ATTANSIC_AR8132:
    797 		sc->alc_flags |= ALC_FLAG_FASTETHER;
    798 		break;
    799 	case PCI_PRODUCT_ATTANSIC_AR8151:
    800 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
    801 		sc->alc_flags |= ALC_FLAG_APS;
    802 		/* FALLTHROUGH */
    803 	default:
    804 		break;
    805 	}
    806 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
    807 
    808 	/*
    809 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
    810 	 * addition, Atheros said that enabling SMB wouldn't improve
    811 	 * performance. However I think it's bad to access lots of
    812 	 * registers to extract MAC statistics.
    813 	 */
    814 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
    815 	/*
    816 	 * Don't use Tx CMB. It is known to have silicon bug.
    817 	 */
    818 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
    819 	sc->alc_rev = PCI_REVISION(pa->pa_class);
    820 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
    821 	    MASTER_CHIP_REV_SHIFT;
    822 	if (alcdebug) {
    823 		printf("%s: PCI device revision : 0x%04x\n",
    824 		    device_xname(sc->sc_dev), sc->alc_rev);
    825 		printf("%s: Chip id/revision : 0x%04x\n",
    826 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
    827 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
    828 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
    829 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
    830 	}
    831 
    832 	error = alc_dma_alloc(sc);
    833 	if (error)
    834 		goto fail;
    835 
    836 	callout_init(&sc->sc_tick_ch, 0);
    837 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
    838 
    839 	/* Load station address. */
    840 	alc_get_macaddr(sc);
    841 
    842 	aprint_normal_dev(self, "Ethernet address %s\n",
    843 	    ether_sprintf(sc->alc_eaddr));
    844 
    845 	ifp = &sc->sc_ec.ec_if;
    846 	ifp->if_softc = sc;
    847 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    848 	ifp->if_init = alc_init;
    849 	ifp->if_ioctl = alc_ioctl;
    850 	ifp->if_start = alc_start;
    851 	ifp->if_stop = alc_stop;
    852 	ifp->if_watchdog = alc_watchdog;
    853 	ifp->if_baudrate = IF_Gbps(1);
    854 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
    855 	IFQ_SET_READY(&ifp->if_snd);
    856 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    857 
    858 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    859 
    860 #ifdef ALC_CHECKSUM
    861 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    862 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    863 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    864 #endif
    865 
    866 #if NVLAN > 0
    867 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    868 #endif
    869 
    870 	/* Set up MII bus. */
    871 	sc->sc_miibus.mii_ifp = ifp;
    872 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
    873 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
    874 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
    875 
    876 	sc->sc_ec.ec_mii = &sc->sc_miibus;
    877 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
    878 	    alc_mediastatus);
    879 	mii_flags = 0;
    880 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
    881 		mii_flags |= MIIF_DOPAUSE;
    882 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
    883 		MII_OFFSET_ANY, mii_flags);
    884 
    885 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
    886 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
    887 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
    888 		    0, NULL);
    889 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
    890 	} else
    891 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
    892 
    893 	if_attach(ifp);
    894 	ether_ifattach(ifp, sc->alc_eaddr);
    895 
    896 	if (!pmf_device_register(self, NULL, NULL))
    897 		aprint_error_dev(self, "couldn't establish power handler\n");
    898 	else
    899 		pmf_class_network_register(self, ifp);
    900 
    901 	return;
    902 fail:
    903 	alc_dma_free(sc);
    904 	if (sc->sc_irq_handle != NULL) {
    905 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    906 		sc->sc_irq_handle = NULL;
    907 	}
    908 	if (sc->sc_mem_size) {
    909 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    910 		sc->sc_mem_size = 0;
    911 	}
    912 }
    913 
    914 static int
    915 alc_detach(device_t self, int flags)
    916 {
    917 	struct alc_softc *sc = device_private(self);
    918 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    919 	int s;
    920 
    921 	s = splnet();
    922 	alc_stop(ifp, 0);
    923 	splx(s);
    924 
    925 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    926 
    927 	/* Delete all remaining media. */
    928 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
    929 
    930 	ether_ifdetach(ifp);
    931 	if_detach(ifp);
    932 	alc_dma_free(sc);
    933 
    934 	alc_phy_down(sc);
    935 	if (sc->sc_irq_handle != NULL) {
    936 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    937 		sc->sc_irq_handle = NULL;
    938 	}
    939 	if (sc->sc_mem_size) {
    940 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    941 		sc->sc_mem_size = 0;
    942 	}
    943 
    944 	return (0);
    945 }
    946 
    947 static int
    948 alc_dma_alloc(struct alc_softc *sc)
    949 {
    950 	struct alc_txdesc *txd;
    951 	struct alc_rxdesc *rxd;
    952 	int nsegs, error, i;
    953 
    954 	/*
    955 	 * Create DMA stuffs for TX ring
    956 	 */
    957 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
    958 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
    959 	if (error) {
    960 		sc->alc_cdata.alc_tx_ring_map = NULL;
    961 		return (ENOBUFS);
    962 	}
    963 
    964 	/* Allocate DMA'able memory for TX ring */
    965 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
    966 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
    967 	    &nsegs, BUS_DMA_NOWAIT);
    968 	if (error) {
    969 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
    970 		    device_xname(sc->sc_dev));
    971 		return error;
    972 	}
    973 
    974 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
    975 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
    976 	    BUS_DMA_NOWAIT);
    977 	if (error)
    978 		return (ENOBUFS);
    979 
    980 	/* Load the DMA map for Tx ring. */
    981 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
    982 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
    983 	if (error) {
    984 		printf("%s: could not load DMA'able memory for Tx ring.\n",
    985 		    device_xname(sc->sc_dev));
    986 		bus_dmamem_free(sc->sc_dmat,
    987 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
    988 		return error;
    989 	}
    990 
    991 	sc->alc_rdata.alc_tx_ring_paddr =
    992 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
    993 
    994 	/*
    995 	 * Create DMA stuffs for RX ring
    996 	 */
    997 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
    998 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
    999 	if (error)
   1000 		return (ENOBUFS);
   1001 
   1002 	/* Allocate DMA'able memory for RX ring */
   1003 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
   1004 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
   1005 	    &nsegs, BUS_DMA_NOWAIT);
   1006 	if (error) {
   1007 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
   1008 		    device_xname(sc->sc_dev));
   1009 		return error;
   1010 	}
   1011 
   1012 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
   1013 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
   1014 	    BUS_DMA_NOWAIT);
   1015 	if (error)
   1016 		return (ENOBUFS);
   1017 
   1018 	/* Load the DMA map for Rx ring. */
   1019 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
   1020 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
   1021 	if (error) {
   1022 		printf("%s: could not load DMA'able memory for Rx ring.\n",
   1023 		    device_xname(sc->sc_dev));
   1024 		bus_dmamem_free(sc->sc_dmat,
   1025 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1026 		return error;
   1027 	}
   1028 
   1029 	sc->alc_rdata.alc_rx_ring_paddr =
   1030 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
   1031 
   1032 	/*
   1033 	 * Create DMA stuffs for RX return ring
   1034 	 */
   1035 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
   1036 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
   1037 	if (error)
   1038 		return (ENOBUFS);
   1039 
   1040 	/* Allocate DMA'able memory for RX return ring */
   1041 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
   1042 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
   1043 	    &nsegs, BUS_DMA_NOWAIT);
   1044 	if (error) {
   1045 		printf("%s: could not allocate DMA'able memory for Rx "
   1046 		    "return ring.\n", device_xname(sc->sc_dev));
   1047 		return error;
   1048 	}
   1049 
   1050 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
   1051 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
   1052 	    BUS_DMA_NOWAIT);
   1053 	if (error)
   1054 		return (ENOBUFS);
   1055 
   1056 	/*  Load the DMA map for Rx return ring. */
   1057 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
   1058 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
   1059 	if (error) {
   1060 		printf("%s: could not load DMA'able memory for Rx return ring."
   1061 		    "\n", device_xname(sc->sc_dev));
   1062 		bus_dmamem_free(sc->sc_dmat,
   1063 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1064 		return error;
   1065 	}
   1066 
   1067 	sc->alc_rdata.alc_rr_ring_paddr =
   1068 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
   1069 
   1070 	/*
   1071 	 * Create DMA stuffs for CMB block
   1072 	 */
   1073 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
   1074 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
   1075 	    &sc->alc_cdata.alc_cmb_map);
   1076 	if (error)
   1077 		return (ENOBUFS);
   1078 
   1079 	/* Allocate DMA'able memory for CMB block */
   1080 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
   1081 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
   1082 	    &nsegs, BUS_DMA_NOWAIT);
   1083 	if (error) {
   1084 		printf("%s: could not allocate DMA'able memory for "
   1085 		    "CMB block\n", device_xname(sc->sc_dev));
   1086 		return error;
   1087 	}
   1088 
   1089 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
   1090 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
   1091 	    BUS_DMA_NOWAIT);
   1092 	if (error)
   1093 		return (ENOBUFS);
   1094 
   1095 	/*  Load the DMA map for CMB block. */
   1096 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
   1097 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
   1098 	    BUS_DMA_WAITOK);
   1099 	if (error) {
   1100 		printf("%s: could not load DMA'able memory for CMB block\n",
   1101 		    device_xname(sc->sc_dev));
   1102 		bus_dmamem_free(sc->sc_dmat,
   1103 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1104 		return error;
   1105 	}
   1106 
   1107 	sc->alc_rdata.alc_cmb_paddr =
   1108 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
   1109 
   1110 	/*
   1111 	 * Create DMA stuffs for SMB block
   1112 	 */
   1113 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
   1114 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
   1115 	    &sc->alc_cdata.alc_smb_map);
   1116 	if (error)
   1117 		return (ENOBUFS);
   1118 
   1119 	/* Allocate DMA'able memory for SMB block */
   1120 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
   1121 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
   1122 	    &nsegs, BUS_DMA_NOWAIT);
   1123 	if (error) {
   1124 		printf("%s: could not allocate DMA'able memory for "
   1125 		    "SMB block\n", device_xname(sc->sc_dev));
   1126 		return error;
   1127 	}
   1128 
   1129 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
   1130 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
   1131 	    BUS_DMA_NOWAIT);
   1132 	if (error)
   1133 		return (ENOBUFS);
   1134 
   1135 	/*  Load the DMA map for SMB block */
   1136 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
   1137 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
   1138 	    BUS_DMA_WAITOK);
   1139 	if (error) {
   1140 		printf("%s: could not load DMA'able memory for SMB block\n",
   1141 		    device_xname(sc->sc_dev));
   1142 		bus_dmamem_free(sc->sc_dmat,
   1143 		    &sc->alc_rdata.alc_smb_seg, 1);
   1144 		return error;
   1145 	}
   1146 
   1147 	sc->alc_rdata.alc_smb_paddr =
   1148 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
   1149 
   1150 
   1151 	/* Create DMA maps for Tx buffers. */
   1152 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1153 		txd = &sc->alc_cdata.alc_txdesc[i];
   1154 		txd->tx_m = NULL;
   1155 		txd->tx_dmamap = NULL;
   1156 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
   1157 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
   1158 		    &txd->tx_dmamap);
   1159 		if (error) {
   1160 			printf("%s: could not create Tx dmamap.\n",
   1161 			    device_xname(sc->sc_dev));
   1162 			return error;
   1163 		}
   1164 	}
   1165 
   1166 	/* Create DMA maps for Rx buffers. */
   1167 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
   1168 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
   1169 	if (error) {
   1170 		printf("%s: could not create spare Rx dmamap.\n",
   1171 		    device_xname(sc->sc_dev));
   1172 		return error;
   1173 	}
   1174 
   1175 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1176 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1177 		rxd->rx_m = NULL;
   1178 		rxd->rx_dmamap = NULL;
   1179 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1180 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
   1181 		if (error) {
   1182 			printf("%s: could not create Rx dmamap.\n",
   1183 			    device_xname(sc->sc_dev));
   1184 			return error;
   1185 		}
   1186 	}
   1187 
   1188 	return (0);
   1189 }
   1190 
   1191 
   1192 static void
   1193 alc_dma_free(struct alc_softc *sc)
   1194 {
   1195 	struct alc_txdesc *txd;
   1196 	struct alc_rxdesc *rxd;
   1197 	int i;
   1198 
   1199 	/* Tx buffers */
   1200 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   1201 		txd = &sc->alc_cdata.alc_txdesc[i];
   1202 		if (txd->tx_dmamap != NULL) {
   1203 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
   1204 			txd->tx_dmamap = NULL;
   1205 		}
   1206 	}
   1207 	/* Rx buffers */
   1208 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   1209 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   1210 		if (rxd->rx_dmamap != NULL) {
   1211 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
   1212 			rxd->rx_dmamap = NULL;
   1213 		}
   1214 	}
   1215 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
   1216 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
   1217 		sc->alc_cdata.alc_rx_sparemap = NULL;
   1218 	}
   1219 
   1220 	/* Tx ring. */
   1221 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
   1222 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
   1223 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
   1224 	    sc->alc_rdata.alc_tx_ring != NULL)
   1225 		bus_dmamem_free(sc->sc_dmat,
   1226 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
   1227 	sc->alc_rdata.alc_tx_ring = NULL;
   1228 	sc->alc_cdata.alc_tx_ring_map = NULL;
   1229 
   1230 	/* Rx ring. */
   1231 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
   1232 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
   1233 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
   1234 	    sc->alc_rdata.alc_rx_ring != NULL)
   1235 		bus_dmamem_free(sc->sc_dmat,
   1236 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
   1237 	sc->alc_rdata.alc_rx_ring = NULL;
   1238 	sc->alc_cdata.alc_rx_ring_map = NULL;
   1239 
   1240 	/* Rx return ring. */
   1241 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
   1242 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
   1243 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
   1244 	    sc->alc_rdata.alc_rr_ring != NULL)
   1245 		bus_dmamem_free(sc->sc_dmat,
   1246 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
   1247 	sc->alc_rdata.alc_rr_ring = NULL;
   1248 	sc->alc_cdata.alc_rr_ring_map = NULL;
   1249 
   1250 	/* CMB block */
   1251 	if (sc->alc_cdata.alc_cmb_map != NULL)
   1252 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
   1253 	if (sc->alc_cdata.alc_cmb_map != NULL &&
   1254 	    sc->alc_rdata.alc_cmb != NULL)
   1255 		bus_dmamem_free(sc->sc_dmat,
   1256 		    &sc->alc_rdata.alc_cmb_seg, 1);
   1257 	sc->alc_rdata.alc_cmb = NULL;
   1258 	sc->alc_cdata.alc_cmb_map = NULL;
   1259 
   1260 	/* SMB block */
   1261 	if (sc->alc_cdata.alc_smb_map != NULL)
   1262 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
   1263 	if (sc->alc_cdata.alc_smb_map != NULL &&
   1264 	    sc->alc_rdata.alc_smb != NULL)
   1265 		bus_dmamem_free(sc->sc_dmat,
   1266 		    &sc->alc_rdata.alc_smb_seg, 1);
   1267 	sc->alc_rdata.alc_smb = NULL;
   1268 	sc->alc_cdata.alc_smb_map = NULL;
   1269 }
   1270 
   1271 static int
   1272 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
   1273 {
   1274 	struct alc_txdesc *txd, *txd_last;
   1275 	struct tx_desc *desc;
   1276 	struct mbuf *m;
   1277 	bus_dmamap_t map;
   1278 	uint32_t cflags, poff, vtag;
   1279 	int error, idx, nsegs, prod;
   1280 #if NVLAN > 0
   1281 	struct m_tag *mtag;
   1282 #endif
   1283 
   1284 	m = *m_head;
   1285 	cflags = vtag = 0;
   1286 	poff = 0;
   1287 
   1288 	prod = sc->alc_cdata.alc_tx_prod;
   1289 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1290 	txd_last = txd;
   1291 	map = txd->tx_dmamap;
   1292 
   1293 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
   1294 
   1295 	if (error == EFBIG) {
   1296 		error = 0;
   1297 
   1298 		*m_head = m_pullup(*m_head, MHLEN);
   1299 		if (*m_head == NULL) {
   1300 			printf("%s: can't defrag TX mbuf\n",
   1301 			    device_xname(sc->sc_dev));
   1302 			return ENOBUFS;
   1303 		}
   1304 
   1305 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
   1306 		    BUS_DMA_NOWAIT);
   1307 
   1308 		if (error != 0) {
   1309 			printf("%s: could not load defragged TX mbuf\n",
   1310 			    device_xname(sc->sc_dev));
   1311 			m_freem(*m_head);
   1312 			*m_head = NULL;
   1313 			return error;
   1314 		}
   1315 	} else if (error) {
   1316 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
   1317 		return (error);
   1318 	}
   1319 
   1320 	nsegs = map->dm_nsegs;
   1321 
   1322 	if (nsegs == 0) {
   1323 		m_freem(*m_head);
   1324 		*m_head = NULL;
   1325 		return (EIO);
   1326 	}
   1327 
   1328 	/* Check descriptor overrun. */
   1329 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
   1330 		bus_dmamap_unload(sc->sc_dmat, map);
   1331 		return (ENOBUFS);
   1332 	}
   1333 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1334 	    BUS_DMASYNC_PREWRITE);
   1335 
   1336 	m = *m_head;
   1337 	desc = NULL;
   1338 	idx = 0;
   1339 #if NVLAN > 0
   1340 	/* Configure VLAN hardware tag insertion. */
   1341 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
   1342 		vtag = htons(VLAN_TAG_VALUE(mtag));
   1343 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
   1344 		cflags |= TD_INS_VLAN_TAG;
   1345 	}
   1346 #endif
   1347 	/* Configure Tx checksum offload. */
   1348 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
   1349 		cflags |= TD_CUSTOM_CSUM;
   1350 		/* Set checksum start offset. */
   1351 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
   1352 		    TD_PLOAD_OFFSET_MASK;
   1353 	}
   1354 	for (; idx < nsegs; idx++) {
   1355 		desc = &sc->alc_rdata.alc_tx_ring[prod];
   1356 		desc->len =
   1357 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
   1358 		desc->flags = htole32(cflags);
   1359 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
   1360 		sc->alc_cdata.alc_tx_cnt++;
   1361 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
   1362 	}
   1363 	/* Update producer index. */
   1364 	sc->alc_cdata.alc_tx_prod = prod;
   1365 
   1366 	/* Finally set EOP on the last descriptor. */
   1367 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
   1368 	desc = &sc->alc_rdata.alc_tx_ring[prod];
   1369 	desc->flags |= htole32(TD_EOP);
   1370 
   1371 	/* Swap dmamap of the first and the last. */
   1372 	txd = &sc->alc_cdata.alc_txdesc[prod];
   1373 	map = txd_last->tx_dmamap;
   1374 	txd_last->tx_dmamap = txd->tx_dmamap;
   1375 	txd->tx_dmamap = map;
   1376 	txd->tx_m = m;
   1377 
   1378 	return (0);
   1379 }
   1380 
   1381 static void
   1382 alc_start(struct ifnet *ifp)
   1383 {
   1384 	struct alc_softc *sc = ifp->if_softc;
   1385 	struct mbuf *m_head;
   1386 	int enq;
   1387 
   1388 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1389 		return;
   1390 
   1391 	/* Reclaim transmitted frames. */
   1392 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
   1393 		alc_txeof(sc);
   1394 
   1395 	enq = 0;
   1396 	for (;;) {
   1397 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1398 		if (m_head == NULL)
   1399 			break;
   1400 
   1401 		/*
   1402 		 * Pack the data into the transmit ring. If we
   1403 		 * don't have room, set the OACTIVE flag and wait
   1404 		 * for the NIC to drain the ring.
   1405 		 */
   1406 		if (alc_encap(sc, &m_head)) {
   1407 			if (m_head == NULL)
   1408 				break;
   1409 			ifp->if_flags |= IFF_OACTIVE;
   1410 			break;
   1411 		}
   1412 		enq = 1;
   1413 
   1414 		/*
   1415 		 * If there's a BPF listener, bounce a copy of this frame
   1416 		 * to him.
   1417 		 */
   1418 		bpf_mtap(ifp, m_head);
   1419 	}
   1420 
   1421 	if (enq) {
   1422 		/* Sync descriptors. */
   1423 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1424 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1425 		    BUS_DMASYNC_PREWRITE);
   1426 		/* Kick. Assume we're using normal Tx priority queue. */
   1427 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
   1428 		    (sc->alc_cdata.alc_tx_prod <<
   1429 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
   1430 		    MBOX_TD_PROD_LO_IDX_MASK);
   1431 		/* Set a timeout in case the chip goes out to lunch. */
   1432 		ifp->if_timer = ALC_TX_TIMEOUT;
   1433 	}
   1434 }
   1435 
   1436 static void
   1437 alc_watchdog(struct ifnet *ifp)
   1438 {
   1439 	struct alc_softc *sc = ifp->if_softc;
   1440 
   1441 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
   1442 		printf("%s: watchdog timeout (missed link)\n",
   1443 		    device_xname(sc->sc_dev));
   1444 		ifp->if_oerrors++;
   1445 		alc_init(ifp);
   1446 		return;
   1447 	}
   1448 
   1449 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1450 	ifp->if_oerrors++;
   1451 	alc_init(ifp);
   1452 
   1453 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1454 		 alc_start(ifp);
   1455 }
   1456 
   1457 static int
   1458 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1459 {
   1460 	struct alc_softc *sc = ifp->if_softc;
   1461 	int s, error = 0;
   1462 
   1463 	s = splnet();
   1464 
   1465 	error = ether_ioctl(ifp, cmd, data);
   1466 	if (error == ENETRESET) {
   1467 		if (ifp->if_flags & IFF_RUNNING)
   1468 			alc_iff(sc);
   1469 		error = 0;
   1470 	}
   1471 
   1472 	splx(s);
   1473 	return (error);
   1474 }
   1475 
   1476 static void
   1477 alc_mac_config(struct alc_softc *sc)
   1478 {
   1479 	struct mii_data *mii;
   1480 	uint32_t reg;
   1481 
   1482 	mii = &sc->sc_miibus;
   1483 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   1484 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
   1485 	    MAC_CFG_SPEED_MASK);
   1486 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   1487 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   1488 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   1489 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   1490 	/* Reprogram MAC with resolved speed/duplex. */
   1491 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1492 	case IFM_10_T:
   1493 	case IFM_100_TX:
   1494 		reg |= MAC_CFG_SPEED_10_100;
   1495 		break;
   1496 	case IFM_1000_T:
   1497 		reg |= MAC_CFG_SPEED_1000;
   1498 		break;
   1499 	}
   1500 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1501 		reg |= MAC_CFG_FULL_DUPLEX;
   1502 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1503 			reg |= MAC_CFG_TX_FC;
   1504 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1505 			reg |= MAC_CFG_RX_FC;
   1506 	}
   1507 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   1508 }
   1509 
   1510 static void
   1511 alc_stats_clear(struct alc_softc *sc)
   1512 {
   1513 	struct smb sb, *smb;
   1514 	uint32_t *reg;
   1515 	int i;
   1516 
   1517 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1518 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1519 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1520 		    BUS_DMASYNC_POSTREAD);
   1521 		smb = sc->alc_rdata.alc_smb;
   1522 		/* Update done, clear. */
   1523 		smb->updated = 0;
   1524 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1525 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1526 		    BUS_DMASYNC_PREWRITE);
   1527 	} else {
   1528 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1529 		    reg++) {
   1530 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1531 			i += sizeof(uint32_t);
   1532 		}
   1533 		/* Read Tx statistics. */
   1534 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1535 		    reg++) {
   1536 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1537 			i += sizeof(uint32_t);
   1538 		}
   1539 	}
   1540 }
   1541 
   1542 static void
   1543 alc_stats_update(struct alc_softc *sc)
   1544 {
   1545 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1546 	struct alc_hw_stats *stat;
   1547 	struct smb sb, *smb;
   1548 	uint32_t *reg;
   1549 	int i;
   1550 
   1551 	stat = &sc->alc_stats;
   1552 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1553 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1554 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
   1555 		    BUS_DMASYNC_POSTREAD);
   1556 		smb = sc->alc_rdata.alc_smb;
   1557 		if (smb->updated == 0)
   1558 			return;
   1559 	} else {
   1560 		smb = &sb;
   1561 		/* Read Rx statistics. */
   1562 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
   1563 		    reg++) {
   1564 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
   1565 			i += sizeof(uint32_t);
   1566 		}
   1567 		/* Read Tx statistics. */
   1568 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
   1569 		    reg++) {
   1570 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
   1571 			i += sizeof(uint32_t);
   1572 		}
   1573 	}
   1574 
   1575 	/* Rx stats. */
   1576 	stat->rx_frames += smb->rx_frames;
   1577 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   1578 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   1579 	stat->rx_pause_frames += smb->rx_pause_frames;
   1580 	stat->rx_control_frames += smb->rx_control_frames;
   1581 	stat->rx_crcerrs += smb->rx_crcerrs;
   1582 	stat->rx_lenerrs += smb->rx_lenerrs;
   1583 	stat->rx_bytes += smb->rx_bytes;
   1584 	stat->rx_runts += smb->rx_runts;
   1585 	stat->rx_fragments += smb->rx_fragments;
   1586 	stat->rx_pkts_64 += smb->rx_pkts_64;
   1587 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   1588 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   1589 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   1590 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   1591 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   1592 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   1593 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   1594 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   1595 	stat->rx_rrs_errs += smb->rx_rrs_errs;
   1596 	stat->rx_alignerrs += smb->rx_alignerrs;
   1597 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   1598 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   1599 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   1600 
   1601 	/* Tx stats. */
   1602 	stat->tx_frames += smb->tx_frames;
   1603 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   1604 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   1605 	stat->tx_pause_frames += smb->tx_pause_frames;
   1606 	stat->tx_excess_defer += smb->tx_excess_defer;
   1607 	stat->tx_control_frames += smb->tx_control_frames;
   1608 	stat->tx_deferred += smb->tx_deferred;
   1609 	stat->tx_bytes += smb->tx_bytes;
   1610 	stat->tx_pkts_64 += smb->tx_pkts_64;
   1611 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   1612 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   1613 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   1614 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   1615 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   1616 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   1617 	stat->tx_single_colls += smb->tx_single_colls;
   1618 	stat->tx_multi_colls += smb->tx_multi_colls;
   1619 	stat->tx_late_colls += smb->tx_late_colls;
   1620 	stat->tx_excess_colls += smb->tx_excess_colls;
   1621 	stat->tx_abort += smb->tx_abort;
   1622 	stat->tx_underrun += smb->tx_underrun;
   1623 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   1624 	stat->tx_lenerrs += smb->tx_lenerrs;
   1625 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   1626 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   1627 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   1628 
   1629 	/* Update counters in ifnet. */
   1630 	ifp->if_opackets += smb->tx_frames;
   1631 
   1632 	ifp->if_collisions += smb->tx_single_colls +
   1633 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
   1634 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
   1635 
   1636 	/*
   1637 	 * XXX
   1638 	 * tx_pkts_truncated counter looks suspicious. It constantly
   1639 	 * increments with no sign of Tx errors. This may indicate
   1640 	 * the counter name is not correct one so I've removed the
   1641 	 * counter in output errors.
   1642 	 */
   1643 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
   1644 	    smb->tx_underrun;
   1645 
   1646 	ifp->if_ipackets += smb->rx_frames;
   1647 
   1648 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
   1649 	    smb->rx_runts + smb->rx_pkts_truncated +
   1650 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
   1651 	    smb->rx_alignerrs;
   1652 
   1653 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
   1654 		/* Update done, clear. */
   1655 		smb->updated = 0;
   1656 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   1657 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1658 	}
   1659 }
   1660 
   1661 static int
   1662 alc_intr(void *arg)
   1663 {
   1664 	struct alc_softc *sc = arg;
   1665 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1666 	uint32_t status;
   1667 
   1668 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
   1669 	if ((status & ALC_INTRS) == 0)
   1670 		return (0);
   1671 
   1672 	/* Acknowledge and disable interrupts. */
   1673 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
   1674 
   1675 	if (ifp->if_flags & IFF_RUNNING) {
   1676 		if (status & INTR_RX_PKT) {
   1677 			int error;
   1678 
   1679 			error = alc_rxintr(sc);
   1680 			if (error) {
   1681 				alc_init(ifp);
   1682 				return (0);
   1683 			}
   1684 		}
   1685 
   1686 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
   1687 		    INTR_TXQ_TO_RST)) {
   1688 			if (status & INTR_DMA_RD_TO_RST)
   1689 				printf("%s: DMA read error! -- resetting\n",
   1690 				    device_xname(sc->sc_dev));
   1691 			if (status & INTR_DMA_WR_TO_RST)
   1692 				printf("%s: DMA write error! -- resetting\n",
   1693 				    device_xname(sc->sc_dev));
   1694 			if (status & INTR_TXQ_TO_RST)
   1695 				printf("%s: TxQ reset! -- resetting\n",
   1696 				    device_xname(sc->sc_dev));
   1697 			alc_init(ifp);
   1698 			return (0);
   1699 		}
   1700 
   1701 		alc_txeof(sc);
   1702 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1703 			alc_start(ifp);
   1704 	}
   1705 
   1706 	/* Re-enable interrupts. */
   1707 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
   1708 	return (1);
   1709 }
   1710 
   1711 static void
   1712 alc_txeof(struct alc_softc *sc)
   1713 {
   1714 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1715 	struct alc_txdesc *txd;
   1716 	uint32_t cons, prod;
   1717 	int prog;
   1718 
   1719 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1720 		return;
   1721 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   1722 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
   1723 	    BUS_DMASYNC_POSTREAD);
   1724 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
   1725 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1726 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
   1727 		    BUS_DMASYNC_POSTREAD);
   1728 		prod = sc->alc_rdata.alc_cmb->cons;
   1729 	} else
   1730 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
   1731 	/* Assume we're using normal Tx priority queue. */
   1732 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
   1733 	    MBOX_TD_CONS_LO_IDX_SHIFT;
   1734 	cons = sc->alc_cdata.alc_tx_cons;
   1735 	/*
   1736 	 * Go through our Tx list and free mbufs for those
   1737 	 * frames which have been transmitted.
   1738 	 */
   1739 	for (prog = 0; cons != prod; prog++,
   1740 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
   1741 		if (sc->alc_cdata.alc_tx_cnt <= 0)
   1742 			break;
   1743 		prog++;
   1744 		ifp->if_flags &= ~IFF_OACTIVE;
   1745 		sc->alc_cdata.alc_tx_cnt--;
   1746 		txd = &sc->alc_cdata.alc_txdesc[cons];
   1747 		if (txd->tx_m != NULL) {
   1748 			/* Reclaim transmitted mbufs. */
   1749 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1750 			m_freem(txd->tx_m);
   1751 			txd->tx_m = NULL;
   1752 		}
   1753 	}
   1754 
   1755 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   1756 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   1757 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1758 	sc->alc_cdata.alc_tx_cons = cons;
   1759 	/*
   1760 	 * Unarm watchdog timer only when there is no pending
   1761 	 * frames in Tx queue.
   1762 	 */
   1763 	if (sc->alc_cdata.alc_tx_cnt == 0)
   1764 		ifp->if_timer = 0;
   1765 }
   1766 
   1767 static int
   1768 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, int init)
   1769 {
   1770 	struct mbuf *m;
   1771 	bus_dmamap_t map;
   1772 	int error;
   1773 
   1774 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
   1775 	if (m == NULL)
   1776 		return (ENOBUFS);
   1777 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
   1778 	if (!(m->m_flags & M_EXT)) {
   1779 		m_freem(m);
   1780 		return (ENOBUFS);
   1781 	}
   1782 
   1783 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
   1784 
   1785 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1786 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
   1787 
   1788 	if (error != 0) {
   1789 		if (!error) {
   1790 			bus_dmamap_unload(sc->sc_dmat,
   1791 			    sc->alc_cdata.alc_rx_sparemap);
   1792 			error = EFBIG;
   1793 			printf("%s: too many segments?!\n",
   1794 			    device_xname(sc->sc_dev));
   1795 		}
   1796 		m_freem(m);
   1797 
   1798 		if (init)
   1799 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   1800 
   1801 		return (error);
   1802 	}
   1803 
   1804 	if (rxd->rx_m != NULL) {
   1805 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   1806 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1807 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1808 	}
   1809 	map = rxd->rx_dmamap;
   1810 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
   1811 	sc->alc_cdata.alc_rx_sparemap = map;
   1812 	rxd->rx_m = m;
   1813 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1814 	return (0);
   1815 }
   1816 
   1817 static int
   1818 alc_rxintr(struct alc_softc *sc)
   1819 {
   1820 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1821 	struct rx_rdesc *rrd;
   1822 	uint32_t nsegs, status;
   1823 	int rr_cons, prog;
   1824 
   1825 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1826 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1827 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1828 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1829 	rr_cons = sc->alc_cdata.alc_rr_cons;
   1830 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
   1831 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
   1832 		status = le32toh(rrd->status);
   1833 		if ((status & RRD_VALID) == 0)
   1834 			break;
   1835 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
   1836 		if (nsegs == 0) {
   1837 			/* This should not happen! */
   1838 			if (alcdebug)
   1839 				printf("%s: unexpected segment count -- "
   1840 				    "resetting\n", device_xname(sc->sc_dev));
   1841 			return (EIO);
   1842 		}
   1843 		alc_rxeof(sc, rrd);
   1844 		/* Clear Rx return status. */
   1845 		rrd->status = 0;
   1846 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
   1847 		sc->alc_cdata.alc_rx_cons += nsegs;
   1848 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
   1849 		prog += nsegs;
   1850 	}
   1851 
   1852 	if (prog > 0) {
   1853 		/* Update the consumer index. */
   1854 		sc->alc_cdata.alc_rr_cons = rr_cons;
   1855 		/* Sync Rx return descriptors. */
   1856 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   1857 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
   1858 		    BUS_DMASYNC_PREWRITE);
   1859 		/*
   1860 		 * Sync updated Rx descriptors such that controller see
   1861 		 * modified buffer addresses.
   1862 		 */
   1863 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   1864 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
   1865 		    BUS_DMASYNC_PREWRITE);
   1866 		/*
   1867 		 * Let controller know availability of new Rx buffers.
   1868 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
   1869 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
   1870 		 * only when Rx buffer pre-fetching is required. In
   1871 		 * addition we already set ALC_RX_RD_FREE_THRESH to
   1872 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
   1873 		 * it still seems that pre-fetching needs more
   1874 		 * experimentation.
   1875 		 */
   1876 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
   1877 		    sc->alc_cdata.alc_rx_cons);
   1878 	}
   1879 
   1880 	return (0);
   1881 }
   1882 
   1883 /* Receive a frame. */
   1884 static void
   1885 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
   1886 {
   1887 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1888 	struct alc_rxdesc *rxd;
   1889 	struct mbuf *mp, *m;
   1890 	uint32_t rdinfo, status;
   1891 	int count, nsegs, rx_cons;
   1892 
   1893 	status = le32toh(rrd->status);
   1894 	rdinfo = le32toh(rrd->rdinfo);
   1895 	rx_cons = RRD_RD_IDX(rdinfo);
   1896 	nsegs = RRD_RD_CNT(rdinfo);
   1897 
   1898 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
   1899 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
   1900 		/*
   1901 		 * We want to pass the following frames to upper
   1902 		 * layer regardless of error status of Rx return
   1903 		 * ring.
   1904 		 *
   1905 		 *  o IP/TCP/UDP checksum is bad.
   1906 		 *  o frame length and protocol specific length
   1907 		 *     does not match.
   1908 		 *
   1909 		 *  Force network stack compute checksum for
   1910 		 *  errored frames.
   1911 		 */
   1912 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
   1913 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
   1914 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
   1915 			return;
   1916 	}
   1917 
   1918 	for (count = 0; count < nsegs; count++,
   1919 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
   1920 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
   1921 		mp = rxd->rx_m;
   1922 		/* Add a new receive buffer to the ring. */
   1923 		if (alc_newbuf(sc, rxd, 0) != 0) {
   1924 			ifp->if_iqdrops++;
   1925 			/* Reuse Rx buffers. */
   1926 			if (sc->alc_cdata.alc_rxhead != NULL)
   1927 				m_freem(sc->alc_cdata.alc_rxhead);
   1928 			break;
   1929 		}
   1930 
   1931 		/*
   1932 		 * Assume we've received a full sized frame.
   1933 		 * Actual size is fixed when we encounter the end of
   1934 		 * multi-segmented frame.
   1935 		 */
   1936 		mp->m_len = sc->alc_buf_size;
   1937 
   1938 		/* Chain received mbufs. */
   1939 		if (sc->alc_cdata.alc_rxhead == NULL) {
   1940 			sc->alc_cdata.alc_rxhead = mp;
   1941 			sc->alc_cdata.alc_rxtail = mp;
   1942 		} else {
   1943 			mp->m_flags &= ~M_PKTHDR;
   1944 			sc->alc_cdata.alc_rxprev_tail =
   1945 			    sc->alc_cdata.alc_rxtail;
   1946 			sc->alc_cdata.alc_rxtail->m_next = mp;
   1947 			sc->alc_cdata.alc_rxtail = mp;
   1948 		}
   1949 
   1950 		if (count == nsegs - 1) {
   1951 			/* Last desc. for this frame. */
   1952 			m = sc->alc_cdata.alc_rxhead;
   1953 			m->m_flags |= M_PKTHDR;
   1954 			/*
   1955 			 * It seems that L1C/L2C controller has no way
   1956 			 * to tell hardware to strip CRC bytes.
   1957 			 */
   1958 			m->m_pkthdr.len =
   1959 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
   1960 			if (nsegs > 1) {
   1961 				/* Set last mbuf size. */
   1962 				mp->m_len = sc->alc_cdata.alc_rxlen -
   1963 				    (nsegs - 1) * sc->alc_buf_size;
   1964 				/* Remove the CRC bytes in chained mbufs. */
   1965 				if (mp->m_len <= ETHER_CRC_LEN) {
   1966 					sc->alc_cdata.alc_rxtail =
   1967 					    sc->alc_cdata.alc_rxprev_tail;
   1968 					sc->alc_cdata.alc_rxtail->m_len -=
   1969 					    (ETHER_CRC_LEN - mp->m_len);
   1970 					sc->alc_cdata.alc_rxtail->m_next = NULL;
   1971 					m_freem(mp);
   1972 				} else {
   1973 					mp->m_len -= ETHER_CRC_LEN;
   1974 				}
   1975 			} else
   1976 				m->m_len = m->m_pkthdr.len;
   1977 			m->m_pkthdr.rcvif = ifp;
   1978 #if NVLAN > 0
   1979 			/*
   1980 			 * Due to hardware bugs, Rx checksum offloading
   1981 			 * was intentionally disabled.
   1982 			 */
   1983 			if (status & RRD_VLAN_TAG) {
   1984 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
   1985 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
   1986 			}
   1987 #endif
   1988 
   1989 			bpf_mtap(ifp, m);
   1990 
   1991 			{
   1992 			/* Pass it on. */
   1993 			ether_input(ifp, m);
   1994 			}
   1995 		}
   1996 	}
   1997 	/* Reset mbuf chains. */
   1998 	ALC_RXCHAIN_RESET(sc);
   1999 }
   2000 
   2001 static void
   2002 alc_tick(void *xsc)
   2003 {
   2004 	struct alc_softc *sc = xsc;
   2005 	struct mii_data *mii = &sc->sc_miibus;
   2006 	int s;
   2007 
   2008 	s = splnet();
   2009 	mii_tick(mii);
   2010 	alc_stats_update(sc);
   2011 	splx(s);
   2012 
   2013 	callout_schedule(&sc->sc_tick_ch, hz);
   2014 }
   2015 
   2016 static void
   2017 alc_reset(struct alc_softc *sc)
   2018 {
   2019 	uint32_t reg;
   2020 	int i;
   2021 
   2022 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
   2023 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
   2024 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2025 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2026 		DELAY(10);
   2027 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
   2028 			break;
   2029 	}
   2030 	if (i == 0)
   2031 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
   2032 
   2033 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
   2034 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
   2035 			break;
   2036 		DELAY(10);
   2037 	}
   2038 
   2039 	if (i == 0)
   2040 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   2041 		    reg);
   2042 }
   2043 
   2044 static int
   2045 alc_init(struct ifnet *ifp)
   2046 {
   2047 	struct alc_softc *sc = ifp->if_softc;
   2048 	struct mii_data *mii;
   2049 	uint8_t eaddr[ETHER_ADDR_LEN];
   2050 	bus_addr_t paddr;
   2051 	uint32_t reg, rxf_hi, rxf_lo;
   2052 	int error;
   2053 
   2054 	/*
   2055 	 * Cancel any pending I/O.
   2056 	 */
   2057 	alc_stop(ifp, 0);
   2058 	/*
   2059 	 * Reset the chip to a known state.
   2060 	 */
   2061 	alc_reset(sc);
   2062 
   2063 	/* Initialize Rx descriptors. */
   2064 	error = alc_init_rx_ring(sc);
   2065 	if (error != 0) {
   2066 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   2067 		alc_stop(ifp, 0);
   2068 		return (error);
   2069 	}
   2070 	alc_init_rr_ring(sc);
   2071 	alc_init_tx_ring(sc);
   2072 	alc_init_cmb(sc);
   2073 	alc_init_smb(sc);
   2074 
   2075 	/* Enable all clocks. */
   2076 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
   2077 
   2078 	/* Reprogram the station address. */
   2079 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   2080 	CSR_WRITE_4(sc, ALC_PAR0,
   2081 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   2082 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
   2083 	/*
   2084 	 * Clear WOL status and disable all WOL feature as WOL
   2085 	 * would interfere Rx operation under normal environments.
   2086 	 */
   2087 	CSR_READ_4(sc, ALC_WOL_CFG);
   2088 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
   2089 	/* Set Tx descriptor base addresses. */
   2090 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
   2091 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2092 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2093 	/* We don't use high priority ring. */
   2094 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
   2095 	/* Set Tx descriptor counter. */
   2096 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
   2097 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
   2098 	/* Set Rx descriptor base addresses. */
   2099 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
   2100 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2101 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2102 	/* We use one Rx ring. */
   2103 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
   2104 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
   2105 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
   2106 	/* Set Rx descriptor counter. */
   2107 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
   2108 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
   2109 
   2110 	/*
   2111 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
   2112 	 * if it do not fit the buffer size. Rx return descriptor holds
   2113 	 * a counter that indicates how many fragments were made by the
   2114 	 * hardware. The buffer size should be multiple of 8 bytes.
   2115 	 * Since hardware has limit on the size of buffer size, always
   2116 	 * use the maximum value.
   2117 	 * For strict-alignment architectures make sure to reduce buffer
   2118 	 * size by 8 bytes to make room for alignment fixup.
   2119 	 */
   2120 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
   2121 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
   2122 
   2123 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
   2124 	/* Set Rx return descriptor base addresses. */
   2125 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
   2126 	/* We use one Rx return ring. */
   2127 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
   2128 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
   2129 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
   2130 	/* Set Rx return descriptor counter. */
   2131 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
   2132 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
   2133 	paddr = sc->alc_rdata.alc_cmb_paddr;
   2134 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2135 	paddr = sc->alc_rdata.alc_smb_paddr;
   2136 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
   2137 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
   2138 
   2139 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
   2140 		/* Reconfigure SRAM - Vendor magic. */
   2141 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
   2142 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
   2143 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
   2144 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
   2145 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
   2146 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
   2147 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
   2148 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
   2149 	}
   2150 
   2151 	/* Tell hardware that we're ready to load DMA blocks. */
   2152 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
   2153 
   2154 	/* Configure interrupt moderation timer. */
   2155 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
   2156 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
   2157 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
   2158 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
   2159 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
   2160 	/*
   2161 	 * We don't want to automatic interrupt clear as task queue
   2162 	 * for the interrupt should know interrupt status.
   2163 	 */
   2164 	reg = MASTER_SA_TIMER_ENB;
   2165 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
   2166 		reg |= MASTER_IM_RX_TIMER_ENB;
   2167 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
   2168 		reg |= MASTER_IM_TX_TIMER_ENB;
   2169 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
   2170 	/*
   2171 	 * Disable interrupt re-trigger timer. We don't want automatic
   2172 	 * re-triggering of un-ACKed interrupts.
   2173 	 */
   2174 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
   2175 	/* Configure CMB. */
   2176 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
   2177 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2178 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
   2179 	else
   2180 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
   2181 	/*
   2182 	 * Hardware can be configured to issue SMB interrupt based
   2183 	 * on programmed interval. Since there is a callout that is
   2184 	 * invoked for every hz in driver we use that instead of
   2185 	 * relying on periodic SMB interrupt.
   2186 	 */
   2187 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
   2188 	/* Clear MAC statistics. */
   2189 	alc_stats_clear(sc);
   2190 
   2191 	/*
   2192 	 * Always use maximum frame size that controller can support.
   2193 	 * Otherwise received frames that has larger frame length
   2194 	 * than alc(4) MTU would be silently dropped in hardware. This
   2195 	 * would make path-MTU discovery hard as sender wouldn't get
   2196 	 * any responses from receiver. alc(4) supports
   2197 	 * multi-fragmented frames on Rx path so it has no issue on
   2198 	 * assembling fragmented frames. Using maximum frame size also
   2199 	 * removes the need to reinitialize hardware when interface
   2200 	 * MTU configuration was changed.
   2201 	 *
   2202 	 * Be conservative in what you do, be liberal in what you
   2203 	 * accept from others - RFC 793.
   2204 	 */
   2205 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
   2206 
   2207 	/* Disable header split(?) */
   2208 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
   2209 
   2210 	/* Configure IPG/IFG parameters. */
   2211 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
   2212 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
   2213 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   2214 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   2215 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
   2216 	/* Set parameters for half-duplex media. */
   2217 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
   2218 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   2219 	    HDPX_CFG_LCOL_MASK) |
   2220 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   2221 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   2222 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   2223 	    HDPX_CFG_ABEBT_MASK) |
   2224 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   2225 	    HDPX_CFG_JAMIPG_MASK));
   2226 	/*
   2227 	 * Set TSO/checksum offload threshold. For frames that is
   2228 	 * larger than this threshold, hardware wouldn't do
   2229 	 * TSO/checksum offloading.
   2230 	 */
   2231 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
   2232 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
   2233 	    TSO_OFFLOAD_THRESH_MASK);
   2234 	/* Configure TxQ. */
   2235 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
   2236 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
   2237 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2238 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2239 		reg >>= 1;
   2240 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
   2241 	    TXQ_CFG_TD_BURST_MASK;
   2242 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
   2243 
   2244 	/* Configure Rx free descriptor pre-fetching. */
   2245 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
   2246 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
   2247 	    RX_RD_FREE_THRESH_HI_MASK) |
   2248 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
   2249 	    RX_RD_FREE_THRESH_LO_MASK));
   2250 
   2251 	/*
   2252 	 * Configure flow control parameters.
   2253 	 * XON  : 80% of Rx FIFO
   2254 	 * XOFF : 30% of Rx FIFO
   2255 	 */
   2256 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
   2257 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
   2258 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
   2259 		rxf_hi = (reg * 8) / 10;
   2260 		rxf_lo = (reg * 3) / 10;
   2261 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
   2262 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
   2263 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
   2264 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
   2265 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
   2266 	}
   2267 
   2268 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
   2269 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
   2270 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
   2271 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
   2272 		    SERDES_PHY_CLK_SLOWDOWN);
   2273 
   2274 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
   2275 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
   2276 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
   2277 
   2278 	/* Configure RxQ. */
   2279 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   2280 	    RXQ_CFG_RD_BURST_MASK;
   2281 	reg |= RXQ_CFG_RSS_MODE_DIS;
   2282 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
   2283 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
   2284 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2285 
   2286 	/* Configure DMA parameters. */
   2287 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
   2288 	reg |= sc->alc_rcb;
   2289 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
   2290 		reg |= DMA_CFG_CMB_ENB;
   2291 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
   2292 		reg |= DMA_CFG_SMB_ENB;
   2293 	else
   2294 		reg |= DMA_CFG_SMB_DIS;
   2295 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
   2296 	    DMA_CFG_RD_BURST_SHIFT;
   2297 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
   2298 	    DMA_CFG_WR_BURST_SHIFT;
   2299 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
   2300 	    DMA_CFG_RD_DELAY_CNT_MASK;
   2301 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
   2302 	    DMA_CFG_WR_DELAY_CNT_MASK;
   2303 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2304 
   2305 	/*
   2306 	 * Configure Tx/Rx MACs.
   2307 	 *  - Auto-padding for short frames.
   2308 	 *  - Enable CRC generation.
   2309 	 *  Actual reconfiguration of MAC for resolved speed/duplex
   2310 	 *  is followed after detection of link establishment.
   2311 	 *  AR813x/AR815x always does checksum computation regardless
   2312 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
   2313 	 *  have bug in protocol field in Rx return structure so
   2314 	 *  these controllers can't handle fragmented frames. Disable
   2315 	 *  Rx checksum offloading until there is a newer controller
   2316 	 *  that has sane implementation.
   2317 	 */
   2318 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
   2319 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   2320 	    MAC_CFG_PREAMBLE_MASK);
   2321 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
   2322 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
   2323 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
   2324 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
   2325 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
   2326 		reg |= MAC_CFG_SPEED_10_100;
   2327 	else
   2328 		reg |= MAC_CFG_SPEED_1000;
   2329 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2330 
   2331 	/* Set up the receive filter. */
   2332 	alc_iff(sc);
   2333 	alc_rxvlan(sc);
   2334 
   2335 	/* Acknowledge all pending interrupts and clear it. */
   2336 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
   2337 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2338 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
   2339 
   2340 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2341 	/* Switch to the current media. */
   2342 	mii = &sc->sc_miibus;
   2343 	mii_mediachg(mii);
   2344 
   2345 	callout_schedule(&sc->sc_tick_ch, hz);
   2346 
   2347 	ifp->if_flags |= IFF_RUNNING;
   2348 	ifp->if_flags &= ~IFF_OACTIVE;
   2349 
   2350 	return (0);
   2351 }
   2352 
   2353 static void
   2354 alc_stop(struct ifnet *ifp, int disable)
   2355 {
   2356 	struct alc_softc *sc = ifp->if_softc;
   2357 	struct alc_txdesc *txd;
   2358 	struct alc_rxdesc *rxd;
   2359 	uint32_t reg;
   2360 	int i;
   2361 
   2362 	callout_stop(&sc->sc_tick_ch);
   2363 
   2364 	/*
   2365 	 * Mark the interface down and cancel the watchdog timer.
   2366 	 */
   2367 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2368 	ifp->if_timer = 0;
   2369 
   2370 	sc->alc_flags &= ~ALC_FLAG_LINK;
   2371 
   2372 	alc_stats_update(sc);
   2373 
   2374 	mii_down(&sc->sc_miibus);
   2375 
   2376 	/* Disable interrupts. */
   2377 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
   2378 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2379 	alc_stop_queue(sc);
   2380 
   2381 	/* Disable DMA. */
   2382 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
   2383 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
   2384 	reg |= DMA_CFG_SMB_DIS;
   2385 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
   2386 	DELAY(1000);
   2387 
   2388 	/* Stop Rx/Tx MACs. */
   2389 	alc_stop_mac(sc);
   2390 
   2391 	/* Disable interrupts which might be touched in taskq handler. */
   2392 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
   2393 
   2394 	/* Reclaim Rx buffers that have been processed. */
   2395 	if (sc->alc_cdata.alc_rxhead != NULL)
   2396 		m_freem(sc->alc_cdata.alc_rxhead);
   2397 	ALC_RXCHAIN_RESET(sc);
   2398 	/*
   2399 	 * Free Tx/Rx mbufs still in the queues.
   2400 	 */
   2401 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2402 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2403 		if (rxd->rx_m != NULL) {
   2404 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2405 			m_freem(rxd->rx_m);
   2406 			rxd->rx_m = NULL;
   2407 		}
   2408 	}
   2409 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2410 		txd = &sc->alc_cdata.alc_txdesc[i];
   2411 		if (txd->tx_m != NULL) {
   2412 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   2413 			m_freem(txd->tx_m);
   2414 			txd->tx_m = NULL;
   2415 		}
   2416 	}
   2417 }
   2418 
   2419 static void
   2420 alc_stop_mac(struct alc_softc *sc)
   2421 {
   2422 	uint32_t reg;
   2423 	int i;
   2424 
   2425 	/* Disable Rx/Tx MAC. */
   2426 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2427 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
   2428 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   2429 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2430 	}
   2431 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2432 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2433 		if (reg == 0)
   2434 			break;
   2435 		DELAY(10);
   2436 	}
   2437 	if (i == 0)
   2438 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
   2439 		    device_xname(sc->sc_dev), reg);
   2440 }
   2441 
   2442 static void
   2443 alc_start_queue(struct alc_softc *sc)
   2444 {
   2445 	uint32_t qcfg[] = {
   2446 		0,
   2447 		RXQ_CFG_QUEUE0_ENB,
   2448 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
   2449 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
   2450 		RXQ_CFG_ENB
   2451 	};
   2452 	uint32_t cfg;
   2453 
   2454 	/* Enable RxQ. */
   2455 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2456 	cfg &= ~RXQ_CFG_ENB;
   2457 	cfg |= qcfg[1];
   2458 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
   2459 	/* Enable TxQ. */
   2460 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2461 	cfg |= TXQ_CFG_ENB;
   2462 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
   2463 }
   2464 
   2465 static void
   2466 alc_stop_queue(struct alc_softc *sc)
   2467 {
   2468 	uint32_t reg;
   2469 	int i;
   2470 
   2471 	/* Disable RxQ. */
   2472 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
   2473 	if ((reg & RXQ_CFG_ENB) != 0) {
   2474 		reg &= ~RXQ_CFG_ENB;
   2475 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
   2476 	}
   2477 	/* Disable TxQ. */
   2478 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
   2479 	if ((reg & TXQ_CFG_ENB) != 0) {
   2480 		reg &= ~TXQ_CFG_ENB;
   2481 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
   2482 	}
   2483 	for (i = ALC_TIMEOUT; i > 0; i--) {
   2484 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
   2485 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
   2486 			break;
   2487 		DELAY(10);
   2488 	}
   2489 	if (i == 0)
   2490 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
   2491 		    device_xname(sc->sc_dev), reg);
   2492 }
   2493 
   2494 static void
   2495 alc_init_tx_ring(struct alc_softc *sc)
   2496 {
   2497 	struct alc_ring_data *rd;
   2498 	struct alc_txdesc *txd;
   2499 	int i;
   2500 
   2501 	sc->alc_cdata.alc_tx_prod = 0;
   2502 	sc->alc_cdata.alc_tx_cons = 0;
   2503 	sc->alc_cdata.alc_tx_cnt = 0;
   2504 
   2505 	rd = &sc->alc_rdata;
   2506 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
   2507 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
   2508 		txd = &sc->alc_cdata.alc_txdesc[i];
   2509 		txd->tx_m = NULL;
   2510 	}
   2511 
   2512 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
   2513 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2514 }
   2515 
   2516 static int
   2517 alc_init_rx_ring(struct alc_softc *sc)
   2518 {
   2519 	struct alc_ring_data *rd;
   2520 	struct alc_rxdesc *rxd;
   2521 	int i;
   2522 
   2523 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
   2524 	rd = &sc->alc_rdata;
   2525 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
   2526 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
   2527 		rxd = &sc->alc_cdata.alc_rxdesc[i];
   2528 		rxd->rx_m = NULL;
   2529 		rxd->rx_desc = &rd->alc_rx_ring[i];
   2530 		if (alc_newbuf(sc, rxd, 1) != 0)
   2531 			return (ENOBUFS);
   2532 	}
   2533 
   2534 	/*
   2535 	 * Since controller does not update Rx descriptors, driver
   2536 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
   2537 	 * is enough to ensure coherence.
   2538 	 */
   2539 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
   2540 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2541 	/* Let controller know availability of new Rx buffers. */
   2542 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
   2543 
   2544 	return (0);
   2545 }
   2546 
   2547 static void
   2548 alc_init_rr_ring(struct alc_softc *sc)
   2549 {
   2550 	struct alc_ring_data *rd;
   2551 
   2552 	sc->alc_cdata.alc_rr_cons = 0;
   2553 	ALC_RXCHAIN_RESET(sc);
   2554 
   2555 	rd = &sc->alc_rdata;
   2556 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
   2557 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
   2558 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2559 }
   2560 
   2561 static void
   2562 alc_init_cmb(struct alc_softc *sc)
   2563 {
   2564 	struct alc_ring_data *rd;
   2565 
   2566 	rd = &sc->alc_rdata;
   2567 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
   2568 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
   2569 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2570 }
   2571 
   2572 static void
   2573 alc_init_smb(struct alc_softc *sc)
   2574 {
   2575 	struct alc_ring_data *rd;
   2576 
   2577 	rd = &sc->alc_rdata;
   2578 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
   2579 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
   2580 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2581 }
   2582 
   2583 static void
   2584 alc_rxvlan(struct alc_softc *sc)
   2585 {
   2586 	uint32_t reg;
   2587 
   2588 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
   2589 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2590 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2591 	else
   2592 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2593 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
   2594 }
   2595 
   2596 static void
   2597 alc_iff(struct alc_softc *sc)
   2598 {
   2599 	struct ethercom *ec = &sc->sc_ec;
   2600 	struct ifnet *ifp = &ec->ec_if;
   2601 	struct ether_multi *enm;
   2602 	struct ether_multistep step;
   2603 	uint32_t crc;
   2604 	uint32_t mchash[2];
   2605 	uint32_t rxcfg;
   2606 
   2607 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
   2608 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2609 	ifp->if_flags &= ~IFF_ALLMULTI;
   2610 
   2611 	/*
   2612 	 * Always accept broadcast frames.
   2613 	 */
   2614 	rxcfg |= MAC_CFG_BCAST;
   2615 
   2616 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
   2617 		ifp->if_flags |= IFF_ALLMULTI;
   2618 		if (ifp->if_flags & IFF_PROMISC)
   2619 			rxcfg |= MAC_CFG_PROMISC;
   2620 		else
   2621 			rxcfg |= MAC_CFG_ALLMULTI;
   2622 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2623 	} else {
   2624 		/* Program new filter. */
   2625 		memset(mchash, 0, sizeof(mchash));
   2626 
   2627 		ETHER_FIRST_MULTI(step, ec, enm);
   2628 		while (enm != NULL) {
   2629 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2630 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   2631 			ETHER_NEXT_MULTI(step, enm);
   2632 		}
   2633 	}
   2634 
   2635 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
   2636 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
   2637 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
   2638 }
   2639 
   2640 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
   2641 
   2642 #ifdef _MODULE
   2643 #include "ioconf.c"
   2644 #endif
   2645 
   2646 static int
   2647 if_alc_modcmd(modcmd_t cmd, void *opaque)
   2648 {
   2649 	int error = 0;
   2650 
   2651 	switch (cmd) {
   2652 	case MODULE_CMD_INIT:
   2653 #ifdef _MODULE
   2654 		error = config_init_component(cfdriver_ioconf_if_alc,
   2655 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2656 #endif
   2657 		return error;
   2658 	case MODULE_CMD_FINI:
   2659 #ifdef _MODULE
   2660 		error = config_fini_component(cfdriver_ioconf_if_alc,
   2661 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
   2662 #endif
   2663 		return error;
   2664 	default:
   2665 		return ENOTTY;
   2666 	}
   2667 }
   2668