if_alc.c revision 1.6 1 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
2 /*-
3 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48
49 #include <sys/bus.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #include <net/bpf.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <net/bpf.h>
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_alcreg.h>
81
82 /*
83 * Devices supported by this driver.
84 */
85 static struct alc_ident alc_ident_table[] = {
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 "Atheros AR8131 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 "Atheros AR8132 PCIe Fast Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 { 0, 0, 0, NULL },
99 };
100
101 static int alc_match(device_t, cfdata_t, void *);
102 static void alc_attach(device_t, device_t, void *);
103 static int alc_detach(device_t, int);
104
105 static int alc_init(struct ifnet *);
106 static void alc_start(struct ifnet *);
107 static int alc_ioctl(struct ifnet *, u_long, void *);
108 static void alc_watchdog(struct ifnet *);
109 static int alc_mediachange(struct ifnet *);
110 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
111
112 static void alc_aspm(struct alc_softc *, int);
113 static void alc_disable_l0s_l1(struct alc_softc *);
114 static int alc_dma_alloc(struct alc_softc *);
115 static void alc_dma_free(struct alc_softc *);
116 static int alc_encap(struct alc_softc *, struct mbuf **);
117 static struct alc_ident *
118 alc_find_ident(struct pci_attach_args *);
119 static void alc_get_macaddr(struct alc_softc *);
120 static void alc_init_cmb(struct alc_softc *);
121 static void alc_init_rr_ring(struct alc_softc *);
122 static int alc_init_rx_ring(struct alc_softc *);
123 static void alc_init_smb(struct alc_softc *);
124 static void alc_init_tx_ring(struct alc_softc *);
125 static int alc_intr(void *);
126 static void alc_mac_config(struct alc_softc *);
127 static int alc_miibus_readreg(device_t, int, int);
128 static void alc_miibus_statchg(struct ifnet *);
129 static void alc_miibus_writereg(device_t, int, int, int);
130 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, int);
131 static void alc_phy_down(struct alc_softc *);
132 static void alc_phy_reset(struct alc_softc *);
133 static void alc_reset(struct alc_softc *);
134 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
135 static int alc_rxintr(struct alc_softc *);
136 static void alc_iff(struct alc_softc *);
137 static void alc_rxvlan(struct alc_softc *);
138 static void alc_start_queue(struct alc_softc *);
139 static void alc_stats_clear(struct alc_softc *);
140 static void alc_stats_update(struct alc_softc *);
141 static void alc_stop(struct ifnet *, int);
142 static void alc_stop_mac(struct alc_softc *);
143 static void alc_stop_queue(struct alc_softc *);
144 static void alc_tick(void *);
145 static void alc_txeof(struct alc_softc *);
146
147 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
148
149 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
150 alc_match, alc_attach, alc_detach, NULL);
151
152 int alcdebug = 0;
153 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
154
155 #define ETHER_ALIGN 2
156 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
157
158 static int
159 alc_miibus_readreg(device_t dev, int phy, int reg)
160 {
161 struct alc_softc *sc = device_private(dev);
162 uint32_t v;
163 int i;
164
165 if (phy != sc->alc_phyaddr)
166 return (0);
167
168 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
169 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
170 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
171 DELAY(5);
172 v = CSR_READ_4(sc, ALC_MDIO);
173 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
174 break;
175 }
176
177 if (i == 0) {
178 printf("%s: phy read timeout: phy %d, reg %d\n",
179 device_xname(sc->sc_dev), phy, reg);
180 return (0);
181 }
182
183 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
184 }
185
186 static void
187 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
188 {
189 struct alc_softc *sc = device_private(dev);
190 uint32_t v;
191 int i;
192
193 if (phy != sc->alc_phyaddr)
194 return;
195
196 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
197 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
198 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
199 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
200 DELAY(5);
201 v = CSR_READ_4(sc, ALC_MDIO);
202 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
203 break;
204 }
205
206 if (i == 0)
207 printf("%s: phy write timeout: phy %d, reg %d\n",
208 device_xname(sc->sc_dev), phy, reg);
209 }
210
211 static void
212 alc_miibus_statchg(struct ifnet *ifp)
213 {
214 struct alc_softc *sc = ifp->if_softc;
215 struct mii_data *mii = &sc->sc_miibus;
216 uint32_t reg;
217
218 if ((ifp->if_flags & IFF_RUNNING) == 0)
219 return;
220
221 sc->alc_flags &= ~ALC_FLAG_LINK;
222 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
223 (IFM_ACTIVE | IFM_AVALID)) {
224 switch (IFM_SUBTYPE(mii->mii_media_active)) {
225 case IFM_10_T:
226 case IFM_100_TX:
227 sc->alc_flags |= ALC_FLAG_LINK;
228 break;
229 case IFM_1000_T:
230 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
231 sc->alc_flags |= ALC_FLAG_LINK;
232 break;
233 default:
234 break;
235 }
236 }
237 alc_stop_queue(sc);
238 /* Stop Rx/Tx MACs. */
239 alc_stop_mac(sc);
240
241 /* Program MACs with resolved speed/duplex/flow-control. */
242 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
243 alc_start_queue(sc);
244 alc_mac_config(sc);
245 /* Re-enable Tx/Rx MACs. */
246 reg = CSR_READ_4(sc, ALC_MAC_CFG);
247 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
248 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
249 alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
250 }
251 }
252
253 static void
254 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
255 {
256 struct alc_softc *sc = ifp->if_softc;
257 struct mii_data *mii = &sc->sc_miibus;
258
259 mii_pollstat(mii);
260 ifmr->ifm_status = mii->mii_media_status;
261 ifmr->ifm_active = mii->mii_media_active;
262 }
263
264 static int
265 alc_mediachange(struct ifnet *ifp)
266 {
267 struct alc_softc *sc = ifp->if_softc;
268 struct mii_data *mii = &sc->sc_miibus;
269 int error;
270
271 if (mii->mii_instance != 0) {
272 struct mii_softc *miisc;
273
274 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
275 mii_phy_reset(miisc);
276 }
277 error = mii_mediachg(mii);
278
279 return (error);
280 }
281
282 static struct alc_ident *
283 alc_find_ident(struct pci_attach_args *pa)
284 {
285 struct alc_ident *ident;
286 uint16_t vendor, devid;
287
288 vendor = PCI_VENDOR(pa->pa_id);
289 devid = PCI_PRODUCT(pa->pa_id);
290 for (ident = alc_ident_table; ident->name != NULL; ident++) {
291 if (vendor == ident->vendorid && devid == ident->deviceid)
292 return (ident);
293 }
294
295 return (NULL);
296 }
297
298 static int
299 alc_match(device_t dev, cfdata_t match, void *aux)
300 {
301 struct pci_attach_args *pa = aux;
302
303 return alc_find_ident(pa) != NULL;
304 }
305
306 static void
307 alc_get_macaddr(struct alc_softc *sc)
308 {
309 uint32_t ea[2], opt;
310 uint16_t val;
311 int eeprom, i;
312
313 eeprom = 0;
314 opt = CSR_READ_4(sc, ALC_OPT_CFG);
315 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
316 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
317 /*
318 * EEPROM found, let TWSI reload EEPROM configuration.
319 * This will set ethernet address of controller.
320 */
321 eeprom++;
322 switch (sc->alc_ident->deviceid) {
323 case PCI_PRODUCT_ATTANSIC_AR8131:
324 case PCI_PRODUCT_ATTANSIC_AR8132:
325 if ((opt & OPT_CFG_CLK_ENB) == 0) {
326 opt |= OPT_CFG_CLK_ENB;
327 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
328 CSR_READ_4(sc, ALC_OPT_CFG);
329 DELAY(1000);
330 }
331 break;
332 case PCI_PRODUCT_ATTANSIC_AR8151:
333 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
334 case PCI_PRODUCT_ATTANSIC_AR8152_B:
335 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
336 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
337 ALC_MII_DBG_ADDR, 0x00);
338 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
339 ALC_MII_DBG_DATA);
340 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
341 ALC_MII_DBG_DATA, val & 0xFF7F);
342 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
343 ALC_MII_DBG_ADDR, 0x3B);
344 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
345 ALC_MII_DBG_DATA);
346 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
347 ALC_MII_DBG_DATA, val | 0x0008);
348 DELAY(20);
349 break;
350 }
351
352 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
353 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
354 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
355 CSR_READ_4(sc, ALC_WOL_CFG);
356
357 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
358 TWSI_CFG_SW_LD_START);
359 for (i = 100; i > 0; i--) {
360 DELAY(1000);
361 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
362 TWSI_CFG_SW_LD_START) == 0)
363 break;
364 }
365 if (i == 0)
366 printf("%s: reloading EEPROM timeout!\n",
367 device_xname(sc->sc_dev));
368 } else {
369 if (alcdebug)
370 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
371 }
372 if (eeprom != 0) {
373 switch (sc->alc_ident->deviceid) {
374 case PCI_PRODUCT_ATTANSIC_AR8131:
375 case PCI_PRODUCT_ATTANSIC_AR8132:
376 if ((opt & OPT_CFG_CLK_ENB) != 0) {
377 opt &= ~OPT_CFG_CLK_ENB;
378 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
379 CSR_READ_4(sc, ALC_OPT_CFG);
380 DELAY(1000);
381 }
382 break;
383 case PCI_PRODUCT_ATTANSIC_AR8151:
384 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
385 case PCI_PRODUCT_ATTANSIC_AR8152_B:
386 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
387 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
388 ALC_MII_DBG_ADDR, 0x00);
389 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
390 ALC_MII_DBG_DATA);
391 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
392 ALC_MII_DBG_DATA, val | 0x0080);
393 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
394 ALC_MII_DBG_ADDR, 0x3B);
395 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
396 ALC_MII_DBG_DATA);
397 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
398 ALC_MII_DBG_DATA, val & 0xFFF7);
399 DELAY(20);
400 break;
401 }
402 }
403
404 ea[0] = CSR_READ_4(sc, ALC_PAR0);
405 ea[1] = CSR_READ_4(sc, ALC_PAR1);
406 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
407 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
408 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
409 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
410 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
411 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
412 }
413
414 static void
415 alc_disable_l0s_l1(struct alc_softc *sc)
416 {
417 uint32_t pmcfg;
418
419 /* Another magic from vendor. */
420 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
421 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
422 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
423 PM_CFG_SERDES_PD_EX_L1);
424 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
425 PM_CFG_SERDES_L1_ENB;
426 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
427 }
428
429 static void
430 alc_phy_reset(struct alc_softc *sc)
431 {
432 uint16_t data;
433
434 /* Reset magic from Linux. */
435 CSR_WRITE_2(sc, ALC_GPHY_CFG,
436 GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
437 CSR_READ_2(sc, ALC_GPHY_CFG);
438 DELAY(10 * 1000);
439
440 CSR_WRITE_2(sc, ALC_GPHY_CFG,
441 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
442 GPHY_CFG_SEL_ANA_RESET);
443 CSR_READ_2(sc, ALC_GPHY_CFG);
444 DELAY(10 * 1000);
445
446 /* DSP fixup, Vendor magic. */
447 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
448 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
449 ALC_MII_DBG_ADDR, 0x000A);
450 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
451 ALC_MII_DBG_DATA);
452 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
453 ALC_MII_DBG_DATA, data & 0xDFFF);
454 }
455 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
456 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
457 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
458 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
459 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
460 ALC_MII_DBG_ADDR, 0x003B);
461 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
462 ALC_MII_DBG_DATA);
463 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
464 ALC_MII_DBG_DATA, data & 0xFFF7);
465 DELAY(20 * 1000);
466 }
467 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
468 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
469 ALC_MII_DBG_ADDR, 0x0029);
470 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
471 ALC_MII_DBG_DATA, 0x929D);
472 }
473 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
474 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
475 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
476 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
477 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
478 ALC_MII_DBG_ADDR, 0x0029);
479 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
480 ALC_MII_DBG_DATA, 0xB6DD);
481 }
482
483 /* Load DSP codes, vendor magic. */
484 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
485 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
486 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
487 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
488 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
489 ALC_MII_DBG_DATA, data);
490
491 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
492 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
493 ANA_SERDES_EN_LCKDT;
494 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
495 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
496 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
497 ALC_MII_DBG_DATA, data);
498
499 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
500 ANA_LONG_CABLE_TH_100_MASK) |
501 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
502 ANA_SHORT_CABLE_TH_100_SHIFT) |
503 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
504 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
505 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
506 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
507 ALC_MII_DBG_DATA, data);
508
509 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
510 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
511 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
512 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
513 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
514 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
515 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
516 ALC_MII_DBG_DATA, data);
517
518 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
519 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
520 ANA_OEN_125M;
521 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
522 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
523 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
524 ALC_MII_DBG_DATA, data);
525 DELAY(1000);
526 }
527
528 static void
529 alc_phy_down(struct alc_softc *sc)
530 {
531 switch (sc->alc_ident->deviceid) {
532 case PCI_PRODUCT_ATTANSIC_AR8151:
533 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
534 /*
535 * GPHY power down caused more problems on AR8151 v2.0.
536 * When driver is reloaded after GPHY power down,
537 * accesses to PHY/MAC registers hung the system. Only
538 * cold boot recovered from it. I'm not sure whether
539 * AR8151 v1.0 also requires this one though. I don't
540 * have AR8151 v1.0 controller in hand.
541 * The only option left is to isolate the PHY and
542 * initiates power down the PHY which in turn saves
543 * more power when driver is unloaded.
544 */
545 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
546 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
547 break;
548 default:
549 /* Force PHY down. */
550 CSR_WRITE_2(sc, ALC_GPHY_CFG,
551 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
552 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
553 GPHY_CFG_PWDOWN_HW);
554 DELAY(1000);
555 break;
556 }
557 }
558
559 static void
560 alc_aspm(struct alc_softc *sc, int media)
561 {
562 uint32_t pmcfg;
563 uint16_t linkcfg;
564
565 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
566 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
567 (ALC_FLAG_APS | ALC_FLAG_PCIE))
568 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
569 PCI_PCIE_LCSR);
570 else
571 linkcfg = 0;
572 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
573 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
574 pmcfg |= PM_CFG_MAC_ASPM_CHK;
575 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
576 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
577
578 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
579 /* Disable extended sync except AR8152 B v1.0 */
580 linkcfg &= ~0x80;
581 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
582 sc->alc_rev == ATHEROS_AR8152_B_V10)
583 linkcfg |= 0x80;
584 CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
585 linkcfg);
586 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
587 PM_CFG_HOTRST);
588 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
589 PM_CFG_L1_ENTRY_TIMER_SHIFT);
590 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
591 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
592 PM_CFG_PM_REQ_TIMER_SHIFT);
593 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
594 }
595
596 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
597 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
598 pmcfg |= PM_CFG_ASPM_L0S_ENB;
599 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
600 pmcfg |= PM_CFG_ASPM_L1_ENB;
601 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
602 if (sc->alc_ident->deviceid ==
603 PCI_PRODUCT_ATTANSIC_AR8152_B)
604 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
605 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
606 PM_CFG_SERDES_PLL_L1_ENB |
607 PM_CFG_SERDES_BUDS_RX_L1_ENB);
608 pmcfg |= PM_CFG_CLK_SWH_L1;
609 if (media == IFM_100_TX || media == IFM_1000_T) {
610 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
611 switch (sc->alc_ident->deviceid) {
612 case PCI_PRODUCT_ATTANSIC_AR8152_B:
613 pmcfg |= (7 <<
614 PM_CFG_L1_ENTRY_TIMER_SHIFT);
615 break;
616 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
617 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
618 pmcfg |= (4 <<
619 PM_CFG_L1_ENTRY_TIMER_SHIFT);
620 break;
621 default:
622 pmcfg |= (15 <<
623 PM_CFG_L1_ENTRY_TIMER_SHIFT);
624 break;
625 }
626 }
627 } else {
628 pmcfg |= PM_CFG_SERDES_L1_ENB |
629 PM_CFG_SERDES_PLL_L1_ENB |
630 PM_CFG_SERDES_BUDS_RX_L1_ENB;
631 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
632 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
633 }
634 } else {
635 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
636 PM_CFG_SERDES_PLL_L1_ENB);
637 pmcfg |= PM_CFG_CLK_SWH_L1;
638 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
639 pmcfg |= PM_CFG_ASPM_L1_ENB;
640 }
641 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
642 }
643
644 static void
645 alc_attach(device_t parent, device_t self, void *aux)
646 {
647
648 struct alc_softc *sc = device_private(self);
649 struct pci_attach_args *pa = aux;
650 pci_chipset_tag_t pc = pa->pa_pc;
651 pci_intr_handle_t ih;
652 const char *intrstr;
653 struct ifnet *ifp;
654 pcireg_t memtype;
655 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
656 uint16_t burst;
657 int base, mii_flags, state, error = 0;
658 uint32_t cap, ctl, val;
659
660 sc->alc_ident = alc_find_ident(pa);
661
662 aprint_naive("\n");
663 aprint_normal(": %s\n", sc->alc_ident->name);
664
665 sc->sc_dev = self;
666 sc->sc_dmat = pa->pa_dmat;
667 sc->sc_pct = pa->pa_pc;
668 sc->sc_pcitag = pa->pa_tag;
669
670 /*
671 * Allocate IO memory
672 */
673 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
674 switch (memtype) {
675 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
676 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
677 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
678 break;
679 default:
680 aprint_error_dev(self, "invalid base address register\n");
681 break;
682 }
683
684 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
685 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
686 aprint_error_dev(self, "could not map mem space\n");
687 return;
688 }
689
690 if (pci_intr_map(pa, &ih) != 0) {
691 printf(": can't map interrupt\n");
692 goto fail;
693 }
694
695 /*
696 * Allocate IRQ
697 */
698 intrstr = pci_intr_string(sc->sc_pct, ih);
699 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
700 if (sc->sc_irq_handle == NULL) {
701 printf(": could not establish interrupt");
702 if (intrstr != NULL)
703 printf(" at %s", intrstr);
704 printf("\n");
705 goto fail;
706 }
707 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
708
709 /* Set PHY address. */
710 sc->alc_phyaddr = ALC_PHY_ADDR;
711
712 /* Initialize DMA parameters. */
713 sc->alc_dma_rd_burst = 0;
714 sc->alc_dma_wr_burst = 0;
715 sc->alc_rcb = DMA_CFG_RCB_64;
716 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
717 &base, NULL)) {
718 sc->alc_flags |= ALC_FLAG_PCIE;
719 sc->alc_expcap = base;
720 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
721 base + PCI_PCIE_DCSR) >> 16;
722 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
723 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
724 if (alcdebug) {
725 printf("%s: Read request size : %u bytes.\n",
726 device_xname(sc->sc_dev),
727 alc_dma_burst[sc->alc_dma_rd_burst]);
728 printf("%s: TLP payload size : %u bytes.\n",
729 device_xname(sc->sc_dev),
730 alc_dma_burst[sc->alc_dma_wr_burst]);
731 }
732 /* Clear data link and flow-control protocol error. */
733 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
734 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
735 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
736 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
737 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
738 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
739 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
740 PCIE_PHYMISC_FORCE_RCV_DET);
741 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
742 sc->alc_rev == ATHEROS_AR8152_B_V10) {
743 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
744 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
745 PCIE_PHYMISC2_SERDES_TH_MASK);
746 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
747 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
748 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
749 }
750 /* Disable ASPM L0S and L1. */
751 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
752 base + PCI_PCIE_LCAP) >> 16;
753 if ((cap & 0x00000c00) != 0) {
754 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
755 base + PCI_PCIE_LCSR) >> 16;
756 if ((ctl & 0x08) != 0)
757 sc->alc_rcb = DMA_CFG_RCB_128;
758 if (alcdebug)
759 printf("%s: RCB %u bytes\n",
760 device_xname(sc->sc_dev),
761 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
762 state = ctl & 0x03;
763 if (state & 0x01)
764 sc->alc_flags |= ALC_FLAG_L0S;
765 if (state & 0x02)
766 sc->alc_flags |= ALC_FLAG_L1S;
767 if (alcdebug)
768 printf("%s: ASPM %s %s\n",
769 device_xname(sc->sc_dev),
770 aspm_state[state],
771 state == 0 ? "disabled" : "enabled");
772 alc_disable_l0s_l1(sc);
773 } else {
774 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
775 }
776 }
777
778 /* Reset PHY. */
779 alc_phy_reset(sc);
780
781 /* Reset the ethernet controller. */
782 alc_reset(sc);
783
784 /*
785 * One odd thing is AR8132 uses the same PHY hardware(F1
786 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
787 * the PHY supports 1000Mbps but that's not true. The PHY
788 * used in AR8132 can't establish gigabit link even if it
789 * shows the same PHY model/revision number of AR8131.
790 */
791 switch (sc->alc_ident->deviceid) {
792 case PCI_PRODUCT_ATTANSIC_AR8152_B:
793 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
794 sc->alc_flags |= ALC_FLAG_APS;
795 /* FALLTHROUGH */
796 case PCI_PRODUCT_ATTANSIC_AR8132:
797 sc->alc_flags |= ALC_FLAG_FASTETHER;
798 break;
799 case PCI_PRODUCT_ATTANSIC_AR8151:
800 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
801 sc->alc_flags |= ALC_FLAG_APS;
802 /* FALLTHROUGH */
803 default:
804 break;
805 }
806 sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
807
808 /*
809 * It seems that AR813x/AR815x has silicon bug for SMB. In
810 * addition, Atheros said that enabling SMB wouldn't improve
811 * performance. However I think it's bad to access lots of
812 * registers to extract MAC statistics.
813 */
814 sc->alc_flags |= ALC_FLAG_SMB_BUG;
815 /*
816 * Don't use Tx CMB. It is known to have silicon bug.
817 */
818 sc->alc_flags |= ALC_FLAG_CMB_BUG;
819 sc->alc_rev = PCI_REVISION(pa->pa_class);
820 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
821 MASTER_CHIP_REV_SHIFT;
822 if (alcdebug) {
823 printf("%s: PCI device revision : 0x%04x\n",
824 device_xname(sc->sc_dev), sc->alc_rev);
825 printf("%s: Chip id/revision : 0x%04x\n",
826 device_xname(sc->sc_dev), sc->alc_chip_rev);
827 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
828 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
829 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
830 }
831
832 error = alc_dma_alloc(sc);
833 if (error)
834 goto fail;
835
836 callout_init(&sc->sc_tick_ch, 0);
837 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
838
839 /* Load station address. */
840 alc_get_macaddr(sc);
841
842 aprint_normal_dev(self, "Ethernet address %s\n",
843 ether_sprintf(sc->alc_eaddr));
844
845 ifp = &sc->sc_ec.ec_if;
846 ifp->if_softc = sc;
847 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
848 ifp->if_init = alc_init;
849 ifp->if_ioctl = alc_ioctl;
850 ifp->if_start = alc_start;
851 ifp->if_stop = alc_stop;
852 ifp->if_watchdog = alc_watchdog;
853 ifp->if_baudrate = IF_Gbps(1);
854 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
855 IFQ_SET_READY(&ifp->if_snd);
856 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
857
858 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
859
860 #ifdef ALC_CHECKSUM
861 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
862 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
863 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
864 #endif
865
866 #if NVLAN > 0
867 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
868 #endif
869
870 /* Set up MII bus. */
871 sc->sc_miibus.mii_ifp = ifp;
872 sc->sc_miibus.mii_readreg = alc_miibus_readreg;
873 sc->sc_miibus.mii_writereg = alc_miibus_writereg;
874 sc->sc_miibus.mii_statchg = alc_miibus_statchg;
875
876 sc->sc_ec.ec_mii = &sc->sc_miibus;
877 ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
878 alc_mediastatus);
879 mii_flags = 0;
880 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
881 mii_flags |= MIIF_DOPAUSE;
882 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
883 MII_OFFSET_ANY, mii_flags);
884
885 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
886 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
887 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
888 0, NULL);
889 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
890 } else
891 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
892
893 if_attach(ifp);
894 ether_ifattach(ifp, sc->alc_eaddr);
895
896 if (!pmf_device_register(self, NULL, NULL))
897 aprint_error_dev(self, "couldn't establish power handler\n");
898 else
899 pmf_class_network_register(self, ifp);
900
901 return;
902 fail:
903 alc_dma_free(sc);
904 if (sc->sc_irq_handle != NULL) {
905 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
906 sc->sc_irq_handle = NULL;
907 }
908 if (sc->sc_mem_size) {
909 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
910 sc->sc_mem_size = 0;
911 }
912 }
913
914 static int
915 alc_detach(device_t self, int flags)
916 {
917 struct alc_softc *sc = device_private(self);
918 struct ifnet *ifp = &sc->sc_ec.ec_if;
919 int s;
920
921 s = splnet();
922 alc_stop(ifp, 0);
923 splx(s);
924
925 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
926
927 /* Delete all remaining media. */
928 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
929
930 ether_ifdetach(ifp);
931 if_detach(ifp);
932 alc_dma_free(sc);
933
934 alc_phy_down(sc);
935 if (sc->sc_irq_handle != NULL) {
936 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
937 sc->sc_irq_handle = NULL;
938 }
939 if (sc->sc_mem_size) {
940 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
941 sc->sc_mem_size = 0;
942 }
943
944 return (0);
945 }
946
947 static int
948 alc_dma_alloc(struct alc_softc *sc)
949 {
950 struct alc_txdesc *txd;
951 struct alc_rxdesc *rxd;
952 int nsegs, error, i;
953
954 /*
955 * Create DMA stuffs for TX ring
956 */
957 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
958 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
959 if (error) {
960 sc->alc_cdata.alc_tx_ring_map = NULL;
961 return (ENOBUFS);
962 }
963
964 /* Allocate DMA'able memory for TX ring */
965 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
966 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
967 &nsegs, BUS_DMA_NOWAIT);
968 if (error) {
969 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
970 device_xname(sc->sc_dev));
971 return error;
972 }
973
974 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
975 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
976 BUS_DMA_NOWAIT);
977 if (error)
978 return (ENOBUFS);
979
980 /* Load the DMA map for Tx ring. */
981 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
982 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
983 if (error) {
984 printf("%s: could not load DMA'able memory for Tx ring.\n",
985 device_xname(sc->sc_dev));
986 bus_dmamem_free(sc->sc_dmat,
987 &sc->alc_rdata.alc_tx_ring_seg, 1);
988 return error;
989 }
990
991 sc->alc_rdata.alc_tx_ring_paddr =
992 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
993
994 /*
995 * Create DMA stuffs for RX ring
996 */
997 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
998 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
999 if (error)
1000 return (ENOBUFS);
1001
1002 /* Allocate DMA'able memory for RX ring */
1003 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1004 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1005 &nsegs, BUS_DMA_NOWAIT);
1006 if (error) {
1007 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1008 device_xname(sc->sc_dev));
1009 return error;
1010 }
1011
1012 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1013 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1014 BUS_DMA_NOWAIT);
1015 if (error)
1016 return (ENOBUFS);
1017
1018 /* Load the DMA map for Rx ring. */
1019 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1020 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1021 if (error) {
1022 printf("%s: could not load DMA'able memory for Rx ring.\n",
1023 device_xname(sc->sc_dev));
1024 bus_dmamem_free(sc->sc_dmat,
1025 &sc->alc_rdata.alc_rx_ring_seg, 1);
1026 return error;
1027 }
1028
1029 sc->alc_rdata.alc_rx_ring_paddr =
1030 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1031
1032 /*
1033 * Create DMA stuffs for RX return ring
1034 */
1035 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1036 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1037 if (error)
1038 return (ENOBUFS);
1039
1040 /* Allocate DMA'able memory for RX return ring */
1041 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1042 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1043 &nsegs, BUS_DMA_NOWAIT);
1044 if (error) {
1045 printf("%s: could not allocate DMA'able memory for Rx "
1046 "return ring.\n", device_xname(sc->sc_dev));
1047 return error;
1048 }
1049
1050 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1051 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1052 BUS_DMA_NOWAIT);
1053 if (error)
1054 return (ENOBUFS);
1055
1056 /* Load the DMA map for Rx return ring. */
1057 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1058 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1059 if (error) {
1060 printf("%s: could not load DMA'able memory for Rx return ring."
1061 "\n", device_xname(sc->sc_dev));
1062 bus_dmamem_free(sc->sc_dmat,
1063 &sc->alc_rdata.alc_rr_ring_seg, 1);
1064 return error;
1065 }
1066
1067 sc->alc_rdata.alc_rr_ring_paddr =
1068 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1069
1070 /*
1071 * Create DMA stuffs for CMB block
1072 */
1073 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1074 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1075 &sc->alc_cdata.alc_cmb_map);
1076 if (error)
1077 return (ENOBUFS);
1078
1079 /* Allocate DMA'able memory for CMB block */
1080 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1081 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1082 &nsegs, BUS_DMA_NOWAIT);
1083 if (error) {
1084 printf("%s: could not allocate DMA'able memory for "
1085 "CMB block\n", device_xname(sc->sc_dev));
1086 return error;
1087 }
1088
1089 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1090 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1091 BUS_DMA_NOWAIT);
1092 if (error)
1093 return (ENOBUFS);
1094
1095 /* Load the DMA map for CMB block. */
1096 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1097 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1098 BUS_DMA_WAITOK);
1099 if (error) {
1100 printf("%s: could not load DMA'able memory for CMB block\n",
1101 device_xname(sc->sc_dev));
1102 bus_dmamem_free(sc->sc_dmat,
1103 &sc->alc_rdata.alc_cmb_seg, 1);
1104 return error;
1105 }
1106
1107 sc->alc_rdata.alc_cmb_paddr =
1108 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1109
1110 /*
1111 * Create DMA stuffs for SMB block
1112 */
1113 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1114 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1115 &sc->alc_cdata.alc_smb_map);
1116 if (error)
1117 return (ENOBUFS);
1118
1119 /* Allocate DMA'able memory for SMB block */
1120 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1121 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1122 &nsegs, BUS_DMA_NOWAIT);
1123 if (error) {
1124 printf("%s: could not allocate DMA'able memory for "
1125 "SMB block\n", device_xname(sc->sc_dev));
1126 return error;
1127 }
1128
1129 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1130 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1131 BUS_DMA_NOWAIT);
1132 if (error)
1133 return (ENOBUFS);
1134
1135 /* Load the DMA map for SMB block */
1136 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1137 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1138 BUS_DMA_WAITOK);
1139 if (error) {
1140 printf("%s: could not load DMA'able memory for SMB block\n",
1141 device_xname(sc->sc_dev));
1142 bus_dmamem_free(sc->sc_dmat,
1143 &sc->alc_rdata.alc_smb_seg, 1);
1144 return error;
1145 }
1146
1147 sc->alc_rdata.alc_smb_paddr =
1148 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1149
1150
1151 /* Create DMA maps for Tx buffers. */
1152 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1153 txd = &sc->alc_cdata.alc_txdesc[i];
1154 txd->tx_m = NULL;
1155 txd->tx_dmamap = NULL;
1156 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1157 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1158 &txd->tx_dmamap);
1159 if (error) {
1160 printf("%s: could not create Tx dmamap.\n",
1161 device_xname(sc->sc_dev));
1162 return error;
1163 }
1164 }
1165
1166 /* Create DMA maps for Rx buffers. */
1167 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1168 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1169 if (error) {
1170 printf("%s: could not create spare Rx dmamap.\n",
1171 device_xname(sc->sc_dev));
1172 return error;
1173 }
1174
1175 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1176 rxd = &sc->alc_cdata.alc_rxdesc[i];
1177 rxd->rx_m = NULL;
1178 rxd->rx_dmamap = NULL;
1179 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1180 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1181 if (error) {
1182 printf("%s: could not create Rx dmamap.\n",
1183 device_xname(sc->sc_dev));
1184 return error;
1185 }
1186 }
1187
1188 return (0);
1189 }
1190
1191
1192 static void
1193 alc_dma_free(struct alc_softc *sc)
1194 {
1195 struct alc_txdesc *txd;
1196 struct alc_rxdesc *rxd;
1197 int i;
1198
1199 /* Tx buffers */
1200 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1201 txd = &sc->alc_cdata.alc_txdesc[i];
1202 if (txd->tx_dmamap != NULL) {
1203 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1204 txd->tx_dmamap = NULL;
1205 }
1206 }
1207 /* Rx buffers */
1208 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1209 rxd = &sc->alc_cdata.alc_rxdesc[i];
1210 if (rxd->rx_dmamap != NULL) {
1211 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1212 rxd->rx_dmamap = NULL;
1213 }
1214 }
1215 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1216 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1217 sc->alc_cdata.alc_rx_sparemap = NULL;
1218 }
1219
1220 /* Tx ring. */
1221 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1222 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1223 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1224 sc->alc_rdata.alc_tx_ring != NULL)
1225 bus_dmamem_free(sc->sc_dmat,
1226 &sc->alc_rdata.alc_tx_ring_seg, 1);
1227 sc->alc_rdata.alc_tx_ring = NULL;
1228 sc->alc_cdata.alc_tx_ring_map = NULL;
1229
1230 /* Rx ring. */
1231 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1232 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1233 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1234 sc->alc_rdata.alc_rx_ring != NULL)
1235 bus_dmamem_free(sc->sc_dmat,
1236 &sc->alc_rdata.alc_rx_ring_seg, 1);
1237 sc->alc_rdata.alc_rx_ring = NULL;
1238 sc->alc_cdata.alc_rx_ring_map = NULL;
1239
1240 /* Rx return ring. */
1241 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1242 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1243 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1244 sc->alc_rdata.alc_rr_ring != NULL)
1245 bus_dmamem_free(sc->sc_dmat,
1246 &sc->alc_rdata.alc_rr_ring_seg, 1);
1247 sc->alc_rdata.alc_rr_ring = NULL;
1248 sc->alc_cdata.alc_rr_ring_map = NULL;
1249
1250 /* CMB block */
1251 if (sc->alc_cdata.alc_cmb_map != NULL)
1252 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1253 if (sc->alc_cdata.alc_cmb_map != NULL &&
1254 sc->alc_rdata.alc_cmb != NULL)
1255 bus_dmamem_free(sc->sc_dmat,
1256 &sc->alc_rdata.alc_cmb_seg, 1);
1257 sc->alc_rdata.alc_cmb = NULL;
1258 sc->alc_cdata.alc_cmb_map = NULL;
1259
1260 /* SMB block */
1261 if (sc->alc_cdata.alc_smb_map != NULL)
1262 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1263 if (sc->alc_cdata.alc_smb_map != NULL &&
1264 sc->alc_rdata.alc_smb != NULL)
1265 bus_dmamem_free(sc->sc_dmat,
1266 &sc->alc_rdata.alc_smb_seg, 1);
1267 sc->alc_rdata.alc_smb = NULL;
1268 sc->alc_cdata.alc_smb_map = NULL;
1269 }
1270
1271 static int
1272 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1273 {
1274 struct alc_txdesc *txd, *txd_last;
1275 struct tx_desc *desc;
1276 struct mbuf *m;
1277 bus_dmamap_t map;
1278 uint32_t cflags, poff, vtag;
1279 int error, idx, nsegs, prod;
1280 #if NVLAN > 0
1281 struct m_tag *mtag;
1282 #endif
1283
1284 m = *m_head;
1285 cflags = vtag = 0;
1286 poff = 0;
1287
1288 prod = sc->alc_cdata.alc_tx_prod;
1289 txd = &sc->alc_cdata.alc_txdesc[prod];
1290 txd_last = txd;
1291 map = txd->tx_dmamap;
1292
1293 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1294
1295 if (error == EFBIG) {
1296 error = 0;
1297
1298 *m_head = m_pullup(*m_head, MHLEN);
1299 if (*m_head == NULL) {
1300 printf("%s: can't defrag TX mbuf\n",
1301 device_xname(sc->sc_dev));
1302 return ENOBUFS;
1303 }
1304
1305 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1306 BUS_DMA_NOWAIT);
1307
1308 if (error != 0) {
1309 printf("%s: could not load defragged TX mbuf\n",
1310 device_xname(sc->sc_dev));
1311 m_freem(*m_head);
1312 *m_head = NULL;
1313 return error;
1314 }
1315 } else if (error) {
1316 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1317 return (error);
1318 }
1319
1320 nsegs = map->dm_nsegs;
1321
1322 if (nsegs == 0) {
1323 m_freem(*m_head);
1324 *m_head = NULL;
1325 return (EIO);
1326 }
1327
1328 /* Check descriptor overrun. */
1329 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1330 bus_dmamap_unload(sc->sc_dmat, map);
1331 return (ENOBUFS);
1332 }
1333 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1334 BUS_DMASYNC_PREWRITE);
1335
1336 m = *m_head;
1337 desc = NULL;
1338 idx = 0;
1339 #if NVLAN > 0
1340 /* Configure VLAN hardware tag insertion. */
1341 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1342 vtag = htons(VLAN_TAG_VALUE(mtag));
1343 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1344 cflags |= TD_INS_VLAN_TAG;
1345 }
1346 #endif
1347 /* Configure Tx checksum offload. */
1348 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1349 cflags |= TD_CUSTOM_CSUM;
1350 /* Set checksum start offset. */
1351 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1352 TD_PLOAD_OFFSET_MASK;
1353 }
1354 for (; idx < nsegs; idx++) {
1355 desc = &sc->alc_rdata.alc_tx_ring[prod];
1356 desc->len =
1357 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1358 desc->flags = htole32(cflags);
1359 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1360 sc->alc_cdata.alc_tx_cnt++;
1361 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1362 }
1363 /* Update producer index. */
1364 sc->alc_cdata.alc_tx_prod = prod;
1365
1366 /* Finally set EOP on the last descriptor. */
1367 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1368 desc = &sc->alc_rdata.alc_tx_ring[prod];
1369 desc->flags |= htole32(TD_EOP);
1370
1371 /* Swap dmamap of the first and the last. */
1372 txd = &sc->alc_cdata.alc_txdesc[prod];
1373 map = txd_last->tx_dmamap;
1374 txd_last->tx_dmamap = txd->tx_dmamap;
1375 txd->tx_dmamap = map;
1376 txd->tx_m = m;
1377
1378 return (0);
1379 }
1380
1381 static void
1382 alc_start(struct ifnet *ifp)
1383 {
1384 struct alc_softc *sc = ifp->if_softc;
1385 struct mbuf *m_head;
1386 int enq;
1387
1388 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1389 return;
1390
1391 /* Reclaim transmitted frames. */
1392 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1393 alc_txeof(sc);
1394
1395 enq = 0;
1396 for (;;) {
1397 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1398 if (m_head == NULL)
1399 break;
1400
1401 /*
1402 * Pack the data into the transmit ring. If we
1403 * don't have room, set the OACTIVE flag and wait
1404 * for the NIC to drain the ring.
1405 */
1406 if (alc_encap(sc, &m_head)) {
1407 if (m_head == NULL)
1408 break;
1409 ifp->if_flags |= IFF_OACTIVE;
1410 break;
1411 }
1412 enq = 1;
1413
1414 /*
1415 * If there's a BPF listener, bounce a copy of this frame
1416 * to him.
1417 */
1418 bpf_mtap(ifp, m_head);
1419 }
1420
1421 if (enq) {
1422 /* Sync descriptors. */
1423 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1424 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1425 BUS_DMASYNC_PREWRITE);
1426 /* Kick. Assume we're using normal Tx priority queue. */
1427 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1428 (sc->alc_cdata.alc_tx_prod <<
1429 MBOX_TD_PROD_LO_IDX_SHIFT) &
1430 MBOX_TD_PROD_LO_IDX_MASK);
1431 /* Set a timeout in case the chip goes out to lunch. */
1432 ifp->if_timer = ALC_TX_TIMEOUT;
1433 }
1434 }
1435
1436 static void
1437 alc_watchdog(struct ifnet *ifp)
1438 {
1439 struct alc_softc *sc = ifp->if_softc;
1440
1441 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1442 printf("%s: watchdog timeout (missed link)\n",
1443 device_xname(sc->sc_dev));
1444 ifp->if_oerrors++;
1445 alc_init(ifp);
1446 return;
1447 }
1448
1449 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1450 ifp->if_oerrors++;
1451 alc_init(ifp);
1452
1453 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1454 alc_start(ifp);
1455 }
1456
1457 static int
1458 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1459 {
1460 struct alc_softc *sc = ifp->if_softc;
1461 int s, error = 0;
1462
1463 s = splnet();
1464
1465 error = ether_ioctl(ifp, cmd, data);
1466 if (error == ENETRESET) {
1467 if (ifp->if_flags & IFF_RUNNING)
1468 alc_iff(sc);
1469 error = 0;
1470 }
1471
1472 splx(s);
1473 return (error);
1474 }
1475
1476 static void
1477 alc_mac_config(struct alc_softc *sc)
1478 {
1479 struct mii_data *mii;
1480 uint32_t reg;
1481
1482 mii = &sc->sc_miibus;
1483 reg = CSR_READ_4(sc, ALC_MAC_CFG);
1484 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1485 MAC_CFG_SPEED_MASK);
1486 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1487 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1488 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1489 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1490 /* Reprogram MAC with resolved speed/duplex. */
1491 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1492 case IFM_10_T:
1493 case IFM_100_TX:
1494 reg |= MAC_CFG_SPEED_10_100;
1495 break;
1496 case IFM_1000_T:
1497 reg |= MAC_CFG_SPEED_1000;
1498 break;
1499 }
1500 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1501 reg |= MAC_CFG_FULL_DUPLEX;
1502 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1503 reg |= MAC_CFG_TX_FC;
1504 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1505 reg |= MAC_CFG_RX_FC;
1506 }
1507 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1508 }
1509
1510 static void
1511 alc_stats_clear(struct alc_softc *sc)
1512 {
1513 struct smb sb, *smb;
1514 uint32_t *reg;
1515 int i;
1516
1517 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1518 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1519 sc->alc_cdata.alc_smb_map->dm_mapsize,
1520 BUS_DMASYNC_POSTREAD);
1521 smb = sc->alc_rdata.alc_smb;
1522 /* Update done, clear. */
1523 smb->updated = 0;
1524 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1525 sc->alc_cdata.alc_smb_map->dm_mapsize,
1526 BUS_DMASYNC_PREWRITE);
1527 } else {
1528 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1529 reg++) {
1530 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1531 i += sizeof(uint32_t);
1532 }
1533 /* Read Tx statistics. */
1534 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1535 reg++) {
1536 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1537 i += sizeof(uint32_t);
1538 }
1539 }
1540 }
1541
1542 static void
1543 alc_stats_update(struct alc_softc *sc)
1544 {
1545 struct ifnet *ifp = &sc->sc_ec.ec_if;
1546 struct alc_hw_stats *stat;
1547 struct smb sb, *smb;
1548 uint32_t *reg;
1549 int i;
1550
1551 stat = &sc->alc_stats;
1552 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1553 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1554 sc->alc_cdata.alc_smb_map->dm_mapsize,
1555 BUS_DMASYNC_POSTREAD);
1556 smb = sc->alc_rdata.alc_smb;
1557 if (smb->updated == 0)
1558 return;
1559 } else {
1560 smb = &sb;
1561 /* Read Rx statistics. */
1562 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1563 reg++) {
1564 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1565 i += sizeof(uint32_t);
1566 }
1567 /* Read Tx statistics. */
1568 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1569 reg++) {
1570 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1571 i += sizeof(uint32_t);
1572 }
1573 }
1574
1575 /* Rx stats. */
1576 stat->rx_frames += smb->rx_frames;
1577 stat->rx_bcast_frames += smb->rx_bcast_frames;
1578 stat->rx_mcast_frames += smb->rx_mcast_frames;
1579 stat->rx_pause_frames += smb->rx_pause_frames;
1580 stat->rx_control_frames += smb->rx_control_frames;
1581 stat->rx_crcerrs += smb->rx_crcerrs;
1582 stat->rx_lenerrs += smb->rx_lenerrs;
1583 stat->rx_bytes += smb->rx_bytes;
1584 stat->rx_runts += smb->rx_runts;
1585 stat->rx_fragments += smb->rx_fragments;
1586 stat->rx_pkts_64 += smb->rx_pkts_64;
1587 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1588 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1589 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1590 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1591 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1592 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1593 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1594 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1595 stat->rx_rrs_errs += smb->rx_rrs_errs;
1596 stat->rx_alignerrs += smb->rx_alignerrs;
1597 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1598 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1599 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1600
1601 /* Tx stats. */
1602 stat->tx_frames += smb->tx_frames;
1603 stat->tx_bcast_frames += smb->tx_bcast_frames;
1604 stat->tx_mcast_frames += smb->tx_mcast_frames;
1605 stat->tx_pause_frames += smb->tx_pause_frames;
1606 stat->tx_excess_defer += smb->tx_excess_defer;
1607 stat->tx_control_frames += smb->tx_control_frames;
1608 stat->tx_deferred += smb->tx_deferred;
1609 stat->tx_bytes += smb->tx_bytes;
1610 stat->tx_pkts_64 += smb->tx_pkts_64;
1611 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1612 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1613 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1614 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1615 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1616 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1617 stat->tx_single_colls += smb->tx_single_colls;
1618 stat->tx_multi_colls += smb->tx_multi_colls;
1619 stat->tx_late_colls += smb->tx_late_colls;
1620 stat->tx_excess_colls += smb->tx_excess_colls;
1621 stat->tx_abort += smb->tx_abort;
1622 stat->tx_underrun += smb->tx_underrun;
1623 stat->tx_desc_underrun += smb->tx_desc_underrun;
1624 stat->tx_lenerrs += smb->tx_lenerrs;
1625 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1626 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1627 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1628
1629 /* Update counters in ifnet. */
1630 ifp->if_opackets += smb->tx_frames;
1631
1632 ifp->if_collisions += smb->tx_single_colls +
1633 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1634 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1635
1636 /*
1637 * XXX
1638 * tx_pkts_truncated counter looks suspicious. It constantly
1639 * increments with no sign of Tx errors. This may indicate
1640 * the counter name is not correct one so I've removed the
1641 * counter in output errors.
1642 */
1643 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1644 smb->tx_underrun;
1645
1646 ifp->if_ipackets += smb->rx_frames;
1647
1648 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1649 smb->rx_runts + smb->rx_pkts_truncated +
1650 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1651 smb->rx_alignerrs;
1652
1653 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1654 /* Update done, clear. */
1655 smb->updated = 0;
1656 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1657 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1658 }
1659 }
1660
1661 static int
1662 alc_intr(void *arg)
1663 {
1664 struct alc_softc *sc = arg;
1665 struct ifnet *ifp = &sc->sc_ec.ec_if;
1666 uint32_t status;
1667
1668 status = CSR_READ_4(sc, ALC_INTR_STATUS);
1669 if ((status & ALC_INTRS) == 0)
1670 return (0);
1671
1672 /* Acknowledge and disable interrupts. */
1673 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1674
1675 if (ifp->if_flags & IFF_RUNNING) {
1676 if (status & INTR_RX_PKT) {
1677 int error;
1678
1679 error = alc_rxintr(sc);
1680 if (error) {
1681 alc_init(ifp);
1682 return (0);
1683 }
1684 }
1685
1686 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1687 INTR_TXQ_TO_RST)) {
1688 if (status & INTR_DMA_RD_TO_RST)
1689 printf("%s: DMA read error! -- resetting\n",
1690 device_xname(sc->sc_dev));
1691 if (status & INTR_DMA_WR_TO_RST)
1692 printf("%s: DMA write error! -- resetting\n",
1693 device_xname(sc->sc_dev));
1694 if (status & INTR_TXQ_TO_RST)
1695 printf("%s: TxQ reset! -- resetting\n",
1696 device_xname(sc->sc_dev));
1697 alc_init(ifp);
1698 return (0);
1699 }
1700
1701 alc_txeof(sc);
1702 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1703 alc_start(ifp);
1704 }
1705
1706 /* Re-enable interrupts. */
1707 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1708 return (1);
1709 }
1710
1711 static void
1712 alc_txeof(struct alc_softc *sc)
1713 {
1714 struct ifnet *ifp = &sc->sc_ec.ec_if;
1715 struct alc_txdesc *txd;
1716 uint32_t cons, prod;
1717 int prog;
1718
1719 if (sc->alc_cdata.alc_tx_cnt == 0)
1720 return;
1721 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1722 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1723 BUS_DMASYNC_POSTREAD);
1724 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1725 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1726 sc->alc_cdata.alc_cmb_map->dm_mapsize,
1727 BUS_DMASYNC_POSTREAD);
1728 prod = sc->alc_rdata.alc_cmb->cons;
1729 } else
1730 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1731 /* Assume we're using normal Tx priority queue. */
1732 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1733 MBOX_TD_CONS_LO_IDX_SHIFT;
1734 cons = sc->alc_cdata.alc_tx_cons;
1735 /*
1736 * Go through our Tx list and free mbufs for those
1737 * frames which have been transmitted.
1738 */
1739 for (prog = 0; cons != prod; prog++,
1740 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1741 if (sc->alc_cdata.alc_tx_cnt <= 0)
1742 break;
1743 prog++;
1744 ifp->if_flags &= ~IFF_OACTIVE;
1745 sc->alc_cdata.alc_tx_cnt--;
1746 txd = &sc->alc_cdata.alc_txdesc[cons];
1747 if (txd->tx_m != NULL) {
1748 /* Reclaim transmitted mbufs. */
1749 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1750 m_freem(txd->tx_m);
1751 txd->tx_m = NULL;
1752 }
1753 }
1754
1755 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1756 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1757 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1758 sc->alc_cdata.alc_tx_cons = cons;
1759 /*
1760 * Unarm watchdog timer only when there is no pending
1761 * frames in Tx queue.
1762 */
1763 if (sc->alc_cdata.alc_tx_cnt == 0)
1764 ifp->if_timer = 0;
1765 }
1766
1767 static int
1768 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, int init)
1769 {
1770 struct mbuf *m;
1771 bus_dmamap_t map;
1772 int error;
1773
1774 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1775 if (m == NULL)
1776 return (ENOBUFS);
1777 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1778 if (!(m->m_flags & M_EXT)) {
1779 m_freem(m);
1780 return (ENOBUFS);
1781 }
1782
1783 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1784
1785 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1786 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1787
1788 if (error != 0) {
1789 if (!error) {
1790 bus_dmamap_unload(sc->sc_dmat,
1791 sc->alc_cdata.alc_rx_sparemap);
1792 error = EFBIG;
1793 printf("%s: too many segments?!\n",
1794 device_xname(sc->sc_dev));
1795 }
1796 m_freem(m);
1797
1798 if (init)
1799 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1800
1801 return (error);
1802 }
1803
1804 if (rxd->rx_m != NULL) {
1805 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1806 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1807 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1808 }
1809 map = rxd->rx_dmamap;
1810 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1811 sc->alc_cdata.alc_rx_sparemap = map;
1812 rxd->rx_m = m;
1813 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1814 return (0);
1815 }
1816
1817 static int
1818 alc_rxintr(struct alc_softc *sc)
1819 {
1820 struct ifnet *ifp = &sc->sc_ec.ec_if;
1821 struct rx_rdesc *rrd;
1822 uint32_t nsegs, status;
1823 int rr_cons, prog;
1824
1825 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1826 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1827 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1828 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1829 rr_cons = sc->alc_cdata.alc_rr_cons;
1830 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1831 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1832 status = le32toh(rrd->status);
1833 if ((status & RRD_VALID) == 0)
1834 break;
1835 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1836 if (nsegs == 0) {
1837 /* This should not happen! */
1838 if (alcdebug)
1839 printf("%s: unexpected segment count -- "
1840 "resetting\n", device_xname(sc->sc_dev));
1841 return (EIO);
1842 }
1843 alc_rxeof(sc, rrd);
1844 /* Clear Rx return status. */
1845 rrd->status = 0;
1846 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1847 sc->alc_cdata.alc_rx_cons += nsegs;
1848 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1849 prog += nsegs;
1850 }
1851
1852 if (prog > 0) {
1853 /* Update the consumer index. */
1854 sc->alc_cdata.alc_rr_cons = rr_cons;
1855 /* Sync Rx return descriptors. */
1856 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1857 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1858 BUS_DMASYNC_PREWRITE);
1859 /*
1860 * Sync updated Rx descriptors such that controller see
1861 * modified buffer addresses.
1862 */
1863 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1864 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1865 BUS_DMASYNC_PREWRITE);
1866 /*
1867 * Let controller know availability of new Rx buffers.
1868 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1869 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1870 * only when Rx buffer pre-fetching is required. In
1871 * addition we already set ALC_RX_RD_FREE_THRESH to
1872 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1873 * it still seems that pre-fetching needs more
1874 * experimentation.
1875 */
1876 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1877 sc->alc_cdata.alc_rx_cons);
1878 }
1879
1880 return (0);
1881 }
1882
1883 /* Receive a frame. */
1884 static void
1885 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1886 {
1887 struct ifnet *ifp = &sc->sc_ec.ec_if;
1888 struct alc_rxdesc *rxd;
1889 struct mbuf *mp, *m;
1890 uint32_t rdinfo, status;
1891 int count, nsegs, rx_cons;
1892
1893 status = le32toh(rrd->status);
1894 rdinfo = le32toh(rrd->rdinfo);
1895 rx_cons = RRD_RD_IDX(rdinfo);
1896 nsegs = RRD_RD_CNT(rdinfo);
1897
1898 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1899 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1900 /*
1901 * We want to pass the following frames to upper
1902 * layer regardless of error status of Rx return
1903 * ring.
1904 *
1905 * o IP/TCP/UDP checksum is bad.
1906 * o frame length and protocol specific length
1907 * does not match.
1908 *
1909 * Force network stack compute checksum for
1910 * errored frames.
1911 */
1912 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1913 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1914 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1915 return;
1916 }
1917
1918 for (count = 0; count < nsegs; count++,
1919 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1920 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1921 mp = rxd->rx_m;
1922 /* Add a new receive buffer to the ring. */
1923 if (alc_newbuf(sc, rxd, 0) != 0) {
1924 ifp->if_iqdrops++;
1925 /* Reuse Rx buffers. */
1926 if (sc->alc_cdata.alc_rxhead != NULL)
1927 m_freem(sc->alc_cdata.alc_rxhead);
1928 break;
1929 }
1930
1931 /*
1932 * Assume we've received a full sized frame.
1933 * Actual size is fixed when we encounter the end of
1934 * multi-segmented frame.
1935 */
1936 mp->m_len = sc->alc_buf_size;
1937
1938 /* Chain received mbufs. */
1939 if (sc->alc_cdata.alc_rxhead == NULL) {
1940 sc->alc_cdata.alc_rxhead = mp;
1941 sc->alc_cdata.alc_rxtail = mp;
1942 } else {
1943 mp->m_flags &= ~M_PKTHDR;
1944 sc->alc_cdata.alc_rxprev_tail =
1945 sc->alc_cdata.alc_rxtail;
1946 sc->alc_cdata.alc_rxtail->m_next = mp;
1947 sc->alc_cdata.alc_rxtail = mp;
1948 }
1949
1950 if (count == nsegs - 1) {
1951 /* Last desc. for this frame. */
1952 m = sc->alc_cdata.alc_rxhead;
1953 m->m_flags |= M_PKTHDR;
1954 /*
1955 * It seems that L1C/L2C controller has no way
1956 * to tell hardware to strip CRC bytes.
1957 */
1958 m->m_pkthdr.len =
1959 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1960 if (nsegs > 1) {
1961 /* Set last mbuf size. */
1962 mp->m_len = sc->alc_cdata.alc_rxlen -
1963 (nsegs - 1) * sc->alc_buf_size;
1964 /* Remove the CRC bytes in chained mbufs. */
1965 if (mp->m_len <= ETHER_CRC_LEN) {
1966 sc->alc_cdata.alc_rxtail =
1967 sc->alc_cdata.alc_rxprev_tail;
1968 sc->alc_cdata.alc_rxtail->m_len -=
1969 (ETHER_CRC_LEN - mp->m_len);
1970 sc->alc_cdata.alc_rxtail->m_next = NULL;
1971 m_freem(mp);
1972 } else {
1973 mp->m_len -= ETHER_CRC_LEN;
1974 }
1975 } else
1976 m->m_len = m->m_pkthdr.len;
1977 m->m_pkthdr.rcvif = ifp;
1978 #if NVLAN > 0
1979 /*
1980 * Due to hardware bugs, Rx checksum offloading
1981 * was intentionally disabled.
1982 */
1983 if (status & RRD_VLAN_TAG) {
1984 u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1985 VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1986 }
1987 #endif
1988
1989 bpf_mtap(ifp, m);
1990
1991 {
1992 /* Pass it on. */
1993 ether_input(ifp, m);
1994 }
1995 }
1996 }
1997 /* Reset mbuf chains. */
1998 ALC_RXCHAIN_RESET(sc);
1999 }
2000
2001 static void
2002 alc_tick(void *xsc)
2003 {
2004 struct alc_softc *sc = xsc;
2005 struct mii_data *mii = &sc->sc_miibus;
2006 int s;
2007
2008 s = splnet();
2009 mii_tick(mii);
2010 alc_stats_update(sc);
2011 splx(s);
2012
2013 callout_schedule(&sc->sc_tick_ch, hz);
2014 }
2015
2016 static void
2017 alc_reset(struct alc_softc *sc)
2018 {
2019 uint32_t reg;
2020 int i;
2021
2022 reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2023 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2024 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2025 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2026 DELAY(10);
2027 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2028 break;
2029 }
2030 if (i == 0)
2031 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2032
2033 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2034 if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2035 break;
2036 DELAY(10);
2037 }
2038
2039 if (i == 0)
2040 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2041 reg);
2042 }
2043
2044 static int
2045 alc_init(struct ifnet *ifp)
2046 {
2047 struct alc_softc *sc = ifp->if_softc;
2048 struct mii_data *mii;
2049 uint8_t eaddr[ETHER_ADDR_LEN];
2050 bus_addr_t paddr;
2051 uint32_t reg, rxf_hi, rxf_lo;
2052 int error;
2053
2054 /*
2055 * Cancel any pending I/O.
2056 */
2057 alc_stop(ifp, 0);
2058 /*
2059 * Reset the chip to a known state.
2060 */
2061 alc_reset(sc);
2062
2063 /* Initialize Rx descriptors. */
2064 error = alc_init_rx_ring(sc);
2065 if (error != 0) {
2066 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2067 alc_stop(ifp, 0);
2068 return (error);
2069 }
2070 alc_init_rr_ring(sc);
2071 alc_init_tx_ring(sc);
2072 alc_init_cmb(sc);
2073 alc_init_smb(sc);
2074
2075 /* Enable all clocks. */
2076 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2077
2078 /* Reprogram the station address. */
2079 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2080 CSR_WRITE_4(sc, ALC_PAR0,
2081 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2082 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2083 /*
2084 * Clear WOL status and disable all WOL feature as WOL
2085 * would interfere Rx operation under normal environments.
2086 */
2087 CSR_READ_4(sc, ALC_WOL_CFG);
2088 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2089 /* Set Tx descriptor base addresses. */
2090 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2091 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2092 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2093 /* We don't use high priority ring. */
2094 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2095 /* Set Tx descriptor counter. */
2096 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2097 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2098 /* Set Rx descriptor base addresses. */
2099 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2100 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2101 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2102 /* We use one Rx ring. */
2103 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2104 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2105 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2106 /* Set Rx descriptor counter. */
2107 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2108 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2109
2110 /*
2111 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2112 * if it do not fit the buffer size. Rx return descriptor holds
2113 * a counter that indicates how many fragments were made by the
2114 * hardware. The buffer size should be multiple of 8 bytes.
2115 * Since hardware has limit on the size of buffer size, always
2116 * use the maximum value.
2117 * For strict-alignment architectures make sure to reduce buffer
2118 * size by 8 bytes to make room for alignment fixup.
2119 */
2120 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2121 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2122
2123 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2124 /* Set Rx return descriptor base addresses. */
2125 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2126 /* We use one Rx return ring. */
2127 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2128 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2129 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2130 /* Set Rx return descriptor counter. */
2131 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2132 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2133 paddr = sc->alc_rdata.alc_cmb_paddr;
2134 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2135 paddr = sc->alc_rdata.alc_smb_paddr;
2136 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2137 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2138
2139 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2140 /* Reconfigure SRAM - Vendor magic. */
2141 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2142 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2143 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2144 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2145 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2146 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2147 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2148 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2149 }
2150
2151 /* Tell hardware that we're ready to load DMA blocks. */
2152 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2153
2154 /* Configure interrupt moderation timer. */
2155 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2156 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2157 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2158 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2159 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2160 /*
2161 * We don't want to automatic interrupt clear as task queue
2162 * for the interrupt should know interrupt status.
2163 */
2164 reg = MASTER_SA_TIMER_ENB;
2165 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2166 reg |= MASTER_IM_RX_TIMER_ENB;
2167 if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2168 reg |= MASTER_IM_TX_TIMER_ENB;
2169 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2170 /*
2171 * Disable interrupt re-trigger timer. We don't want automatic
2172 * re-triggering of un-ACKed interrupts.
2173 */
2174 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2175 /* Configure CMB. */
2176 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2177 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2178 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2179 else
2180 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2181 /*
2182 * Hardware can be configured to issue SMB interrupt based
2183 * on programmed interval. Since there is a callout that is
2184 * invoked for every hz in driver we use that instead of
2185 * relying on periodic SMB interrupt.
2186 */
2187 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2188 /* Clear MAC statistics. */
2189 alc_stats_clear(sc);
2190
2191 /*
2192 * Always use maximum frame size that controller can support.
2193 * Otherwise received frames that has larger frame length
2194 * than alc(4) MTU would be silently dropped in hardware. This
2195 * would make path-MTU discovery hard as sender wouldn't get
2196 * any responses from receiver. alc(4) supports
2197 * multi-fragmented frames on Rx path so it has no issue on
2198 * assembling fragmented frames. Using maximum frame size also
2199 * removes the need to reinitialize hardware when interface
2200 * MTU configuration was changed.
2201 *
2202 * Be conservative in what you do, be liberal in what you
2203 * accept from others - RFC 793.
2204 */
2205 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2206
2207 /* Disable header split(?) */
2208 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2209
2210 /* Configure IPG/IFG parameters. */
2211 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2212 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2213 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2214 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2215 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2216 /* Set parameters for half-duplex media. */
2217 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2218 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2219 HDPX_CFG_LCOL_MASK) |
2220 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2221 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2222 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2223 HDPX_CFG_ABEBT_MASK) |
2224 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2225 HDPX_CFG_JAMIPG_MASK));
2226 /*
2227 * Set TSO/checksum offload threshold. For frames that is
2228 * larger than this threshold, hardware wouldn't do
2229 * TSO/checksum offloading.
2230 */
2231 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2232 (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2233 TSO_OFFLOAD_THRESH_MASK);
2234 /* Configure TxQ. */
2235 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2236 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2237 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2238 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2239 reg >>= 1;
2240 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2241 TXQ_CFG_TD_BURST_MASK;
2242 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2243
2244 /* Configure Rx free descriptor pre-fetching. */
2245 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2246 ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2247 RX_RD_FREE_THRESH_HI_MASK) |
2248 ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2249 RX_RD_FREE_THRESH_LO_MASK));
2250
2251 /*
2252 * Configure flow control parameters.
2253 * XON : 80% of Rx FIFO
2254 * XOFF : 30% of Rx FIFO
2255 */
2256 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2257 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2258 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2259 rxf_hi = (reg * 8) / 10;
2260 rxf_lo = (reg * 3) / 10;
2261 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2262 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2263 RX_FIFO_PAUSE_THRESH_LO_MASK) |
2264 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2265 RX_FIFO_PAUSE_THRESH_HI_MASK));
2266 }
2267
2268 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2269 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2270 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2271 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2272 SERDES_PHY_CLK_SLOWDOWN);
2273
2274 /* Disable RSS until I understand L1C/L2C's RSS logic. */
2275 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2276 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2277
2278 /* Configure RxQ. */
2279 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2280 RXQ_CFG_RD_BURST_MASK;
2281 reg |= RXQ_CFG_RSS_MODE_DIS;
2282 if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2283 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2284 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2285
2286 /* Configure DMA parameters. */
2287 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2288 reg |= sc->alc_rcb;
2289 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2290 reg |= DMA_CFG_CMB_ENB;
2291 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2292 reg |= DMA_CFG_SMB_ENB;
2293 else
2294 reg |= DMA_CFG_SMB_DIS;
2295 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2296 DMA_CFG_RD_BURST_SHIFT;
2297 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2298 DMA_CFG_WR_BURST_SHIFT;
2299 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2300 DMA_CFG_RD_DELAY_CNT_MASK;
2301 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2302 DMA_CFG_WR_DELAY_CNT_MASK;
2303 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2304
2305 /*
2306 * Configure Tx/Rx MACs.
2307 * - Auto-padding for short frames.
2308 * - Enable CRC generation.
2309 * Actual reconfiguration of MAC for resolved speed/duplex
2310 * is followed after detection of link establishment.
2311 * AR813x/AR815x always does checksum computation regardless
2312 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2313 * have bug in protocol field in Rx return structure so
2314 * these controllers can't handle fragmented frames. Disable
2315 * Rx checksum offloading until there is a newer controller
2316 * that has sane implementation.
2317 */
2318 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2319 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2320 MAC_CFG_PREAMBLE_MASK);
2321 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2322 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2323 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2324 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2325 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2326 reg |= MAC_CFG_SPEED_10_100;
2327 else
2328 reg |= MAC_CFG_SPEED_1000;
2329 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2330
2331 /* Set up the receive filter. */
2332 alc_iff(sc);
2333 alc_rxvlan(sc);
2334
2335 /* Acknowledge all pending interrupts and clear it. */
2336 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2337 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2338 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2339
2340 sc->alc_flags &= ~ALC_FLAG_LINK;
2341 /* Switch to the current media. */
2342 mii = &sc->sc_miibus;
2343 mii_mediachg(mii);
2344
2345 callout_schedule(&sc->sc_tick_ch, hz);
2346
2347 ifp->if_flags |= IFF_RUNNING;
2348 ifp->if_flags &= ~IFF_OACTIVE;
2349
2350 return (0);
2351 }
2352
2353 static void
2354 alc_stop(struct ifnet *ifp, int disable)
2355 {
2356 struct alc_softc *sc = ifp->if_softc;
2357 struct alc_txdesc *txd;
2358 struct alc_rxdesc *rxd;
2359 uint32_t reg;
2360 int i;
2361
2362 callout_stop(&sc->sc_tick_ch);
2363
2364 /*
2365 * Mark the interface down and cancel the watchdog timer.
2366 */
2367 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2368 ifp->if_timer = 0;
2369
2370 sc->alc_flags &= ~ALC_FLAG_LINK;
2371
2372 alc_stats_update(sc);
2373
2374 mii_down(&sc->sc_miibus);
2375
2376 /* Disable interrupts. */
2377 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2378 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2379 alc_stop_queue(sc);
2380
2381 /* Disable DMA. */
2382 reg = CSR_READ_4(sc, ALC_DMA_CFG);
2383 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2384 reg |= DMA_CFG_SMB_DIS;
2385 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2386 DELAY(1000);
2387
2388 /* Stop Rx/Tx MACs. */
2389 alc_stop_mac(sc);
2390
2391 /* Disable interrupts which might be touched in taskq handler. */
2392 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2393
2394 /* Reclaim Rx buffers that have been processed. */
2395 if (sc->alc_cdata.alc_rxhead != NULL)
2396 m_freem(sc->alc_cdata.alc_rxhead);
2397 ALC_RXCHAIN_RESET(sc);
2398 /*
2399 * Free Tx/Rx mbufs still in the queues.
2400 */
2401 for (i = 0; i < ALC_RX_RING_CNT; i++) {
2402 rxd = &sc->alc_cdata.alc_rxdesc[i];
2403 if (rxd->rx_m != NULL) {
2404 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2405 m_freem(rxd->rx_m);
2406 rxd->rx_m = NULL;
2407 }
2408 }
2409 for (i = 0; i < ALC_TX_RING_CNT; i++) {
2410 txd = &sc->alc_cdata.alc_txdesc[i];
2411 if (txd->tx_m != NULL) {
2412 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2413 m_freem(txd->tx_m);
2414 txd->tx_m = NULL;
2415 }
2416 }
2417 }
2418
2419 static void
2420 alc_stop_mac(struct alc_softc *sc)
2421 {
2422 uint32_t reg;
2423 int i;
2424
2425 /* Disable Rx/Tx MAC. */
2426 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2427 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2428 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2429 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2430 }
2431 for (i = ALC_TIMEOUT; i > 0; i--) {
2432 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2433 if (reg == 0)
2434 break;
2435 DELAY(10);
2436 }
2437 if (i == 0)
2438 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2439 device_xname(sc->sc_dev), reg);
2440 }
2441
2442 static void
2443 alc_start_queue(struct alc_softc *sc)
2444 {
2445 uint32_t qcfg[] = {
2446 0,
2447 RXQ_CFG_QUEUE0_ENB,
2448 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2449 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2450 RXQ_CFG_ENB
2451 };
2452 uint32_t cfg;
2453
2454 /* Enable RxQ. */
2455 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2456 cfg &= ~RXQ_CFG_ENB;
2457 cfg |= qcfg[1];
2458 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2459 /* Enable TxQ. */
2460 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2461 cfg |= TXQ_CFG_ENB;
2462 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2463 }
2464
2465 static void
2466 alc_stop_queue(struct alc_softc *sc)
2467 {
2468 uint32_t reg;
2469 int i;
2470
2471 /* Disable RxQ. */
2472 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2473 if ((reg & RXQ_CFG_ENB) != 0) {
2474 reg &= ~RXQ_CFG_ENB;
2475 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2476 }
2477 /* Disable TxQ. */
2478 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2479 if ((reg & TXQ_CFG_ENB) != 0) {
2480 reg &= ~TXQ_CFG_ENB;
2481 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2482 }
2483 for (i = ALC_TIMEOUT; i > 0; i--) {
2484 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2485 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2486 break;
2487 DELAY(10);
2488 }
2489 if (i == 0)
2490 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2491 device_xname(sc->sc_dev), reg);
2492 }
2493
2494 static void
2495 alc_init_tx_ring(struct alc_softc *sc)
2496 {
2497 struct alc_ring_data *rd;
2498 struct alc_txdesc *txd;
2499 int i;
2500
2501 sc->alc_cdata.alc_tx_prod = 0;
2502 sc->alc_cdata.alc_tx_cons = 0;
2503 sc->alc_cdata.alc_tx_cnt = 0;
2504
2505 rd = &sc->alc_rdata;
2506 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2507 for (i = 0; i < ALC_TX_RING_CNT; i++) {
2508 txd = &sc->alc_cdata.alc_txdesc[i];
2509 txd->tx_m = NULL;
2510 }
2511
2512 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2513 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2514 }
2515
2516 static int
2517 alc_init_rx_ring(struct alc_softc *sc)
2518 {
2519 struct alc_ring_data *rd;
2520 struct alc_rxdesc *rxd;
2521 int i;
2522
2523 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2524 rd = &sc->alc_rdata;
2525 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2526 for (i = 0; i < ALC_RX_RING_CNT; i++) {
2527 rxd = &sc->alc_cdata.alc_rxdesc[i];
2528 rxd->rx_m = NULL;
2529 rxd->rx_desc = &rd->alc_rx_ring[i];
2530 if (alc_newbuf(sc, rxd, 1) != 0)
2531 return (ENOBUFS);
2532 }
2533
2534 /*
2535 * Since controller does not update Rx descriptors, driver
2536 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2537 * is enough to ensure coherence.
2538 */
2539 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2540 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2541 /* Let controller know availability of new Rx buffers. */
2542 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2543
2544 return (0);
2545 }
2546
2547 static void
2548 alc_init_rr_ring(struct alc_softc *sc)
2549 {
2550 struct alc_ring_data *rd;
2551
2552 sc->alc_cdata.alc_rr_cons = 0;
2553 ALC_RXCHAIN_RESET(sc);
2554
2555 rd = &sc->alc_rdata;
2556 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2557 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2558 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2559 }
2560
2561 static void
2562 alc_init_cmb(struct alc_softc *sc)
2563 {
2564 struct alc_ring_data *rd;
2565
2566 rd = &sc->alc_rdata;
2567 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2568 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2569 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2570 }
2571
2572 static void
2573 alc_init_smb(struct alc_softc *sc)
2574 {
2575 struct alc_ring_data *rd;
2576
2577 rd = &sc->alc_rdata;
2578 memset(rd->alc_smb, 0, ALC_SMB_SZ);
2579 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2580 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2581 }
2582
2583 static void
2584 alc_rxvlan(struct alc_softc *sc)
2585 {
2586 uint32_t reg;
2587
2588 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2589 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2590 reg |= MAC_CFG_VLAN_TAG_STRIP;
2591 else
2592 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2593 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2594 }
2595
2596 static void
2597 alc_iff(struct alc_softc *sc)
2598 {
2599 struct ethercom *ec = &sc->sc_ec;
2600 struct ifnet *ifp = &ec->ec_if;
2601 struct ether_multi *enm;
2602 struct ether_multistep step;
2603 uint32_t crc;
2604 uint32_t mchash[2];
2605 uint32_t rxcfg;
2606
2607 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2608 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2609 ifp->if_flags &= ~IFF_ALLMULTI;
2610
2611 /*
2612 * Always accept broadcast frames.
2613 */
2614 rxcfg |= MAC_CFG_BCAST;
2615
2616 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2617 ifp->if_flags |= IFF_ALLMULTI;
2618 if (ifp->if_flags & IFF_PROMISC)
2619 rxcfg |= MAC_CFG_PROMISC;
2620 else
2621 rxcfg |= MAC_CFG_ALLMULTI;
2622 mchash[0] = mchash[1] = 0xFFFFFFFF;
2623 } else {
2624 /* Program new filter. */
2625 memset(mchash, 0, sizeof(mchash));
2626
2627 ETHER_FIRST_MULTI(step, ec, enm);
2628 while (enm != NULL) {
2629 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2630 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2631 ETHER_NEXT_MULTI(step, enm);
2632 }
2633 }
2634
2635 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2636 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2637 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2638 }
2639
2640 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
2641
2642 #ifdef _MODULE
2643 #include "ioconf.c"
2644 #endif
2645
2646 static int
2647 if_alc_modcmd(modcmd_t cmd, void *opaque)
2648 {
2649 int error = 0;
2650
2651 switch (cmd) {
2652 case MODULE_CMD_INIT:
2653 #ifdef _MODULE
2654 error = config_init_component(cfdriver_ioconf_if_alc,
2655 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2656 #endif
2657 return error;
2658 case MODULE_CMD_FINI:
2659 #ifdef _MODULE
2660 error = config_fini_component(cfdriver_ioconf_if_alc,
2661 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2662 #endif
2663 return error;
2664 default:
2665 return ENOTTY;
2666 }
2667 }
2668