if_alc.c revision 1.8 1 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
2 /*-
3 * Copyright (c) 2009, Pyun YongHyeon <yongari (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48
49 #include <sys/bus.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #include <net/bpf.h>
58
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68
69 #include <net/bpf.h>
70
71 #include <sys/rnd.h>
72
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_alcreg.h>
81
82 /*
83 * Devices supported by this driver.
84 */
85 static struct alc_ident alc_ident_table[] = {
86 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 "Atheros AR8131 PCIe Gigabit Ethernet" },
88 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 "Atheros AR8132 PCIe Fast Ethernet" },
90 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 "Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 "Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 { 0, 0, 0, NULL },
99 };
100
101 static int alc_match(device_t, cfdata_t, void *);
102 static void alc_attach(device_t, device_t, void *);
103 static int alc_detach(device_t, int);
104
105 static int alc_init(struct ifnet *);
106 static int alc_init_backend(struct ifnet *, bool);
107 static void alc_start(struct ifnet *);
108 static int alc_ioctl(struct ifnet *, u_long, void *);
109 static void alc_watchdog(struct ifnet *);
110 static int alc_mediachange(struct ifnet *);
111 static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
112
113 static void alc_aspm(struct alc_softc *, int);
114 static void alc_disable_l0s_l1(struct alc_softc *);
115 static int alc_dma_alloc(struct alc_softc *);
116 static void alc_dma_free(struct alc_softc *);
117 static int alc_encap(struct alc_softc *, struct mbuf **);
118 static struct alc_ident *
119 alc_find_ident(struct pci_attach_args *);
120 static void alc_get_macaddr(struct alc_softc *);
121 static void alc_init_cmb(struct alc_softc *);
122 static void alc_init_rr_ring(struct alc_softc *);
123 static int alc_init_rx_ring(struct alc_softc *, bool);
124 static void alc_init_smb(struct alc_softc *);
125 static void alc_init_tx_ring(struct alc_softc *);
126 static int alc_intr(void *);
127 static void alc_mac_config(struct alc_softc *);
128 static int alc_miibus_readreg(device_t, int, int);
129 static void alc_miibus_statchg(struct ifnet *);
130 static void alc_miibus_writereg(device_t, int, int, int);
131 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
132 static void alc_phy_down(struct alc_softc *);
133 static void alc_phy_reset(struct alc_softc *);
134 static void alc_reset(struct alc_softc *);
135 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
136 static int alc_rxintr(struct alc_softc *);
137 static void alc_iff(struct alc_softc *);
138 static void alc_rxvlan(struct alc_softc *);
139 static void alc_start_queue(struct alc_softc *);
140 static void alc_stats_clear(struct alc_softc *);
141 static void alc_stats_update(struct alc_softc *);
142 static void alc_stop(struct ifnet *, int);
143 static void alc_stop_mac(struct alc_softc *);
144 static void alc_stop_queue(struct alc_softc *);
145 static void alc_tick(void *);
146 static void alc_txeof(struct alc_softc *);
147
148 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
149
150 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
151 alc_match, alc_attach, alc_detach, NULL);
152
153 int alcdebug = 0;
154 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
155
156 #define ETHER_ALIGN 2
157 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
158
159 static int
160 alc_miibus_readreg(device_t dev, int phy, int reg)
161 {
162 struct alc_softc *sc = device_private(dev);
163 uint32_t v;
164 int i;
165
166 if (phy != sc->alc_phyaddr)
167 return (0);
168
169 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
170 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
171 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
172 DELAY(5);
173 v = CSR_READ_4(sc, ALC_MDIO);
174 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
175 break;
176 }
177
178 if (i == 0) {
179 printf("%s: phy read timeout: phy %d, reg %d\n",
180 device_xname(sc->sc_dev), phy, reg);
181 return (0);
182 }
183
184 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
185 }
186
187 static void
188 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
189 {
190 struct alc_softc *sc = device_private(dev);
191 uint32_t v;
192 int i;
193
194 if (phy != sc->alc_phyaddr)
195 return;
196
197 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
198 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
199 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
200 for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
201 DELAY(5);
202 v = CSR_READ_4(sc, ALC_MDIO);
203 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
204 break;
205 }
206
207 if (i == 0)
208 printf("%s: phy write timeout: phy %d, reg %d\n",
209 device_xname(sc->sc_dev), phy, reg);
210 }
211
212 static void
213 alc_miibus_statchg(struct ifnet *ifp)
214 {
215 struct alc_softc *sc = ifp->if_softc;
216 struct mii_data *mii = &sc->sc_miibus;
217 uint32_t reg;
218
219 if ((ifp->if_flags & IFF_RUNNING) == 0)
220 return;
221
222 sc->alc_flags &= ~ALC_FLAG_LINK;
223 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
224 (IFM_ACTIVE | IFM_AVALID)) {
225 switch (IFM_SUBTYPE(mii->mii_media_active)) {
226 case IFM_10_T:
227 case IFM_100_TX:
228 sc->alc_flags |= ALC_FLAG_LINK;
229 break;
230 case IFM_1000_T:
231 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
232 sc->alc_flags |= ALC_FLAG_LINK;
233 break;
234 default:
235 break;
236 }
237 }
238 alc_stop_queue(sc);
239 /* Stop Rx/Tx MACs. */
240 alc_stop_mac(sc);
241
242 /* Program MACs with resolved speed/duplex/flow-control. */
243 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
244 alc_start_queue(sc);
245 alc_mac_config(sc);
246 /* Re-enable Tx/Rx MACs. */
247 reg = CSR_READ_4(sc, ALC_MAC_CFG);
248 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
249 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
250 alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
251 }
252 }
253
254 static void
255 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
256 {
257 struct alc_softc *sc = ifp->if_softc;
258 struct mii_data *mii = &sc->sc_miibus;
259
260 mii_pollstat(mii);
261 ifmr->ifm_status = mii->mii_media_status;
262 ifmr->ifm_active = mii->mii_media_active;
263 }
264
265 static int
266 alc_mediachange(struct ifnet *ifp)
267 {
268 struct alc_softc *sc = ifp->if_softc;
269 struct mii_data *mii = &sc->sc_miibus;
270 int error;
271
272 if (mii->mii_instance != 0) {
273 struct mii_softc *miisc;
274
275 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
276 mii_phy_reset(miisc);
277 }
278 error = mii_mediachg(mii);
279
280 return (error);
281 }
282
283 static struct alc_ident *
284 alc_find_ident(struct pci_attach_args *pa)
285 {
286 struct alc_ident *ident;
287 uint16_t vendor, devid;
288
289 vendor = PCI_VENDOR(pa->pa_id);
290 devid = PCI_PRODUCT(pa->pa_id);
291 for (ident = alc_ident_table; ident->name != NULL; ident++) {
292 if (vendor == ident->vendorid && devid == ident->deviceid)
293 return (ident);
294 }
295
296 return (NULL);
297 }
298
299 static int
300 alc_match(device_t dev, cfdata_t match, void *aux)
301 {
302 struct pci_attach_args *pa = aux;
303
304 return alc_find_ident(pa) != NULL;
305 }
306
307 static void
308 alc_get_macaddr(struct alc_softc *sc)
309 {
310 uint32_t ea[2], opt;
311 uint16_t val;
312 int eeprom, i;
313
314 eeprom = 0;
315 opt = CSR_READ_4(sc, ALC_OPT_CFG);
316 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
317 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
318 /*
319 * EEPROM found, let TWSI reload EEPROM configuration.
320 * This will set ethernet address of controller.
321 */
322 eeprom++;
323 switch (sc->alc_ident->deviceid) {
324 case PCI_PRODUCT_ATTANSIC_AR8131:
325 case PCI_PRODUCT_ATTANSIC_AR8132:
326 if ((opt & OPT_CFG_CLK_ENB) == 0) {
327 opt |= OPT_CFG_CLK_ENB;
328 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
329 CSR_READ_4(sc, ALC_OPT_CFG);
330 DELAY(1000);
331 }
332 break;
333 case PCI_PRODUCT_ATTANSIC_AR8151:
334 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
335 case PCI_PRODUCT_ATTANSIC_AR8152_B:
336 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
337 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
338 ALC_MII_DBG_ADDR, 0x00);
339 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
340 ALC_MII_DBG_DATA);
341 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
342 ALC_MII_DBG_DATA, val & 0xFF7F);
343 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
344 ALC_MII_DBG_ADDR, 0x3B);
345 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
346 ALC_MII_DBG_DATA);
347 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
348 ALC_MII_DBG_DATA, val | 0x0008);
349 DELAY(20);
350 break;
351 }
352
353 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
354 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
355 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
356 CSR_READ_4(sc, ALC_WOL_CFG);
357
358 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
359 TWSI_CFG_SW_LD_START);
360 for (i = 100; i > 0; i--) {
361 DELAY(1000);
362 if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
363 TWSI_CFG_SW_LD_START) == 0)
364 break;
365 }
366 if (i == 0)
367 printf("%s: reloading EEPROM timeout!\n",
368 device_xname(sc->sc_dev));
369 } else {
370 if (alcdebug)
371 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
372 }
373 if (eeprom != 0) {
374 switch (sc->alc_ident->deviceid) {
375 case PCI_PRODUCT_ATTANSIC_AR8131:
376 case PCI_PRODUCT_ATTANSIC_AR8132:
377 if ((opt & OPT_CFG_CLK_ENB) != 0) {
378 opt &= ~OPT_CFG_CLK_ENB;
379 CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
380 CSR_READ_4(sc, ALC_OPT_CFG);
381 DELAY(1000);
382 }
383 break;
384 case PCI_PRODUCT_ATTANSIC_AR8151:
385 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
386 case PCI_PRODUCT_ATTANSIC_AR8152_B:
387 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
388 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
389 ALC_MII_DBG_ADDR, 0x00);
390 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
391 ALC_MII_DBG_DATA);
392 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
393 ALC_MII_DBG_DATA, val | 0x0080);
394 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
395 ALC_MII_DBG_ADDR, 0x3B);
396 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
397 ALC_MII_DBG_DATA);
398 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
399 ALC_MII_DBG_DATA, val & 0xFFF7);
400 DELAY(20);
401 break;
402 }
403 }
404
405 ea[0] = CSR_READ_4(sc, ALC_PAR0);
406 ea[1] = CSR_READ_4(sc, ALC_PAR1);
407 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
408 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
409 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
410 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
411 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
412 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
413 }
414
415 static void
416 alc_disable_l0s_l1(struct alc_softc *sc)
417 {
418 uint32_t pmcfg;
419
420 /* Another magic from vendor. */
421 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
422 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
423 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
424 PM_CFG_SERDES_PD_EX_L1);
425 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
426 PM_CFG_SERDES_L1_ENB;
427 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
428 }
429
430 static void
431 alc_phy_reset(struct alc_softc *sc)
432 {
433 uint16_t data;
434
435 /* Reset magic from Linux. */
436 CSR_WRITE_2(sc, ALC_GPHY_CFG,
437 GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
438 CSR_READ_2(sc, ALC_GPHY_CFG);
439 DELAY(10 * 1000);
440
441 CSR_WRITE_2(sc, ALC_GPHY_CFG,
442 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
443 GPHY_CFG_SEL_ANA_RESET);
444 CSR_READ_2(sc, ALC_GPHY_CFG);
445 DELAY(10 * 1000);
446
447 /* DSP fixup, Vendor magic. */
448 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
449 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
450 ALC_MII_DBG_ADDR, 0x000A);
451 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
452 ALC_MII_DBG_DATA);
453 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
454 ALC_MII_DBG_DATA, data & 0xDFFF);
455 }
456 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
457 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
458 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
459 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
460 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
461 ALC_MII_DBG_ADDR, 0x003B);
462 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
463 ALC_MII_DBG_DATA);
464 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
465 ALC_MII_DBG_DATA, data & 0xFFF7);
466 DELAY(20 * 1000);
467 }
468 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
469 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
470 ALC_MII_DBG_ADDR, 0x0029);
471 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
472 ALC_MII_DBG_DATA, 0x929D);
473 }
474 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
475 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
476 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
477 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
478 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
479 ALC_MII_DBG_ADDR, 0x0029);
480 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
481 ALC_MII_DBG_DATA, 0xB6DD);
482 }
483
484 /* Load DSP codes, vendor magic. */
485 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
486 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
487 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
488 ALC_MII_DBG_ADDR, MII_ANA_CFG18);
489 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
490 ALC_MII_DBG_DATA, data);
491
492 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
493 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
494 ANA_SERDES_EN_LCKDT;
495 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
496 ALC_MII_DBG_ADDR, MII_ANA_CFG5);
497 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
498 ALC_MII_DBG_DATA, data);
499
500 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
501 ANA_LONG_CABLE_TH_100_MASK) |
502 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
503 ANA_SHORT_CABLE_TH_100_SHIFT) |
504 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
505 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
506 ALC_MII_DBG_ADDR, MII_ANA_CFG54);
507 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
508 ALC_MII_DBG_DATA, data);
509
510 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
511 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
512 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
513 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
514 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
515 ALC_MII_DBG_ADDR, MII_ANA_CFG4);
516 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
517 ALC_MII_DBG_DATA, data);
518
519 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
520 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
521 ANA_OEN_125M;
522 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
523 ALC_MII_DBG_ADDR, MII_ANA_CFG0);
524 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
525 ALC_MII_DBG_DATA, data);
526 DELAY(1000);
527 }
528
529 static void
530 alc_phy_down(struct alc_softc *sc)
531 {
532 switch (sc->alc_ident->deviceid) {
533 case PCI_PRODUCT_ATTANSIC_AR8151:
534 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
535 /*
536 * GPHY power down caused more problems on AR8151 v2.0.
537 * When driver is reloaded after GPHY power down,
538 * accesses to PHY/MAC registers hung the system. Only
539 * cold boot recovered from it. I'm not sure whether
540 * AR8151 v1.0 also requires this one though. I don't
541 * have AR8151 v1.0 controller in hand.
542 * The only option left is to isolate the PHY and
543 * initiates power down the PHY which in turn saves
544 * more power when driver is unloaded.
545 */
546 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
547 MII_BMCR, BMCR_ISO | BMCR_PDOWN);
548 break;
549 default:
550 /* Force PHY down. */
551 CSR_WRITE_2(sc, ALC_GPHY_CFG,
552 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
553 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
554 GPHY_CFG_PWDOWN_HW);
555 DELAY(1000);
556 break;
557 }
558 }
559
560 static void
561 alc_aspm(struct alc_softc *sc, int media)
562 {
563 uint32_t pmcfg;
564 uint16_t linkcfg;
565
566 pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
567 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
568 (ALC_FLAG_APS | ALC_FLAG_PCIE))
569 linkcfg = CSR_READ_2(sc, sc->alc_expcap +
570 PCI_PCIE_LCSR);
571 else
572 linkcfg = 0;
573 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
574 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
575 pmcfg |= PM_CFG_MAC_ASPM_CHK;
576 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
577 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
578
579 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
580 /* Disable extended sync except AR8152 B v1.0 */
581 linkcfg &= ~0x80;
582 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
583 sc->alc_rev == ATHEROS_AR8152_B_V10)
584 linkcfg |= 0x80;
585 CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
586 linkcfg);
587 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
588 PM_CFG_HOTRST);
589 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
590 PM_CFG_L1_ENTRY_TIMER_SHIFT);
591 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
592 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
593 PM_CFG_PM_REQ_TIMER_SHIFT);
594 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
595 }
596
597 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
598 if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
599 pmcfg |= PM_CFG_ASPM_L0S_ENB;
600 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
601 pmcfg |= PM_CFG_ASPM_L1_ENB;
602 if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
603 if (sc->alc_ident->deviceid ==
604 PCI_PRODUCT_ATTANSIC_AR8152_B)
605 pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
606 pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
607 PM_CFG_SERDES_PLL_L1_ENB |
608 PM_CFG_SERDES_BUDS_RX_L1_ENB);
609 pmcfg |= PM_CFG_CLK_SWH_L1;
610 if (media == IFM_100_TX || media == IFM_1000_T) {
611 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
612 switch (sc->alc_ident->deviceid) {
613 case PCI_PRODUCT_ATTANSIC_AR8152_B:
614 pmcfg |= (7 <<
615 PM_CFG_L1_ENTRY_TIMER_SHIFT);
616 break;
617 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
619 pmcfg |= (4 <<
620 PM_CFG_L1_ENTRY_TIMER_SHIFT);
621 break;
622 default:
623 pmcfg |= (15 <<
624 PM_CFG_L1_ENTRY_TIMER_SHIFT);
625 break;
626 }
627 }
628 } else {
629 pmcfg |= PM_CFG_SERDES_L1_ENB |
630 PM_CFG_SERDES_PLL_L1_ENB |
631 PM_CFG_SERDES_BUDS_RX_L1_ENB;
632 pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
633 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
634 }
635 } else {
636 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
637 PM_CFG_SERDES_PLL_L1_ENB);
638 pmcfg |= PM_CFG_CLK_SWH_L1;
639 if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
640 pmcfg |= PM_CFG_ASPM_L1_ENB;
641 }
642 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
643 }
644
645 static void
646 alc_attach(device_t parent, device_t self, void *aux)
647 {
648
649 struct alc_softc *sc = device_private(self);
650 struct pci_attach_args *pa = aux;
651 pci_chipset_tag_t pc = pa->pa_pc;
652 pci_intr_handle_t ih;
653 const char *intrstr;
654 struct ifnet *ifp;
655 pcireg_t memtype;
656 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
657 uint16_t burst;
658 int base, mii_flags, state, error = 0;
659 uint32_t cap, ctl, val;
660
661 sc->alc_ident = alc_find_ident(pa);
662
663 aprint_naive("\n");
664 aprint_normal(": %s\n", sc->alc_ident->name);
665
666 sc->sc_dev = self;
667 sc->sc_dmat = pa->pa_dmat;
668 sc->sc_pct = pa->pa_pc;
669 sc->sc_pcitag = pa->pa_tag;
670
671 /*
672 * Allocate IO memory
673 */
674 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
675 switch (memtype) {
676 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
677 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
678 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
679 break;
680 default:
681 aprint_error_dev(self, "invalid base address register\n");
682 break;
683 }
684
685 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
686 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
687 aprint_error_dev(self, "could not map mem space\n");
688 return;
689 }
690
691 if (pci_intr_map(pa, &ih) != 0) {
692 printf(": can't map interrupt\n");
693 goto fail;
694 }
695
696 /*
697 * Allocate IRQ
698 */
699 intrstr = pci_intr_string(sc->sc_pct, ih);
700 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
701 if (sc->sc_irq_handle == NULL) {
702 printf(": could not establish interrupt");
703 if (intrstr != NULL)
704 printf(" at %s", intrstr);
705 printf("\n");
706 goto fail;
707 }
708 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
709
710 /* Set PHY address. */
711 sc->alc_phyaddr = ALC_PHY_ADDR;
712
713 /* Initialize DMA parameters. */
714 sc->alc_dma_rd_burst = 0;
715 sc->alc_dma_wr_burst = 0;
716 sc->alc_rcb = DMA_CFG_RCB_64;
717 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
718 &base, NULL)) {
719 sc->alc_flags |= ALC_FLAG_PCIE;
720 sc->alc_expcap = base;
721 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
722 base + PCI_PCIE_DCSR) >> 16;
723 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
724 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
725 if (alcdebug) {
726 printf("%s: Read request size : %u bytes.\n",
727 device_xname(sc->sc_dev),
728 alc_dma_burst[sc->alc_dma_rd_burst]);
729 printf("%s: TLP payload size : %u bytes.\n",
730 device_xname(sc->sc_dev),
731 alc_dma_burst[sc->alc_dma_wr_burst]);
732 }
733 /* Clear data link and flow-control protocol error. */
734 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
735 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
736 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
737 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
738 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
739 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
740 CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
741 PCIE_PHYMISC_FORCE_RCV_DET);
742 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
743 sc->alc_rev == ATHEROS_AR8152_B_V10) {
744 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
745 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
746 PCIE_PHYMISC2_SERDES_TH_MASK);
747 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
748 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
749 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
750 }
751 /* Disable ASPM L0S and L1. */
752 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
753 base + PCI_PCIE_LCAP) >> 16;
754 if ((cap & 0x00000c00) != 0) {
755 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
756 base + PCI_PCIE_LCSR) >> 16;
757 if ((ctl & 0x08) != 0)
758 sc->alc_rcb = DMA_CFG_RCB_128;
759 if (alcdebug)
760 printf("%s: RCB %u bytes\n",
761 device_xname(sc->sc_dev),
762 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
763 state = ctl & 0x03;
764 if (state & 0x01)
765 sc->alc_flags |= ALC_FLAG_L0S;
766 if (state & 0x02)
767 sc->alc_flags |= ALC_FLAG_L1S;
768 if (alcdebug)
769 printf("%s: ASPM %s %s\n",
770 device_xname(sc->sc_dev),
771 aspm_state[state],
772 state == 0 ? "disabled" : "enabled");
773 alc_disable_l0s_l1(sc);
774 } else {
775 aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
776 }
777 }
778
779 /* Reset PHY. */
780 alc_phy_reset(sc);
781
782 /* Reset the ethernet controller. */
783 alc_reset(sc);
784
785 /*
786 * One odd thing is AR8132 uses the same PHY hardware(F1
787 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
788 * the PHY supports 1000Mbps but that's not true. The PHY
789 * used in AR8132 can't establish gigabit link even if it
790 * shows the same PHY model/revision number of AR8131.
791 */
792 switch (sc->alc_ident->deviceid) {
793 case PCI_PRODUCT_ATTANSIC_AR8152_B:
794 case PCI_PRODUCT_ATTANSIC_AR8152_B2:
795 sc->alc_flags |= ALC_FLAG_APS;
796 /* FALLTHROUGH */
797 case PCI_PRODUCT_ATTANSIC_AR8132:
798 sc->alc_flags |= ALC_FLAG_FASTETHER;
799 break;
800 case PCI_PRODUCT_ATTANSIC_AR8151:
801 case PCI_PRODUCT_ATTANSIC_AR8151_V2:
802 sc->alc_flags |= ALC_FLAG_APS;
803 /* FALLTHROUGH */
804 default:
805 break;
806 }
807 sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
808
809 /*
810 * It seems that AR813x/AR815x has silicon bug for SMB. In
811 * addition, Atheros said that enabling SMB wouldn't improve
812 * performance. However I think it's bad to access lots of
813 * registers to extract MAC statistics.
814 */
815 sc->alc_flags |= ALC_FLAG_SMB_BUG;
816 /*
817 * Don't use Tx CMB. It is known to have silicon bug.
818 */
819 sc->alc_flags |= ALC_FLAG_CMB_BUG;
820 sc->alc_rev = PCI_REVISION(pa->pa_class);
821 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
822 MASTER_CHIP_REV_SHIFT;
823 if (alcdebug) {
824 printf("%s: PCI device revision : 0x%04x\n",
825 device_xname(sc->sc_dev), sc->alc_rev);
826 printf("%s: Chip id/revision : 0x%04x\n",
827 device_xname(sc->sc_dev), sc->alc_chip_rev);
828 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
829 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
830 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
831 }
832
833 error = alc_dma_alloc(sc);
834 if (error)
835 goto fail;
836
837 callout_init(&sc->sc_tick_ch, 0);
838 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
839
840 /* Load station address. */
841 alc_get_macaddr(sc);
842
843 aprint_normal_dev(self, "Ethernet address %s\n",
844 ether_sprintf(sc->alc_eaddr));
845
846 ifp = &sc->sc_ec.ec_if;
847 ifp->if_softc = sc;
848 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
849 ifp->if_init = alc_init;
850 ifp->if_ioctl = alc_ioctl;
851 ifp->if_start = alc_start;
852 ifp->if_stop = alc_stop;
853 ifp->if_watchdog = alc_watchdog;
854 ifp->if_baudrate = IF_Gbps(1);
855 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
856 IFQ_SET_READY(&ifp->if_snd);
857 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
858
859 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
860
861 #ifdef ALC_CHECKSUM
862 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
863 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
864 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
865 #endif
866
867 #if NVLAN > 0
868 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
869 #endif
870
871 /* Set up MII bus. */
872 sc->sc_miibus.mii_ifp = ifp;
873 sc->sc_miibus.mii_readreg = alc_miibus_readreg;
874 sc->sc_miibus.mii_writereg = alc_miibus_writereg;
875 sc->sc_miibus.mii_statchg = alc_miibus_statchg;
876
877 sc->sc_ec.ec_mii = &sc->sc_miibus;
878 ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
879 alc_mediastatus);
880 mii_flags = 0;
881 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
882 mii_flags |= MIIF_DOPAUSE;
883 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
884 MII_OFFSET_ANY, mii_flags);
885
886 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
887 printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
888 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
889 0, NULL);
890 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
891 } else
892 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
893
894 if_attach(ifp);
895 ether_ifattach(ifp, sc->alc_eaddr);
896
897 if (!pmf_device_register(self, NULL, NULL))
898 aprint_error_dev(self, "couldn't establish power handler\n");
899 else
900 pmf_class_network_register(self, ifp);
901
902 return;
903 fail:
904 alc_dma_free(sc);
905 if (sc->sc_irq_handle != NULL) {
906 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
907 sc->sc_irq_handle = NULL;
908 }
909 if (sc->sc_mem_size) {
910 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
911 sc->sc_mem_size = 0;
912 }
913 }
914
915 static int
916 alc_detach(device_t self, int flags)
917 {
918 struct alc_softc *sc = device_private(self);
919 struct ifnet *ifp = &sc->sc_ec.ec_if;
920 int s;
921
922 s = splnet();
923 alc_stop(ifp, 0);
924 splx(s);
925
926 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
927
928 /* Delete all remaining media. */
929 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
930
931 ether_ifdetach(ifp);
932 if_detach(ifp);
933 alc_dma_free(sc);
934
935 alc_phy_down(sc);
936 if (sc->sc_irq_handle != NULL) {
937 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
938 sc->sc_irq_handle = NULL;
939 }
940 if (sc->sc_mem_size) {
941 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
942 sc->sc_mem_size = 0;
943 }
944
945 return (0);
946 }
947
948 static int
949 alc_dma_alloc(struct alc_softc *sc)
950 {
951 struct alc_txdesc *txd;
952 struct alc_rxdesc *rxd;
953 int nsegs, error, i;
954
955 /*
956 * Create DMA stuffs for TX ring
957 */
958 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
959 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
960 if (error) {
961 sc->alc_cdata.alc_tx_ring_map = NULL;
962 return (ENOBUFS);
963 }
964
965 /* Allocate DMA'able memory for TX ring */
966 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
967 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
968 &nsegs, BUS_DMA_NOWAIT);
969 if (error) {
970 printf("%s: could not allocate DMA'able memory for Tx ring.\n",
971 device_xname(sc->sc_dev));
972 return error;
973 }
974
975 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
976 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
977 BUS_DMA_NOWAIT);
978 if (error)
979 return (ENOBUFS);
980
981 /* Load the DMA map for Tx ring. */
982 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
983 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
984 if (error) {
985 printf("%s: could not load DMA'able memory for Tx ring.\n",
986 device_xname(sc->sc_dev));
987 bus_dmamem_free(sc->sc_dmat,
988 &sc->alc_rdata.alc_tx_ring_seg, 1);
989 return error;
990 }
991
992 sc->alc_rdata.alc_tx_ring_paddr =
993 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
994
995 /*
996 * Create DMA stuffs for RX ring
997 */
998 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
999 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1000 if (error)
1001 return (ENOBUFS);
1002
1003 /* Allocate DMA'able memory for RX ring */
1004 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1005 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1006 &nsegs, BUS_DMA_NOWAIT);
1007 if (error) {
1008 printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1009 device_xname(sc->sc_dev));
1010 return error;
1011 }
1012
1013 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1014 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1015 BUS_DMA_NOWAIT);
1016 if (error)
1017 return (ENOBUFS);
1018
1019 /* Load the DMA map for Rx ring. */
1020 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1021 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1022 if (error) {
1023 printf("%s: could not load DMA'able memory for Rx ring.\n",
1024 device_xname(sc->sc_dev));
1025 bus_dmamem_free(sc->sc_dmat,
1026 &sc->alc_rdata.alc_rx_ring_seg, 1);
1027 return error;
1028 }
1029
1030 sc->alc_rdata.alc_rx_ring_paddr =
1031 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1032
1033 /*
1034 * Create DMA stuffs for RX return ring
1035 */
1036 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1037 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1038 if (error)
1039 return (ENOBUFS);
1040
1041 /* Allocate DMA'able memory for RX return ring */
1042 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1043 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1044 &nsegs, BUS_DMA_NOWAIT);
1045 if (error) {
1046 printf("%s: could not allocate DMA'able memory for Rx "
1047 "return ring.\n", device_xname(sc->sc_dev));
1048 return error;
1049 }
1050
1051 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1052 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1053 BUS_DMA_NOWAIT);
1054 if (error)
1055 return (ENOBUFS);
1056
1057 /* Load the DMA map for Rx return ring. */
1058 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1059 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1060 if (error) {
1061 printf("%s: could not load DMA'able memory for Rx return ring."
1062 "\n", device_xname(sc->sc_dev));
1063 bus_dmamem_free(sc->sc_dmat,
1064 &sc->alc_rdata.alc_rr_ring_seg, 1);
1065 return error;
1066 }
1067
1068 sc->alc_rdata.alc_rr_ring_paddr =
1069 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1070
1071 /*
1072 * Create DMA stuffs for CMB block
1073 */
1074 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1075 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1076 &sc->alc_cdata.alc_cmb_map);
1077 if (error)
1078 return (ENOBUFS);
1079
1080 /* Allocate DMA'able memory for CMB block */
1081 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1082 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1083 &nsegs, BUS_DMA_NOWAIT);
1084 if (error) {
1085 printf("%s: could not allocate DMA'able memory for "
1086 "CMB block\n", device_xname(sc->sc_dev));
1087 return error;
1088 }
1089
1090 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1091 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1092 BUS_DMA_NOWAIT);
1093 if (error)
1094 return (ENOBUFS);
1095
1096 /* Load the DMA map for CMB block. */
1097 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1098 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1099 BUS_DMA_WAITOK);
1100 if (error) {
1101 printf("%s: could not load DMA'able memory for CMB block\n",
1102 device_xname(sc->sc_dev));
1103 bus_dmamem_free(sc->sc_dmat,
1104 &sc->alc_rdata.alc_cmb_seg, 1);
1105 return error;
1106 }
1107
1108 sc->alc_rdata.alc_cmb_paddr =
1109 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1110
1111 /*
1112 * Create DMA stuffs for SMB block
1113 */
1114 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1115 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1116 &sc->alc_cdata.alc_smb_map);
1117 if (error)
1118 return (ENOBUFS);
1119
1120 /* Allocate DMA'able memory for SMB block */
1121 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1122 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1123 &nsegs, BUS_DMA_NOWAIT);
1124 if (error) {
1125 printf("%s: could not allocate DMA'able memory for "
1126 "SMB block\n", device_xname(sc->sc_dev));
1127 return error;
1128 }
1129
1130 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1131 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1132 BUS_DMA_NOWAIT);
1133 if (error)
1134 return (ENOBUFS);
1135
1136 /* Load the DMA map for SMB block */
1137 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1138 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1139 BUS_DMA_WAITOK);
1140 if (error) {
1141 printf("%s: could not load DMA'able memory for SMB block\n",
1142 device_xname(sc->sc_dev));
1143 bus_dmamem_free(sc->sc_dmat,
1144 &sc->alc_rdata.alc_smb_seg, 1);
1145 return error;
1146 }
1147
1148 sc->alc_rdata.alc_smb_paddr =
1149 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1150
1151
1152 /* Create DMA maps for Tx buffers. */
1153 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1154 txd = &sc->alc_cdata.alc_txdesc[i];
1155 txd->tx_m = NULL;
1156 txd->tx_dmamap = NULL;
1157 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1158 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1159 &txd->tx_dmamap);
1160 if (error) {
1161 printf("%s: could not create Tx dmamap.\n",
1162 device_xname(sc->sc_dev));
1163 return error;
1164 }
1165 }
1166
1167 /* Create DMA maps for Rx buffers. */
1168 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1169 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1170 if (error) {
1171 printf("%s: could not create spare Rx dmamap.\n",
1172 device_xname(sc->sc_dev));
1173 return error;
1174 }
1175
1176 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1177 rxd = &sc->alc_cdata.alc_rxdesc[i];
1178 rxd->rx_m = NULL;
1179 rxd->rx_dmamap = NULL;
1180 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1181 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1182 if (error) {
1183 printf("%s: could not create Rx dmamap.\n",
1184 device_xname(sc->sc_dev));
1185 return error;
1186 }
1187 }
1188
1189 return (0);
1190 }
1191
1192
1193 static void
1194 alc_dma_free(struct alc_softc *sc)
1195 {
1196 struct alc_txdesc *txd;
1197 struct alc_rxdesc *rxd;
1198 int i;
1199
1200 /* Tx buffers */
1201 for (i = 0; i < ALC_TX_RING_CNT; i++) {
1202 txd = &sc->alc_cdata.alc_txdesc[i];
1203 if (txd->tx_dmamap != NULL) {
1204 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1205 txd->tx_dmamap = NULL;
1206 }
1207 }
1208 /* Rx buffers */
1209 for (i = 0; i < ALC_RX_RING_CNT; i++) {
1210 rxd = &sc->alc_cdata.alc_rxdesc[i];
1211 if (rxd->rx_dmamap != NULL) {
1212 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1213 rxd->rx_dmamap = NULL;
1214 }
1215 }
1216 if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1217 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1218 sc->alc_cdata.alc_rx_sparemap = NULL;
1219 }
1220
1221 /* Tx ring. */
1222 if (sc->alc_cdata.alc_tx_ring_map != NULL)
1223 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1224 if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1225 sc->alc_rdata.alc_tx_ring != NULL)
1226 bus_dmamem_free(sc->sc_dmat,
1227 &sc->alc_rdata.alc_tx_ring_seg, 1);
1228 sc->alc_rdata.alc_tx_ring = NULL;
1229 sc->alc_cdata.alc_tx_ring_map = NULL;
1230
1231 /* Rx ring. */
1232 if (sc->alc_cdata.alc_rx_ring_map != NULL)
1233 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1234 if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1235 sc->alc_rdata.alc_rx_ring != NULL)
1236 bus_dmamem_free(sc->sc_dmat,
1237 &sc->alc_rdata.alc_rx_ring_seg, 1);
1238 sc->alc_rdata.alc_rx_ring = NULL;
1239 sc->alc_cdata.alc_rx_ring_map = NULL;
1240
1241 /* Rx return ring. */
1242 if (sc->alc_cdata.alc_rr_ring_map != NULL)
1243 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1244 if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1245 sc->alc_rdata.alc_rr_ring != NULL)
1246 bus_dmamem_free(sc->sc_dmat,
1247 &sc->alc_rdata.alc_rr_ring_seg, 1);
1248 sc->alc_rdata.alc_rr_ring = NULL;
1249 sc->alc_cdata.alc_rr_ring_map = NULL;
1250
1251 /* CMB block */
1252 if (sc->alc_cdata.alc_cmb_map != NULL)
1253 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1254 if (sc->alc_cdata.alc_cmb_map != NULL &&
1255 sc->alc_rdata.alc_cmb != NULL)
1256 bus_dmamem_free(sc->sc_dmat,
1257 &sc->alc_rdata.alc_cmb_seg, 1);
1258 sc->alc_rdata.alc_cmb = NULL;
1259 sc->alc_cdata.alc_cmb_map = NULL;
1260
1261 /* SMB block */
1262 if (sc->alc_cdata.alc_smb_map != NULL)
1263 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1264 if (sc->alc_cdata.alc_smb_map != NULL &&
1265 sc->alc_rdata.alc_smb != NULL)
1266 bus_dmamem_free(sc->sc_dmat,
1267 &sc->alc_rdata.alc_smb_seg, 1);
1268 sc->alc_rdata.alc_smb = NULL;
1269 sc->alc_cdata.alc_smb_map = NULL;
1270 }
1271
1272 static int
1273 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1274 {
1275 struct alc_txdesc *txd, *txd_last;
1276 struct tx_desc *desc;
1277 struct mbuf *m;
1278 bus_dmamap_t map;
1279 uint32_t cflags, poff, vtag;
1280 int error, idx, nsegs, prod;
1281 #if NVLAN > 0
1282 struct m_tag *mtag;
1283 #endif
1284
1285 m = *m_head;
1286 cflags = vtag = 0;
1287 poff = 0;
1288
1289 prod = sc->alc_cdata.alc_tx_prod;
1290 txd = &sc->alc_cdata.alc_txdesc[prod];
1291 txd_last = txd;
1292 map = txd->tx_dmamap;
1293
1294 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1295
1296 if (error == EFBIG) {
1297 error = 0;
1298
1299 *m_head = m_pullup(*m_head, MHLEN);
1300 if (*m_head == NULL) {
1301 printf("%s: can't defrag TX mbuf\n",
1302 device_xname(sc->sc_dev));
1303 return ENOBUFS;
1304 }
1305
1306 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1307 BUS_DMA_NOWAIT);
1308
1309 if (error != 0) {
1310 printf("%s: could not load defragged TX mbuf\n",
1311 device_xname(sc->sc_dev));
1312 m_freem(*m_head);
1313 *m_head = NULL;
1314 return error;
1315 }
1316 } else if (error) {
1317 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1318 return (error);
1319 }
1320
1321 nsegs = map->dm_nsegs;
1322
1323 if (nsegs == 0) {
1324 m_freem(*m_head);
1325 *m_head = NULL;
1326 return (EIO);
1327 }
1328
1329 /* Check descriptor overrun. */
1330 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1331 bus_dmamap_unload(sc->sc_dmat, map);
1332 return (ENOBUFS);
1333 }
1334 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1335 BUS_DMASYNC_PREWRITE);
1336
1337 m = *m_head;
1338 desc = NULL;
1339 idx = 0;
1340 #if NVLAN > 0
1341 /* Configure VLAN hardware tag insertion. */
1342 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1343 vtag = htons(VLAN_TAG_VALUE(mtag));
1344 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1345 cflags |= TD_INS_VLAN_TAG;
1346 }
1347 #endif
1348 /* Configure Tx checksum offload. */
1349 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1350 cflags |= TD_CUSTOM_CSUM;
1351 /* Set checksum start offset. */
1352 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1353 TD_PLOAD_OFFSET_MASK;
1354 }
1355 for (; idx < nsegs; idx++) {
1356 desc = &sc->alc_rdata.alc_tx_ring[prod];
1357 desc->len =
1358 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1359 desc->flags = htole32(cflags);
1360 desc->addr = htole64(map->dm_segs[idx].ds_addr);
1361 sc->alc_cdata.alc_tx_cnt++;
1362 ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1363 }
1364 /* Update producer index. */
1365 sc->alc_cdata.alc_tx_prod = prod;
1366
1367 /* Finally set EOP on the last descriptor. */
1368 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1369 desc = &sc->alc_rdata.alc_tx_ring[prod];
1370 desc->flags |= htole32(TD_EOP);
1371
1372 /* Swap dmamap of the first and the last. */
1373 txd = &sc->alc_cdata.alc_txdesc[prod];
1374 map = txd_last->tx_dmamap;
1375 txd_last->tx_dmamap = txd->tx_dmamap;
1376 txd->tx_dmamap = map;
1377 txd->tx_m = m;
1378
1379 return (0);
1380 }
1381
1382 static void
1383 alc_start(struct ifnet *ifp)
1384 {
1385 struct alc_softc *sc = ifp->if_softc;
1386 struct mbuf *m_head;
1387 int enq;
1388
1389 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1390 return;
1391
1392 /* Reclaim transmitted frames. */
1393 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1394 alc_txeof(sc);
1395
1396 enq = 0;
1397 for (;;) {
1398 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1399 if (m_head == NULL)
1400 break;
1401
1402 /*
1403 * Pack the data into the transmit ring. If we
1404 * don't have room, set the OACTIVE flag and wait
1405 * for the NIC to drain the ring.
1406 */
1407 if (alc_encap(sc, &m_head)) {
1408 if (m_head == NULL)
1409 break;
1410 ifp->if_flags |= IFF_OACTIVE;
1411 break;
1412 }
1413 enq = 1;
1414
1415 /*
1416 * If there's a BPF listener, bounce a copy of this frame
1417 * to him.
1418 */
1419 bpf_mtap(ifp, m_head);
1420 }
1421
1422 if (enq) {
1423 /* Sync descriptors. */
1424 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1425 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1426 BUS_DMASYNC_PREWRITE);
1427 /* Kick. Assume we're using normal Tx priority queue. */
1428 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1429 (sc->alc_cdata.alc_tx_prod <<
1430 MBOX_TD_PROD_LO_IDX_SHIFT) &
1431 MBOX_TD_PROD_LO_IDX_MASK);
1432 /* Set a timeout in case the chip goes out to lunch. */
1433 ifp->if_timer = ALC_TX_TIMEOUT;
1434 }
1435 }
1436
1437 static void
1438 alc_watchdog(struct ifnet *ifp)
1439 {
1440 struct alc_softc *sc = ifp->if_softc;
1441
1442 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1443 printf("%s: watchdog timeout (missed link)\n",
1444 device_xname(sc->sc_dev));
1445 ifp->if_oerrors++;
1446 alc_init_backend(ifp, false);
1447 return;
1448 }
1449
1450 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1451 ifp->if_oerrors++;
1452 alc_init_backend(ifp, false);
1453
1454 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1455 alc_start(ifp);
1456 }
1457
1458 static int
1459 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1460 {
1461 struct alc_softc *sc = ifp->if_softc;
1462 int s, error = 0;
1463
1464 s = splnet();
1465
1466 error = ether_ioctl(ifp, cmd, data);
1467 if (error == ENETRESET) {
1468 if (ifp->if_flags & IFF_RUNNING)
1469 alc_iff(sc);
1470 error = 0;
1471 }
1472
1473 splx(s);
1474 return (error);
1475 }
1476
1477 static void
1478 alc_mac_config(struct alc_softc *sc)
1479 {
1480 struct mii_data *mii;
1481 uint32_t reg;
1482
1483 mii = &sc->sc_miibus;
1484 reg = CSR_READ_4(sc, ALC_MAC_CFG);
1485 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1486 MAC_CFG_SPEED_MASK);
1487 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1488 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1489 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1490 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1491 /* Reprogram MAC with resolved speed/duplex. */
1492 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1493 case IFM_10_T:
1494 case IFM_100_TX:
1495 reg |= MAC_CFG_SPEED_10_100;
1496 break;
1497 case IFM_1000_T:
1498 reg |= MAC_CFG_SPEED_1000;
1499 break;
1500 }
1501 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1502 reg |= MAC_CFG_FULL_DUPLEX;
1503 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1504 reg |= MAC_CFG_TX_FC;
1505 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1506 reg |= MAC_CFG_RX_FC;
1507 }
1508 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1509 }
1510
1511 static void
1512 alc_stats_clear(struct alc_softc *sc)
1513 {
1514 struct smb sb, *smb;
1515 uint32_t *reg;
1516 int i;
1517
1518 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1519 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1520 sc->alc_cdata.alc_smb_map->dm_mapsize,
1521 BUS_DMASYNC_POSTREAD);
1522 smb = sc->alc_rdata.alc_smb;
1523 /* Update done, clear. */
1524 smb->updated = 0;
1525 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1526 sc->alc_cdata.alc_smb_map->dm_mapsize,
1527 BUS_DMASYNC_PREWRITE);
1528 } else {
1529 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1530 reg++) {
1531 CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1532 i += sizeof(uint32_t);
1533 }
1534 /* Read Tx statistics. */
1535 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1536 reg++) {
1537 CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1538 i += sizeof(uint32_t);
1539 }
1540 }
1541 }
1542
1543 static void
1544 alc_stats_update(struct alc_softc *sc)
1545 {
1546 struct ifnet *ifp = &sc->sc_ec.ec_if;
1547 struct alc_hw_stats *stat;
1548 struct smb sb, *smb;
1549 uint32_t *reg;
1550 int i;
1551
1552 stat = &sc->alc_stats;
1553 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1554 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1555 sc->alc_cdata.alc_smb_map->dm_mapsize,
1556 BUS_DMASYNC_POSTREAD);
1557 smb = sc->alc_rdata.alc_smb;
1558 if (smb->updated == 0)
1559 return;
1560 } else {
1561 smb = &sb;
1562 /* Read Rx statistics. */
1563 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1564 reg++) {
1565 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1566 i += sizeof(uint32_t);
1567 }
1568 /* Read Tx statistics. */
1569 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1570 reg++) {
1571 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1572 i += sizeof(uint32_t);
1573 }
1574 }
1575
1576 /* Rx stats. */
1577 stat->rx_frames += smb->rx_frames;
1578 stat->rx_bcast_frames += smb->rx_bcast_frames;
1579 stat->rx_mcast_frames += smb->rx_mcast_frames;
1580 stat->rx_pause_frames += smb->rx_pause_frames;
1581 stat->rx_control_frames += smb->rx_control_frames;
1582 stat->rx_crcerrs += smb->rx_crcerrs;
1583 stat->rx_lenerrs += smb->rx_lenerrs;
1584 stat->rx_bytes += smb->rx_bytes;
1585 stat->rx_runts += smb->rx_runts;
1586 stat->rx_fragments += smb->rx_fragments;
1587 stat->rx_pkts_64 += smb->rx_pkts_64;
1588 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1589 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1590 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1591 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1592 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1593 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1594 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1595 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1596 stat->rx_rrs_errs += smb->rx_rrs_errs;
1597 stat->rx_alignerrs += smb->rx_alignerrs;
1598 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1599 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1600 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1601
1602 /* Tx stats. */
1603 stat->tx_frames += smb->tx_frames;
1604 stat->tx_bcast_frames += smb->tx_bcast_frames;
1605 stat->tx_mcast_frames += smb->tx_mcast_frames;
1606 stat->tx_pause_frames += smb->tx_pause_frames;
1607 stat->tx_excess_defer += smb->tx_excess_defer;
1608 stat->tx_control_frames += smb->tx_control_frames;
1609 stat->tx_deferred += smb->tx_deferred;
1610 stat->tx_bytes += smb->tx_bytes;
1611 stat->tx_pkts_64 += smb->tx_pkts_64;
1612 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1613 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1614 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1615 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1616 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1617 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1618 stat->tx_single_colls += smb->tx_single_colls;
1619 stat->tx_multi_colls += smb->tx_multi_colls;
1620 stat->tx_late_colls += smb->tx_late_colls;
1621 stat->tx_excess_colls += smb->tx_excess_colls;
1622 stat->tx_abort += smb->tx_abort;
1623 stat->tx_underrun += smb->tx_underrun;
1624 stat->tx_desc_underrun += smb->tx_desc_underrun;
1625 stat->tx_lenerrs += smb->tx_lenerrs;
1626 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1627 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1628 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1629
1630 /* Update counters in ifnet. */
1631 ifp->if_opackets += smb->tx_frames;
1632
1633 ifp->if_collisions += smb->tx_single_colls +
1634 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1635 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1636
1637 /*
1638 * XXX
1639 * tx_pkts_truncated counter looks suspicious. It constantly
1640 * increments with no sign of Tx errors. This may indicate
1641 * the counter name is not correct one so I've removed the
1642 * counter in output errors.
1643 */
1644 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1645 smb->tx_underrun;
1646
1647 ifp->if_ipackets += smb->rx_frames;
1648
1649 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1650 smb->rx_runts + smb->rx_pkts_truncated +
1651 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1652 smb->rx_alignerrs;
1653
1654 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1655 /* Update done, clear. */
1656 smb->updated = 0;
1657 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1658 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1659 }
1660 }
1661
1662 static int
1663 alc_intr(void *arg)
1664 {
1665 struct alc_softc *sc = arg;
1666 struct ifnet *ifp = &sc->sc_ec.ec_if;
1667 uint32_t status;
1668
1669 status = CSR_READ_4(sc, ALC_INTR_STATUS);
1670 if ((status & ALC_INTRS) == 0)
1671 return (0);
1672
1673 /* Acknowledge and disable interrupts. */
1674 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1675
1676 if (ifp->if_flags & IFF_RUNNING) {
1677 if (status & INTR_RX_PKT) {
1678 int error;
1679
1680 error = alc_rxintr(sc);
1681 if (error) {
1682 alc_init_backend(ifp, false);
1683 return (0);
1684 }
1685 }
1686
1687 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1688 INTR_TXQ_TO_RST)) {
1689 if (status & INTR_DMA_RD_TO_RST)
1690 printf("%s: DMA read error! -- resetting\n",
1691 device_xname(sc->sc_dev));
1692 if (status & INTR_DMA_WR_TO_RST)
1693 printf("%s: DMA write error! -- resetting\n",
1694 device_xname(sc->sc_dev));
1695 if (status & INTR_TXQ_TO_RST)
1696 printf("%s: TxQ reset! -- resetting\n",
1697 device_xname(sc->sc_dev));
1698 alc_init_backend(ifp, false);
1699 return (0);
1700 }
1701
1702 alc_txeof(sc);
1703 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1704 alc_start(ifp);
1705 }
1706
1707 /* Re-enable interrupts. */
1708 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1709 return (1);
1710 }
1711
1712 static void
1713 alc_txeof(struct alc_softc *sc)
1714 {
1715 struct ifnet *ifp = &sc->sc_ec.ec_if;
1716 struct alc_txdesc *txd;
1717 uint32_t cons, prod;
1718 int prog;
1719
1720 if (sc->alc_cdata.alc_tx_cnt == 0)
1721 return;
1722 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1723 sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1724 BUS_DMASYNC_POSTREAD);
1725 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1726 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1727 sc->alc_cdata.alc_cmb_map->dm_mapsize,
1728 BUS_DMASYNC_POSTREAD);
1729 prod = sc->alc_rdata.alc_cmb->cons;
1730 } else
1731 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1732 /* Assume we're using normal Tx priority queue. */
1733 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1734 MBOX_TD_CONS_LO_IDX_SHIFT;
1735 cons = sc->alc_cdata.alc_tx_cons;
1736 /*
1737 * Go through our Tx list and free mbufs for those
1738 * frames which have been transmitted.
1739 */
1740 for (prog = 0; cons != prod; prog++,
1741 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1742 if (sc->alc_cdata.alc_tx_cnt <= 0)
1743 break;
1744 prog++;
1745 ifp->if_flags &= ~IFF_OACTIVE;
1746 sc->alc_cdata.alc_tx_cnt--;
1747 txd = &sc->alc_cdata.alc_txdesc[cons];
1748 if (txd->tx_m != NULL) {
1749 /* Reclaim transmitted mbufs. */
1750 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1751 m_freem(txd->tx_m);
1752 txd->tx_m = NULL;
1753 }
1754 }
1755
1756 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1757 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1758 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1759 sc->alc_cdata.alc_tx_cons = cons;
1760 /*
1761 * Unarm watchdog timer only when there is no pending
1762 * frames in Tx queue.
1763 */
1764 if (sc->alc_cdata.alc_tx_cnt == 0)
1765 ifp->if_timer = 0;
1766 }
1767
1768 static int
1769 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
1770 {
1771 struct mbuf *m;
1772 bus_dmamap_t map;
1773 int error;
1774
1775 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1776 if (m == NULL)
1777 return (ENOBUFS);
1778 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1779 if (!(m->m_flags & M_EXT)) {
1780 m_freem(m);
1781 return (ENOBUFS);
1782 }
1783
1784 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1785
1786 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1787 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1788
1789 if (error != 0) {
1790 if (!error) {
1791 bus_dmamap_unload(sc->sc_dmat,
1792 sc->alc_cdata.alc_rx_sparemap);
1793 error = EFBIG;
1794 printf("%s: too many segments?!\n",
1795 device_xname(sc->sc_dev));
1796 }
1797 m_freem(m);
1798
1799 if (init)
1800 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1801
1802 return (error);
1803 }
1804
1805 if (rxd->rx_m != NULL) {
1806 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1807 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1808 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1809 }
1810 map = rxd->rx_dmamap;
1811 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1812 sc->alc_cdata.alc_rx_sparemap = map;
1813 rxd->rx_m = m;
1814 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1815 return (0);
1816 }
1817
1818 static int
1819 alc_rxintr(struct alc_softc *sc)
1820 {
1821 struct ifnet *ifp = &sc->sc_ec.ec_if;
1822 struct rx_rdesc *rrd;
1823 uint32_t nsegs, status;
1824 int rr_cons, prog;
1825
1826 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1827 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1828 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1829 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1830 rr_cons = sc->alc_cdata.alc_rr_cons;
1831 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1832 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1833 status = le32toh(rrd->status);
1834 if ((status & RRD_VALID) == 0)
1835 break;
1836 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1837 if (nsegs == 0) {
1838 /* This should not happen! */
1839 if (alcdebug)
1840 printf("%s: unexpected segment count -- "
1841 "resetting\n", device_xname(sc->sc_dev));
1842 return (EIO);
1843 }
1844 alc_rxeof(sc, rrd);
1845 /* Clear Rx return status. */
1846 rrd->status = 0;
1847 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1848 sc->alc_cdata.alc_rx_cons += nsegs;
1849 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1850 prog += nsegs;
1851 }
1852
1853 if (prog > 0) {
1854 /* Update the consumer index. */
1855 sc->alc_cdata.alc_rr_cons = rr_cons;
1856 /* Sync Rx return descriptors. */
1857 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1858 sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1859 BUS_DMASYNC_PREWRITE);
1860 /*
1861 * Sync updated Rx descriptors such that controller see
1862 * modified buffer addresses.
1863 */
1864 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1865 sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1866 BUS_DMASYNC_PREWRITE);
1867 /*
1868 * Let controller know availability of new Rx buffers.
1869 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1870 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1871 * only when Rx buffer pre-fetching is required. In
1872 * addition we already set ALC_RX_RD_FREE_THRESH to
1873 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1874 * it still seems that pre-fetching needs more
1875 * experimentation.
1876 */
1877 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1878 sc->alc_cdata.alc_rx_cons);
1879 }
1880
1881 return (0);
1882 }
1883
1884 /* Receive a frame. */
1885 static void
1886 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1887 {
1888 struct ifnet *ifp = &sc->sc_ec.ec_if;
1889 struct alc_rxdesc *rxd;
1890 struct mbuf *mp, *m;
1891 uint32_t rdinfo, status;
1892 int count, nsegs, rx_cons;
1893
1894 status = le32toh(rrd->status);
1895 rdinfo = le32toh(rrd->rdinfo);
1896 rx_cons = RRD_RD_IDX(rdinfo);
1897 nsegs = RRD_RD_CNT(rdinfo);
1898
1899 sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1900 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1901 /*
1902 * We want to pass the following frames to upper
1903 * layer regardless of error status of Rx return
1904 * ring.
1905 *
1906 * o IP/TCP/UDP checksum is bad.
1907 * o frame length and protocol specific length
1908 * does not match.
1909 *
1910 * Force network stack compute checksum for
1911 * errored frames.
1912 */
1913 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1914 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1915 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1916 return;
1917 }
1918
1919 for (count = 0; count < nsegs; count++,
1920 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1921 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1922 mp = rxd->rx_m;
1923 /* Add a new receive buffer to the ring. */
1924 if (alc_newbuf(sc, rxd, false) != 0) {
1925 ifp->if_iqdrops++;
1926 /* Reuse Rx buffers. */
1927 if (sc->alc_cdata.alc_rxhead != NULL)
1928 m_freem(sc->alc_cdata.alc_rxhead);
1929 break;
1930 }
1931
1932 /*
1933 * Assume we've received a full sized frame.
1934 * Actual size is fixed when we encounter the end of
1935 * multi-segmented frame.
1936 */
1937 mp->m_len = sc->alc_buf_size;
1938
1939 /* Chain received mbufs. */
1940 if (sc->alc_cdata.alc_rxhead == NULL) {
1941 sc->alc_cdata.alc_rxhead = mp;
1942 sc->alc_cdata.alc_rxtail = mp;
1943 } else {
1944 mp->m_flags &= ~M_PKTHDR;
1945 sc->alc_cdata.alc_rxprev_tail =
1946 sc->alc_cdata.alc_rxtail;
1947 sc->alc_cdata.alc_rxtail->m_next = mp;
1948 sc->alc_cdata.alc_rxtail = mp;
1949 }
1950
1951 if (count == nsegs - 1) {
1952 /* Last desc. for this frame. */
1953 m = sc->alc_cdata.alc_rxhead;
1954 m->m_flags |= M_PKTHDR;
1955 /*
1956 * It seems that L1C/L2C controller has no way
1957 * to tell hardware to strip CRC bytes.
1958 */
1959 m->m_pkthdr.len =
1960 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1961 if (nsegs > 1) {
1962 /* Set last mbuf size. */
1963 mp->m_len = sc->alc_cdata.alc_rxlen -
1964 (nsegs - 1) * sc->alc_buf_size;
1965 /* Remove the CRC bytes in chained mbufs. */
1966 if (mp->m_len <= ETHER_CRC_LEN) {
1967 sc->alc_cdata.alc_rxtail =
1968 sc->alc_cdata.alc_rxprev_tail;
1969 sc->alc_cdata.alc_rxtail->m_len -=
1970 (ETHER_CRC_LEN - mp->m_len);
1971 sc->alc_cdata.alc_rxtail->m_next = NULL;
1972 m_freem(mp);
1973 } else {
1974 mp->m_len -= ETHER_CRC_LEN;
1975 }
1976 } else
1977 m->m_len = m->m_pkthdr.len;
1978 m->m_pkthdr.rcvif = ifp;
1979 #if NVLAN > 0
1980 /*
1981 * Due to hardware bugs, Rx checksum offloading
1982 * was intentionally disabled.
1983 */
1984 if (status & RRD_VLAN_TAG) {
1985 u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1986 VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1987 }
1988 #endif
1989
1990 bpf_mtap(ifp, m);
1991
1992 {
1993 /* Pass it on. */
1994 ether_input(ifp, m);
1995 }
1996 }
1997 }
1998 /* Reset mbuf chains. */
1999 ALC_RXCHAIN_RESET(sc);
2000 }
2001
2002 static void
2003 alc_tick(void *xsc)
2004 {
2005 struct alc_softc *sc = xsc;
2006 struct mii_data *mii = &sc->sc_miibus;
2007 int s;
2008
2009 s = splnet();
2010 mii_tick(mii);
2011 alc_stats_update(sc);
2012 splx(s);
2013
2014 callout_schedule(&sc->sc_tick_ch, hz);
2015 }
2016
2017 static void
2018 alc_reset(struct alc_softc *sc)
2019 {
2020 uint32_t reg;
2021 int i;
2022
2023 reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2024 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2025 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2026 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2027 DELAY(10);
2028 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2029 break;
2030 }
2031 if (i == 0)
2032 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2033
2034 for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2035 if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2036 break;
2037 DELAY(10);
2038 }
2039
2040 if (i == 0)
2041 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2042 reg);
2043 }
2044
2045 static int
2046 alc_init(struct ifnet *ifp)
2047 {
2048
2049 return alc_init_backend(ifp, true);
2050 }
2051
2052 static int
2053 alc_init_backend(struct ifnet *ifp, bool init)
2054 {
2055 struct alc_softc *sc = ifp->if_softc;
2056 struct mii_data *mii;
2057 uint8_t eaddr[ETHER_ADDR_LEN];
2058 bus_addr_t paddr;
2059 uint32_t reg, rxf_hi, rxf_lo;
2060 int error;
2061
2062 /*
2063 * Cancel any pending I/O.
2064 */
2065 alc_stop(ifp, 0);
2066 /*
2067 * Reset the chip to a known state.
2068 */
2069 alc_reset(sc);
2070
2071 /* Initialize Rx descriptors. */
2072 error = alc_init_rx_ring(sc, init);
2073 if (error != 0) {
2074 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2075 alc_stop(ifp, 0);
2076 return (error);
2077 }
2078 alc_init_rr_ring(sc);
2079 alc_init_tx_ring(sc);
2080 alc_init_cmb(sc);
2081 alc_init_smb(sc);
2082
2083 /* Enable all clocks. */
2084 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2085
2086 /* Reprogram the station address. */
2087 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2088 CSR_WRITE_4(sc, ALC_PAR0,
2089 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2090 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2091 /*
2092 * Clear WOL status and disable all WOL feature as WOL
2093 * would interfere Rx operation under normal environments.
2094 */
2095 CSR_READ_4(sc, ALC_WOL_CFG);
2096 CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2097 /* Set Tx descriptor base addresses. */
2098 paddr = sc->alc_rdata.alc_tx_ring_paddr;
2099 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2100 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2101 /* We don't use high priority ring. */
2102 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2103 /* Set Tx descriptor counter. */
2104 CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2105 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2106 /* Set Rx descriptor base addresses. */
2107 paddr = sc->alc_rdata.alc_rx_ring_paddr;
2108 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2109 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2110 /* We use one Rx ring. */
2111 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2112 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2113 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2114 /* Set Rx descriptor counter. */
2115 CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2116 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2117
2118 /*
2119 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2120 * if it do not fit the buffer size. Rx return descriptor holds
2121 * a counter that indicates how many fragments were made by the
2122 * hardware. The buffer size should be multiple of 8 bytes.
2123 * Since hardware has limit on the size of buffer size, always
2124 * use the maximum value.
2125 * For strict-alignment architectures make sure to reduce buffer
2126 * size by 8 bytes to make room for alignment fixup.
2127 */
2128 sc->alc_buf_size = RX_BUF_SIZE_MAX;
2129 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2130
2131 paddr = sc->alc_rdata.alc_rr_ring_paddr;
2132 /* Set Rx return descriptor base addresses. */
2133 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2134 /* We use one Rx return ring. */
2135 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2136 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2137 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2138 /* Set Rx return descriptor counter. */
2139 CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2140 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2141 paddr = sc->alc_rdata.alc_cmb_paddr;
2142 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2143 paddr = sc->alc_rdata.alc_smb_paddr;
2144 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2145 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2146
2147 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2148 /* Reconfigure SRAM - Vendor magic. */
2149 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2150 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2151 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2152 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2153 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2154 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2155 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2156 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2157 }
2158
2159 /* Tell hardware that we're ready to load DMA blocks. */
2160 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2161
2162 /* Configure interrupt moderation timer. */
2163 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2164 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2165 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2166 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2167 CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2168 /*
2169 * We don't want to automatic interrupt clear as task queue
2170 * for the interrupt should know interrupt status.
2171 */
2172 reg = MASTER_SA_TIMER_ENB;
2173 if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2174 reg |= MASTER_IM_RX_TIMER_ENB;
2175 if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2176 reg |= MASTER_IM_TX_TIMER_ENB;
2177 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2178 /*
2179 * Disable interrupt re-trigger timer. We don't want automatic
2180 * re-triggering of un-ACKed interrupts.
2181 */
2182 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2183 /* Configure CMB. */
2184 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2185 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2186 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2187 else
2188 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2189 /*
2190 * Hardware can be configured to issue SMB interrupt based
2191 * on programmed interval. Since there is a callout that is
2192 * invoked for every hz in driver we use that instead of
2193 * relying on periodic SMB interrupt.
2194 */
2195 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2196 /* Clear MAC statistics. */
2197 alc_stats_clear(sc);
2198
2199 /*
2200 * Always use maximum frame size that controller can support.
2201 * Otherwise received frames that has larger frame length
2202 * than alc(4) MTU would be silently dropped in hardware. This
2203 * would make path-MTU discovery hard as sender wouldn't get
2204 * any responses from receiver. alc(4) supports
2205 * multi-fragmented frames on Rx path so it has no issue on
2206 * assembling fragmented frames. Using maximum frame size also
2207 * removes the need to reinitialize hardware when interface
2208 * MTU configuration was changed.
2209 *
2210 * Be conservative in what you do, be liberal in what you
2211 * accept from others - RFC 793.
2212 */
2213 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2214
2215 /* Disable header split(?) */
2216 CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2217
2218 /* Configure IPG/IFG parameters. */
2219 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2220 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2221 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2222 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2223 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2224 /* Set parameters for half-duplex media. */
2225 CSR_WRITE_4(sc, ALC_HDPX_CFG,
2226 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2227 HDPX_CFG_LCOL_MASK) |
2228 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2229 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2230 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2231 HDPX_CFG_ABEBT_MASK) |
2232 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2233 HDPX_CFG_JAMIPG_MASK));
2234 /*
2235 * Set TSO/checksum offload threshold. For frames that is
2236 * larger than this threshold, hardware wouldn't do
2237 * TSO/checksum offloading.
2238 */
2239 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2240 (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2241 TSO_OFFLOAD_THRESH_MASK);
2242 /* Configure TxQ. */
2243 reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2244 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2245 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2246 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2247 reg >>= 1;
2248 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2249 TXQ_CFG_TD_BURST_MASK;
2250 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2251
2252 /* Configure Rx free descriptor pre-fetching. */
2253 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2254 ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2255 RX_RD_FREE_THRESH_HI_MASK) |
2256 ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2257 RX_RD_FREE_THRESH_LO_MASK));
2258
2259 /*
2260 * Configure flow control parameters.
2261 * XON : 80% of Rx FIFO
2262 * XOFF : 30% of Rx FIFO
2263 */
2264 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2265 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2266 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2267 rxf_hi = (reg * 8) / 10;
2268 rxf_lo = (reg * 3) / 10;
2269 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2270 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2271 RX_FIFO_PAUSE_THRESH_LO_MASK) |
2272 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2273 RX_FIFO_PAUSE_THRESH_HI_MASK));
2274 }
2275
2276 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2277 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2278 CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2279 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2280 SERDES_PHY_CLK_SLOWDOWN);
2281
2282 /* Disable RSS until I understand L1C/L2C's RSS logic. */
2283 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2284 CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2285
2286 /* Configure RxQ. */
2287 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2288 RXQ_CFG_RD_BURST_MASK;
2289 reg |= RXQ_CFG_RSS_MODE_DIS;
2290 if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2291 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2292 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2293
2294 /* Configure DMA parameters. */
2295 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2296 reg |= sc->alc_rcb;
2297 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2298 reg |= DMA_CFG_CMB_ENB;
2299 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2300 reg |= DMA_CFG_SMB_ENB;
2301 else
2302 reg |= DMA_CFG_SMB_DIS;
2303 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2304 DMA_CFG_RD_BURST_SHIFT;
2305 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2306 DMA_CFG_WR_BURST_SHIFT;
2307 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2308 DMA_CFG_RD_DELAY_CNT_MASK;
2309 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2310 DMA_CFG_WR_DELAY_CNT_MASK;
2311 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2312
2313 /*
2314 * Configure Tx/Rx MACs.
2315 * - Auto-padding for short frames.
2316 * - Enable CRC generation.
2317 * Actual reconfiguration of MAC for resolved speed/duplex
2318 * is followed after detection of link establishment.
2319 * AR813x/AR815x always does checksum computation regardless
2320 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2321 * have bug in protocol field in Rx return structure so
2322 * these controllers can't handle fragmented frames. Disable
2323 * Rx checksum offloading until there is a newer controller
2324 * that has sane implementation.
2325 */
2326 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2327 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2328 MAC_CFG_PREAMBLE_MASK);
2329 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2330 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2331 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2332 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2333 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2334 reg |= MAC_CFG_SPEED_10_100;
2335 else
2336 reg |= MAC_CFG_SPEED_1000;
2337 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2338
2339 /* Set up the receive filter. */
2340 alc_iff(sc);
2341 alc_rxvlan(sc);
2342
2343 /* Acknowledge all pending interrupts and clear it. */
2344 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2345 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2346 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2347
2348 sc->alc_flags &= ~ALC_FLAG_LINK;
2349 /* Switch to the current media. */
2350 mii = &sc->sc_miibus;
2351 mii_mediachg(mii);
2352
2353 callout_schedule(&sc->sc_tick_ch, hz);
2354
2355 ifp->if_flags |= IFF_RUNNING;
2356 ifp->if_flags &= ~IFF_OACTIVE;
2357
2358 return (0);
2359 }
2360
2361 static void
2362 alc_stop(struct ifnet *ifp, int disable)
2363 {
2364 struct alc_softc *sc = ifp->if_softc;
2365 struct alc_txdesc *txd;
2366 struct alc_rxdesc *rxd;
2367 uint32_t reg;
2368 int i;
2369
2370 callout_stop(&sc->sc_tick_ch);
2371
2372 /*
2373 * Mark the interface down and cancel the watchdog timer.
2374 */
2375 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2376 ifp->if_timer = 0;
2377
2378 sc->alc_flags &= ~ALC_FLAG_LINK;
2379
2380 alc_stats_update(sc);
2381
2382 mii_down(&sc->sc_miibus);
2383
2384 /* Disable interrupts. */
2385 CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2386 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2387 alc_stop_queue(sc);
2388
2389 /* Disable DMA. */
2390 reg = CSR_READ_4(sc, ALC_DMA_CFG);
2391 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2392 reg |= DMA_CFG_SMB_DIS;
2393 CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2394 DELAY(1000);
2395
2396 /* Stop Rx/Tx MACs. */
2397 alc_stop_mac(sc);
2398
2399 /* Disable interrupts which might be touched in taskq handler. */
2400 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2401
2402 /* Reclaim Rx buffers that have been processed. */
2403 if (sc->alc_cdata.alc_rxhead != NULL)
2404 m_freem(sc->alc_cdata.alc_rxhead);
2405 ALC_RXCHAIN_RESET(sc);
2406 /*
2407 * Free Tx/Rx mbufs still in the queues.
2408 */
2409 for (i = 0; i < ALC_RX_RING_CNT; i++) {
2410 rxd = &sc->alc_cdata.alc_rxdesc[i];
2411 if (rxd->rx_m != NULL) {
2412 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2413 m_freem(rxd->rx_m);
2414 rxd->rx_m = NULL;
2415 }
2416 }
2417 for (i = 0; i < ALC_TX_RING_CNT; i++) {
2418 txd = &sc->alc_cdata.alc_txdesc[i];
2419 if (txd->tx_m != NULL) {
2420 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2421 m_freem(txd->tx_m);
2422 txd->tx_m = NULL;
2423 }
2424 }
2425 }
2426
2427 static void
2428 alc_stop_mac(struct alc_softc *sc)
2429 {
2430 uint32_t reg;
2431 int i;
2432
2433 /* Disable Rx/Tx MAC. */
2434 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2435 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2436 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2437 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2438 }
2439 for (i = ALC_TIMEOUT; i > 0; i--) {
2440 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2441 if (reg == 0)
2442 break;
2443 DELAY(10);
2444 }
2445 if (i == 0)
2446 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2447 device_xname(sc->sc_dev), reg);
2448 }
2449
2450 static void
2451 alc_start_queue(struct alc_softc *sc)
2452 {
2453 uint32_t qcfg[] = {
2454 0,
2455 RXQ_CFG_QUEUE0_ENB,
2456 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2457 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2458 RXQ_CFG_ENB
2459 };
2460 uint32_t cfg;
2461
2462 /* Enable RxQ. */
2463 cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2464 cfg &= ~RXQ_CFG_ENB;
2465 cfg |= qcfg[1];
2466 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2467 /* Enable TxQ. */
2468 cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2469 cfg |= TXQ_CFG_ENB;
2470 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2471 }
2472
2473 static void
2474 alc_stop_queue(struct alc_softc *sc)
2475 {
2476 uint32_t reg;
2477 int i;
2478
2479 /* Disable RxQ. */
2480 reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2481 if ((reg & RXQ_CFG_ENB) != 0) {
2482 reg &= ~RXQ_CFG_ENB;
2483 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2484 }
2485 /* Disable TxQ. */
2486 reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2487 if ((reg & TXQ_CFG_ENB) != 0) {
2488 reg &= ~TXQ_CFG_ENB;
2489 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2490 }
2491 for (i = ALC_TIMEOUT; i > 0; i--) {
2492 reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2493 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2494 break;
2495 DELAY(10);
2496 }
2497 if (i == 0)
2498 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2499 device_xname(sc->sc_dev), reg);
2500 }
2501
2502 static void
2503 alc_init_tx_ring(struct alc_softc *sc)
2504 {
2505 struct alc_ring_data *rd;
2506 struct alc_txdesc *txd;
2507 int i;
2508
2509 sc->alc_cdata.alc_tx_prod = 0;
2510 sc->alc_cdata.alc_tx_cons = 0;
2511 sc->alc_cdata.alc_tx_cnt = 0;
2512
2513 rd = &sc->alc_rdata;
2514 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2515 for (i = 0; i < ALC_TX_RING_CNT; i++) {
2516 txd = &sc->alc_cdata.alc_txdesc[i];
2517 txd->tx_m = NULL;
2518 }
2519
2520 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2521 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2522 }
2523
2524 static int
2525 alc_init_rx_ring(struct alc_softc *sc, bool init)
2526 {
2527 struct alc_ring_data *rd;
2528 struct alc_rxdesc *rxd;
2529 int i;
2530
2531 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2532 rd = &sc->alc_rdata;
2533 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2534 for (i = 0; i < ALC_RX_RING_CNT; i++) {
2535 rxd = &sc->alc_cdata.alc_rxdesc[i];
2536 rxd->rx_m = NULL;
2537 rxd->rx_desc = &rd->alc_rx_ring[i];
2538 if (alc_newbuf(sc, rxd, init) != 0)
2539 return (ENOBUFS);
2540 }
2541
2542 /*
2543 * Since controller does not update Rx descriptors, driver
2544 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2545 * is enough to ensure coherence.
2546 */
2547 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2548 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2549 /* Let controller know availability of new Rx buffers. */
2550 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2551
2552 return (0);
2553 }
2554
2555 static void
2556 alc_init_rr_ring(struct alc_softc *sc)
2557 {
2558 struct alc_ring_data *rd;
2559
2560 sc->alc_cdata.alc_rr_cons = 0;
2561 ALC_RXCHAIN_RESET(sc);
2562
2563 rd = &sc->alc_rdata;
2564 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2565 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2566 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2567 }
2568
2569 static void
2570 alc_init_cmb(struct alc_softc *sc)
2571 {
2572 struct alc_ring_data *rd;
2573
2574 rd = &sc->alc_rdata;
2575 memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2576 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2577 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2578 }
2579
2580 static void
2581 alc_init_smb(struct alc_softc *sc)
2582 {
2583 struct alc_ring_data *rd;
2584
2585 rd = &sc->alc_rdata;
2586 memset(rd->alc_smb, 0, ALC_SMB_SZ);
2587 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2588 sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2589 }
2590
2591 static void
2592 alc_rxvlan(struct alc_softc *sc)
2593 {
2594 uint32_t reg;
2595
2596 reg = CSR_READ_4(sc, ALC_MAC_CFG);
2597 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2598 reg |= MAC_CFG_VLAN_TAG_STRIP;
2599 else
2600 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2601 CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2602 }
2603
2604 static void
2605 alc_iff(struct alc_softc *sc)
2606 {
2607 struct ethercom *ec = &sc->sc_ec;
2608 struct ifnet *ifp = &ec->ec_if;
2609 struct ether_multi *enm;
2610 struct ether_multistep step;
2611 uint32_t crc;
2612 uint32_t mchash[2];
2613 uint32_t rxcfg;
2614
2615 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2616 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2617 ifp->if_flags &= ~IFF_ALLMULTI;
2618
2619 /*
2620 * Always accept broadcast frames.
2621 */
2622 rxcfg |= MAC_CFG_BCAST;
2623
2624 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2625 ifp->if_flags |= IFF_ALLMULTI;
2626 if (ifp->if_flags & IFF_PROMISC)
2627 rxcfg |= MAC_CFG_PROMISC;
2628 else
2629 rxcfg |= MAC_CFG_ALLMULTI;
2630 mchash[0] = mchash[1] = 0xFFFFFFFF;
2631 } else {
2632 /* Program new filter. */
2633 memset(mchash, 0, sizeof(mchash));
2634
2635 ETHER_FIRST_MULTI(step, ec, enm);
2636 while (enm != NULL) {
2637 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2638 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2639 ETHER_NEXT_MULTI(step, enm);
2640 }
2641 }
2642
2643 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2644 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2645 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2646 }
2647
2648 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
2649
2650 #ifdef _MODULE
2651 #include "ioconf.c"
2652 #endif
2653
2654 static int
2655 if_alc_modcmd(modcmd_t cmd, void *opaque)
2656 {
2657 int error = 0;
2658
2659 switch (cmd) {
2660 case MODULE_CMD_INIT:
2661 #ifdef _MODULE
2662 error = config_init_component(cfdriver_ioconf_if_alc,
2663 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2664 #endif
2665 return error;
2666 case MODULE_CMD_FINI:
2667 #ifdef _MODULE
2668 error = config_fini_component(cfdriver_ioconf_if_alc,
2669 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2670 #endif
2671 return error;
2672 default:
2673 return ENOTTY;
2674 }
2675 }
2676