if_ale.c revision 1.3.2.3 1 1.3.2.3 snj /* $NetBSD: if_ale.c,v 1.3.2.3 2009/09/10 07:26:38 snj Exp $ */
2 1.3.2.2 snj
3 1.3.2.2 snj /*-
4 1.3.2.2 snj * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 1.3.2.2 snj * All rights reserved.
6 1.3.2.2 snj *
7 1.3.2.2 snj * Redistribution and use in source and binary forms, with or without
8 1.3.2.2 snj * modification, are permitted provided that the following conditions
9 1.3.2.2 snj * are met:
10 1.3.2.2 snj * 1. Redistributions of source code must retain the above copyright
11 1.3.2.2 snj * notice unmodified, this list of conditions, and the following
12 1.3.2.2 snj * disclaimer.
13 1.3.2.2 snj * 2. Redistributions in binary form must reproduce the above copyright
14 1.3.2.2 snj * notice, this list of conditions and the following disclaimer in the
15 1.3.2.2 snj * documentation and/or other materials provided with the distribution.
16 1.3.2.2 snj *
17 1.3.2.2 snj * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.3.2.2 snj * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.3.2.2 snj * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.3.2.2 snj * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.3.2.2 snj * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.3.2.2 snj * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.3.2.2 snj * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.3.2.2 snj * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.3.2.2 snj * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.3.2.2 snj * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.3.2.2 snj * SUCH DAMAGE.
28 1.3.2.2 snj *
29 1.3.2.2 snj * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 1.3.2.2 snj */
31 1.3.2.2 snj
32 1.3.2.2 snj /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 1.3.2.2 snj
34 1.3.2.2 snj #include <sys/cdefs.h>
35 1.3.2.3 snj __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.3.2.3 2009/09/10 07:26:38 snj Exp $");
36 1.3.2.2 snj
37 1.3.2.2 snj #include "bpfilter.h"
38 1.3.2.2 snj #include "vlan.h"
39 1.3.2.2 snj
40 1.3.2.2 snj #include <sys/param.h>
41 1.3.2.2 snj #include <sys/proc.h>
42 1.3.2.2 snj #include <sys/endian.h>
43 1.3.2.2 snj #include <sys/systm.h>
44 1.3.2.2 snj #include <sys/types.h>
45 1.3.2.2 snj #include <sys/sockio.h>
46 1.3.2.2 snj #include <sys/mbuf.h>
47 1.3.2.2 snj #include <sys/queue.h>
48 1.3.2.2 snj #include <sys/kernel.h>
49 1.3.2.2 snj #include <sys/device.h>
50 1.3.2.2 snj #include <sys/callout.h>
51 1.3.2.2 snj #include <sys/socket.h>
52 1.3.2.2 snj
53 1.3.2.2 snj #include <sys/bus.h>
54 1.3.2.2 snj
55 1.3.2.2 snj #include <net/if.h>
56 1.3.2.2 snj #include <net/if_dl.h>
57 1.3.2.2 snj #include <net/if_llc.h>
58 1.3.2.2 snj #include <net/if_media.h>
59 1.3.2.2 snj #include <net/if_ether.h>
60 1.3.2.2 snj
61 1.3.2.2 snj #ifdef INET
62 1.3.2.2 snj #include <netinet/in.h>
63 1.3.2.2 snj #include <netinet/in_systm.h>
64 1.3.2.2 snj #include <netinet/in_var.h>
65 1.3.2.2 snj #include <netinet/ip.h>
66 1.3.2.2 snj #endif
67 1.3.2.2 snj
68 1.3.2.2 snj #include <net/if_types.h>
69 1.3.2.2 snj #include <net/if_vlanvar.h>
70 1.3.2.2 snj
71 1.3.2.2 snj #if NBPFILTER > 0
72 1.3.2.2 snj #include <net/bpf.h>
73 1.3.2.2 snj #endif
74 1.3.2.2 snj
75 1.3.2.2 snj #include <sys/rnd.h>
76 1.3.2.2 snj
77 1.3.2.2 snj #include <dev/mii/mii.h>
78 1.3.2.2 snj #include <dev/mii/miivar.h>
79 1.3.2.2 snj
80 1.3.2.2 snj #include <dev/pci/pcireg.h>
81 1.3.2.2 snj #include <dev/pci/pcivar.h>
82 1.3.2.2 snj #include <dev/pci/pcidevs.h>
83 1.3.2.2 snj
84 1.3.2.2 snj #include <dev/pci/if_alereg.h>
85 1.3.2.2 snj
86 1.3.2.2 snj static int ale_match(device_t, cfdata_t, void *);
87 1.3.2.2 snj static void ale_attach(device_t, device_t, void *);
88 1.3.2.2 snj static int ale_detach(device_t, int);
89 1.3.2.2 snj
90 1.3.2.2 snj static int ale_miibus_readreg(device_t, int, int);
91 1.3.2.2 snj static void ale_miibus_writereg(device_t, int, int, int);
92 1.3.2.2 snj static void ale_miibus_statchg(device_t);
93 1.3.2.2 snj
94 1.3.2.2 snj static int ale_init(struct ifnet *);
95 1.3.2.2 snj static void ale_start(struct ifnet *);
96 1.3.2.2 snj static int ale_ioctl(struct ifnet *, u_long, void *);
97 1.3.2.2 snj static void ale_watchdog(struct ifnet *);
98 1.3.2.2 snj static int ale_mediachange(struct ifnet *);
99 1.3.2.2 snj static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
100 1.3.2.2 snj
101 1.3.2.2 snj static int ale_intr(void *);
102 1.3.2.2 snj static int ale_rxeof(struct ale_softc *sc);
103 1.3.2.2 snj static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 1.3.2.2 snj uint32_t, uint32_t *);
105 1.3.2.2 snj static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 1.3.2.2 snj static void ale_txeof(struct ale_softc *);
107 1.3.2.2 snj
108 1.3.2.2 snj static int ale_dma_alloc(struct ale_softc *);
109 1.3.2.2 snj static void ale_dma_free(struct ale_softc *);
110 1.3.2.2 snj static int ale_encap(struct ale_softc *, struct mbuf **);
111 1.3.2.2 snj static void ale_init_rx_pages(struct ale_softc *);
112 1.3.2.2 snj static void ale_init_tx_ring(struct ale_softc *);
113 1.3.2.2 snj
114 1.3.2.2 snj static void ale_stop(struct ifnet *, int);
115 1.3.2.2 snj static void ale_tick(void *);
116 1.3.2.2 snj static void ale_get_macaddr(struct ale_softc *);
117 1.3.2.2 snj static void ale_mac_config(struct ale_softc *);
118 1.3.2.2 snj static void ale_phy_reset(struct ale_softc *);
119 1.3.2.2 snj static void ale_reset(struct ale_softc *);
120 1.3.2.2 snj static void ale_rxfilter(struct ale_softc *);
121 1.3.2.2 snj static void ale_rxvlan(struct ale_softc *);
122 1.3.2.2 snj static void ale_stats_clear(struct ale_softc *);
123 1.3.2.2 snj static void ale_stats_update(struct ale_softc *);
124 1.3.2.2 snj static void ale_stop_mac(struct ale_softc *);
125 1.3.2.2 snj
126 1.3.2.2 snj CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 1.3.2.2 snj ale_match, ale_attach, ale_detach, NULL);
128 1.3.2.2 snj
129 1.3.2.2 snj int aledebug = 0;
130 1.3.2.2 snj #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
131 1.3.2.2 snj
132 1.3.2.2 snj #define ETHER_ALIGN 2
133 1.3.2.2 snj #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 1.3.2.2 snj
135 1.3.2.2 snj static int
136 1.3.2.2 snj ale_miibus_readreg(device_t dev, int phy, int reg)
137 1.3.2.2 snj {
138 1.3.2.2 snj struct ale_softc *sc = device_private(dev);
139 1.3.2.2 snj uint32_t v;
140 1.3.2.2 snj int i;
141 1.3.2.2 snj
142 1.3.2.2 snj if (phy != sc->ale_phyaddr)
143 1.3.2.2 snj return 0;
144 1.3.2.2 snj
145 1.3.2.3 snj if (sc->ale_flags & ALE_FLAG_FASTETHER) {
146 1.3.2.3 snj switch (reg) {
147 1.3.2.3 snj case MII_100T2CR:
148 1.3.2.3 snj case MII_100T2SR:
149 1.3.2.3 snj case MII_EXTSR:
150 1.3.2.3 snj return 0;
151 1.3.2.3 snj default:
152 1.3.2.3 snj break;
153 1.3.2.3 snj }
154 1.3.2.3 snj }
155 1.3.2.3 snj
156 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
157 1.3.2.2 snj MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
158 1.3.2.2 snj for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
159 1.3.2.2 snj DELAY(5);
160 1.3.2.2 snj v = CSR_READ_4(sc, ALE_MDIO);
161 1.3.2.2 snj if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
162 1.3.2.2 snj break;
163 1.3.2.2 snj }
164 1.3.2.2 snj
165 1.3.2.2 snj if (i == 0) {
166 1.3.2.2 snj printf("%s: phy read timeout: phy %d, reg %d\n",
167 1.3.2.2 snj device_xname(sc->sc_dev), phy, reg);
168 1.3.2.2 snj return 0;
169 1.3.2.2 snj }
170 1.3.2.2 snj
171 1.3.2.3 snj return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
172 1.3.2.2 snj }
173 1.3.2.2 snj
174 1.3.2.2 snj static void
175 1.3.2.2 snj ale_miibus_writereg(device_t dev, int phy, int reg, int val)
176 1.3.2.2 snj {
177 1.3.2.2 snj struct ale_softc *sc = device_private(dev);
178 1.3.2.2 snj uint32_t v;
179 1.3.2.2 snj int i;
180 1.3.2.2 snj
181 1.3.2.2 snj if (phy != sc->ale_phyaddr)
182 1.3.2.2 snj return;
183 1.3.2.2 snj
184 1.3.2.3 snj if (sc->ale_flags & ALE_FLAG_FASTETHER) {
185 1.3.2.3 snj switch (reg) {
186 1.3.2.3 snj case MII_100T2CR:
187 1.3.2.3 snj case MII_100T2SR:
188 1.3.2.3 snj case MII_EXTSR:
189 1.3.2.3 snj return;
190 1.3.2.3 snj default:
191 1.3.2.3 snj break;
192 1.3.2.3 snj }
193 1.3.2.3 snj }
194 1.3.2.3 snj
195 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
196 1.3.2.2 snj (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
197 1.3.2.2 snj MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
198 1.3.2.2 snj for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
199 1.3.2.2 snj DELAY(5);
200 1.3.2.2 snj v = CSR_READ_4(sc, ALE_MDIO);
201 1.3.2.2 snj if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
202 1.3.2.2 snj break;
203 1.3.2.2 snj }
204 1.3.2.2 snj
205 1.3.2.2 snj if (i == 0)
206 1.3.2.2 snj printf("%s: phy write timeout: phy %d, reg %d\n",
207 1.3.2.2 snj device_xname(sc->sc_dev), phy, reg);
208 1.3.2.2 snj }
209 1.3.2.2 snj
210 1.3.2.2 snj static void
211 1.3.2.2 snj ale_miibus_statchg(device_t dev)
212 1.3.2.2 snj {
213 1.3.2.2 snj struct ale_softc *sc = device_private(dev);
214 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
215 1.3.2.2 snj struct mii_data *mii;
216 1.3.2.2 snj uint32_t reg;
217 1.3.2.2 snj
218 1.3.2.2 snj if ((ifp->if_flags & IFF_RUNNING) == 0)
219 1.3.2.2 snj return;
220 1.3.2.2 snj
221 1.3.2.2 snj mii = &sc->sc_miibus;
222 1.3.2.2 snj
223 1.3.2.2 snj sc->ale_flags &= ~ALE_FLAG_LINK;
224 1.3.2.2 snj if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
225 1.3.2.2 snj (IFM_ACTIVE | IFM_AVALID)) {
226 1.3.2.2 snj switch (IFM_SUBTYPE(mii->mii_media_active)) {
227 1.3.2.2 snj case IFM_10_T:
228 1.3.2.2 snj case IFM_100_TX:
229 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_LINK;
230 1.3.2.2 snj break;
231 1.3.2.2 snj
232 1.3.2.2 snj case IFM_1000_T:
233 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
234 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_LINK;
235 1.3.2.2 snj break;
236 1.3.2.2 snj
237 1.3.2.2 snj default:
238 1.3.2.2 snj break;
239 1.3.2.2 snj }
240 1.3.2.2 snj }
241 1.3.2.2 snj
242 1.3.2.2 snj /* Stop Rx/Tx MACs. */
243 1.3.2.2 snj ale_stop_mac(sc);
244 1.3.2.2 snj
245 1.3.2.2 snj /* Program MACs with resolved speed/duplex/flow-control. */
246 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
247 1.3.2.2 snj ale_mac_config(sc);
248 1.3.2.2 snj /* Reenable Tx/Rx MACs. */
249 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_MAC_CFG);
250 1.3.2.2 snj reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
251 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
252 1.3.2.2 snj }
253 1.3.2.2 snj }
254 1.3.2.2 snj
255 1.3.2.2 snj void
256 1.3.2.2 snj ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
257 1.3.2.2 snj {
258 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
259 1.3.2.2 snj struct mii_data *mii = &sc->sc_miibus;
260 1.3.2.2 snj
261 1.3.2.2 snj mii_pollstat(mii);
262 1.3.2.2 snj ifmr->ifm_status = mii->mii_media_status;
263 1.3.2.2 snj ifmr->ifm_active = mii->mii_media_active;
264 1.3.2.2 snj }
265 1.3.2.2 snj
266 1.3.2.2 snj int
267 1.3.2.2 snj ale_mediachange(struct ifnet *ifp)
268 1.3.2.2 snj {
269 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
270 1.3.2.2 snj struct mii_data *mii = &sc->sc_miibus;
271 1.3.2.2 snj int error;
272 1.3.2.2 snj
273 1.3.2.2 snj if (mii->mii_instance != 0) {
274 1.3.2.2 snj struct mii_softc *miisc;
275 1.3.2.2 snj
276 1.3.2.2 snj LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
277 1.3.2.2 snj mii_phy_reset(miisc);
278 1.3.2.2 snj }
279 1.3.2.2 snj error = mii_mediachg(mii);
280 1.3.2.2 snj
281 1.3.2.2 snj return error;
282 1.3.2.2 snj }
283 1.3.2.2 snj
284 1.3.2.2 snj int
285 1.3.2.2 snj ale_match(device_t dev, cfdata_t match, void *aux)
286 1.3.2.2 snj {
287 1.3.2.2 snj struct pci_attach_args *pa = aux;
288 1.3.2.2 snj
289 1.3.2.2 snj return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
290 1.3.2.2 snj PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
291 1.3.2.2 snj }
292 1.3.2.2 snj
293 1.3.2.2 snj void
294 1.3.2.2 snj ale_get_macaddr(struct ale_softc *sc)
295 1.3.2.2 snj {
296 1.3.2.2 snj uint32_t ea[2], reg;
297 1.3.2.2 snj int i, vpdc;
298 1.3.2.2 snj
299 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_SPI_CTRL);
300 1.3.2.2 snj if ((reg & SPI_VPD_ENB) != 0) {
301 1.3.2.2 snj reg &= ~SPI_VPD_ENB;
302 1.3.2.2 snj CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
303 1.3.2.2 snj }
304 1.3.2.2 snj
305 1.3.2.2 snj if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
306 1.3.2.2 snj &vpdc, NULL)) {
307 1.3.2.2 snj /*
308 1.3.2.2 snj * PCI VPD capability found, let TWSI reload EEPROM.
309 1.3.2.2 snj * This will set ethernet address of controller.
310 1.3.2.2 snj */
311 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
312 1.3.2.2 snj TWSI_CTRL_SW_LD_START);
313 1.3.2.2 snj for (i = 100; i > 0; i--) {
314 1.3.2.2 snj DELAY(1000);
315 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
316 1.3.2.2 snj if ((reg & TWSI_CTRL_SW_LD_START) == 0)
317 1.3.2.2 snj break;
318 1.3.2.2 snj }
319 1.3.2.2 snj if (i == 0)
320 1.3.2.2 snj printf("%s: reloading EEPROM timeout!\n",
321 1.3.2.2 snj device_xname(sc->sc_dev));
322 1.3.2.2 snj } else {
323 1.3.2.2 snj if (aledebug)
324 1.3.2.2 snj printf("%s: PCI VPD capability not found!\n",
325 1.3.2.2 snj device_xname(sc->sc_dev));
326 1.3.2.2 snj }
327 1.3.2.2 snj
328 1.3.2.2 snj ea[0] = CSR_READ_4(sc, ALE_PAR0);
329 1.3.2.2 snj ea[1] = CSR_READ_4(sc, ALE_PAR1);
330 1.3.2.2 snj sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
331 1.3.2.2 snj sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
332 1.3.2.2 snj sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
333 1.3.2.2 snj sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
334 1.3.2.2 snj sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
335 1.3.2.2 snj sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
336 1.3.2.2 snj }
337 1.3.2.2 snj
338 1.3.2.2 snj void
339 1.3.2.2 snj ale_phy_reset(struct ale_softc *sc)
340 1.3.2.2 snj {
341 1.3.2.2 snj /* Reset magic from Linux. */
342 1.3.2.2 snj CSR_WRITE_2(sc, ALE_GPHY_CTRL,
343 1.3.2.2 snj GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
344 1.3.2.2 snj GPHY_CTRL_PHY_PLL_ON);
345 1.3.2.2 snj DELAY(1000);
346 1.3.2.2 snj CSR_WRITE_2(sc, ALE_GPHY_CTRL,
347 1.3.2.2 snj GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
348 1.3.2.2 snj GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
349 1.3.2.2 snj DELAY(1000);
350 1.3.2.2 snj
351 1.3.2.2 snj #define ATPHY_DBG_ADDR 0x1D
352 1.3.2.2 snj #define ATPHY_DBG_DATA 0x1E
353 1.3.2.2 snj
354 1.3.2.2 snj /* Enable hibernation mode. */
355 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 1.3.2.2 snj ATPHY_DBG_ADDR, 0x0B);
357 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 1.3.2.2 snj ATPHY_DBG_DATA, 0xBC00);
359 1.3.2.2 snj /* Set Class A/B for all modes. */
360 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
361 1.3.2.2 snj ATPHY_DBG_ADDR, 0x00);
362 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 1.3.2.2 snj ATPHY_DBG_DATA, 0x02EF);
364 1.3.2.2 snj /* Enable 10BT power saving. */
365 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
366 1.3.2.2 snj ATPHY_DBG_ADDR, 0x12);
367 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 1.3.2.2 snj ATPHY_DBG_DATA, 0x4C04);
369 1.3.2.2 snj /* Adjust 1000T power. */
370 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
371 1.3.2.2 snj ATPHY_DBG_ADDR, 0x04);
372 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 1.3.2.2 snj ATPHY_DBG_ADDR, 0x8BBB);
374 1.3.2.2 snj /* 10BT center tap voltage. */
375 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
376 1.3.2.2 snj ATPHY_DBG_ADDR, 0x05);
377 1.3.2.2 snj ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
378 1.3.2.2 snj ATPHY_DBG_ADDR, 0x2C46);
379 1.3.2.2 snj
380 1.3.2.2 snj #undef ATPHY_DBG_ADDR
381 1.3.2.2 snj #undef ATPHY_DBG_DATA
382 1.3.2.2 snj DELAY(1000);
383 1.3.2.2 snj }
384 1.3.2.2 snj
385 1.3.2.2 snj void
386 1.3.2.2 snj ale_attach(device_t parent, device_t self, void *aux)
387 1.3.2.2 snj {
388 1.3.2.2 snj struct ale_softc *sc = device_private(self);
389 1.3.2.2 snj struct pci_attach_args *pa = aux;
390 1.3.2.2 snj pci_chipset_tag_t pc = pa->pa_pc;
391 1.3.2.2 snj pci_intr_handle_t ih;
392 1.3.2.2 snj const char *intrstr;
393 1.3.2.2 snj struct ifnet *ifp;
394 1.3.2.2 snj pcireg_t memtype;
395 1.3.2.3 snj int mii_flags, error = 0;
396 1.3.2.2 snj uint32_t rxf_len, txf_len;
397 1.3.2.3 snj const char *chipname;
398 1.3.2.2 snj
399 1.3.2.2 snj aprint_naive("\n");
400 1.3.2.2 snj aprint_normal(": Attansic/Atheros L1E Ethernet\n");
401 1.3.2.2 snj
402 1.3.2.2 snj sc->sc_dev = self;
403 1.3.2.2 snj sc->sc_dmat = pa->pa_dmat;
404 1.3.2.2 snj sc->sc_pct = pa->pa_pc;
405 1.3.2.2 snj sc->sc_pcitag = pa->pa_tag;
406 1.3.2.2 snj
407 1.3.2.2 snj /*
408 1.3.2.2 snj * Allocate IO memory
409 1.3.2.2 snj */
410 1.3.2.2 snj memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
411 1.3.2.2 snj switch (memtype) {
412 1.3.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
413 1.3.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
414 1.3.2.2 snj case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
415 1.3.2.2 snj break;
416 1.3.2.2 snj default:
417 1.3.2.2 snj aprint_error_dev(self, "invalid base address register\n");
418 1.3.2.2 snj break;
419 1.3.2.2 snj }
420 1.3.2.2 snj
421 1.3.2.2 snj if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
422 1.3.2.2 snj &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
423 1.3.2.2 snj aprint_error_dev(self, "could not map mem space\n");
424 1.3.2.2 snj return;
425 1.3.2.2 snj }
426 1.3.2.2 snj
427 1.3.2.2 snj if (pci_intr_map(pa, &ih) != 0) {
428 1.3.2.2 snj aprint_error_dev(self, "could not map interrupt\n");
429 1.3.2.2 snj goto fail;
430 1.3.2.2 snj }
431 1.3.2.2 snj
432 1.3.2.2 snj /*
433 1.3.2.2 snj * Allocate IRQ
434 1.3.2.2 snj */
435 1.3.2.2 snj intrstr = pci_intr_string(sc->sc_pct, ih);
436 1.3.2.2 snj sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
437 1.3.2.2 snj if (sc->sc_irq_handle == NULL) {
438 1.3.2.2 snj aprint_error_dev(self, "could not establish interrupt");
439 1.3.2.2 snj if (intrstr != NULL)
440 1.3.2.2 snj aprint_error(" at %s", intrstr);
441 1.3.2.2 snj aprint_error("\n");
442 1.3.2.2 snj goto fail;
443 1.3.2.2 snj }
444 1.3.2.2 snj
445 1.3.2.2 snj /* Set PHY address. */
446 1.3.2.2 snj sc->ale_phyaddr = ALE_PHY_ADDR;
447 1.3.2.2 snj
448 1.3.2.2 snj /* Reset PHY. */
449 1.3.2.2 snj ale_phy_reset(sc);
450 1.3.2.2 snj
451 1.3.2.2 snj /* Reset the ethernet controller. */
452 1.3.2.2 snj ale_reset(sc);
453 1.3.2.2 snj
454 1.3.2.2 snj /* Get PCI and chip id/revision. */
455 1.3.2.2 snj sc->ale_rev = PCI_REVISION(pa->pa_class);
456 1.3.2.2 snj if (sc->ale_rev >= 0xF0) {
457 1.3.2.2 snj /* L2E Rev. B. AR8114 */
458 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_FASTETHER;
459 1.3.2.3 snj chipname = "AR8114 (L2E RevB)";
460 1.3.2.2 snj } else {
461 1.3.2.2 snj if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 1.3.2.2 snj /* L1E AR8121 */
463 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_JUMBO;
464 1.3.2.3 snj chipname = "AR8121 (L1E)";
465 1.3.2.2 snj } else {
466 1.3.2.2 snj /* L2E Rev. A. AR8113 */
467 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_FASTETHER;
468 1.3.2.3 snj chipname = "AR8113 (L2E RevA)";
469 1.3.2.2 snj }
470 1.3.2.2 snj }
471 1.3.2.3 snj aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
472 1.3.2.2 snj
473 1.3.2.2 snj /*
474 1.3.2.2 snj * All known controllers seems to require 4 bytes alignment
475 1.3.2.2 snj * of Tx buffers to make Tx checksum offload with custom
476 1.3.2.2 snj * checksum generation method work.
477 1.3.2.2 snj */
478 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
479 1.3.2.2 snj
480 1.3.2.2 snj /*
481 1.3.2.2 snj * All known controllers seems to have issues on Rx checksum
482 1.3.2.2 snj * offload for fragmented IP datagrams.
483 1.3.2.2 snj */
484 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
485 1.3.2.2 snj
486 1.3.2.2 snj /*
487 1.3.2.2 snj * Don't use Tx CMB. It is known to cause RRS update failure
488 1.3.2.2 snj * under certain circumstances. Typical phenomenon of the
489 1.3.2.2 snj * issue would be unexpected sequence number encountered in
490 1.3.2.2 snj * Rx handler.
491 1.3.2.2 snj */
492 1.3.2.2 snj sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 1.3.2.2 snj sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 1.3.2.2 snj MASTER_CHIP_REV_SHIFT;
495 1.3.2.2 snj aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 1.3.2.2 snj aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
497 1.3.2.2 snj
498 1.3.2.2 snj /*
499 1.3.2.2 snj * Uninitialized hardware returns an invalid chip id/revision
500 1.3.2.2 snj * as well as 0xFFFFFFFF for Tx/Rx fifo length.
501 1.3.2.2 snj */
502 1.3.2.2 snj txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 1.3.2.2 snj rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 1.3.2.2 snj if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 1.3.2.2 snj rxf_len == 0xFFFFFFF) {
506 1.3.2.2 snj aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 1.3.2.2 snj "%u Rx FIFO -- not initialized?\n",
508 1.3.2.2 snj sc->ale_chip_rev, txf_len, rxf_len);
509 1.3.2.2 snj goto fail;
510 1.3.2.2 snj }
511 1.3.2.2 snj
512 1.3.2.2 snj if (aledebug) {
513 1.3.2.2 snj printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 1.3.2.2 snj txf_len, rxf_len);
515 1.3.2.2 snj }
516 1.3.2.2 snj
517 1.3.2.2 snj /* Set max allowable DMA size. */
518 1.3.2.2 snj sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 1.3.2.2 snj sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
520 1.3.2.2 snj
521 1.3.2.2 snj callout_init(&sc->sc_tick_ch, 0);
522 1.3.2.2 snj callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
523 1.3.2.2 snj
524 1.3.2.2 snj error = ale_dma_alloc(sc);
525 1.3.2.2 snj if (error)
526 1.3.2.2 snj goto fail;
527 1.3.2.2 snj
528 1.3.2.2 snj /* Load station address. */
529 1.3.2.2 snj ale_get_macaddr(sc);
530 1.3.2.2 snj
531 1.3.2.2 snj aprint_normal_dev(self, "Ethernet address %s\n",
532 1.3.2.2 snj ether_sprintf(sc->ale_eaddr));
533 1.3.2.2 snj
534 1.3.2.2 snj ifp = &sc->sc_ec.ec_if;
535 1.3.2.2 snj ifp->if_softc = sc;
536 1.3.2.2 snj ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 1.3.2.2 snj ifp->if_init = ale_init;
538 1.3.2.2 snj ifp->if_ioctl = ale_ioctl;
539 1.3.2.2 snj ifp->if_start = ale_start;
540 1.3.2.2 snj ifp->if_stop = ale_stop;
541 1.3.2.2 snj ifp->if_watchdog = ale_watchdog;
542 1.3.2.2 snj IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 1.3.2.2 snj IFQ_SET_READY(&ifp->if_snd);
544 1.3.2.2 snj strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
545 1.3.2.2 snj
546 1.3.2.2 snj sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
547 1.3.2.2 snj
548 1.3.2.2 snj #ifdef ALE_CHECKSUM
549 1.3.2.2 snj ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 1.3.2.2 snj IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 1.3.2.2 snj IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
552 1.3.2.2 snj #endif
553 1.3.2.2 snj
554 1.3.2.2 snj #if NVLAN > 0
555 1.3.2.2 snj sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 1.3.2.2 snj #endif
557 1.3.2.2 snj
558 1.3.2.2 snj /* Set up MII bus. */
559 1.3.2.2 snj sc->sc_miibus.mii_ifp = ifp;
560 1.3.2.2 snj sc->sc_miibus.mii_readreg = ale_miibus_readreg;
561 1.3.2.2 snj sc->sc_miibus.mii_writereg = ale_miibus_writereg;
562 1.3.2.2 snj sc->sc_miibus.mii_statchg = ale_miibus_statchg;
563 1.3.2.2 snj
564 1.3.2.2 snj sc->sc_ec.ec_mii = &sc->sc_miibus;
565 1.3.2.2 snj ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
566 1.3.2.2 snj ale_mediastatus);
567 1.3.2.3 snj mii_flags = 0;
568 1.3.2.3 snj if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 1.3.2.3 snj mii_flags |= MIIF_DOPAUSE;
570 1.3.2.2 snj mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
571 1.3.2.3 snj MII_OFFSET_ANY, mii_flags);
572 1.3.2.2 snj
573 1.3.2.2 snj if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
574 1.3.2.2 snj aprint_error_dev(self, "no PHY found!\n");
575 1.3.2.2 snj ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
576 1.3.2.2 snj 0, NULL);
577 1.3.2.2 snj ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
578 1.3.2.2 snj } else
579 1.3.2.2 snj ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
580 1.3.2.2 snj
581 1.3.2.2 snj if_attach(ifp);
582 1.3.2.2 snj ether_ifattach(ifp, sc->ale_eaddr);
583 1.3.2.2 snj
584 1.3.2.2 snj if (!pmf_device_register(self, NULL, NULL))
585 1.3.2.2 snj aprint_error_dev(self, "couldn't establish power handler\n");
586 1.3.2.2 snj else
587 1.3.2.2 snj pmf_class_network_register(self, ifp);
588 1.3.2.2 snj
589 1.3.2.2 snj return;
590 1.3.2.2 snj fail:
591 1.3.2.2 snj ale_dma_free(sc);
592 1.3.2.2 snj if (sc->sc_irq_handle != NULL) {
593 1.3.2.2 snj pci_intr_disestablish(pc, sc->sc_irq_handle);
594 1.3.2.2 snj sc->sc_irq_handle = NULL;
595 1.3.2.2 snj }
596 1.3.2.2 snj if (sc->sc_mem_size) {
597 1.3.2.2 snj bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
598 1.3.2.2 snj sc->sc_mem_size = 0;
599 1.3.2.2 snj }
600 1.3.2.2 snj }
601 1.3.2.2 snj
602 1.3.2.2 snj static int
603 1.3.2.2 snj ale_detach(device_t self, int flags)
604 1.3.2.2 snj {
605 1.3.2.2 snj struct ale_softc *sc = device_private(self);
606 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
607 1.3.2.2 snj int s;
608 1.3.2.2 snj
609 1.3.2.2 snj pmf_device_deregister(self);
610 1.3.2.2 snj s = splnet();
611 1.3.2.2 snj ale_stop(ifp, 0);
612 1.3.2.2 snj splx(s);
613 1.3.2.2 snj
614 1.3.2.2 snj mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
615 1.3.2.2 snj
616 1.3.2.2 snj /* Delete all remaining media. */
617 1.3.2.2 snj ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
618 1.3.2.2 snj
619 1.3.2.2 snj ether_ifdetach(ifp);
620 1.3.2.2 snj if_detach(ifp);
621 1.3.2.2 snj ale_dma_free(sc);
622 1.3.2.2 snj
623 1.3.2.2 snj if (sc->sc_irq_handle != NULL) {
624 1.3.2.2 snj pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
625 1.3.2.2 snj sc->sc_irq_handle = NULL;
626 1.3.2.2 snj }
627 1.3.2.2 snj if (sc->sc_mem_size) {
628 1.3.2.2 snj bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
629 1.3.2.2 snj sc->sc_mem_size = 0;
630 1.3.2.2 snj }
631 1.3.2.2 snj
632 1.3.2.2 snj return 0;
633 1.3.2.2 snj }
634 1.3.2.2 snj
635 1.3.2.2 snj
636 1.3.2.2 snj static int
637 1.3.2.2 snj ale_dma_alloc(struct ale_softc *sc)
638 1.3.2.2 snj {
639 1.3.2.2 snj struct ale_txdesc *txd;
640 1.3.2.2 snj int nsegs, error, guard_size, i;
641 1.3.2.2 snj
642 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
643 1.3.2.2 snj guard_size = ALE_JUMBO_FRAMELEN;
644 1.3.2.2 snj else
645 1.3.2.2 snj guard_size = ALE_MAX_FRAMELEN;
646 1.3.2.2 snj sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
647 1.3.2.2 snj ALE_RX_PAGE_ALIGN);
648 1.3.2.2 snj
649 1.3.2.2 snj /*
650 1.3.2.2 snj * Create DMA stuffs for TX ring
651 1.3.2.2 snj */
652 1.3.2.2 snj error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
653 1.3.2.2 snj ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
654 1.3.2.2 snj if (error) {
655 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map = NULL;
656 1.3.2.2 snj return ENOBUFS;
657 1.3.2.2 snj }
658 1.3.2.2 snj
659 1.3.2.2 snj /* Allocate DMA'able memory for TX ring */
660 1.3.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
661 1.3.2.2 snj 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
662 1.3.2.2 snj &nsegs, BUS_DMA_WAITOK);
663 1.3.2.2 snj if (error) {
664 1.3.2.2 snj printf("%s: could not allocate DMA'able memory for Tx ring, "
665 1.3.2.2 snj "error = %i\n", device_xname(sc->sc_dev), error);
666 1.3.2.2 snj return error;
667 1.3.2.2 snj }
668 1.3.2.2 snj
669 1.3.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
670 1.3.2.2 snj nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
671 1.3.2.2 snj BUS_DMA_NOWAIT);
672 1.3.2.2 snj if (error)
673 1.3.2.2 snj return ENOBUFS;
674 1.3.2.2 snj
675 1.3.2.2 snj memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
676 1.3.2.2 snj
677 1.3.2.2 snj /* Load the DMA map for Tx ring. */
678 1.3.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
679 1.3.2.2 snj sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 1.3.2.2 snj if (error) {
681 1.3.2.2 snj printf("%s: could not load DMA'able memory for Tx ring.\n",
682 1.3.2.2 snj device_xname(sc->sc_dev));
683 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
684 1.3.2.2 snj &sc->ale_cdata.ale_tx_ring_seg, 1);
685 1.3.2.2 snj return error;
686 1.3.2.2 snj }
687 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_paddr =
688 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
689 1.3.2.2 snj
690 1.3.2.2 snj for (i = 0; i < ALE_RX_PAGES; i++) {
691 1.3.2.2 snj /*
692 1.3.2.2 snj * Create DMA stuffs for RX pages
693 1.3.2.2 snj */
694 1.3.2.2 snj error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
695 1.3.2.2 snj sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
696 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].page_map);
697 1.3.2.2 snj if (error) {
698 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_map = NULL;
699 1.3.2.2 snj return ENOBUFS;
700 1.3.2.2 snj }
701 1.3.2.2 snj
702 1.3.2.2 snj /* Allocate DMA'able memory for RX pages */
703 1.3.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
704 1.3.2.2 snj ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
705 1.3.2.2 snj 1, &nsegs, BUS_DMA_WAITOK);
706 1.3.2.2 snj if (error) {
707 1.3.2.2 snj printf("%s: could not allocate DMA'able memory for "
708 1.3.2.2 snj "Rx ring.\n", device_xname(sc->sc_dev));
709 1.3.2.2 snj return error;
710 1.3.2.2 snj }
711 1.3.2.2 snj error = bus_dmamem_map(sc->sc_dmat,
712 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
713 1.3.2.2 snj sc->ale_pagesize,
714 1.3.2.2 snj (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
715 1.3.2.2 snj BUS_DMA_NOWAIT);
716 1.3.2.2 snj if (error)
717 1.3.2.2 snj return ENOBUFS;
718 1.3.2.2 snj
719 1.3.2.2 snj memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
720 1.3.2.2 snj sc->ale_pagesize);
721 1.3.2.2 snj
722 1.3.2.2 snj /* Load the DMA map for Rx pages. */
723 1.3.2.2 snj error = bus_dmamap_load(sc->sc_dmat,
724 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_map,
725 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_addr,
726 1.3.2.2 snj sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
727 1.3.2.2 snj if (error) {
728 1.3.2.2 snj printf("%s: could not load DMA'able memory for "
729 1.3.2.2 snj "Rx pages.\n", device_xname(sc->sc_dev));
730 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
731 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
732 1.3.2.2 snj return error;
733 1.3.2.2 snj }
734 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_paddr =
735 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
736 1.3.2.2 snj }
737 1.3.2.2 snj
738 1.3.2.2 snj /*
739 1.3.2.2 snj * Create DMA stuffs for Tx CMB.
740 1.3.2.2 snj */
741 1.3.2.2 snj error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
742 1.3.2.2 snj ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
743 1.3.2.2 snj if (error) {
744 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_map = NULL;
745 1.3.2.2 snj return ENOBUFS;
746 1.3.2.2 snj }
747 1.3.2.2 snj
748 1.3.2.2 snj /* Allocate DMA'able memory for Tx CMB. */
749 1.3.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
750 1.3.2.2 snj &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
751 1.3.2.2 snj
752 1.3.2.2 snj if (error) {
753 1.3.2.2 snj printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 1.3.2.2 snj device_xname(sc->sc_dev));
755 1.3.2.2 snj return error;
756 1.3.2.2 snj }
757 1.3.2.2 snj
758 1.3.2.2 snj error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
759 1.3.2.2 snj nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
760 1.3.2.2 snj BUS_DMA_NOWAIT);
761 1.3.2.2 snj if (error)
762 1.3.2.2 snj return ENOBUFS;
763 1.3.2.2 snj
764 1.3.2.2 snj memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
765 1.3.2.2 snj
766 1.3.2.2 snj /* Load the DMA map for Tx CMB. */
767 1.3.2.2 snj error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
768 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
769 1.3.2.2 snj if (error) {
770 1.3.2.2 snj printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 1.3.2.2 snj device_xname(sc->sc_dev));
772 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
773 1.3.2.2 snj &sc->ale_cdata.ale_tx_cmb_seg, 1);
774 1.3.2.2 snj return error;
775 1.3.2.2 snj }
776 1.3.2.2 snj
777 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_paddr =
778 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
779 1.3.2.2 snj
780 1.3.2.2 snj for (i = 0; i < ALE_RX_PAGES; i++) {
781 1.3.2.2 snj /*
782 1.3.2.2 snj * Create DMA stuffs for Rx CMB.
783 1.3.2.2 snj */
784 1.3.2.2 snj error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
785 1.3.2.2 snj ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
786 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].cmb_map);
787 1.3.2.2 snj if (error) {
788 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
789 1.3.2.2 snj return ENOBUFS;
790 1.3.2.2 snj }
791 1.3.2.2 snj
792 1.3.2.2 snj /* Allocate DMA'able memory for Rx CMB */
793 1.3.2.2 snj error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
794 1.3.2.2 snj ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
795 1.3.2.2 snj &nsegs, BUS_DMA_WAITOK);
796 1.3.2.2 snj if (error) {
797 1.3.2.2 snj printf("%s: could not allocate DMA'able memory for "
798 1.3.2.2 snj "Rx CMB\n", device_xname(sc->sc_dev));
799 1.3.2.2 snj return error;
800 1.3.2.2 snj }
801 1.3.2.2 snj error = bus_dmamem_map(sc->sc_dmat,
802 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
803 1.3.2.2 snj ALE_RX_CMB_SZ,
804 1.3.2.2 snj (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
805 1.3.2.2 snj BUS_DMA_NOWAIT);
806 1.3.2.2 snj if (error)
807 1.3.2.2 snj return ENOBUFS;
808 1.3.2.2 snj
809 1.3.2.2 snj memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
810 1.3.2.2 snj
811 1.3.2.2 snj /* Load the DMA map for Rx CMB */
812 1.3.2.2 snj error = bus_dmamap_load(sc->sc_dmat,
813 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_map,
814 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_addr,
815 1.3.2.2 snj ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
816 1.3.2.2 snj if (error) {
817 1.3.2.2 snj printf("%s: could not load DMA'able memory for Rx CMB"
818 1.3.2.2 snj "\n", device_xname(sc->sc_dev));
819 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
820 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
821 1.3.2.2 snj return error;
822 1.3.2.2 snj }
823 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_paddr =
824 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
825 1.3.2.2 snj }
826 1.3.2.2 snj
827 1.3.2.2 snj
828 1.3.2.2 snj /* Create DMA maps for Tx buffers. */
829 1.3.2.2 snj for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[i];
831 1.3.2.2 snj txd->tx_m = NULL;
832 1.3.2.2 snj txd->tx_dmamap = NULL;
833 1.3.2.2 snj error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
834 1.3.2.2 snj ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
835 1.3.2.2 snj &txd->tx_dmamap);
836 1.3.2.2 snj if (error) {
837 1.3.2.2 snj txd->tx_dmamap = NULL;
838 1.3.2.2 snj printf("%s: could not create Tx dmamap.\n",
839 1.3.2.2 snj device_xname(sc->sc_dev));
840 1.3.2.2 snj return error;
841 1.3.2.2 snj }
842 1.3.2.2 snj }
843 1.3.2.2 snj
844 1.3.2.2 snj return 0;
845 1.3.2.2 snj }
846 1.3.2.2 snj
847 1.3.2.2 snj static void
848 1.3.2.2 snj ale_dma_free(struct ale_softc *sc)
849 1.3.2.2 snj {
850 1.3.2.2 snj struct ale_txdesc *txd;
851 1.3.2.2 snj int i;
852 1.3.2.2 snj
853 1.3.2.2 snj /* Tx buffers. */
854 1.3.2.2 snj for (i = 0; i < ALE_TX_RING_CNT; i++) {
855 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[i];
856 1.3.2.2 snj if (txd->tx_dmamap != NULL) {
857 1.3.2.2 snj bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
858 1.3.2.2 snj txd->tx_dmamap = NULL;
859 1.3.2.2 snj }
860 1.3.2.2 snj }
861 1.3.2.2 snj
862 1.3.2.2 snj /* Tx descriptor ring. */
863 1.3.2.2 snj if (sc->ale_cdata.ale_tx_ring_map != NULL)
864 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
865 1.3.2.2 snj if (sc->ale_cdata.ale_tx_ring_map != NULL &&
866 1.3.2.2 snj sc->ale_cdata.ale_tx_ring != NULL)
867 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
868 1.3.2.2 snj &sc->ale_cdata.ale_tx_ring_seg, 1);
869 1.3.2.2 snj sc->ale_cdata.ale_tx_ring = NULL;
870 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map = NULL;
871 1.3.2.2 snj
872 1.3.2.2 snj /* Rx page block. */
873 1.3.2.2 snj for (i = 0; i < ALE_RX_PAGES; i++) {
874 1.3.2.2 snj if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
875 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat,
876 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_map);
877 1.3.2.2 snj if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
878 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
879 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
880 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
881 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
882 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].page_map = NULL;
883 1.3.2.2 snj }
884 1.3.2.2 snj
885 1.3.2.2 snj /* Rx CMB. */
886 1.3.2.2 snj for (i = 0; i < ALE_RX_PAGES; i++) {
887 1.3.2.2 snj if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
888 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat,
889 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_map);
890 1.3.2.2 snj if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
891 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
892 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
893 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
894 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
895 1.3.2.2 snj sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
896 1.3.2.2 snj }
897 1.3.2.2 snj
898 1.3.2.2 snj /* Tx CMB. */
899 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cmb_map != NULL)
900 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
901 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
902 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb != NULL)
903 1.3.2.2 snj bus_dmamem_free(sc->sc_dmat,
904 1.3.2.2 snj &sc->ale_cdata.ale_tx_cmb_seg, 1);
905 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb = NULL;
906 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_map = NULL;
907 1.3.2.2 snj
908 1.3.2.2 snj }
909 1.3.2.2 snj
910 1.3.2.2 snj static int
911 1.3.2.2 snj ale_encap(struct ale_softc *sc, struct mbuf **m_head)
912 1.3.2.2 snj {
913 1.3.2.2 snj struct ale_txdesc *txd, *txd_last;
914 1.3.2.2 snj struct tx_desc *desc;
915 1.3.2.2 snj struct mbuf *m;
916 1.3.2.2 snj bus_dmamap_t map;
917 1.3.2.2 snj uint32_t cflags, poff, vtag;
918 1.3.2.2 snj int error, i, nsegs, prod;
919 1.3.2.2 snj #if NVLAN > 0
920 1.3.2.2 snj struct m_tag *mtag;
921 1.3.2.2 snj #endif
922 1.3.2.2 snj
923 1.3.2.2 snj m = *m_head;
924 1.3.2.2 snj cflags = vtag = 0;
925 1.3.2.2 snj poff = 0;
926 1.3.2.2 snj
927 1.3.2.2 snj prod = sc->ale_cdata.ale_tx_prod;
928 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[prod];
929 1.3.2.2 snj txd_last = txd;
930 1.3.2.2 snj map = txd->tx_dmamap;
931 1.3.2.2 snj
932 1.3.2.2 snj error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
933 1.3.2.2 snj if (error == EFBIG) {
934 1.3.2.2 snj error = 0;
935 1.3.2.2 snj
936 1.3.2.2 snj MGETHDR(m, M_DONTWAIT, MT_DATA);
937 1.3.2.2 snj if (m == NULL) {
938 1.3.2.2 snj printf("%s: can't defrag TX mbuf\n",
939 1.3.2.2 snj device_xname(sc->sc_dev));
940 1.3.2.2 snj m_freem(*m_head);
941 1.3.2.2 snj *m_head = NULL;
942 1.3.2.2 snj return ENOBUFS;
943 1.3.2.2 snj }
944 1.3.2.2 snj
945 1.3.2.2 snj M_COPY_PKTHDR(m, *m_head);
946 1.3.2.2 snj if ((*m_head)->m_pkthdr.len > MHLEN) {
947 1.3.2.2 snj MCLGET(m, M_DONTWAIT);
948 1.3.2.2 snj if (!(m->m_flags & M_EXT)) {
949 1.3.2.2 snj m_freem(*m_head);
950 1.3.2.2 snj m_freem(m);
951 1.3.2.2 snj *m_head = NULL;
952 1.3.2.2 snj return ENOBUFS;
953 1.3.2.2 snj }
954 1.3.2.2 snj }
955 1.3.2.2 snj m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
956 1.3.2.2 snj mtod(m, void *));
957 1.3.2.2 snj m_freem(*m_head);
958 1.3.2.2 snj m->m_len = m->m_pkthdr.len;
959 1.3.2.2 snj *m_head = m;
960 1.3.2.2 snj
961 1.3.2.2 snj error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
962 1.3.2.2 snj BUS_DMA_NOWAIT);
963 1.3.2.2 snj
964 1.3.2.2 snj if (error != 0) {
965 1.3.2.2 snj printf("%s: could not load defragged TX mbuf\n",
966 1.3.2.2 snj device_xname(sc->sc_dev));
967 1.3.2.2 snj if (!error) {
968 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, map);
969 1.3.2.2 snj error = EFBIG;
970 1.3.2.2 snj }
971 1.3.2.2 snj m_freem(*m_head);
972 1.3.2.2 snj *m_head = NULL;
973 1.3.2.2 snj return error;
974 1.3.2.2 snj }
975 1.3.2.2 snj } else if (error) {
976 1.3.2.2 snj printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
977 1.3.2.2 snj return error;
978 1.3.2.2 snj }
979 1.3.2.2 snj
980 1.3.2.2 snj nsegs = map->dm_nsegs;
981 1.3.2.2 snj
982 1.3.2.2 snj if (nsegs == 0) {
983 1.3.2.2 snj m_freem(*m_head);
984 1.3.2.2 snj *m_head = NULL;
985 1.3.2.2 snj return EIO;
986 1.3.2.2 snj }
987 1.3.2.2 snj
988 1.3.2.2 snj /* Check descriptor overrun. */
989 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
990 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, map);
991 1.3.2.2 snj return ENOBUFS;
992 1.3.2.2 snj }
993 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
994 1.3.2.2 snj BUS_DMASYNC_PREWRITE);
995 1.3.2.2 snj
996 1.3.2.2 snj m = *m_head;
997 1.3.2.2 snj /* Configure Tx checksum offload. */
998 1.3.2.2 snj if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
999 1.3.2.2 snj /*
1000 1.3.2.2 snj * AR81xx supports Tx custom checksum offload feature
1001 1.3.2.2 snj * that offloads single 16bit checksum computation.
1002 1.3.2.2 snj * So you can choose one among IP, TCP and UDP.
1003 1.3.2.2 snj * Normally driver sets checksum start/insertion
1004 1.3.2.2 snj * position from the information of TCP/UDP frame as
1005 1.3.2.2 snj * TCP/UDP checksum takes more time than that of IP.
1006 1.3.2.2 snj * However it seems that custom checksum offload
1007 1.3.2.2 snj * requires 4 bytes aligned Tx buffers due to hardware
1008 1.3.2.2 snj * bug.
1009 1.3.2.2 snj * AR81xx also supports explicit Tx checksum computation
1010 1.3.2.2 snj * if it is told that the size of IP header and TCP
1011 1.3.2.2 snj * header(for UDP, the header size does not matter
1012 1.3.2.2 snj * because it's fixed length). However with this scheme
1013 1.3.2.2 snj * TSO does not work so you have to choose one either
1014 1.3.2.2 snj * TSO or explicit Tx checksum offload. I chosen TSO
1015 1.3.2.2 snj * plus custom checksum offload with work-around which
1016 1.3.2.2 snj * will cover most common usage for this consumer
1017 1.3.2.2 snj * ethernet controller. The work-around takes a lot of
1018 1.3.2.2 snj * CPU cycles if Tx buffer is not aligned on 4 bytes
1019 1.3.2.2 snj * boundary, though.
1020 1.3.2.2 snj */
1021 1.3.2.2 snj cflags |= ALE_TD_CXSUM;
1022 1.3.2.2 snj /* Set checksum start offset. */
1023 1.3.2.2 snj cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1024 1.3.2.2 snj }
1025 1.3.2.2 snj
1026 1.3.2.2 snj #if NVLAN > 0
1027 1.3.2.2 snj /* Configure VLAN hardware tag insertion. */
1028 1.3.2.2 snj if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1029 1.3.2.2 snj vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1030 1.3.2.2 snj vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1031 1.3.2.2 snj cflags |= ALE_TD_INSERT_VLAN_TAG;
1032 1.3.2.2 snj }
1033 1.3.2.2 snj #endif
1034 1.3.2.2 snj
1035 1.3.2.2 snj desc = NULL;
1036 1.3.2.2 snj for (i = 0; i < nsegs; i++) {
1037 1.3.2.2 snj desc = &sc->ale_cdata.ale_tx_ring[prod];
1038 1.3.2.2 snj desc->addr = htole64(map->dm_segs[i].ds_addr);
1039 1.3.2.2 snj desc->len =
1040 1.3.2.2 snj htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1041 1.3.2.2 snj desc->flags = htole32(cflags);
1042 1.3.2.2 snj sc->ale_cdata.ale_tx_cnt++;
1043 1.3.2.2 snj ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1044 1.3.2.2 snj }
1045 1.3.2.2 snj /* Update producer index. */
1046 1.3.2.2 snj sc->ale_cdata.ale_tx_prod = prod;
1047 1.3.2.2 snj
1048 1.3.2.2 snj /* Finally set EOP on the last descriptor. */
1049 1.3.2.2 snj prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1050 1.3.2.2 snj desc = &sc->ale_cdata.ale_tx_ring[prod];
1051 1.3.2.2 snj desc->flags |= htole32(ALE_TD_EOP);
1052 1.3.2.2 snj
1053 1.3.2.2 snj /* Swap dmamap of the first and the last. */
1054 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[prod];
1055 1.3.2.2 snj map = txd_last->tx_dmamap;
1056 1.3.2.2 snj txd_last->tx_dmamap = txd->tx_dmamap;
1057 1.3.2.2 snj txd->tx_dmamap = map;
1058 1.3.2.2 snj txd->tx_m = m;
1059 1.3.2.2 snj
1060 1.3.2.2 snj /* Sync descriptors. */
1061 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1062 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1063 1.3.2.2 snj
1064 1.3.2.2 snj return 0;
1065 1.3.2.2 snj }
1066 1.3.2.2 snj
1067 1.3.2.2 snj static void
1068 1.3.2.2 snj ale_start(struct ifnet *ifp)
1069 1.3.2.2 snj {
1070 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
1071 1.3.2.2 snj struct mbuf *m_head;
1072 1.3.2.2 snj int enq;
1073 1.3.2.2 snj
1074 1.3.2.2 snj if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1075 1.3.2.2 snj return;
1076 1.3.2.2 snj
1077 1.3.2.2 snj /* Reclaim transmitted frames. */
1078 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1079 1.3.2.2 snj ale_txeof(sc);
1080 1.3.2.2 snj
1081 1.3.2.2 snj enq = 0;
1082 1.3.2.2 snj for (;;) {
1083 1.3.2.2 snj IFQ_DEQUEUE(&ifp->if_snd, m_head);
1084 1.3.2.2 snj if (m_head == NULL)
1085 1.3.2.2 snj break;
1086 1.3.2.2 snj
1087 1.3.2.2 snj /*
1088 1.3.2.2 snj * Pack the data into the transmit ring. If we
1089 1.3.2.2 snj * don't have room, set the OACTIVE flag and wait
1090 1.3.2.2 snj * for the NIC to drain the ring.
1091 1.3.2.2 snj */
1092 1.3.2.2 snj if (ale_encap(sc, &m_head)) {
1093 1.3.2.2 snj if (m_head == NULL)
1094 1.3.2.2 snj break;
1095 1.3.2.2 snj ifp->if_flags |= IFF_OACTIVE;
1096 1.3.2.2 snj break;
1097 1.3.2.2 snj }
1098 1.3.2.2 snj enq = 1;
1099 1.3.2.2 snj
1100 1.3.2.2 snj #if NBPFILTER > 0
1101 1.3.2.2 snj /*
1102 1.3.2.2 snj * If there's a BPF listener, bounce a copy of this frame
1103 1.3.2.2 snj * to him.
1104 1.3.2.2 snj */
1105 1.3.2.2 snj if (ifp->if_bpf != NULL)
1106 1.3.2.2 snj bpf_mtap(ifp->if_bpf, m_head);
1107 1.3.2.2 snj #endif
1108 1.3.2.2 snj }
1109 1.3.2.2 snj
1110 1.3.2.2 snj if (enq) {
1111 1.3.2.2 snj /* Kick. */
1112 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1113 1.3.2.2 snj sc->ale_cdata.ale_tx_prod);
1114 1.3.2.2 snj
1115 1.3.2.2 snj /* Set a timeout in case the chip goes out to lunch. */
1116 1.3.2.2 snj ifp->if_timer = ALE_TX_TIMEOUT;
1117 1.3.2.2 snj }
1118 1.3.2.2 snj }
1119 1.3.2.2 snj
1120 1.3.2.2 snj static void
1121 1.3.2.2 snj ale_watchdog(struct ifnet *ifp)
1122 1.3.2.2 snj {
1123 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
1124 1.3.2.2 snj
1125 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1126 1.3.2.2 snj printf("%s: watchdog timeout (missed link)\n",
1127 1.3.2.2 snj device_xname(sc->sc_dev));
1128 1.3.2.2 snj ifp->if_oerrors++;
1129 1.3.2.2 snj ale_init(ifp);
1130 1.3.2.2 snj return;
1131 1.3.2.2 snj }
1132 1.3.2.2 snj
1133 1.3.2.2 snj printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1134 1.3.2.2 snj ifp->if_oerrors++;
1135 1.3.2.2 snj ale_init(ifp);
1136 1.3.2.2 snj
1137 1.3.2.2 snj if (!IFQ_IS_EMPTY(&ifp->if_snd))
1138 1.3.2.2 snj ale_start(ifp);
1139 1.3.2.2 snj }
1140 1.3.2.2 snj
1141 1.3.2.2 snj static int
1142 1.3.2.2 snj ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1143 1.3.2.2 snj {
1144 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
1145 1.3.2.2 snj int s, error;
1146 1.3.2.2 snj
1147 1.3.2.2 snj s = splnet();
1148 1.3.2.2 snj
1149 1.3.2.2 snj error = ether_ioctl(ifp, cmd, data);
1150 1.3.2.2 snj if (error == ENETRESET) {
1151 1.3.2.2 snj if (ifp->if_flags & IFF_RUNNING)
1152 1.3.2.2 snj ale_rxfilter(sc);
1153 1.3.2.2 snj error = 0;
1154 1.3.2.2 snj }
1155 1.3.2.2 snj
1156 1.3.2.2 snj splx(s);
1157 1.3.2.2 snj return error;
1158 1.3.2.2 snj }
1159 1.3.2.2 snj
1160 1.3.2.2 snj static void
1161 1.3.2.2 snj ale_mac_config(struct ale_softc *sc)
1162 1.3.2.2 snj {
1163 1.3.2.2 snj struct mii_data *mii;
1164 1.3.2.2 snj uint32_t reg;
1165 1.3.2.2 snj
1166 1.3.2.2 snj mii = &sc->sc_miibus;
1167 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_MAC_CFG);
1168 1.3.2.2 snj reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1169 1.3.2.2 snj MAC_CFG_SPEED_MASK);
1170 1.3.2.2 snj
1171 1.3.2.2 snj /* Reprogram MAC with resolved speed/duplex. */
1172 1.3.2.2 snj switch (IFM_SUBTYPE(mii->mii_media_active)) {
1173 1.3.2.2 snj case IFM_10_T:
1174 1.3.2.2 snj case IFM_100_TX:
1175 1.3.2.2 snj reg |= MAC_CFG_SPEED_10_100;
1176 1.3.2.2 snj break;
1177 1.3.2.2 snj case IFM_1000_T:
1178 1.3.2.2 snj reg |= MAC_CFG_SPEED_1000;
1179 1.3.2.2 snj break;
1180 1.3.2.2 snj }
1181 1.3.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1182 1.3.2.2 snj reg |= MAC_CFG_FULL_DUPLEX;
1183 1.3.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1184 1.3.2.2 snj reg |= MAC_CFG_TX_FC;
1185 1.3.2.2 snj if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1186 1.3.2.2 snj reg |= MAC_CFG_RX_FC;
1187 1.3.2.2 snj }
1188 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1189 1.3.2.2 snj }
1190 1.3.2.2 snj
1191 1.3.2.2 snj static void
1192 1.3.2.2 snj ale_stats_clear(struct ale_softc *sc)
1193 1.3.2.2 snj {
1194 1.3.2.2 snj struct smb sb;
1195 1.3.2.2 snj uint32_t *reg;
1196 1.3.2.2 snj int i;
1197 1.3.2.2 snj
1198 1.3.2.2 snj for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1199 1.3.2.2 snj CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1200 1.3.2.2 snj i += sizeof(uint32_t);
1201 1.3.2.2 snj }
1202 1.3.2.2 snj /* Read Tx statistics. */
1203 1.3.2.2 snj for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1204 1.3.2.2 snj CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1205 1.3.2.2 snj i += sizeof(uint32_t);
1206 1.3.2.2 snj }
1207 1.3.2.2 snj }
1208 1.3.2.2 snj
1209 1.3.2.2 snj static void
1210 1.3.2.2 snj ale_stats_update(struct ale_softc *sc)
1211 1.3.2.2 snj {
1212 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1213 1.3.2.2 snj struct ale_hw_stats *stat;
1214 1.3.2.2 snj struct smb sb, *smb;
1215 1.3.2.2 snj uint32_t *reg;
1216 1.3.2.2 snj int i;
1217 1.3.2.2 snj
1218 1.3.2.2 snj stat = &sc->ale_stats;
1219 1.3.2.2 snj smb = &sb;
1220 1.3.2.2 snj
1221 1.3.2.2 snj /* Read Rx statistics. */
1222 1.3.2.2 snj for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1223 1.3.2.2 snj *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1224 1.3.2.2 snj i += sizeof(uint32_t);
1225 1.3.2.2 snj }
1226 1.3.2.2 snj /* Read Tx statistics. */
1227 1.3.2.2 snj for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1228 1.3.2.2 snj *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1229 1.3.2.2 snj i += sizeof(uint32_t);
1230 1.3.2.2 snj }
1231 1.3.2.2 snj
1232 1.3.2.2 snj /* Rx stats. */
1233 1.3.2.2 snj stat->rx_frames += smb->rx_frames;
1234 1.3.2.2 snj stat->rx_bcast_frames += smb->rx_bcast_frames;
1235 1.3.2.2 snj stat->rx_mcast_frames += smb->rx_mcast_frames;
1236 1.3.2.2 snj stat->rx_pause_frames += smb->rx_pause_frames;
1237 1.3.2.2 snj stat->rx_control_frames += smb->rx_control_frames;
1238 1.3.2.2 snj stat->rx_crcerrs += smb->rx_crcerrs;
1239 1.3.2.2 snj stat->rx_lenerrs += smb->rx_lenerrs;
1240 1.3.2.2 snj stat->rx_bytes += smb->rx_bytes;
1241 1.3.2.2 snj stat->rx_runts += smb->rx_runts;
1242 1.3.2.2 snj stat->rx_fragments += smb->rx_fragments;
1243 1.3.2.2 snj stat->rx_pkts_64 += smb->rx_pkts_64;
1244 1.3.2.2 snj stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1245 1.3.2.2 snj stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1246 1.3.2.2 snj stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1247 1.3.2.2 snj stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1248 1.3.2.2 snj stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1249 1.3.2.2 snj stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1250 1.3.2.2 snj stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1251 1.3.2.2 snj stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1252 1.3.2.2 snj stat->rx_rrs_errs += smb->rx_rrs_errs;
1253 1.3.2.2 snj stat->rx_alignerrs += smb->rx_alignerrs;
1254 1.3.2.2 snj stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1255 1.3.2.2 snj stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1256 1.3.2.2 snj stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1257 1.3.2.2 snj
1258 1.3.2.2 snj /* Tx stats. */
1259 1.3.2.2 snj stat->tx_frames += smb->tx_frames;
1260 1.3.2.2 snj stat->tx_bcast_frames += smb->tx_bcast_frames;
1261 1.3.2.2 snj stat->tx_mcast_frames += smb->tx_mcast_frames;
1262 1.3.2.2 snj stat->tx_pause_frames += smb->tx_pause_frames;
1263 1.3.2.2 snj stat->tx_excess_defer += smb->tx_excess_defer;
1264 1.3.2.2 snj stat->tx_control_frames += smb->tx_control_frames;
1265 1.3.2.2 snj stat->tx_deferred += smb->tx_deferred;
1266 1.3.2.2 snj stat->tx_bytes += smb->tx_bytes;
1267 1.3.2.2 snj stat->tx_pkts_64 += smb->tx_pkts_64;
1268 1.3.2.2 snj stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1269 1.3.2.2 snj stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1270 1.3.2.2 snj stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1271 1.3.2.2 snj stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1272 1.3.2.2 snj stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1273 1.3.2.2 snj stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1274 1.3.2.2 snj stat->tx_single_colls += smb->tx_single_colls;
1275 1.3.2.2 snj stat->tx_multi_colls += smb->tx_multi_colls;
1276 1.3.2.2 snj stat->tx_late_colls += smb->tx_late_colls;
1277 1.3.2.2 snj stat->tx_excess_colls += smb->tx_excess_colls;
1278 1.3.2.2 snj stat->tx_abort += smb->tx_abort;
1279 1.3.2.2 snj stat->tx_underrun += smb->tx_underrun;
1280 1.3.2.2 snj stat->tx_desc_underrun += smb->tx_desc_underrun;
1281 1.3.2.2 snj stat->tx_lenerrs += smb->tx_lenerrs;
1282 1.3.2.2 snj stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1283 1.3.2.2 snj stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1284 1.3.2.2 snj stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1285 1.3.2.2 snj
1286 1.3.2.2 snj /* Update counters in ifnet. */
1287 1.3.2.2 snj ifp->if_opackets += smb->tx_frames;
1288 1.3.2.2 snj
1289 1.3.2.2 snj ifp->if_collisions += smb->tx_single_colls +
1290 1.3.2.2 snj smb->tx_multi_colls * 2 + smb->tx_late_colls +
1291 1.3.2.2 snj smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1292 1.3.2.2 snj
1293 1.3.2.2 snj /*
1294 1.3.2.2 snj * XXX
1295 1.3.2.2 snj * tx_pkts_truncated counter looks suspicious. It constantly
1296 1.3.2.2 snj * increments with no sign of Tx errors. This may indicate
1297 1.3.2.2 snj * the counter name is not correct one so I've removed the
1298 1.3.2.2 snj * counter in output errors.
1299 1.3.2.2 snj */
1300 1.3.2.2 snj ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1301 1.3.2.2 snj smb->tx_underrun;
1302 1.3.2.2 snj
1303 1.3.2.2 snj ifp->if_ipackets += smb->rx_frames;
1304 1.3.2.2 snj
1305 1.3.2.2 snj ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1306 1.3.2.2 snj smb->rx_runts + smb->rx_pkts_truncated +
1307 1.3.2.2 snj smb->rx_fifo_oflows + smb->rx_rrs_errs +
1308 1.3.2.2 snj smb->rx_alignerrs;
1309 1.3.2.2 snj }
1310 1.3.2.2 snj
1311 1.3.2.2 snj static int
1312 1.3.2.2 snj ale_intr(void *xsc)
1313 1.3.2.2 snj {
1314 1.3.2.2 snj struct ale_softc *sc = xsc;
1315 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1316 1.3.2.2 snj uint32_t status;
1317 1.3.2.2 snj
1318 1.3.2.2 snj status = CSR_READ_4(sc, ALE_INTR_STATUS);
1319 1.3.2.2 snj if ((status & ALE_INTRS) == 0)
1320 1.3.2.2 snj return 0;
1321 1.3.2.2 snj
1322 1.3.2.2 snj /* Acknowledge and disable interrupts. */
1323 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1324 1.3.2.2 snj
1325 1.3.2.2 snj if (ifp->if_flags & IFF_RUNNING) {
1326 1.3.2.2 snj int error;
1327 1.3.2.2 snj
1328 1.3.2.2 snj error = ale_rxeof(sc);
1329 1.3.2.2 snj if (error) {
1330 1.3.2.2 snj sc->ale_stats.reset_brk_seq++;
1331 1.3.2.2 snj ale_init(ifp);
1332 1.3.2.2 snj return 0;
1333 1.3.2.2 snj }
1334 1.3.2.2 snj
1335 1.3.2.2 snj if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1336 1.3.2.2 snj if (status & INTR_DMA_RD_TO_RST)
1337 1.3.2.2 snj printf("%s: DMA read error! -- resetting\n",
1338 1.3.2.2 snj device_xname(sc->sc_dev));
1339 1.3.2.2 snj if (status & INTR_DMA_WR_TO_RST)
1340 1.3.2.2 snj printf("%s: DMA write error! -- resetting\n",
1341 1.3.2.2 snj device_xname(sc->sc_dev));
1342 1.3.2.2 snj ale_init(ifp);
1343 1.3.2.2 snj return 0;
1344 1.3.2.2 snj }
1345 1.3.2.2 snj
1346 1.3.2.2 snj ale_txeof(sc);
1347 1.3.2.2 snj if (!IFQ_IS_EMPTY(&ifp->if_snd))
1348 1.3.2.2 snj ale_start(ifp);
1349 1.3.2.2 snj }
1350 1.3.2.2 snj
1351 1.3.2.2 snj /* Re-enable interrupts. */
1352 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1353 1.3.2.2 snj return 1;
1354 1.3.2.2 snj }
1355 1.3.2.2 snj
1356 1.3.2.2 snj static void
1357 1.3.2.2 snj ale_txeof(struct ale_softc *sc)
1358 1.3.2.2 snj {
1359 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1360 1.3.2.2 snj struct ale_txdesc *txd;
1361 1.3.2.2 snj uint32_t cons, prod;
1362 1.3.2.2 snj int prog;
1363 1.3.2.2 snj
1364 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cnt == 0)
1365 1.3.2.2 snj return;
1366 1.3.2.2 snj
1367 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1368 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1369 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1370 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1371 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1372 1.3.2.2 snj BUS_DMASYNC_POSTREAD);
1373 1.3.2.2 snj prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1374 1.3.2.2 snj } else
1375 1.3.2.2 snj prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1376 1.3.2.2 snj cons = sc->ale_cdata.ale_tx_cons;
1377 1.3.2.2 snj /*
1378 1.3.2.2 snj * Go through our Tx list and free mbufs for those
1379 1.3.2.2 snj * frames which have been transmitted.
1380 1.3.2.2 snj */
1381 1.3.2.2 snj for (prog = 0; cons != prod; prog++,
1382 1.3.2.2 snj ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1383 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cnt <= 0)
1384 1.3.2.2 snj break;
1385 1.3.2.2 snj prog++;
1386 1.3.2.2 snj ifp->if_flags &= ~IFF_OACTIVE;
1387 1.3.2.2 snj sc->ale_cdata.ale_tx_cnt--;
1388 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[cons];
1389 1.3.2.2 snj if (txd->tx_m != NULL) {
1390 1.3.2.2 snj /* Reclaim transmitted mbufs. */
1391 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1392 1.3.2.2 snj m_freem(txd->tx_m);
1393 1.3.2.2 snj txd->tx_m = NULL;
1394 1.3.2.2 snj }
1395 1.3.2.2 snj }
1396 1.3.2.2 snj
1397 1.3.2.2 snj if (prog > 0) {
1398 1.3.2.2 snj sc->ale_cdata.ale_tx_cons = cons;
1399 1.3.2.2 snj /*
1400 1.3.2.2 snj * Unarm watchdog timer only when there is no pending
1401 1.3.2.2 snj * Tx descriptors in queue.
1402 1.3.2.2 snj */
1403 1.3.2.2 snj if (sc->ale_cdata.ale_tx_cnt == 0)
1404 1.3.2.2 snj ifp->if_timer = 0;
1405 1.3.2.2 snj }
1406 1.3.2.2 snj }
1407 1.3.2.2 snj
1408 1.3.2.2 snj static void
1409 1.3.2.2 snj ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1410 1.3.2.2 snj uint32_t length, uint32_t *prod)
1411 1.3.2.2 snj {
1412 1.3.2.2 snj struct ale_rx_page *rx_page;
1413 1.3.2.2 snj
1414 1.3.2.2 snj rx_page = *page;
1415 1.3.2.2 snj /* Update consumer position. */
1416 1.3.2.2 snj rx_page->cons += roundup(length + sizeof(struct rx_rs),
1417 1.3.2.2 snj ALE_RX_PAGE_ALIGN);
1418 1.3.2.2 snj if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1419 1.3.2.2 snj /*
1420 1.3.2.2 snj * End of Rx page reached, let hardware reuse
1421 1.3.2.2 snj * this page.
1422 1.3.2.2 snj */
1423 1.3.2.2 snj rx_page->cons = 0;
1424 1.3.2.2 snj *rx_page->cmb_addr = 0;
1425 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1426 1.3.2.2 snj rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1427 1.3.2.2 snj CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1428 1.3.2.2 snj RXF_VALID);
1429 1.3.2.2 snj /* Switch to alternate Rx page. */
1430 1.3.2.2 snj sc->ale_cdata.ale_rx_curp ^= 1;
1431 1.3.2.2 snj rx_page = *page =
1432 1.3.2.2 snj &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1433 1.3.2.2 snj /* Page flipped, sync CMB and Rx page. */
1434 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1435 1.3.2.2 snj rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1436 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1437 1.3.2.2 snj rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1438 1.3.2.2 snj /* Sync completed, cache updated producer index. */
1439 1.3.2.2 snj *prod = *rx_page->cmb_addr;
1440 1.3.2.2 snj }
1441 1.3.2.2 snj }
1442 1.3.2.2 snj
1443 1.3.2.2 snj
1444 1.3.2.2 snj /*
1445 1.3.2.2 snj * It seems that AR81xx controller can compute partial checksum.
1446 1.3.2.2 snj * The partial checksum value can be used to accelerate checksum
1447 1.3.2.2 snj * computation for fragmented TCP/UDP packets. Upper network stack
1448 1.3.2.2 snj * already takes advantage of the partial checksum value in IP
1449 1.3.2.2 snj * reassembly stage. But I'm not sure the correctness of the
1450 1.3.2.2 snj * partial hardware checksum assistance due to lack of data sheet.
1451 1.3.2.2 snj * In addition, the Rx feature of controller that requires copying
1452 1.3.2.2 snj * for every frames effectively nullifies one of most nice offload
1453 1.3.2.2 snj * capability of controller.
1454 1.3.2.2 snj */
1455 1.3.2.2 snj static void
1456 1.3.2.2 snj ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1457 1.3.2.2 snj {
1458 1.3.2.2 snj if (status & ALE_RD_IPCSUM_NOK)
1459 1.3.2.2 snj m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1460 1.3.2.2 snj
1461 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1462 1.3.2.2 snj if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1463 1.3.2.2 snj ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1464 1.3.2.2 snj (status & ALE_RD_TCP_UDPCSUM_NOK))
1465 1.3.2.2 snj {
1466 1.3.2.2 snj m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1467 1.3.2.2 snj }
1468 1.3.2.2 snj } else {
1469 1.3.2.2 snj if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1470 1.3.2.2 snj if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1471 1.3.2.2 snj m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1472 1.3.2.2 snj }
1473 1.3.2.2 snj }
1474 1.3.2.2 snj }
1475 1.3.2.2 snj /*
1476 1.3.2.2 snj * Don't mark bad checksum for TCP/UDP frames
1477 1.3.2.2 snj * as fragmented frames may always have set
1478 1.3.2.2 snj * bad checksummed bit of frame status.
1479 1.3.2.2 snj */
1480 1.3.2.2 snj }
1481 1.3.2.2 snj
1482 1.3.2.2 snj /* Process received frames. */
1483 1.3.2.2 snj static int
1484 1.3.2.2 snj ale_rxeof(struct ale_softc *sc)
1485 1.3.2.2 snj {
1486 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
1487 1.3.2.2 snj struct ale_rx_page *rx_page;
1488 1.3.2.2 snj struct rx_rs *rs;
1489 1.3.2.2 snj struct mbuf *m;
1490 1.3.2.2 snj uint32_t length, prod, seqno, status;
1491 1.3.2.2 snj int prog;
1492 1.3.2.2 snj
1493 1.3.2.2 snj rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1494 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1495 1.3.2.2 snj rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1496 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1497 1.3.2.2 snj rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1498 1.3.2.2 snj /*
1499 1.3.2.2 snj * Don't directly access producer index as hardware may
1500 1.3.2.2 snj * update it while Rx handler is in progress. It would
1501 1.3.2.2 snj * be even better if there is a way to let hardware
1502 1.3.2.2 snj * know how far driver processed its received frames.
1503 1.3.2.2 snj * Alternatively, hardware could provide a way to disable
1504 1.3.2.2 snj * CMB updates until driver acknowledges the end of CMB
1505 1.3.2.2 snj * access.
1506 1.3.2.2 snj */
1507 1.3.2.2 snj prod = *rx_page->cmb_addr;
1508 1.3.2.2 snj for (prog = 0; ; prog++) {
1509 1.3.2.2 snj if (rx_page->cons >= prod)
1510 1.3.2.2 snj break;
1511 1.3.2.2 snj rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1512 1.3.2.2 snj seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1513 1.3.2.2 snj if (sc->ale_cdata.ale_rx_seqno != seqno) {
1514 1.3.2.2 snj /*
1515 1.3.2.2 snj * Normally I believe this should not happen unless
1516 1.3.2.2 snj * severe driver bug or corrupted memory. However
1517 1.3.2.2 snj * it seems to happen under certain conditions which
1518 1.3.2.2 snj * is triggered by abrupt Rx events such as initiation
1519 1.3.2.2 snj * of bulk transfer of remote host. It's not easy to
1520 1.3.2.2 snj * reproduce this and I doubt it could be related
1521 1.3.2.2 snj * with FIFO overflow of hardware or activity of Tx
1522 1.3.2.2 snj * CMB updates. I also remember similar behaviour
1523 1.3.2.2 snj * seen on RealTek 8139 which uses resembling Rx
1524 1.3.2.2 snj * scheme.
1525 1.3.2.2 snj */
1526 1.3.2.2 snj if (aledebug)
1527 1.3.2.2 snj printf("%s: garbled seq: %u, expected: %u -- "
1528 1.3.2.2 snj "resetting!\n", device_xname(sc->sc_dev),
1529 1.3.2.2 snj seqno, sc->ale_cdata.ale_rx_seqno);
1530 1.3.2.2 snj return EIO;
1531 1.3.2.2 snj }
1532 1.3.2.2 snj /* Frame received. */
1533 1.3.2.2 snj sc->ale_cdata.ale_rx_seqno++;
1534 1.3.2.2 snj length = ALE_RX_BYTES(le32toh(rs->length));
1535 1.3.2.2 snj status = le32toh(rs->flags);
1536 1.3.2.2 snj if (status & ALE_RD_ERROR) {
1537 1.3.2.2 snj /*
1538 1.3.2.2 snj * We want to pass the following frames to upper
1539 1.3.2.2 snj * layer regardless of error status of Rx return
1540 1.3.2.2 snj * status.
1541 1.3.2.2 snj *
1542 1.3.2.2 snj * o IP/TCP/UDP checksum is bad.
1543 1.3.2.2 snj * o frame length and protocol specific length
1544 1.3.2.2 snj * does not match.
1545 1.3.2.2 snj */
1546 1.3.2.2 snj if (status & (ALE_RD_CRC | ALE_RD_CODE |
1547 1.3.2.2 snj ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1548 1.3.2.2 snj ALE_RD_TRUNC)) {
1549 1.3.2.2 snj ale_rx_update_page(sc, &rx_page, length, &prod);
1550 1.3.2.2 snj continue;
1551 1.3.2.2 snj }
1552 1.3.2.2 snj }
1553 1.3.2.2 snj /*
1554 1.3.2.2 snj * m_devget(9) is major bottle-neck of ale(4)(It comes
1555 1.3.2.2 snj * from hardware limitation). For jumbo frames we could
1556 1.3.2.2 snj * get a slightly better performance if driver use
1557 1.3.2.2 snj * m_getjcl(9) with proper buffer size argument. However
1558 1.3.2.2 snj * that would make code more complicated and I don't
1559 1.3.2.2 snj * think users would expect good Rx performance numbers
1560 1.3.2.2 snj * on these low-end consumer ethernet controller.
1561 1.3.2.2 snj */
1562 1.3.2.2 snj m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1563 1.3.2.2 snj 0, ifp, NULL);
1564 1.3.2.2 snj if (m == NULL) {
1565 1.3.2.2 snj ifp->if_iqdrops++;
1566 1.3.2.2 snj ale_rx_update_page(sc, &rx_page, length, &prod);
1567 1.3.2.2 snj continue;
1568 1.3.2.2 snj }
1569 1.3.2.2 snj if (status & ALE_RD_IPV4)
1570 1.3.2.2 snj ale_rxcsum(sc, m, status);
1571 1.3.2.2 snj #if NVLAN > 0
1572 1.3.2.2 snj if (status & ALE_RD_VLAN) {
1573 1.3.2.2 snj uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1574 1.3.2.2 snj VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1575 1.3.2.2 snj }
1576 1.3.2.2 snj #endif
1577 1.3.2.2 snj
1578 1.3.2.2 snj
1579 1.3.2.2 snj #if NBPFILTER > 0
1580 1.3.2.2 snj if (ifp->if_bpf)
1581 1.3.2.2 snj bpf_mtap(ifp->if_bpf, m);
1582 1.3.2.2 snj #endif
1583 1.3.2.2 snj
1584 1.3.2.2 snj /* Pass it to upper layer. */
1585 1.3.2.2 snj ether_input(ifp, m);
1586 1.3.2.2 snj
1587 1.3.2.2 snj ale_rx_update_page(sc, &rx_page, length, &prod);
1588 1.3.2.2 snj }
1589 1.3.2.2 snj
1590 1.3.2.2 snj return 0;
1591 1.3.2.2 snj }
1592 1.3.2.2 snj
1593 1.3.2.2 snj static void
1594 1.3.2.2 snj ale_tick(void *xsc)
1595 1.3.2.2 snj {
1596 1.3.2.2 snj struct ale_softc *sc = xsc;
1597 1.3.2.2 snj struct mii_data *mii = &sc->sc_miibus;
1598 1.3.2.2 snj int s;
1599 1.3.2.2 snj
1600 1.3.2.2 snj s = splnet();
1601 1.3.2.2 snj mii_tick(mii);
1602 1.3.2.2 snj ale_stats_update(sc);
1603 1.3.2.2 snj splx(s);
1604 1.3.2.2 snj
1605 1.3.2.2 snj callout_schedule(&sc->sc_tick_ch, hz);
1606 1.3.2.2 snj }
1607 1.3.2.2 snj
1608 1.3.2.2 snj static void
1609 1.3.2.2 snj ale_reset(struct ale_softc *sc)
1610 1.3.2.2 snj {
1611 1.3.2.2 snj uint32_t reg;
1612 1.3.2.2 snj int i;
1613 1.3.2.2 snj
1614 1.3.2.2 snj /* Initialize PCIe module. From Linux. */
1615 1.3.2.2 snj CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1616 1.3.2.2 snj
1617 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1618 1.3.2.2 snj for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1619 1.3.2.2 snj DELAY(10);
1620 1.3.2.2 snj if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1621 1.3.2.2 snj break;
1622 1.3.2.2 snj }
1623 1.3.2.2 snj if (i == 0)
1624 1.3.2.2 snj printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1625 1.3.2.2 snj
1626 1.3.2.2 snj for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1627 1.3.2.2 snj if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1628 1.3.2.2 snj break;
1629 1.3.2.2 snj DELAY(10);
1630 1.3.2.2 snj }
1631 1.3.2.2 snj
1632 1.3.2.2 snj if (i == 0)
1633 1.3.2.2 snj printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1634 1.3.2.2 snj reg);
1635 1.3.2.2 snj }
1636 1.3.2.2 snj
1637 1.3.2.2 snj static int
1638 1.3.2.2 snj ale_init(struct ifnet *ifp)
1639 1.3.2.2 snj {
1640 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
1641 1.3.2.2 snj struct mii_data *mii;
1642 1.3.2.2 snj uint8_t eaddr[ETHER_ADDR_LEN];
1643 1.3.2.2 snj bus_addr_t paddr;
1644 1.3.2.2 snj uint32_t reg, rxf_hi, rxf_lo;
1645 1.3.2.2 snj
1646 1.3.2.2 snj /*
1647 1.3.2.2 snj * Cancel any pending I/O.
1648 1.3.2.2 snj */
1649 1.3.2.2 snj ale_stop(ifp, 0);
1650 1.3.2.2 snj
1651 1.3.2.2 snj /*
1652 1.3.2.2 snj * Reset the chip to a known state.
1653 1.3.2.2 snj */
1654 1.3.2.2 snj ale_reset(sc);
1655 1.3.2.2 snj
1656 1.3.2.2 snj /* Initialize Tx descriptors, DMA memory blocks. */
1657 1.3.2.2 snj ale_init_rx_pages(sc);
1658 1.3.2.2 snj ale_init_tx_ring(sc);
1659 1.3.2.2 snj
1660 1.3.2.2 snj /* Reprogram the station address. */
1661 1.3.2.2 snj memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1662 1.3.2.2 snj CSR_WRITE_4(sc, ALE_PAR0,
1663 1.3.2.2 snj eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1664 1.3.2.2 snj CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1665 1.3.2.2 snj
1666 1.3.2.2 snj /*
1667 1.3.2.2 snj * Clear WOL status and disable all WOL feature as WOL
1668 1.3.2.2 snj * would interfere Rx operation under normal environments.
1669 1.3.2.2 snj */
1670 1.3.2.2 snj CSR_READ_4(sc, ALE_WOL_CFG);
1671 1.3.2.2 snj CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1672 1.3.2.2 snj
1673 1.3.2.2 snj /*
1674 1.3.2.2 snj * Set Tx descriptor/RXF0/CMB base addresses. They share
1675 1.3.2.2 snj * the same high address part of DMAable region.
1676 1.3.2.2 snj */
1677 1.3.2.2 snj paddr = sc->ale_cdata.ale_tx_ring_paddr;
1678 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1679 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1680 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TPD_CNT,
1681 1.3.2.2 snj (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1682 1.3.2.2 snj
1683 1.3.2.2 snj /* Set Rx page base address, note we use single queue. */
1684 1.3.2.2 snj paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1685 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1686 1.3.2.2 snj paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1687 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1688 1.3.2.2 snj
1689 1.3.2.2 snj /* Set Tx/Rx CMB addresses. */
1690 1.3.2.2 snj paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1691 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1692 1.3.2.2 snj paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1693 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1694 1.3.2.2 snj paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1695 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1696 1.3.2.2 snj
1697 1.3.2.2 snj /* Mark RXF0 is valid. */
1698 1.3.2.2 snj CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1699 1.3.2.2 snj CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1700 1.3.2.2 snj /*
1701 1.3.2.2 snj * No need to initialize RFX1/RXF2/RXF3. We don't use
1702 1.3.2.2 snj * multi-queue yet.
1703 1.3.2.2 snj */
1704 1.3.2.2 snj
1705 1.3.2.2 snj /* Set Rx page size, excluding guard frame size. */
1706 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1707 1.3.2.2 snj
1708 1.3.2.2 snj /* Tell hardware that we're ready to load DMA blocks. */
1709 1.3.2.2 snj CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1710 1.3.2.2 snj
1711 1.3.2.2 snj /* Set Rx/Tx interrupt trigger threshold. */
1712 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1713 1.3.2.2 snj (4 << INT_TRIG_TX_THRESH_SHIFT));
1714 1.3.2.2 snj /*
1715 1.3.2.2 snj * XXX
1716 1.3.2.2 snj * Set interrupt trigger timer, its purpose and relation
1717 1.3.2.2 snj * with interrupt moderation mechanism is not clear yet.
1718 1.3.2.2 snj */
1719 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1720 1.3.2.2 snj ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1721 1.3.2.2 snj (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1722 1.3.2.2 snj
1723 1.3.2.2 snj /* Configure interrupt moderation timer. */
1724 1.3.2.2 snj sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1725 1.3.2.2 snj sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1726 1.3.2.2 snj reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1727 1.3.2.2 snj reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1728 1.3.2.2 snj CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1729 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1730 1.3.2.2 snj reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1731 1.3.2.2 snj reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1732 1.3.2.2 snj if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1733 1.3.2.2 snj reg |= MASTER_IM_RX_TIMER_ENB;
1734 1.3.2.2 snj if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1735 1.3.2.2 snj reg |= MASTER_IM_TX_TIMER_ENB;
1736 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1737 1.3.2.2 snj CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1738 1.3.2.2 snj
1739 1.3.2.2 snj /* Set Maximum frame size of controller. */
1740 1.3.2.2 snj if (ifp->if_mtu < ETHERMTU)
1741 1.3.2.2 snj sc->ale_max_frame_size = ETHERMTU;
1742 1.3.2.2 snj else
1743 1.3.2.2 snj sc->ale_max_frame_size = ifp->if_mtu;
1744 1.3.2.2 snj sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1745 1.3.2.2 snj CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1746 1.3.2.2 snj
1747 1.3.2.2 snj /* Configure IPG/IFG parameters. */
1748 1.3.2.2 snj CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1749 1.3.2.2 snj ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1750 1.3.2.2 snj ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1751 1.3.2.2 snj ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1752 1.3.2.2 snj ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1753 1.3.2.2 snj
1754 1.3.2.2 snj /* Set parameters for half-duplex media. */
1755 1.3.2.2 snj CSR_WRITE_4(sc, ALE_HDPX_CFG,
1756 1.3.2.2 snj ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1757 1.3.2.2 snj HDPX_CFG_LCOL_MASK) |
1758 1.3.2.2 snj ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1759 1.3.2.2 snj HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1760 1.3.2.2 snj ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1761 1.3.2.2 snj HDPX_CFG_ABEBT_MASK) |
1762 1.3.2.2 snj ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1763 1.3.2.2 snj HDPX_CFG_JAMIPG_MASK));
1764 1.3.2.2 snj
1765 1.3.2.2 snj /* Configure Tx jumbo frame parameters. */
1766 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1767 1.3.2.2 snj if (ifp->if_mtu < ETHERMTU)
1768 1.3.2.2 snj reg = sc->ale_max_frame_size;
1769 1.3.2.2 snj else if (ifp->if_mtu < 6 * 1024)
1770 1.3.2.2 snj reg = (sc->ale_max_frame_size * 2) / 3;
1771 1.3.2.2 snj else
1772 1.3.2.2 snj reg = sc->ale_max_frame_size / 2;
1773 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1774 1.3.2.2 snj roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1775 1.3.2.2 snj TX_JUMBO_THRESH_UNIT_SHIFT);
1776 1.3.2.2 snj }
1777 1.3.2.2 snj
1778 1.3.2.2 snj /* Configure TxQ. */
1779 1.3.2.2 snj reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1780 1.3.2.2 snj << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1781 1.3.2.2 snj reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1782 1.3.2.2 snj TXQ_CFG_TPD_BURST_MASK;
1783 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1784 1.3.2.2 snj
1785 1.3.2.2 snj /* Configure Rx jumbo frame & flow control parameters. */
1786 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1787 1.3.2.2 snj reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1788 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1789 1.3.2.2 snj (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1790 1.3.2.2 snj RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1791 1.3.2.2 snj ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1792 1.3.2.2 snj RX_JUMBO_LKAH_MASK));
1793 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1794 1.3.2.2 snj rxf_hi = (reg * 7) / 10;
1795 1.3.2.2 snj rxf_lo = (reg * 3)/ 10;
1796 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1797 1.3.2.2 snj ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1798 1.3.2.2 snj RX_FIFO_PAUSE_THRESH_LO_MASK) |
1799 1.3.2.2 snj ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1800 1.3.2.2 snj RX_FIFO_PAUSE_THRESH_HI_MASK));
1801 1.3.2.2 snj }
1802 1.3.2.2 snj
1803 1.3.2.2 snj /* Disable RSS. */
1804 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1805 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1806 1.3.2.2 snj
1807 1.3.2.2 snj /* Configure RxQ. */
1808 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXQ_CFG,
1809 1.3.2.2 snj RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1810 1.3.2.2 snj
1811 1.3.2.2 snj /* Configure DMA parameters. */
1812 1.3.2.2 snj reg = 0;
1813 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1814 1.3.2.2 snj reg |= DMA_CFG_TXCMB_ENB;
1815 1.3.2.2 snj CSR_WRITE_4(sc, ALE_DMA_CFG,
1816 1.3.2.2 snj DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1817 1.3.2.2 snj sc->ale_dma_rd_burst | reg |
1818 1.3.2.2 snj sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1819 1.3.2.2 snj ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1820 1.3.2.2 snj DMA_CFG_RD_DELAY_CNT_MASK) |
1821 1.3.2.2 snj ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1822 1.3.2.2 snj DMA_CFG_WR_DELAY_CNT_MASK));
1823 1.3.2.2 snj
1824 1.3.2.2 snj /*
1825 1.3.2.2 snj * Hardware can be configured to issue SMB interrupt based
1826 1.3.2.2 snj * on programmed interval. Since there is a callout that is
1827 1.3.2.2 snj * invoked for every hz in driver we use that instead of
1828 1.3.2.2 snj * relying on periodic SMB interrupt.
1829 1.3.2.2 snj */
1830 1.3.2.2 snj CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1831 1.3.2.2 snj
1832 1.3.2.2 snj /* Clear MAC statistics. */
1833 1.3.2.2 snj ale_stats_clear(sc);
1834 1.3.2.2 snj
1835 1.3.2.2 snj /*
1836 1.3.2.2 snj * Configure Tx/Rx MACs.
1837 1.3.2.2 snj * - Auto-padding for short frames.
1838 1.3.2.2 snj * - Enable CRC generation.
1839 1.3.2.2 snj * Actual reconfiguration of MAC for resolved speed/duplex
1840 1.3.2.2 snj * is followed after detection of link establishment.
1841 1.3.2.2 snj * AR81xx always does checksum computation regardless of
1842 1.3.2.2 snj * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1843 1.3.2.2 snj * cause Rx handling issue for fragmented IP datagrams due
1844 1.3.2.2 snj * to silicon bug.
1845 1.3.2.2 snj */
1846 1.3.2.2 snj reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1847 1.3.2.2 snj ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1848 1.3.2.2 snj MAC_CFG_PREAMBLE_MASK);
1849 1.3.2.2 snj if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1850 1.3.2.2 snj reg |= MAC_CFG_SPEED_10_100;
1851 1.3.2.2 snj else
1852 1.3.2.2 snj reg |= MAC_CFG_SPEED_1000;
1853 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1854 1.3.2.2 snj
1855 1.3.2.2 snj /* Set up the receive filter. */
1856 1.3.2.2 snj ale_rxfilter(sc);
1857 1.3.2.2 snj ale_rxvlan(sc);
1858 1.3.2.2 snj
1859 1.3.2.2 snj /* Acknowledge all pending interrupts and clear it. */
1860 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1861 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1862 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1863 1.3.2.2 snj
1864 1.3.2.2 snj sc->ale_flags &= ~ALE_FLAG_LINK;
1865 1.3.2.2 snj
1866 1.3.2.2 snj /* Switch to the current media. */
1867 1.3.2.2 snj mii = &sc->sc_miibus;
1868 1.3.2.2 snj mii_mediachg(mii);
1869 1.3.2.2 snj
1870 1.3.2.2 snj callout_schedule(&sc->sc_tick_ch, hz);
1871 1.3.2.2 snj
1872 1.3.2.2 snj ifp->if_flags |= IFF_RUNNING;
1873 1.3.2.2 snj ifp->if_flags &= ~IFF_OACTIVE;
1874 1.3.2.2 snj
1875 1.3.2.2 snj return 0;
1876 1.3.2.2 snj }
1877 1.3.2.2 snj
1878 1.3.2.2 snj static void
1879 1.3.2.2 snj ale_stop(struct ifnet *ifp, int disable)
1880 1.3.2.2 snj {
1881 1.3.2.2 snj struct ale_softc *sc = ifp->if_softc;
1882 1.3.2.2 snj struct ale_txdesc *txd;
1883 1.3.2.2 snj uint32_t reg;
1884 1.3.2.2 snj int i;
1885 1.3.2.2 snj
1886 1.3.2.2 snj callout_stop(&sc->sc_tick_ch);
1887 1.3.2.2 snj
1888 1.3.2.2 snj /*
1889 1.3.2.2 snj * Mark the interface down and cancel the watchdog timer.
1890 1.3.2.2 snj */
1891 1.3.2.2 snj ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1892 1.3.2.2 snj ifp->if_timer = 0;
1893 1.3.2.2 snj
1894 1.3.2.2 snj sc->ale_flags &= ~ALE_FLAG_LINK;
1895 1.3.2.2 snj
1896 1.3.2.2 snj ale_stats_update(sc);
1897 1.3.2.2 snj
1898 1.3.2.2 snj mii_down(&sc->sc_miibus);
1899 1.3.2.2 snj
1900 1.3.2.2 snj /* Disable interrupts. */
1901 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1902 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1903 1.3.2.2 snj
1904 1.3.2.2 snj /* Disable queue processing and DMA. */
1905 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1906 1.3.2.2 snj reg &= ~TXQ_CFG_ENB;
1907 1.3.2.2 snj CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1908 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1909 1.3.2.2 snj reg &= ~RXQ_CFG_ENB;
1910 1.3.2.2 snj CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1911 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_DMA_CFG);
1912 1.3.2.2 snj reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1913 1.3.2.2 snj CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1914 1.3.2.2 snj DELAY(1000);
1915 1.3.2.2 snj
1916 1.3.2.2 snj /* Stop Rx/Tx MACs. */
1917 1.3.2.2 snj ale_stop_mac(sc);
1918 1.3.2.2 snj
1919 1.3.2.2 snj /* Disable interrupts again? XXX */
1920 1.3.2.2 snj CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1921 1.3.2.2 snj
1922 1.3.2.2 snj /*
1923 1.3.2.2 snj * Free TX mbufs still in the queues.
1924 1.3.2.2 snj */
1925 1.3.2.2 snj for (i = 0; i < ALE_TX_RING_CNT; i++) {
1926 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[i];
1927 1.3.2.2 snj if (txd->tx_m != NULL) {
1928 1.3.2.2 snj bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1929 1.3.2.2 snj m_freem(txd->tx_m);
1930 1.3.2.2 snj txd->tx_m = NULL;
1931 1.3.2.2 snj }
1932 1.3.2.2 snj }
1933 1.3.2.2 snj }
1934 1.3.2.2 snj
1935 1.3.2.2 snj static void
1936 1.3.2.2 snj ale_stop_mac(struct ale_softc *sc)
1937 1.3.2.2 snj {
1938 1.3.2.2 snj uint32_t reg;
1939 1.3.2.2 snj int i;
1940 1.3.2.2 snj
1941 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_MAC_CFG);
1942 1.3.2.2 snj if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1943 1.3.2.2 snj reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1944 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1945 1.3.2.2 snj }
1946 1.3.2.2 snj
1947 1.3.2.2 snj for (i = ALE_TIMEOUT; i > 0; i--) {
1948 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1949 1.3.2.2 snj if (reg == 0)
1950 1.3.2.2 snj break;
1951 1.3.2.2 snj DELAY(10);
1952 1.3.2.2 snj }
1953 1.3.2.2 snj if (i == 0)
1954 1.3.2.2 snj printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1955 1.3.2.2 snj device_xname(sc->sc_dev), reg);
1956 1.3.2.2 snj }
1957 1.3.2.2 snj
1958 1.3.2.2 snj static void
1959 1.3.2.2 snj ale_init_tx_ring(struct ale_softc *sc)
1960 1.3.2.2 snj {
1961 1.3.2.2 snj struct ale_txdesc *txd;
1962 1.3.2.2 snj int i;
1963 1.3.2.2 snj
1964 1.3.2.2 snj sc->ale_cdata.ale_tx_prod = 0;
1965 1.3.2.2 snj sc->ale_cdata.ale_tx_cons = 0;
1966 1.3.2.2 snj sc->ale_cdata.ale_tx_cnt = 0;
1967 1.3.2.2 snj
1968 1.3.2.2 snj memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1969 1.3.2.2 snj memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1970 1.3.2.2 snj for (i = 0; i < ALE_TX_RING_CNT; i++) {
1971 1.3.2.2 snj txd = &sc->ale_cdata.ale_txdesc[i];
1972 1.3.2.2 snj txd->tx_m = NULL;
1973 1.3.2.2 snj }
1974 1.3.2.2 snj *sc->ale_cdata.ale_tx_cmb = 0;
1975 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1976 1.3.2.2 snj sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1978 1.3.2.2 snj sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1979 1.3.2.2 snj }
1980 1.3.2.2 snj
1981 1.3.2.2 snj static void
1982 1.3.2.2 snj ale_init_rx_pages(struct ale_softc *sc)
1983 1.3.2.2 snj {
1984 1.3.2.2 snj struct ale_rx_page *rx_page;
1985 1.3.2.2 snj int i;
1986 1.3.2.2 snj
1987 1.3.2.2 snj sc->ale_cdata.ale_rx_seqno = 0;
1988 1.3.2.2 snj sc->ale_cdata.ale_rx_curp = 0;
1989 1.3.2.2 snj
1990 1.3.2.2 snj for (i = 0; i < ALE_RX_PAGES; i++) {
1991 1.3.2.2 snj rx_page = &sc->ale_cdata.ale_rx_page[i];
1992 1.3.2.2 snj memset(rx_page->page_addr, 0, sc->ale_pagesize);
1993 1.3.2.2 snj memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1994 1.3.2.2 snj rx_page->cons = 0;
1995 1.3.2.2 snj *rx_page->cmb_addr = 0;
1996 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1997 1.3.2.2 snj rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1998 1.3.2.2 snj bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1999 1.3.2.2 snj rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2000 1.3.2.2 snj }
2001 1.3.2.2 snj }
2002 1.3.2.2 snj
2003 1.3.2.2 snj static void
2004 1.3.2.2 snj ale_rxvlan(struct ale_softc *sc)
2005 1.3.2.2 snj {
2006 1.3.2.2 snj struct ifnet *ifp = &sc->sc_ec.ec_if;
2007 1.3.2.2 snj uint32_t reg;
2008 1.3.2.2 snj
2009 1.3.2.2 snj reg = CSR_READ_4(sc, ALE_MAC_CFG);
2010 1.3.2.2 snj reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2011 1.3.2.2 snj if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
2012 1.3.2.2 snj reg |= MAC_CFG_VLAN_TAG_STRIP;
2013 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2014 1.3.2.2 snj }
2015 1.3.2.2 snj
2016 1.3.2.2 snj static void
2017 1.3.2.2 snj ale_rxfilter(struct ale_softc *sc)
2018 1.3.2.2 snj {
2019 1.3.2.2 snj struct ethercom *ec = &sc->sc_ec;
2020 1.3.2.2 snj struct ifnet *ifp = &ec->ec_if;
2021 1.3.2.2 snj struct ether_multi *enm;
2022 1.3.2.2 snj struct ether_multistep step;
2023 1.3.2.2 snj uint32_t crc;
2024 1.3.2.2 snj uint32_t mchash[2];
2025 1.3.2.2 snj uint32_t rxcfg;
2026 1.3.2.2 snj
2027 1.3.2.2 snj rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2028 1.3.2.2 snj rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2029 1.3.2.3 snj ifp->if_flags &= ~IFF_ALLMULTI;
2030 1.3.2.2 snj
2031 1.3.2.2 snj /*
2032 1.3.2.2 snj * Always accept broadcast frames.
2033 1.3.2.2 snj */
2034 1.3.2.2 snj rxcfg |= MAC_CFG_BCAST;
2035 1.3.2.2 snj
2036 1.3.2.3 snj if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2037 1.3.2.3 snj ifp->if_flags |= IFF_ALLMULTI;
2038 1.3.2.2 snj if (ifp->if_flags & IFF_PROMISC)
2039 1.3.2.2 snj rxcfg |= MAC_CFG_PROMISC;
2040 1.3.2.2 snj else
2041 1.3.2.2 snj rxcfg |= MAC_CFG_ALLMULTI;
2042 1.3.2.2 snj mchash[0] = mchash[1] = 0xFFFFFFFF;
2043 1.3.2.2 snj } else {
2044 1.3.2.2 snj /* Program new filter. */
2045 1.3.2.2 snj memset(mchash, 0, sizeof(mchash));
2046 1.3.2.2 snj
2047 1.3.2.2 snj ETHER_FIRST_MULTI(step, ec, enm);
2048 1.3.2.2 snj while (enm != NULL) {
2049 1.3.2.2 snj crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2050 1.3.2.2 snj mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2051 1.3.2.2 snj ETHER_NEXT_MULTI(step, enm);
2052 1.3.2.2 snj }
2053 1.3.2.2 snj }
2054 1.3.2.2 snj
2055 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2056 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2057 1.3.2.2 snj CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2058 1.3.2.2 snj }
2059