if_ale.c revision 1.15 1 /* $NetBSD: if_ale.c,v 1.15 2013/03/30 03:21:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.15 2013/03/30 03:21:03 christos Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <sys/rnd.h>
73
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80
81 #include <dev/pci/if_alereg.h>
82
83 static int ale_match(device_t, cfdata_t, void *);
84 static void ale_attach(device_t, device_t, void *);
85 static int ale_detach(device_t, int);
86
87 static int ale_miibus_readreg(device_t, int, int);
88 static void ale_miibus_writereg(device_t, int, int, int);
89 static void ale_miibus_statchg(struct ifnet *);
90
91 static int ale_init(struct ifnet *);
92 static void ale_start(struct ifnet *);
93 static int ale_ioctl(struct ifnet *, u_long, void *);
94 static void ale_watchdog(struct ifnet *);
95 static int ale_mediachange(struct ifnet *);
96 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
97
98 static int ale_intr(void *);
99 static int ale_rxeof(struct ale_softc *sc);
100 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 uint32_t, uint32_t *);
102 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void ale_txeof(struct ale_softc *);
104
105 static int ale_dma_alloc(struct ale_softc *);
106 static void ale_dma_free(struct ale_softc *);
107 static int ale_encap(struct ale_softc *, struct mbuf **);
108 static void ale_init_rx_pages(struct ale_softc *);
109 static void ale_init_tx_ring(struct ale_softc *);
110
111 static void ale_stop(struct ifnet *, int);
112 static void ale_tick(void *);
113 static void ale_get_macaddr(struct ale_softc *);
114 static void ale_mac_config(struct ale_softc *);
115 static void ale_phy_reset(struct ale_softc *);
116 static void ale_reset(struct ale_softc *);
117 static void ale_rxfilter(struct ale_softc *);
118 static void ale_rxvlan(struct ale_softc *);
119 static void ale_stats_clear(struct ale_softc *);
120 static void ale_stats_update(struct ale_softc *);
121 static void ale_stop_mac(struct ale_softc *);
122
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 ale_match, ale_attach, ale_detach, NULL);
125
126 int aledebug = 0;
127 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
128
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 struct ale_softc *sc = device_private(dev);
136 uint32_t v;
137 int i;
138
139 if (phy != sc->ale_phyaddr)
140 return 0;
141
142 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 switch (reg) {
144 case MII_100T2CR:
145 case MII_100T2SR:
146 case MII_EXTSR:
147 return 0;
148 default:
149 break;
150 }
151 }
152
153 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 DELAY(5);
157 v = CSR_READ_4(sc, ALE_MDIO);
158 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 break;
160 }
161
162 if (i == 0) {
163 printf("%s: phy read timeout: phy %d, reg %d\n",
164 device_xname(sc->sc_dev), phy, reg);
165 return 0;
166 }
167
168 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 struct ale_softc *sc = device_private(dev);
175 uint32_t v;
176 int i;
177
178 if (phy != sc->ale_phyaddr)
179 return;
180
181 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 switch (reg) {
183 case MII_100T2CR:
184 case MII_100T2SR:
185 case MII_EXTSR:
186 return;
187 default:
188 break;
189 }
190 }
191
192 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 DELAY(5);
197 v = CSR_READ_4(sc, ALE_MDIO);
198 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 break;
200 }
201
202 if (i == 0)
203 printf("%s: phy write timeout: phy %d, reg %d\n",
204 device_xname(sc->sc_dev), phy, reg);
205 }
206
207 static void
208 ale_miibus_statchg(struct ifnet *ifp)
209 {
210 struct ale_softc *sc = ifp->if_softc;
211 struct mii_data *mii = &sc->sc_miibus;
212 uint32_t reg;
213
214 if ((ifp->if_flags & IFF_RUNNING) == 0)
215 return;
216
217 sc->ale_flags &= ~ALE_FLAG_LINK;
218 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
219 (IFM_ACTIVE | IFM_AVALID)) {
220 switch (IFM_SUBTYPE(mii->mii_media_active)) {
221 case IFM_10_T:
222 case IFM_100_TX:
223 sc->ale_flags |= ALE_FLAG_LINK;
224 break;
225
226 case IFM_1000_T:
227 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
228 sc->ale_flags |= ALE_FLAG_LINK;
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 /* Stop Rx/Tx MACs. */
237 ale_stop_mac(sc);
238
239 /* Program MACs with resolved speed/duplex/flow-control. */
240 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
241 ale_mac_config(sc);
242 /* Reenable Tx/Rx MACs. */
243 reg = CSR_READ_4(sc, ALE_MAC_CFG);
244 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
245 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
246 }
247 }
248
249 void
250 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
251 {
252 struct ale_softc *sc = ifp->if_softc;
253 struct mii_data *mii = &sc->sc_miibus;
254
255 mii_pollstat(mii);
256 ifmr->ifm_status = mii->mii_media_status;
257 ifmr->ifm_active = mii->mii_media_active;
258 }
259
260 int
261 ale_mediachange(struct ifnet *ifp)
262 {
263 struct ale_softc *sc = ifp->if_softc;
264 struct mii_data *mii = &sc->sc_miibus;
265 int error;
266
267 if (mii->mii_instance != 0) {
268 struct mii_softc *miisc;
269
270 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
271 mii_phy_reset(miisc);
272 }
273 error = mii_mediachg(mii);
274
275 return error;
276 }
277
278 int
279 ale_match(device_t dev, cfdata_t match, void *aux)
280 {
281 struct pci_attach_args *pa = aux;
282
283 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
284 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
285 }
286
287 void
288 ale_get_macaddr(struct ale_softc *sc)
289 {
290 uint32_t ea[2], reg;
291 int i, vpdc;
292
293 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
294 if ((reg & SPI_VPD_ENB) != 0) {
295 reg &= ~SPI_VPD_ENB;
296 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
297 }
298
299 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
300 &vpdc, NULL)) {
301 /*
302 * PCI VPD capability found, let TWSI reload EEPROM.
303 * This will set ethernet address of controller.
304 */
305 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
306 TWSI_CTRL_SW_LD_START);
307 for (i = 100; i > 0; i--) {
308 DELAY(1000);
309 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
310 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
311 break;
312 }
313 if (i == 0)
314 printf("%s: reloading EEPROM timeout!\n",
315 device_xname(sc->sc_dev));
316 } else {
317 if (aledebug)
318 printf("%s: PCI VPD capability not found!\n",
319 device_xname(sc->sc_dev));
320 }
321
322 ea[0] = CSR_READ_4(sc, ALE_PAR0);
323 ea[1] = CSR_READ_4(sc, ALE_PAR1);
324 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
325 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
326 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
327 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
328 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
329 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
330 }
331
332 void
333 ale_phy_reset(struct ale_softc *sc)
334 {
335 /* Reset magic from Linux. */
336 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
337 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
338 GPHY_CTRL_PHY_PLL_ON);
339 DELAY(1000);
340 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
341 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
342 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
343 DELAY(1000);
344
345 #define ATPHY_DBG_ADDR 0x1D
346 #define ATPHY_DBG_DATA 0x1E
347
348 /* Enable hibernation mode. */
349 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 ATPHY_DBG_ADDR, 0x0B);
351 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
352 ATPHY_DBG_DATA, 0xBC00);
353 /* Set Class A/B for all modes. */
354 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 ATPHY_DBG_ADDR, 0x00);
356 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
357 ATPHY_DBG_DATA, 0x02EF);
358 /* Enable 10BT power saving. */
359 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 ATPHY_DBG_ADDR, 0x12);
361 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
362 ATPHY_DBG_DATA, 0x4C04);
363 /* Adjust 1000T power. */
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_ADDR, 0x04);
366 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
367 ATPHY_DBG_DATA, 0x8BBB);
368 /* 10BT center tap voltage. */
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_ADDR, 0x05);
371 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
372 ATPHY_DBG_DATA, 0x2C46);
373
374 #undef ATPHY_DBG_ADDR
375 #undef ATPHY_DBG_DATA
376 DELAY(1000);
377 }
378
379 void
380 ale_attach(device_t parent, device_t self, void *aux)
381 {
382 struct ale_softc *sc = device_private(self);
383 struct pci_attach_args *pa = aux;
384 pci_chipset_tag_t pc = pa->pa_pc;
385 pci_intr_handle_t ih;
386 const char *intrstr;
387 struct ifnet *ifp;
388 pcireg_t memtype;
389 int mii_flags, error = 0;
390 uint32_t rxf_len, txf_len;
391 const char *chipname;
392
393 aprint_naive("\n");
394 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
395
396 sc->sc_dev = self;
397 sc->sc_dmat = pa->pa_dmat;
398 sc->sc_pct = pa->pa_pc;
399 sc->sc_pcitag = pa->pa_tag;
400
401 /*
402 * Allocate IO memory
403 */
404 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
405 switch (memtype) {
406 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
407 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
408 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
409 break;
410 default:
411 aprint_error_dev(self, "invalid base address register\n");
412 break;
413 }
414
415 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
416 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
417 aprint_error_dev(self, "could not map mem space\n");
418 return;
419 }
420
421 if (pci_intr_map(pa, &ih) != 0) {
422 aprint_error_dev(self, "could not map interrupt\n");
423 goto fail;
424 }
425
426 /*
427 * Allocate IRQ
428 */
429 intrstr = pci_intr_string(sc->sc_pct, ih);
430 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
431 if (sc->sc_irq_handle == NULL) {
432 aprint_error_dev(self, "could not establish interrupt");
433 if (intrstr != NULL)
434 aprint_error(" at %s", intrstr);
435 aprint_error("\n");
436 goto fail;
437 }
438
439 /* Set PHY address. */
440 sc->ale_phyaddr = ALE_PHY_ADDR;
441
442 /* Reset PHY. */
443 ale_phy_reset(sc);
444
445 /* Reset the ethernet controller. */
446 ale_reset(sc);
447
448 /* Get PCI and chip id/revision. */
449 sc->ale_rev = PCI_REVISION(pa->pa_class);
450 if (sc->ale_rev >= 0xF0) {
451 /* L2E Rev. B. AR8114 */
452 sc->ale_flags |= ALE_FLAG_FASTETHER;
453 chipname = "AR8114 (L2E RevB)";
454 } else {
455 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
456 /* L1E AR8121 */
457 sc->ale_flags |= ALE_FLAG_JUMBO;
458 chipname = "AR8121 (L1E)";
459 } else {
460 /* L2E Rev. A. AR8113 */
461 sc->ale_flags |= ALE_FLAG_FASTETHER;
462 chipname = "AR8113 (L2E RevA)";
463 }
464 }
465 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
466
467 /*
468 * All known controllers seems to require 4 bytes alignment
469 * of Tx buffers to make Tx checksum offload with custom
470 * checksum generation method work.
471 */
472 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
473
474 /*
475 * All known controllers seems to have issues on Rx checksum
476 * offload for fragmented IP datagrams.
477 */
478 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
479
480 /*
481 * Don't use Tx CMB. It is known to cause RRS update failure
482 * under certain circumstances. Typical phenomenon of the
483 * issue would be unexpected sequence number encountered in
484 * Rx handler.
485 */
486 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
487 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
488 MASTER_CHIP_REV_SHIFT;
489 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
490 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
491
492 /*
493 * Uninitialized hardware returns an invalid chip id/revision
494 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
495 */
496 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
497 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
498 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
499 rxf_len == 0xFFFFFFF) {
500 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
501 "%u Rx FIFO -- not initialized?\n",
502 sc->ale_chip_rev, txf_len, rxf_len);
503 goto fail;
504 }
505
506 if (aledebug) {
507 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
508 txf_len, rxf_len);
509 }
510
511 /* Set max allowable DMA size. */
512 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
513 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
514
515 callout_init(&sc->sc_tick_ch, 0);
516 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
517
518 error = ale_dma_alloc(sc);
519 if (error)
520 goto fail;
521
522 /* Load station address. */
523 ale_get_macaddr(sc);
524
525 aprint_normal_dev(self, "Ethernet address %s\n",
526 ether_sprintf(sc->ale_eaddr));
527
528 ifp = &sc->sc_ec.ec_if;
529 ifp->if_softc = sc;
530 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
531 ifp->if_init = ale_init;
532 ifp->if_ioctl = ale_ioctl;
533 ifp->if_start = ale_start;
534 ifp->if_stop = ale_stop;
535 ifp->if_watchdog = ale_watchdog;
536 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
537 IFQ_SET_READY(&ifp->if_snd);
538 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
539
540 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
541
542 #ifdef ALE_CHECKSUM
543 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
544 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
545 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
546 #endif
547
548 #if NVLAN > 0
549 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
550 #endif
551
552 /* Set up MII bus. */
553 sc->sc_miibus.mii_ifp = ifp;
554 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
555 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
556 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
557
558 sc->sc_ec.ec_mii = &sc->sc_miibus;
559 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
560 ale_mediastatus);
561 mii_flags = 0;
562 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
563 mii_flags |= MIIF_DOPAUSE;
564 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, mii_flags);
566
567 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
568 aprint_error_dev(self, "no PHY found!\n");
569 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
570 0, NULL);
571 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
572 } else
573 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
574
575 if_attach(ifp);
576 ether_ifattach(ifp, sc->ale_eaddr);
577
578 if (pmf_device_register(self, NULL, NULL))
579 pmf_class_network_register(self, ifp);
580 else
581 aprint_error_dev(self, "couldn't establish power handler\n");
582
583 return;
584 fail:
585 ale_dma_free(sc);
586 if (sc->sc_irq_handle != NULL) {
587 pci_intr_disestablish(pc, sc->sc_irq_handle);
588 sc->sc_irq_handle = NULL;
589 }
590 if (sc->sc_mem_size) {
591 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
592 sc->sc_mem_size = 0;
593 }
594 }
595
596 static int
597 ale_detach(device_t self, int flags)
598 {
599 struct ale_softc *sc = device_private(self);
600 struct ifnet *ifp = &sc->sc_ec.ec_if;
601 int s;
602
603 pmf_device_deregister(self);
604 s = splnet();
605 ale_stop(ifp, 0);
606 splx(s);
607
608 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
609
610 /* Delete all remaining media. */
611 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
612
613 ether_ifdetach(ifp);
614 if_detach(ifp);
615 ale_dma_free(sc);
616
617 if (sc->sc_irq_handle != NULL) {
618 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
619 sc->sc_irq_handle = NULL;
620 }
621 if (sc->sc_mem_size) {
622 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
623 sc->sc_mem_size = 0;
624 }
625
626 return 0;
627 }
628
629
630 static int
631 ale_dma_alloc(struct ale_softc *sc)
632 {
633 struct ale_txdesc *txd;
634 int nsegs, error, guard_size, i;
635
636 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
637 guard_size = ALE_JUMBO_FRAMELEN;
638 else
639 guard_size = ALE_MAX_FRAMELEN;
640 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
641 ALE_RX_PAGE_ALIGN);
642
643 /*
644 * Create DMA stuffs for TX ring
645 */
646 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
647 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
648 if (error) {
649 sc->ale_cdata.ale_tx_ring_map = NULL;
650 return ENOBUFS;
651 }
652
653 /* Allocate DMA'able memory for TX ring */
654 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
655 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
656 &nsegs, BUS_DMA_WAITOK);
657 if (error) {
658 printf("%s: could not allocate DMA'able memory for Tx ring, "
659 "error = %i\n", device_xname(sc->sc_dev), error);
660 return error;
661 }
662
663 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
664 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
665 BUS_DMA_NOWAIT);
666 if (error)
667 return ENOBUFS;
668
669 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
670
671 /* Load the DMA map for Tx ring. */
672 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
673 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
674 if (error) {
675 printf("%s: could not load DMA'able memory for Tx ring.\n",
676 device_xname(sc->sc_dev));
677 bus_dmamem_free(sc->sc_dmat,
678 &sc->ale_cdata.ale_tx_ring_seg, 1);
679 return error;
680 }
681 sc->ale_cdata.ale_tx_ring_paddr =
682 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
683
684 for (i = 0; i < ALE_RX_PAGES; i++) {
685 /*
686 * Create DMA stuffs for RX pages
687 */
688 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
689 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
690 &sc->ale_cdata.ale_rx_page[i].page_map);
691 if (error) {
692 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
693 return ENOBUFS;
694 }
695
696 /* Allocate DMA'able memory for RX pages */
697 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
698 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
699 1, &nsegs, BUS_DMA_WAITOK);
700 if (error) {
701 printf("%s: could not allocate DMA'able memory for "
702 "Rx ring.\n", device_xname(sc->sc_dev));
703 return error;
704 }
705 error = bus_dmamem_map(sc->sc_dmat,
706 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
707 sc->ale_pagesize,
708 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
709 BUS_DMA_NOWAIT);
710 if (error)
711 return ENOBUFS;
712
713 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
714 sc->ale_pagesize);
715
716 /* Load the DMA map for Rx pages. */
717 error = bus_dmamap_load(sc->sc_dmat,
718 sc->ale_cdata.ale_rx_page[i].page_map,
719 sc->ale_cdata.ale_rx_page[i].page_addr,
720 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
721 if (error) {
722 printf("%s: could not load DMA'able memory for "
723 "Rx pages.\n", device_xname(sc->sc_dev));
724 bus_dmamem_free(sc->sc_dmat,
725 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
726 return error;
727 }
728 sc->ale_cdata.ale_rx_page[i].page_paddr =
729 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
730 }
731
732 /*
733 * Create DMA stuffs for Tx CMB.
734 */
735 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
736 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
737 if (error) {
738 sc->ale_cdata.ale_tx_cmb_map = NULL;
739 return ENOBUFS;
740 }
741
742 /* Allocate DMA'able memory for Tx CMB. */
743 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
744 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
745
746 if (error) {
747 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
748 device_xname(sc->sc_dev));
749 return error;
750 }
751
752 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
753 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
754 BUS_DMA_NOWAIT);
755 if (error)
756 return ENOBUFS;
757
758 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
759
760 /* Load the DMA map for Tx CMB. */
761 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
762 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
763 if (error) {
764 printf("%s: could not load DMA'able memory for Tx CMB.\n",
765 device_xname(sc->sc_dev));
766 bus_dmamem_free(sc->sc_dmat,
767 &sc->ale_cdata.ale_tx_cmb_seg, 1);
768 return error;
769 }
770
771 sc->ale_cdata.ale_tx_cmb_paddr =
772 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
773
774 for (i = 0; i < ALE_RX_PAGES; i++) {
775 /*
776 * Create DMA stuffs for Rx CMB.
777 */
778 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
779 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
780 &sc->ale_cdata.ale_rx_page[i].cmb_map);
781 if (error) {
782 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
783 return ENOBUFS;
784 }
785
786 /* Allocate DMA'able memory for Rx CMB */
787 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
788 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
789 &nsegs, BUS_DMA_WAITOK);
790 if (error) {
791 printf("%s: could not allocate DMA'able memory for "
792 "Rx CMB\n", device_xname(sc->sc_dev));
793 return error;
794 }
795 error = bus_dmamem_map(sc->sc_dmat,
796 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
797 ALE_RX_CMB_SZ,
798 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
799 BUS_DMA_NOWAIT);
800 if (error)
801 return ENOBUFS;
802
803 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
804
805 /* Load the DMA map for Rx CMB */
806 error = bus_dmamap_load(sc->sc_dmat,
807 sc->ale_cdata.ale_rx_page[i].cmb_map,
808 sc->ale_cdata.ale_rx_page[i].cmb_addr,
809 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
810 if (error) {
811 printf("%s: could not load DMA'able memory for Rx CMB"
812 "\n", device_xname(sc->sc_dev));
813 bus_dmamem_free(sc->sc_dmat,
814 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
815 return error;
816 }
817 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
818 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
819 }
820
821
822 /* Create DMA maps for Tx buffers. */
823 for (i = 0; i < ALE_TX_RING_CNT; i++) {
824 txd = &sc->ale_cdata.ale_txdesc[i];
825 txd->tx_m = NULL;
826 txd->tx_dmamap = NULL;
827 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
828 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
829 &txd->tx_dmamap);
830 if (error) {
831 txd->tx_dmamap = NULL;
832 printf("%s: could not create Tx dmamap.\n",
833 device_xname(sc->sc_dev));
834 return error;
835 }
836 }
837
838 return 0;
839 }
840
841 static void
842 ale_dma_free(struct ale_softc *sc)
843 {
844 struct ale_txdesc *txd;
845 int i;
846
847 /* Tx buffers. */
848 for (i = 0; i < ALE_TX_RING_CNT; i++) {
849 txd = &sc->ale_cdata.ale_txdesc[i];
850 if (txd->tx_dmamap != NULL) {
851 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
852 txd->tx_dmamap = NULL;
853 }
854 }
855
856 /* Tx descriptor ring. */
857 if (sc->ale_cdata.ale_tx_ring_map != NULL)
858 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
859 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
860 sc->ale_cdata.ale_tx_ring != NULL)
861 bus_dmamem_free(sc->sc_dmat,
862 &sc->ale_cdata.ale_tx_ring_seg, 1);
863 sc->ale_cdata.ale_tx_ring = NULL;
864 sc->ale_cdata.ale_tx_ring_map = NULL;
865
866 /* Rx page block. */
867 for (i = 0; i < ALE_RX_PAGES; i++) {
868 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
869 bus_dmamap_unload(sc->sc_dmat,
870 sc->ale_cdata.ale_rx_page[i].page_map);
871 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
872 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
873 bus_dmamem_free(sc->sc_dmat,
874 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
875 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
876 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
877 }
878
879 /* Rx CMB. */
880 for (i = 0; i < ALE_RX_PAGES; i++) {
881 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
882 bus_dmamap_unload(sc->sc_dmat,
883 sc->ale_cdata.ale_rx_page[i].cmb_map);
884 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
885 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
886 bus_dmamem_free(sc->sc_dmat,
887 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
888 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
889 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
890 }
891
892 /* Tx CMB. */
893 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
894 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
895 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
896 sc->ale_cdata.ale_tx_cmb != NULL)
897 bus_dmamem_free(sc->sc_dmat,
898 &sc->ale_cdata.ale_tx_cmb_seg, 1);
899 sc->ale_cdata.ale_tx_cmb = NULL;
900 sc->ale_cdata.ale_tx_cmb_map = NULL;
901
902 }
903
904 static int
905 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
906 {
907 struct ale_txdesc *txd, *txd_last;
908 struct tx_desc *desc;
909 struct mbuf *m;
910 bus_dmamap_t map;
911 uint32_t cflags, poff, vtag;
912 int error, i, nsegs, prod;
913 #if NVLAN > 0
914 struct m_tag *mtag;
915 #endif
916
917 m = *m_head;
918 cflags = vtag = 0;
919 poff = 0;
920
921 prod = sc->ale_cdata.ale_tx_prod;
922 txd = &sc->ale_cdata.ale_txdesc[prod];
923 txd_last = txd;
924 map = txd->tx_dmamap;
925
926 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
927 if (error == EFBIG) {
928 error = 0;
929
930 *m_head = m_pullup(*m_head, MHLEN);
931 if (*m_head == NULL) {
932 printf("%s: can't defrag TX mbuf\n",
933 device_xname(sc->sc_dev));
934 return ENOBUFS;
935 }
936
937 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
938 BUS_DMA_NOWAIT);
939
940 if (error != 0) {
941 printf("%s: could not load defragged TX mbuf\n",
942 device_xname(sc->sc_dev));
943 m_freem(*m_head);
944 *m_head = NULL;
945 return error;
946 }
947 } else if (error) {
948 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
949 return error;
950 }
951
952 nsegs = map->dm_nsegs;
953
954 if (nsegs == 0) {
955 m_freem(*m_head);
956 *m_head = NULL;
957 return EIO;
958 }
959
960 /* Check descriptor overrun. */
961 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
962 bus_dmamap_unload(sc->sc_dmat, map);
963 return ENOBUFS;
964 }
965 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
966 BUS_DMASYNC_PREWRITE);
967
968 m = *m_head;
969 /* Configure Tx checksum offload. */
970 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
971 /*
972 * AR81xx supports Tx custom checksum offload feature
973 * that offloads single 16bit checksum computation.
974 * So you can choose one among IP, TCP and UDP.
975 * Normally driver sets checksum start/insertion
976 * position from the information of TCP/UDP frame as
977 * TCP/UDP checksum takes more time than that of IP.
978 * However it seems that custom checksum offload
979 * requires 4 bytes aligned Tx buffers due to hardware
980 * bug.
981 * AR81xx also supports explicit Tx checksum computation
982 * if it is told that the size of IP header and TCP
983 * header(for UDP, the header size does not matter
984 * because it's fixed length). However with this scheme
985 * TSO does not work so you have to choose one either
986 * TSO or explicit Tx checksum offload. I chosen TSO
987 * plus custom checksum offload with work-around which
988 * will cover most common usage for this consumer
989 * ethernet controller. The work-around takes a lot of
990 * CPU cycles if Tx buffer is not aligned on 4 bytes
991 * boundary, though.
992 */
993 cflags |= ALE_TD_CXSUM;
994 /* Set checksum start offset. */
995 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
996 }
997
998 #if NVLAN > 0
999 /* Configure VLAN hardware tag insertion. */
1000 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1001 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1002 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1003 cflags |= ALE_TD_INSERT_VLAN_TAG;
1004 }
1005 #endif
1006
1007 desc = NULL;
1008 for (i = 0; i < nsegs; i++) {
1009 desc = &sc->ale_cdata.ale_tx_ring[prod];
1010 desc->addr = htole64(map->dm_segs[i].ds_addr);
1011 desc->len =
1012 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1013 desc->flags = htole32(cflags);
1014 sc->ale_cdata.ale_tx_cnt++;
1015 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1016 }
1017 /* Update producer index. */
1018 sc->ale_cdata.ale_tx_prod = prod;
1019
1020 /* Finally set EOP on the last descriptor. */
1021 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1022 desc = &sc->ale_cdata.ale_tx_ring[prod];
1023 desc->flags |= htole32(ALE_TD_EOP);
1024
1025 /* Swap dmamap of the first and the last. */
1026 txd = &sc->ale_cdata.ale_txdesc[prod];
1027 map = txd_last->tx_dmamap;
1028 txd_last->tx_dmamap = txd->tx_dmamap;
1029 txd->tx_dmamap = map;
1030 txd->tx_m = m;
1031
1032 /* Sync descriptors. */
1033 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1034 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1035
1036 return 0;
1037 }
1038
1039 static void
1040 ale_start(struct ifnet *ifp)
1041 {
1042 struct ale_softc *sc = ifp->if_softc;
1043 struct mbuf *m_head;
1044 int enq;
1045
1046 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1047 return;
1048
1049 /* Reclaim transmitted frames. */
1050 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1051 ale_txeof(sc);
1052
1053 enq = 0;
1054 for (;;) {
1055 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1056 if (m_head == NULL)
1057 break;
1058
1059 /*
1060 * Pack the data into the transmit ring. If we
1061 * don't have room, set the OACTIVE flag and wait
1062 * for the NIC to drain the ring.
1063 */
1064 if (ale_encap(sc, &m_head)) {
1065 if (m_head == NULL)
1066 break;
1067 IF_PREPEND(&ifp->if_snd, m_head);
1068 ifp->if_flags |= IFF_OACTIVE;
1069 break;
1070 }
1071 enq = 1;
1072
1073 /*
1074 * If there's a BPF listener, bounce a copy of this frame
1075 * to him.
1076 */
1077 bpf_mtap(ifp, m_head);
1078 }
1079
1080 if (enq) {
1081 /* Kick. */
1082 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1083 sc->ale_cdata.ale_tx_prod);
1084
1085 /* Set a timeout in case the chip goes out to lunch. */
1086 ifp->if_timer = ALE_TX_TIMEOUT;
1087 }
1088 }
1089
1090 static void
1091 ale_watchdog(struct ifnet *ifp)
1092 {
1093 struct ale_softc *sc = ifp->if_softc;
1094
1095 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1096 printf("%s: watchdog timeout (missed link)\n",
1097 device_xname(sc->sc_dev));
1098 ifp->if_oerrors++;
1099 ale_init(ifp);
1100 return;
1101 }
1102
1103 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1104 ifp->if_oerrors++;
1105 ale_init(ifp);
1106
1107 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1108 ale_start(ifp);
1109 }
1110
1111 static int
1112 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 struct ale_softc *sc = ifp->if_softc;
1115 int s, error;
1116
1117 s = splnet();
1118
1119 error = ether_ioctl(ifp, cmd, data);
1120 if (error == ENETRESET) {
1121 if (ifp->if_flags & IFF_RUNNING)
1122 ale_rxfilter(sc);
1123 error = 0;
1124 }
1125
1126 splx(s);
1127 return error;
1128 }
1129
1130 static void
1131 ale_mac_config(struct ale_softc *sc)
1132 {
1133 struct mii_data *mii;
1134 uint32_t reg;
1135
1136 mii = &sc->sc_miibus;
1137 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1138 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1139 MAC_CFG_SPEED_MASK);
1140
1141 /* Reprogram MAC with resolved speed/duplex. */
1142 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1143 case IFM_10_T:
1144 case IFM_100_TX:
1145 reg |= MAC_CFG_SPEED_10_100;
1146 break;
1147 case IFM_1000_T:
1148 reg |= MAC_CFG_SPEED_1000;
1149 break;
1150 }
1151 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1152 reg |= MAC_CFG_FULL_DUPLEX;
1153 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1154 reg |= MAC_CFG_TX_FC;
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1156 reg |= MAC_CFG_RX_FC;
1157 }
1158 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1159 }
1160
1161 static void
1162 ale_stats_clear(struct ale_softc *sc)
1163 {
1164 struct smb sb;
1165 uint32_t *reg;
1166 int i;
1167
1168 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1169 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1170 i += sizeof(uint32_t);
1171 }
1172 /* Read Tx statistics. */
1173 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1174 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1175 i += sizeof(uint32_t);
1176 }
1177 }
1178
1179 static void
1180 ale_stats_update(struct ale_softc *sc)
1181 {
1182 struct ifnet *ifp = &sc->sc_ec.ec_if;
1183 struct ale_hw_stats *stat;
1184 struct smb sb, *smb;
1185 uint32_t *reg;
1186 int i;
1187
1188 stat = &sc->ale_stats;
1189 smb = &sb;
1190
1191 /* Read Rx statistics. */
1192 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1193 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1194 i += sizeof(uint32_t);
1195 }
1196 /* Read Tx statistics. */
1197 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1198 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1199 i += sizeof(uint32_t);
1200 }
1201
1202 /* Rx stats. */
1203 stat->rx_frames += smb->rx_frames;
1204 stat->rx_bcast_frames += smb->rx_bcast_frames;
1205 stat->rx_mcast_frames += smb->rx_mcast_frames;
1206 stat->rx_pause_frames += smb->rx_pause_frames;
1207 stat->rx_control_frames += smb->rx_control_frames;
1208 stat->rx_crcerrs += smb->rx_crcerrs;
1209 stat->rx_lenerrs += smb->rx_lenerrs;
1210 stat->rx_bytes += smb->rx_bytes;
1211 stat->rx_runts += smb->rx_runts;
1212 stat->rx_fragments += smb->rx_fragments;
1213 stat->rx_pkts_64 += smb->rx_pkts_64;
1214 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1215 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1216 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1217 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1218 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1219 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1220 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1221 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1222 stat->rx_rrs_errs += smb->rx_rrs_errs;
1223 stat->rx_alignerrs += smb->rx_alignerrs;
1224 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1225 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1226 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1227
1228 /* Tx stats. */
1229 stat->tx_frames += smb->tx_frames;
1230 stat->tx_bcast_frames += smb->tx_bcast_frames;
1231 stat->tx_mcast_frames += smb->tx_mcast_frames;
1232 stat->tx_pause_frames += smb->tx_pause_frames;
1233 stat->tx_excess_defer += smb->tx_excess_defer;
1234 stat->tx_control_frames += smb->tx_control_frames;
1235 stat->tx_deferred += smb->tx_deferred;
1236 stat->tx_bytes += smb->tx_bytes;
1237 stat->tx_pkts_64 += smb->tx_pkts_64;
1238 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1239 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1240 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1241 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1242 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1243 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1244 stat->tx_single_colls += smb->tx_single_colls;
1245 stat->tx_multi_colls += smb->tx_multi_colls;
1246 stat->tx_late_colls += smb->tx_late_colls;
1247 stat->tx_excess_colls += smb->tx_excess_colls;
1248 stat->tx_abort += smb->tx_abort;
1249 stat->tx_underrun += smb->tx_underrun;
1250 stat->tx_desc_underrun += smb->tx_desc_underrun;
1251 stat->tx_lenerrs += smb->tx_lenerrs;
1252 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1253 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1254 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1255
1256 /* Update counters in ifnet. */
1257 ifp->if_opackets += smb->tx_frames;
1258
1259 ifp->if_collisions += smb->tx_single_colls +
1260 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1261 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1262
1263 /*
1264 * XXX
1265 * tx_pkts_truncated counter looks suspicious. It constantly
1266 * increments with no sign of Tx errors. This may indicate
1267 * the counter name is not correct one so I've removed the
1268 * counter in output errors.
1269 */
1270 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1271 smb->tx_underrun;
1272
1273 ifp->if_ipackets += smb->rx_frames;
1274
1275 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1276 smb->rx_runts + smb->rx_pkts_truncated +
1277 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1278 smb->rx_alignerrs;
1279 }
1280
1281 static int
1282 ale_intr(void *xsc)
1283 {
1284 struct ale_softc *sc = xsc;
1285 struct ifnet *ifp = &sc->sc_ec.ec_if;
1286 uint32_t status;
1287
1288 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1289 if ((status & ALE_INTRS) == 0)
1290 return 0;
1291
1292 /* Acknowledge and disable interrupts. */
1293 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1294
1295 if (ifp->if_flags & IFF_RUNNING) {
1296 int error;
1297
1298 error = ale_rxeof(sc);
1299 if (error) {
1300 sc->ale_stats.reset_brk_seq++;
1301 ale_init(ifp);
1302 return 0;
1303 }
1304
1305 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1306 if (status & INTR_DMA_RD_TO_RST)
1307 printf("%s: DMA read error! -- resetting\n",
1308 device_xname(sc->sc_dev));
1309 if (status & INTR_DMA_WR_TO_RST)
1310 printf("%s: DMA write error! -- resetting\n",
1311 device_xname(sc->sc_dev));
1312 ale_init(ifp);
1313 return 0;
1314 }
1315
1316 ale_txeof(sc);
1317 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1318 ale_start(ifp);
1319 }
1320
1321 /* Re-enable interrupts. */
1322 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1323 return 1;
1324 }
1325
1326 static void
1327 ale_txeof(struct ale_softc *sc)
1328 {
1329 struct ifnet *ifp = &sc->sc_ec.ec_if;
1330 struct ale_txdesc *txd;
1331 uint32_t cons, prod;
1332 int prog;
1333
1334 if (sc->ale_cdata.ale_tx_cnt == 0)
1335 return;
1336
1337 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1338 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1339 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1340 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1341 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1342 BUS_DMASYNC_POSTREAD);
1343 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1344 } else
1345 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1346 cons = sc->ale_cdata.ale_tx_cons;
1347 /*
1348 * Go through our Tx list and free mbufs for those
1349 * frames which have been transmitted.
1350 */
1351 for (prog = 0; cons != prod; prog++,
1352 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1353 if (sc->ale_cdata.ale_tx_cnt <= 0)
1354 break;
1355 prog++;
1356 ifp->if_flags &= ~IFF_OACTIVE;
1357 sc->ale_cdata.ale_tx_cnt--;
1358 txd = &sc->ale_cdata.ale_txdesc[cons];
1359 if (txd->tx_m != NULL) {
1360 /* Reclaim transmitted mbufs. */
1361 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1362 m_freem(txd->tx_m);
1363 txd->tx_m = NULL;
1364 }
1365 }
1366
1367 if (prog > 0) {
1368 sc->ale_cdata.ale_tx_cons = cons;
1369 /*
1370 * Unarm watchdog timer only when there is no pending
1371 * Tx descriptors in queue.
1372 */
1373 if (sc->ale_cdata.ale_tx_cnt == 0)
1374 ifp->if_timer = 0;
1375 }
1376 }
1377
1378 static void
1379 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1380 uint32_t length, uint32_t *prod)
1381 {
1382 struct ale_rx_page *rx_page;
1383
1384 rx_page = *page;
1385 /* Update consumer position. */
1386 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1387 ALE_RX_PAGE_ALIGN);
1388 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1389 /*
1390 * End of Rx page reached, let hardware reuse
1391 * this page.
1392 */
1393 rx_page->cons = 0;
1394 *rx_page->cmb_addr = 0;
1395 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1396 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1397 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1398 RXF_VALID);
1399 /* Switch to alternate Rx page. */
1400 sc->ale_cdata.ale_rx_curp ^= 1;
1401 rx_page = *page =
1402 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1403 /* Page flipped, sync CMB and Rx page. */
1404 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1405 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1406 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1407 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1408 /* Sync completed, cache updated producer index. */
1409 *prod = *rx_page->cmb_addr;
1410 }
1411 }
1412
1413
1414 /*
1415 * It seems that AR81xx controller can compute partial checksum.
1416 * The partial checksum value can be used to accelerate checksum
1417 * computation for fragmented TCP/UDP packets. Upper network stack
1418 * already takes advantage of the partial checksum value in IP
1419 * reassembly stage. But I'm not sure the correctness of the
1420 * partial hardware checksum assistance due to lack of data sheet.
1421 * In addition, the Rx feature of controller that requires copying
1422 * for every frames effectively nullifies one of most nice offload
1423 * capability of controller.
1424 */
1425 static void
1426 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1427 {
1428 if (status & ALE_RD_IPCSUM_NOK)
1429 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1430
1431 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1432 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1433 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1434 (status & ALE_RD_TCP_UDPCSUM_NOK))
1435 {
1436 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1437 }
1438 } else {
1439 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1440 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1441 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1442 }
1443 }
1444 }
1445 /*
1446 * Don't mark bad checksum for TCP/UDP frames
1447 * as fragmented frames may always have set
1448 * bad checksummed bit of frame status.
1449 */
1450 }
1451
1452 /* Process received frames. */
1453 static int
1454 ale_rxeof(struct ale_softc *sc)
1455 {
1456 struct ifnet *ifp = &sc->sc_ec.ec_if;
1457 struct ale_rx_page *rx_page;
1458 struct rx_rs *rs;
1459 struct mbuf *m;
1460 uint32_t length, prod, seqno, status;
1461 int prog;
1462
1463 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1464 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1465 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1466 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1467 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1468 /*
1469 * Don't directly access producer index as hardware may
1470 * update it while Rx handler is in progress. It would
1471 * be even better if there is a way to let hardware
1472 * know how far driver processed its received frames.
1473 * Alternatively, hardware could provide a way to disable
1474 * CMB updates until driver acknowledges the end of CMB
1475 * access.
1476 */
1477 prod = *rx_page->cmb_addr;
1478 for (prog = 0; ; prog++) {
1479 if (rx_page->cons >= prod)
1480 break;
1481 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1482 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1483 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1484 /*
1485 * Normally I believe this should not happen unless
1486 * severe driver bug or corrupted memory. However
1487 * it seems to happen under certain conditions which
1488 * is triggered by abrupt Rx events such as initiation
1489 * of bulk transfer of remote host. It's not easy to
1490 * reproduce this and I doubt it could be related
1491 * with FIFO overflow of hardware or activity of Tx
1492 * CMB updates. I also remember similar behaviour
1493 * seen on RealTek 8139 which uses resembling Rx
1494 * scheme.
1495 */
1496 if (aledebug)
1497 printf("%s: garbled seq: %u, expected: %u -- "
1498 "resetting!\n", device_xname(sc->sc_dev),
1499 seqno, sc->ale_cdata.ale_rx_seqno);
1500 return EIO;
1501 }
1502 /* Frame received. */
1503 sc->ale_cdata.ale_rx_seqno++;
1504 length = ALE_RX_BYTES(le32toh(rs->length));
1505 status = le32toh(rs->flags);
1506 if (status & ALE_RD_ERROR) {
1507 /*
1508 * We want to pass the following frames to upper
1509 * layer regardless of error status of Rx return
1510 * status.
1511 *
1512 * o IP/TCP/UDP checksum is bad.
1513 * o frame length and protocol specific length
1514 * does not match.
1515 */
1516 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1517 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1518 ALE_RD_TRUNC)) {
1519 ale_rx_update_page(sc, &rx_page, length, &prod);
1520 continue;
1521 }
1522 }
1523 /*
1524 * m_devget(9) is major bottle-neck of ale(4)(It comes
1525 * from hardware limitation). For jumbo frames we could
1526 * get a slightly better performance if driver use
1527 * m_getjcl(9) with proper buffer size argument. However
1528 * that would make code more complicated and I don't
1529 * think users would expect good Rx performance numbers
1530 * on these low-end consumer ethernet controller.
1531 */
1532 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1533 0, ifp, NULL);
1534 if (m == NULL) {
1535 ifp->if_iqdrops++;
1536 ale_rx_update_page(sc, &rx_page, length, &prod);
1537 continue;
1538 }
1539 if (status & ALE_RD_IPV4)
1540 ale_rxcsum(sc, m, status);
1541 #if NVLAN > 0
1542 if (status & ALE_RD_VLAN) {
1543 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1544 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1545 }
1546 #endif
1547
1548
1549 bpf_mtap(ifp, m);
1550
1551 /* Pass it to upper layer. */
1552 ether_input(ifp, m);
1553
1554 ale_rx_update_page(sc, &rx_page, length, &prod);
1555 }
1556
1557 return 0;
1558 }
1559
1560 static void
1561 ale_tick(void *xsc)
1562 {
1563 struct ale_softc *sc = xsc;
1564 struct mii_data *mii = &sc->sc_miibus;
1565 int s;
1566
1567 s = splnet();
1568 mii_tick(mii);
1569 ale_stats_update(sc);
1570 splx(s);
1571
1572 callout_schedule(&sc->sc_tick_ch, hz);
1573 }
1574
1575 static void
1576 ale_reset(struct ale_softc *sc)
1577 {
1578 uint32_t reg;
1579 int i;
1580
1581 /* Initialize PCIe module. From Linux. */
1582 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1583
1584 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1585 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1586 DELAY(10);
1587 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1588 break;
1589 }
1590 if (i == 0)
1591 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1592
1593 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1594 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1595 break;
1596 DELAY(10);
1597 }
1598
1599 if (i == 0)
1600 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 reg);
1602 }
1603
1604 static int
1605 ale_init(struct ifnet *ifp)
1606 {
1607 struct ale_softc *sc = ifp->if_softc;
1608 struct mii_data *mii;
1609 uint8_t eaddr[ETHER_ADDR_LEN];
1610 bus_addr_t paddr;
1611 uint32_t reg, rxf_hi, rxf_lo;
1612
1613 /*
1614 * Cancel any pending I/O.
1615 */
1616 ale_stop(ifp, 0);
1617
1618 /*
1619 * Reset the chip to a known state.
1620 */
1621 ale_reset(sc);
1622
1623 /* Initialize Tx descriptors, DMA memory blocks. */
1624 ale_init_rx_pages(sc);
1625 ale_init_tx_ring(sc);
1626
1627 /* Reprogram the station address. */
1628 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1629 CSR_WRITE_4(sc, ALE_PAR0,
1630 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1631 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1632
1633 /*
1634 * Clear WOL status and disable all WOL feature as WOL
1635 * would interfere Rx operation under normal environments.
1636 */
1637 CSR_READ_4(sc, ALE_WOL_CFG);
1638 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1639
1640 /*
1641 * Set Tx descriptor/RXF0/CMB base addresses. They share
1642 * the same high address part of DMAable region.
1643 */
1644 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1645 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1646 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1647 CSR_WRITE_4(sc, ALE_TPD_CNT,
1648 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1649
1650 /* Set Rx page base address, note we use single queue. */
1651 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1652 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1653 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1654 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1655
1656 /* Set Tx/Rx CMB addresses. */
1657 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1658 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1659 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1660 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1661 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1662 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1663
1664 /* Mark RXF0 is valid. */
1665 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1666 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1667 /*
1668 * No need to initialize RFX1/RXF2/RXF3. We don't use
1669 * multi-queue yet.
1670 */
1671
1672 /* Set Rx page size, excluding guard frame size. */
1673 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1674
1675 /* Tell hardware that we're ready to load DMA blocks. */
1676 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677
1678 /* Set Rx/Tx interrupt trigger threshold. */
1679 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1680 (4 << INT_TRIG_TX_THRESH_SHIFT));
1681 /*
1682 * XXX
1683 * Set interrupt trigger timer, its purpose and relation
1684 * with interrupt moderation mechanism is not clear yet.
1685 */
1686 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1687 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1688 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1689
1690 /* Configure interrupt moderation timer. */
1691 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1692 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1693 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1694 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1695 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1696 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1697 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1698 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1699 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1700 reg |= MASTER_IM_RX_TIMER_ENB;
1701 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1702 reg |= MASTER_IM_TX_TIMER_ENB;
1703 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1704 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1705
1706 /* Set Maximum frame size of controller. */
1707 if (ifp->if_mtu < ETHERMTU)
1708 sc->ale_max_frame_size = ETHERMTU;
1709 else
1710 sc->ale_max_frame_size = ifp->if_mtu;
1711 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1712 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1713
1714 /* Configure IPG/IFG parameters. */
1715 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1716 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1717 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1718 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1719 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1720
1721 /* Set parameters for half-duplex media. */
1722 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1723 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1724 HDPX_CFG_LCOL_MASK) |
1725 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1726 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1727 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1728 HDPX_CFG_ABEBT_MASK) |
1729 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1730 HDPX_CFG_JAMIPG_MASK));
1731
1732 /* Configure Tx jumbo frame parameters. */
1733 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1734 if (ifp->if_mtu < ETHERMTU)
1735 reg = sc->ale_max_frame_size;
1736 else if (ifp->if_mtu < 6 * 1024)
1737 reg = (sc->ale_max_frame_size * 2) / 3;
1738 else
1739 reg = sc->ale_max_frame_size / 2;
1740 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1741 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1742 TX_JUMBO_THRESH_UNIT_SHIFT);
1743 }
1744
1745 /* Configure TxQ. */
1746 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1747 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1748 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1749 TXQ_CFG_TPD_BURST_MASK;
1750 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1751
1752 /* Configure Rx jumbo frame & flow control parameters. */
1753 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1754 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1755 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1756 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1757 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1758 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1759 RX_JUMBO_LKAH_MASK));
1760 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1761 rxf_hi = (reg * 7) / 10;
1762 rxf_lo = (reg * 3)/ 10;
1763 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1764 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1765 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1766 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1767 RX_FIFO_PAUSE_THRESH_HI_MASK));
1768 }
1769
1770 /* Disable RSS. */
1771 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1772 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1773
1774 /* Configure RxQ. */
1775 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1776 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1777
1778 /* Configure DMA parameters. */
1779 reg = 0;
1780 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1781 reg |= DMA_CFG_TXCMB_ENB;
1782 CSR_WRITE_4(sc, ALE_DMA_CFG,
1783 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1784 sc->ale_dma_rd_burst | reg |
1785 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1786 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1787 DMA_CFG_RD_DELAY_CNT_MASK) |
1788 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1789 DMA_CFG_WR_DELAY_CNT_MASK));
1790
1791 /*
1792 * Hardware can be configured to issue SMB interrupt based
1793 * on programmed interval. Since there is a callout that is
1794 * invoked for every hz in driver we use that instead of
1795 * relying on periodic SMB interrupt.
1796 */
1797 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1798
1799 /* Clear MAC statistics. */
1800 ale_stats_clear(sc);
1801
1802 /*
1803 * Configure Tx/Rx MACs.
1804 * - Auto-padding for short frames.
1805 * - Enable CRC generation.
1806 * Actual reconfiguration of MAC for resolved speed/duplex
1807 * is followed after detection of link establishment.
1808 * AR81xx always does checksum computation regardless of
1809 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1810 * cause Rx handling issue for fragmented IP datagrams due
1811 * to silicon bug.
1812 */
1813 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1814 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1815 MAC_CFG_PREAMBLE_MASK);
1816 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1817 reg |= MAC_CFG_SPEED_10_100;
1818 else
1819 reg |= MAC_CFG_SPEED_1000;
1820 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1821
1822 /* Set up the receive filter. */
1823 ale_rxfilter(sc);
1824 ale_rxvlan(sc);
1825
1826 /* Acknowledge all pending interrupts and clear it. */
1827 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1828 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1829 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1830
1831 sc->ale_flags &= ~ALE_FLAG_LINK;
1832
1833 /* Switch to the current media. */
1834 mii = &sc->sc_miibus;
1835 mii_mediachg(mii);
1836
1837 callout_schedule(&sc->sc_tick_ch, hz);
1838
1839 ifp->if_flags |= IFF_RUNNING;
1840 ifp->if_flags &= ~IFF_OACTIVE;
1841
1842 return 0;
1843 }
1844
1845 static void
1846 ale_stop(struct ifnet *ifp, int disable)
1847 {
1848 struct ale_softc *sc = ifp->if_softc;
1849 struct ale_txdesc *txd;
1850 uint32_t reg;
1851 int i;
1852
1853 callout_stop(&sc->sc_tick_ch);
1854
1855 /*
1856 * Mark the interface down and cancel the watchdog timer.
1857 */
1858 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 ifp->if_timer = 0;
1860
1861 sc->ale_flags &= ~ALE_FLAG_LINK;
1862
1863 ale_stats_update(sc);
1864
1865 mii_down(&sc->sc_miibus);
1866
1867 /* Disable interrupts. */
1868 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1869 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1870
1871 /* Disable queue processing and DMA. */
1872 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1873 reg &= ~TXQ_CFG_ENB;
1874 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1875 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1876 reg &= ~RXQ_CFG_ENB;
1877 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1878 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1879 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1880 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1881 DELAY(1000);
1882
1883 /* Stop Rx/Tx MACs. */
1884 ale_stop_mac(sc);
1885
1886 /* Disable interrupts again? XXX */
1887 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1888
1889 /*
1890 * Free TX mbufs still in the queues.
1891 */
1892 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1893 txd = &sc->ale_cdata.ale_txdesc[i];
1894 if (txd->tx_m != NULL) {
1895 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1896 m_freem(txd->tx_m);
1897 txd->tx_m = NULL;
1898 }
1899 }
1900 }
1901
1902 static void
1903 ale_stop_mac(struct ale_softc *sc)
1904 {
1905 uint32_t reg;
1906 int i;
1907
1908 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1909 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1910 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1911 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1912 }
1913
1914 for (i = ALE_TIMEOUT; i > 0; i--) {
1915 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1916 if (reg == 0)
1917 break;
1918 DELAY(10);
1919 }
1920 if (i == 0)
1921 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1922 device_xname(sc->sc_dev), reg);
1923 }
1924
1925 static void
1926 ale_init_tx_ring(struct ale_softc *sc)
1927 {
1928 struct ale_txdesc *txd;
1929 int i;
1930
1931 sc->ale_cdata.ale_tx_prod = 0;
1932 sc->ale_cdata.ale_tx_cons = 0;
1933 sc->ale_cdata.ale_tx_cnt = 0;
1934
1935 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1936 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1937 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1938 txd = &sc->ale_cdata.ale_txdesc[i];
1939 txd->tx_m = NULL;
1940 }
1941 *sc->ale_cdata.ale_tx_cmb = 0;
1942 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1943 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1944 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1945 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1946 }
1947
1948 static void
1949 ale_init_rx_pages(struct ale_softc *sc)
1950 {
1951 struct ale_rx_page *rx_page;
1952 int i;
1953
1954 sc->ale_cdata.ale_rx_seqno = 0;
1955 sc->ale_cdata.ale_rx_curp = 0;
1956
1957 for (i = 0; i < ALE_RX_PAGES; i++) {
1958 rx_page = &sc->ale_cdata.ale_rx_page[i];
1959 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1960 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1961 rx_page->cons = 0;
1962 *rx_page->cmb_addr = 0;
1963 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1964 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1965 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1966 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1967 }
1968 }
1969
1970 static void
1971 ale_rxvlan(struct ale_softc *sc)
1972 {
1973 uint32_t reg;
1974
1975 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1976 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1977 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1978 reg |= MAC_CFG_VLAN_TAG_STRIP;
1979 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1980 }
1981
1982 static void
1983 ale_rxfilter(struct ale_softc *sc)
1984 {
1985 struct ethercom *ec = &sc->sc_ec;
1986 struct ifnet *ifp = &ec->ec_if;
1987 struct ether_multi *enm;
1988 struct ether_multistep step;
1989 uint32_t crc;
1990 uint32_t mchash[2];
1991 uint32_t rxcfg;
1992
1993 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1994 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1995 ifp->if_flags &= ~IFF_ALLMULTI;
1996
1997 /*
1998 * Always accept broadcast frames.
1999 */
2000 rxcfg |= MAC_CFG_BCAST;
2001
2002 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2003 ifp->if_flags |= IFF_ALLMULTI;
2004 if (ifp->if_flags & IFF_PROMISC)
2005 rxcfg |= MAC_CFG_PROMISC;
2006 else
2007 rxcfg |= MAC_CFG_ALLMULTI;
2008 mchash[0] = mchash[1] = 0xFFFFFFFF;
2009 } else {
2010 /* Program new filter. */
2011 memset(mchash, 0, sizeof(mchash));
2012
2013 ETHER_FIRST_MULTI(step, ec, enm);
2014 while (enm != NULL) {
2015 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2016 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2017 ETHER_NEXT_MULTI(step, enm);
2018 }
2019 }
2020
2021 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2022 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2023 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2024 }
2025