if_ale.c revision 1.17 1 /* $NetBSD: if_ale.c,v 1.17 2014/03/29 19:28:24 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.17 2014/03/29 19:28:24 christos Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <sys/rnd.h>
73
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80
81 #include <dev/pci/if_alereg.h>
82
83 static int ale_match(device_t, cfdata_t, void *);
84 static void ale_attach(device_t, device_t, void *);
85 static int ale_detach(device_t, int);
86
87 static int ale_miibus_readreg(device_t, int, int);
88 static void ale_miibus_writereg(device_t, int, int, int);
89 static void ale_miibus_statchg(struct ifnet *);
90
91 static int ale_init(struct ifnet *);
92 static void ale_start(struct ifnet *);
93 static int ale_ioctl(struct ifnet *, u_long, void *);
94 static void ale_watchdog(struct ifnet *);
95 static int ale_mediachange(struct ifnet *);
96 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
97
98 static int ale_intr(void *);
99 static int ale_rxeof(struct ale_softc *sc);
100 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 uint32_t, uint32_t *);
102 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void ale_txeof(struct ale_softc *);
104
105 static int ale_dma_alloc(struct ale_softc *);
106 static void ale_dma_free(struct ale_softc *);
107 static int ale_encap(struct ale_softc *, struct mbuf **);
108 static void ale_init_rx_pages(struct ale_softc *);
109 static void ale_init_tx_ring(struct ale_softc *);
110
111 static void ale_stop(struct ifnet *, int);
112 static void ale_tick(void *);
113 static void ale_get_macaddr(struct ale_softc *);
114 static void ale_mac_config(struct ale_softc *);
115 static void ale_phy_reset(struct ale_softc *);
116 static void ale_reset(struct ale_softc *);
117 static void ale_rxfilter(struct ale_softc *);
118 static void ale_rxvlan(struct ale_softc *);
119 static void ale_stats_clear(struct ale_softc *);
120 static void ale_stats_update(struct ale_softc *);
121 static void ale_stop_mac(struct ale_softc *);
122
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 ale_match, ale_attach, ale_detach, NULL);
125
126 int aledebug = 0;
127 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
128
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 struct ale_softc *sc = device_private(dev);
136 uint32_t v;
137 int i;
138
139 if (phy != sc->ale_phyaddr)
140 return 0;
141
142 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 switch (reg) {
144 case MII_100T2CR:
145 case MII_100T2SR:
146 case MII_EXTSR:
147 return 0;
148 default:
149 break;
150 }
151 }
152
153 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 DELAY(5);
157 v = CSR_READ_4(sc, ALE_MDIO);
158 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 break;
160 }
161
162 if (i == 0) {
163 printf("%s: phy read timeout: phy %d, reg %d\n",
164 device_xname(sc->sc_dev), phy, reg);
165 return 0;
166 }
167
168 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 struct ale_softc *sc = device_private(dev);
175 uint32_t v;
176 int i;
177
178 if (phy != sc->ale_phyaddr)
179 return;
180
181 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 switch (reg) {
183 case MII_100T2CR:
184 case MII_100T2SR:
185 case MII_EXTSR:
186 return;
187 default:
188 break;
189 }
190 }
191
192 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 DELAY(5);
197 v = CSR_READ_4(sc, ALE_MDIO);
198 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 break;
200 }
201
202 if (i == 0)
203 printf("%s: phy write timeout: phy %d, reg %d\n",
204 device_xname(sc->sc_dev), phy, reg);
205 }
206
207 static void
208 ale_miibus_statchg(struct ifnet *ifp)
209 {
210 struct ale_softc *sc = ifp->if_softc;
211 struct mii_data *mii = &sc->sc_miibus;
212 uint32_t reg;
213
214 if ((ifp->if_flags & IFF_RUNNING) == 0)
215 return;
216
217 sc->ale_flags &= ~ALE_FLAG_LINK;
218 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
219 (IFM_ACTIVE | IFM_AVALID)) {
220 switch (IFM_SUBTYPE(mii->mii_media_active)) {
221 case IFM_10_T:
222 case IFM_100_TX:
223 sc->ale_flags |= ALE_FLAG_LINK;
224 break;
225
226 case IFM_1000_T:
227 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
228 sc->ale_flags |= ALE_FLAG_LINK;
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 /* Stop Rx/Tx MACs. */
237 ale_stop_mac(sc);
238
239 /* Program MACs with resolved speed/duplex/flow-control. */
240 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
241 ale_mac_config(sc);
242 /* Reenable Tx/Rx MACs. */
243 reg = CSR_READ_4(sc, ALE_MAC_CFG);
244 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
245 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
246 }
247 }
248
249 void
250 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
251 {
252 struct ale_softc *sc = ifp->if_softc;
253 struct mii_data *mii = &sc->sc_miibus;
254
255 mii_pollstat(mii);
256 ifmr->ifm_status = mii->mii_media_status;
257 ifmr->ifm_active = mii->mii_media_active;
258 }
259
260 int
261 ale_mediachange(struct ifnet *ifp)
262 {
263 struct ale_softc *sc = ifp->if_softc;
264 struct mii_data *mii = &sc->sc_miibus;
265 int error;
266
267 if (mii->mii_instance != 0) {
268 struct mii_softc *miisc;
269
270 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
271 mii_phy_reset(miisc);
272 }
273 error = mii_mediachg(mii);
274
275 return error;
276 }
277
278 int
279 ale_match(device_t dev, cfdata_t match, void *aux)
280 {
281 struct pci_attach_args *pa = aux;
282
283 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
284 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
285 }
286
287 void
288 ale_get_macaddr(struct ale_softc *sc)
289 {
290 uint32_t ea[2], reg;
291 int i, vpdc;
292
293 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
294 if ((reg & SPI_VPD_ENB) != 0) {
295 reg &= ~SPI_VPD_ENB;
296 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
297 }
298
299 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
300 &vpdc, NULL)) {
301 /*
302 * PCI VPD capability found, let TWSI reload EEPROM.
303 * This will set ethernet address of controller.
304 */
305 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
306 TWSI_CTRL_SW_LD_START);
307 for (i = 100; i > 0; i--) {
308 DELAY(1000);
309 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
310 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
311 break;
312 }
313 if (i == 0)
314 printf("%s: reloading EEPROM timeout!\n",
315 device_xname(sc->sc_dev));
316 } else {
317 if (aledebug)
318 printf("%s: PCI VPD capability not found!\n",
319 device_xname(sc->sc_dev));
320 }
321
322 ea[0] = CSR_READ_4(sc, ALE_PAR0);
323 ea[1] = CSR_READ_4(sc, ALE_PAR1);
324 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
325 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
326 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
327 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
328 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
329 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
330 }
331
332 void
333 ale_phy_reset(struct ale_softc *sc)
334 {
335 /* Reset magic from Linux. */
336 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
337 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
338 GPHY_CTRL_PHY_PLL_ON);
339 DELAY(1000);
340 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
341 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
342 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
343 DELAY(1000);
344
345 #define ATPHY_DBG_ADDR 0x1D
346 #define ATPHY_DBG_DATA 0x1E
347
348 /* Enable hibernation mode. */
349 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 ATPHY_DBG_ADDR, 0x0B);
351 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
352 ATPHY_DBG_DATA, 0xBC00);
353 /* Set Class A/B for all modes. */
354 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 ATPHY_DBG_ADDR, 0x00);
356 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
357 ATPHY_DBG_DATA, 0x02EF);
358 /* Enable 10BT power saving. */
359 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 ATPHY_DBG_ADDR, 0x12);
361 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
362 ATPHY_DBG_DATA, 0x4C04);
363 /* Adjust 1000T power. */
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_ADDR, 0x04);
366 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
367 ATPHY_DBG_DATA, 0x8BBB);
368 /* 10BT center tap voltage. */
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_ADDR, 0x05);
371 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
372 ATPHY_DBG_DATA, 0x2C46);
373
374 #undef ATPHY_DBG_ADDR
375 #undef ATPHY_DBG_DATA
376 DELAY(1000);
377 }
378
379 void
380 ale_attach(device_t parent, device_t self, void *aux)
381 {
382 struct ale_softc *sc = device_private(self);
383 struct pci_attach_args *pa = aux;
384 pci_chipset_tag_t pc = pa->pa_pc;
385 pci_intr_handle_t ih;
386 const char *intrstr;
387 struct ifnet *ifp;
388 pcireg_t memtype;
389 int mii_flags, error = 0;
390 uint32_t rxf_len, txf_len;
391 const char *chipname;
392 char intrbuf[PCI_INTRSTR_LEN];
393
394 aprint_naive("\n");
395 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
396
397 sc->sc_dev = self;
398 sc->sc_dmat = pa->pa_dmat;
399 sc->sc_pct = pa->pa_pc;
400 sc->sc_pcitag = pa->pa_tag;
401
402 /*
403 * Allocate IO memory
404 */
405 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
406 switch (memtype) {
407 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
408 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
409 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
410 break;
411 default:
412 aprint_error_dev(self, "invalid base address register\n");
413 break;
414 }
415
416 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
417 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
418 aprint_error_dev(self, "could not map mem space\n");
419 return;
420 }
421
422 if (pci_intr_map(pa, &ih) != 0) {
423 aprint_error_dev(self, "could not map interrupt\n");
424 goto fail;
425 }
426
427 /*
428 * Allocate IRQ
429 */
430 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
431 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
432 if (sc->sc_irq_handle == NULL) {
433 aprint_error_dev(self, "could not establish interrupt");
434 if (intrstr != NULL)
435 aprint_error(" at %s", intrstr);
436 aprint_error("\n");
437 goto fail;
438 }
439
440 /* Set PHY address. */
441 sc->ale_phyaddr = ALE_PHY_ADDR;
442
443 /* Reset PHY. */
444 ale_phy_reset(sc);
445
446 /* Reset the ethernet controller. */
447 ale_reset(sc);
448
449 /* Get PCI and chip id/revision. */
450 sc->ale_rev = PCI_REVISION(pa->pa_class);
451 if (sc->ale_rev >= 0xF0) {
452 /* L2E Rev. B. AR8114 */
453 sc->ale_flags |= ALE_FLAG_FASTETHER;
454 chipname = "AR8114 (L2E RevB)";
455 } else {
456 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
457 /* L1E AR8121 */
458 sc->ale_flags |= ALE_FLAG_JUMBO;
459 chipname = "AR8121 (L1E)";
460 } else {
461 /* L2E Rev. A. AR8113 */
462 sc->ale_flags |= ALE_FLAG_FASTETHER;
463 chipname = "AR8113 (L2E RevA)";
464 }
465 }
466 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
467
468 /*
469 * All known controllers seems to require 4 bytes alignment
470 * of Tx buffers to make Tx checksum offload with custom
471 * checksum generation method work.
472 */
473 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
474
475 /*
476 * All known controllers seems to have issues on Rx checksum
477 * offload for fragmented IP datagrams.
478 */
479 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
480
481 /*
482 * Don't use Tx CMB. It is known to cause RRS update failure
483 * under certain circumstances. Typical phenomenon of the
484 * issue would be unexpected sequence number encountered in
485 * Rx handler.
486 */
487 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
488 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
489 MASTER_CHIP_REV_SHIFT;
490 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
491 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
492
493 /*
494 * Uninitialized hardware returns an invalid chip id/revision
495 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
496 */
497 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
498 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
499 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
500 rxf_len == 0xFFFFFFF) {
501 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
502 "%u Rx FIFO -- not initialized?\n",
503 sc->ale_chip_rev, txf_len, rxf_len);
504 goto fail;
505 }
506
507 if (aledebug) {
508 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
509 txf_len, rxf_len);
510 }
511
512 /* Set max allowable DMA size. */
513 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
514 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
515
516 callout_init(&sc->sc_tick_ch, 0);
517 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
518
519 error = ale_dma_alloc(sc);
520 if (error)
521 goto fail;
522
523 /* Load station address. */
524 ale_get_macaddr(sc);
525
526 aprint_normal_dev(self, "Ethernet address %s\n",
527 ether_sprintf(sc->ale_eaddr));
528
529 ifp = &sc->sc_ec.ec_if;
530 ifp->if_softc = sc;
531 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
532 ifp->if_init = ale_init;
533 ifp->if_ioctl = ale_ioctl;
534 ifp->if_start = ale_start;
535 ifp->if_stop = ale_stop;
536 ifp->if_watchdog = ale_watchdog;
537 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
538 IFQ_SET_READY(&ifp->if_snd);
539 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
540
541 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
542
543 #ifdef ALE_CHECKSUM
544 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
545 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
546 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
547 #endif
548
549 #if NVLAN > 0
550 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
551 #endif
552
553 /* Set up MII bus. */
554 sc->sc_miibus.mii_ifp = ifp;
555 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
556 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
557 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
558
559 sc->sc_ec.ec_mii = &sc->sc_miibus;
560 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
561 ale_mediastatus);
562 mii_flags = 0;
563 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
564 mii_flags |= MIIF_DOPAUSE;
565 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
566 MII_OFFSET_ANY, mii_flags);
567
568 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
569 aprint_error_dev(self, "no PHY found!\n");
570 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
571 0, NULL);
572 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
573 } else
574 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
575
576 if_attach(ifp);
577 ether_ifattach(ifp, sc->ale_eaddr);
578
579 if (pmf_device_register(self, NULL, NULL))
580 pmf_class_network_register(self, ifp);
581 else
582 aprint_error_dev(self, "couldn't establish power handler\n");
583
584 return;
585 fail:
586 ale_dma_free(sc);
587 if (sc->sc_irq_handle != NULL) {
588 pci_intr_disestablish(pc, sc->sc_irq_handle);
589 sc->sc_irq_handle = NULL;
590 }
591 if (sc->sc_mem_size) {
592 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
593 sc->sc_mem_size = 0;
594 }
595 }
596
597 static int
598 ale_detach(device_t self, int flags)
599 {
600 struct ale_softc *sc = device_private(self);
601 struct ifnet *ifp = &sc->sc_ec.ec_if;
602 int s;
603
604 pmf_device_deregister(self);
605 s = splnet();
606 ale_stop(ifp, 0);
607 splx(s);
608
609 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
610
611 /* Delete all remaining media. */
612 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
613
614 ether_ifdetach(ifp);
615 if_detach(ifp);
616 ale_dma_free(sc);
617
618 if (sc->sc_irq_handle != NULL) {
619 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
620 sc->sc_irq_handle = NULL;
621 }
622 if (sc->sc_mem_size) {
623 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
624 sc->sc_mem_size = 0;
625 }
626
627 return 0;
628 }
629
630
631 static int
632 ale_dma_alloc(struct ale_softc *sc)
633 {
634 struct ale_txdesc *txd;
635 int nsegs, error, guard_size, i;
636
637 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
638 guard_size = ALE_JUMBO_FRAMELEN;
639 else
640 guard_size = ALE_MAX_FRAMELEN;
641 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
642 ALE_RX_PAGE_ALIGN);
643
644 /*
645 * Create DMA stuffs for TX ring
646 */
647 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
648 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
649 if (error) {
650 sc->ale_cdata.ale_tx_ring_map = NULL;
651 return ENOBUFS;
652 }
653
654 /* Allocate DMA'able memory for TX ring */
655 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
656 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
657 &nsegs, BUS_DMA_WAITOK);
658 if (error) {
659 printf("%s: could not allocate DMA'able memory for Tx ring, "
660 "error = %i\n", device_xname(sc->sc_dev), error);
661 return error;
662 }
663
664 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
665 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
666 BUS_DMA_NOWAIT);
667 if (error)
668 return ENOBUFS;
669
670 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
671
672 /* Load the DMA map for Tx ring. */
673 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
674 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
675 if (error) {
676 printf("%s: could not load DMA'able memory for Tx ring.\n",
677 device_xname(sc->sc_dev));
678 bus_dmamem_free(sc->sc_dmat,
679 &sc->ale_cdata.ale_tx_ring_seg, 1);
680 return error;
681 }
682 sc->ale_cdata.ale_tx_ring_paddr =
683 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
684
685 for (i = 0; i < ALE_RX_PAGES; i++) {
686 /*
687 * Create DMA stuffs for RX pages
688 */
689 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
690 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
691 &sc->ale_cdata.ale_rx_page[i].page_map);
692 if (error) {
693 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
694 return ENOBUFS;
695 }
696
697 /* Allocate DMA'able memory for RX pages */
698 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
699 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
700 1, &nsegs, BUS_DMA_WAITOK);
701 if (error) {
702 printf("%s: could not allocate DMA'able memory for "
703 "Rx ring.\n", device_xname(sc->sc_dev));
704 return error;
705 }
706 error = bus_dmamem_map(sc->sc_dmat,
707 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
708 sc->ale_pagesize,
709 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
710 BUS_DMA_NOWAIT);
711 if (error)
712 return ENOBUFS;
713
714 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
715 sc->ale_pagesize);
716
717 /* Load the DMA map for Rx pages. */
718 error = bus_dmamap_load(sc->sc_dmat,
719 sc->ale_cdata.ale_rx_page[i].page_map,
720 sc->ale_cdata.ale_rx_page[i].page_addr,
721 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
722 if (error) {
723 printf("%s: could not load DMA'able memory for "
724 "Rx pages.\n", device_xname(sc->sc_dev));
725 bus_dmamem_free(sc->sc_dmat,
726 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
727 return error;
728 }
729 sc->ale_cdata.ale_rx_page[i].page_paddr =
730 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
731 }
732
733 /*
734 * Create DMA stuffs for Tx CMB.
735 */
736 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
737 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
738 if (error) {
739 sc->ale_cdata.ale_tx_cmb_map = NULL;
740 return ENOBUFS;
741 }
742
743 /* Allocate DMA'able memory for Tx CMB. */
744 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
745 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
746
747 if (error) {
748 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
749 device_xname(sc->sc_dev));
750 return error;
751 }
752
753 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
754 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
755 BUS_DMA_NOWAIT);
756 if (error)
757 return ENOBUFS;
758
759 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
760
761 /* Load the DMA map for Tx CMB. */
762 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
763 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
764 if (error) {
765 printf("%s: could not load DMA'able memory for Tx CMB.\n",
766 device_xname(sc->sc_dev));
767 bus_dmamem_free(sc->sc_dmat,
768 &sc->ale_cdata.ale_tx_cmb_seg, 1);
769 return error;
770 }
771
772 sc->ale_cdata.ale_tx_cmb_paddr =
773 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
774
775 for (i = 0; i < ALE_RX_PAGES; i++) {
776 /*
777 * Create DMA stuffs for Rx CMB.
778 */
779 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
780 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
781 &sc->ale_cdata.ale_rx_page[i].cmb_map);
782 if (error) {
783 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
784 return ENOBUFS;
785 }
786
787 /* Allocate DMA'able memory for Rx CMB */
788 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
789 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
790 &nsegs, BUS_DMA_WAITOK);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for "
793 "Rx CMB\n", device_xname(sc->sc_dev));
794 return error;
795 }
796 error = bus_dmamem_map(sc->sc_dmat,
797 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
798 ALE_RX_CMB_SZ,
799 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
800 BUS_DMA_NOWAIT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
805
806 /* Load the DMA map for Rx CMB */
807 error = bus_dmamap_load(sc->sc_dmat,
808 sc->ale_cdata.ale_rx_page[i].cmb_map,
809 sc->ale_cdata.ale_rx_page[i].cmb_addr,
810 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not load DMA'able memory for Rx CMB"
813 "\n", device_xname(sc->sc_dev));
814 bus_dmamem_free(sc->sc_dmat,
815 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
816 return error;
817 }
818 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
819 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
820 }
821
822
823 /* Create DMA maps for Tx buffers. */
824 for (i = 0; i < ALE_TX_RING_CNT; i++) {
825 txd = &sc->ale_cdata.ale_txdesc[i];
826 txd->tx_m = NULL;
827 txd->tx_dmamap = NULL;
828 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
829 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
830 &txd->tx_dmamap);
831 if (error) {
832 txd->tx_dmamap = NULL;
833 printf("%s: could not create Tx dmamap.\n",
834 device_xname(sc->sc_dev));
835 return error;
836 }
837 }
838
839 return 0;
840 }
841
842 static void
843 ale_dma_free(struct ale_softc *sc)
844 {
845 struct ale_txdesc *txd;
846 int i;
847
848 /* Tx buffers. */
849 for (i = 0; i < ALE_TX_RING_CNT; i++) {
850 txd = &sc->ale_cdata.ale_txdesc[i];
851 if (txd->tx_dmamap != NULL) {
852 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
853 txd->tx_dmamap = NULL;
854 }
855 }
856
857 /* Tx descriptor ring. */
858 if (sc->ale_cdata.ale_tx_ring_map != NULL)
859 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
860 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
861 sc->ale_cdata.ale_tx_ring != NULL)
862 bus_dmamem_free(sc->sc_dmat,
863 &sc->ale_cdata.ale_tx_ring_seg, 1);
864 sc->ale_cdata.ale_tx_ring = NULL;
865 sc->ale_cdata.ale_tx_ring_map = NULL;
866
867 /* Rx page block. */
868 for (i = 0; i < ALE_RX_PAGES; i++) {
869 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
870 bus_dmamap_unload(sc->sc_dmat,
871 sc->ale_cdata.ale_rx_page[i].page_map);
872 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
873 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
874 bus_dmamem_free(sc->sc_dmat,
875 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
876 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
877 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
878 }
879
880 /* Rx CMB. */
881 for (i = 0; i < ALE_RX_PAGES; i++) {
882 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
883 bus_dmamap_unload(sc->sc_dmat,
884 sc->ale_cdata.ale_rx_page[i].cmb_map);
885 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
886 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
887 bus_dmamem_free(sc->sc_dmat,
888 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
889 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
890 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
891 }
892
893 /* Tx CMB. */
894 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
895 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
896 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
897 sc->ale_cdata.ale_tx_cmb != NULL)
898 bus_dmamem_free(sc->sc_dmat,
899 &sc->ale_cdata.ale_tx_cmb_seg, 1);
900 sc->ale_cdata.ale_tx_cmb = NULL;
901 sc->ale_cdata.ale_tx_cmb_map = NULL;
902
903 }
904
905 static int
906 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
907 {
908 struct ale_txdesc *txd, *txd_last;
909 struct tx_desc *desc;
910 struct mbuf *m;
911 bus_dmamap_t map;
912 uint32_t cflags, poff, vtag;
913 int error, i, nsegs, prod;
914 #if NVLAN > 0
915 struct m_tag *mtag;
916 #endif
917
918 m = *m_head;
919 cflags = vtag = 0;
920 poff = 0;
921
922 prod = sc->ale_cdata.ale_tx_prod;
923 txd = &sc->ale_cdata.ale_txdesc[prod];
924 txd_last = txd;
925 map = txd->tx_dmamap;
926
927 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
928 if (error == EFBIG) {
929 error = 0;
930
931 *m_head = m_pullup(*m_head, MHLEN);
932 if (*m_head == NULL) {
933 printf("%s: can't defrag TX mbuf\n",
934 device_xname(sc->sc_dev));
935 return ENOBUFS;
936 }
937
938 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
939 BUS_DMA_NOWAIT);
940
941 if (error != 0) {
942 printf("%s: could not load defragged TX mbuf\n",
943 device_xname(sc->sc_dev));
944 m_freem(*m_head);
945 *m_head = NULL;
946 return error;
947 }
948 } else if (error) {
949 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
950 return error;
951 }
952
953 nsegs = map->dm_nsegs;
954
955 if (nsegs == 0) {
956 m_freem(*m_head);
957 *m_head = NULL;
958 return EIO;
959 }
960
961 /* Check descriptor overrun. */
962 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
963 bus_dmamap_unload(sc->sc_dmat, map);
964 return ENOBUFS;
965 }
966 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
967 BUS_DMASYNC_PREWRITE);
968
969 m = *m_head;
970 /* Configure Tx checksum offload. */
971 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
972 /*
973 * AR81xx supports Tx custom checksum offload feature
974 * that offloads single 16bit checksum computation.
975 * So you can choose one among IP, TCP and UDP.
976 * Normally driver sets checksum start/insertion
977 * position from the information of TCP/UDP frame as
978 * TCP/UDP checksum takes more time than that of IP.
979 * However it seems that custom checksum offload
980 * requires 4 bytes aligned Tx buffers due to hardware
981 * bug.
982 * AR81xx also supports explicit Tx checksum computation
983 * if it is told that the size of IP header and TCP
984 * header(for UDP, the header size does not matter
985 * because it's fixed length). However with this scheme
986 * TSO does not work so you have to choose one either
987 * TSO or explicit Tx checksum offload. I chosen TSO
988 * plus custom checksum offload with work-around which
989 * will cover most common usage for this consumer
990 * ethernet controller. The work-around takes a lot of
991 * CPU cycles if Tx buffer is not aligned on 4 bytes
992 * boundary, though.
993 */
994 cflags |= ALE_TD_CXSUM;
995 /* Set checksum start offset. */
996 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
997 }
998
999 #if NVLAN > 0
1000 /* Configure VLAN hardware tag insertion. */
1001 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1002 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1003 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1004 cflags |= ALE_TD_INSERT_VLAN_TAG;
1005 }
1006 #endif
1007
1008 desc = NULL;
1009 for (i = 0; i < nsegs; i++) {
1010 desc = &sc->ale_cdata.ale_tx_ring[prod];
1011 desc->addr = htole64(map->dm_segs[i].ds_addr);
1012 desc->len =
1013 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1014 desc->flags = htole32(cflags);
1015 sc->ale_cdata.ale_tx_cnt++;
1016 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1017 }
1018 /* Update producer index. */
1019 sc->ale_cdata.ale_tx_prod = prod;
1020
1021 /* Finally set EOP on the last descriptor. */
1022 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1023 desc = &sc->ale_cdata.ale_tx_ring[prod];
1024 desc->flags |= htole32(ALE_TD_EOP);
1025
1026 /* Swap dmamap of the first and the last. */
1027 txd = &sc->ale_cdata.ale_txdesc[prod];
1028 map = txd_last->tx_dmamap;
1029 txd_last->tx_dmamap = txd->tx_dmamap;
1030 txd->tx_dmamap = map;
1031 txd->tx_m = m;
1032
1033 /* Sync descriptors. */
1034 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1035 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1036
1037 return 0;
1038 }
1039
1040 static void
1041 ale_start(struct ifnet *ifp)
1042 {
1043 struct ale_softc *sc = ifp->if_softc;
1044 struct mbuf *m_head;
1045 int enq;
1046
1047 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1048 return;
1049
1050 /* Reclaim transmitted frames. */
1051 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1052 ale_txeof(sc);
1053
1054 enq = 0;
1055 for (;;) {
1056 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1057 if (m_head == NULL)
1058 break;
1059
1060 /*
1061 * Pack the data into the transmit ring. If we
1062 * don't have room, set the OACTIVE flag and wait
1063 * for the NIC to drain the ring.
1064 */
1065 if (ale_encap(sc, &m_head)) {
1066 if (m_head == NULL)
1067 break;
1068 IF_PREPEND(&ifp->if_snd, m_head);
1069 ifp->if_flags |= IFF_OACTIVE;
1070 break;
1071 }
1072 enq = 1;
1073
1074 /*
1075 * If there's a BPF listener, bounce a copy of this frame
1076 * to him.
1077 */
1078 bpf_mtap(ifp, m_head);
1079 }
1080
1081 if (enq) {
1082 /* Kick. */
1083 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1084 sc->ale_cdata.ale_tx_prod);
1085
1086 /* Set a timeout in case the chip goes out to lunch. */
1087 ifp->if_timer = ALE_TX_TIMEOUT;
1088 }
1089 }
1090
1091 static void
1092 ale_watchdog(struct ifnet *ifp)
1093 {
1094 struct ale_softc *sc = ifp->if_softc;
1095
1096 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1097 printf("%s: watchdog timeout (missed link)\n",
1098 device_xname(sc->sc_dev));
1099 ifp->if_oerrors++;
1100 ale_init(ifp);
1101 return;
1102 }
1103
1104 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1105 ifp->if_oerrors++;
1106 ale_init(ifp);
1107
1108 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1109 ale_start(ifp);
1110 }
1111
1112 static int
1113 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 struct ale_softc *sc = ifp->if_softc;
1116 int s, error;
1117
1118 s = splnet();
1119
1120 error = ether_ioctl(ifp, cmd, data);
1121 if (error == ENETRESET) {
1122 if (ifp->if_flags & IFF_RUNNING)
1123 ale_rxfilter(sc);
1124 error = 0;
1125 }
1126
1127 splx(s);
1128 return error;
1129 }
1130
1131 static void
1132 ale_mac_config(struct ale_softc *sc)
1133 {
1134 struct mii_data *mii;
1135 uint32_t reg;
1136
1137 mii = &sc->sc_miibus;
1138 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1139 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1140 MAC_CFG_SPEED_MASK);
1141
1142 /* Reprogram MAC with resolved speed/duplex. */
1143 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1144 case IFM_10_T:
1145 case IFM_100_TX:
1146 reg |= MAC_CFG_SPEED_10_100;
1147 break;
1148 case IFM_1000_T:
1149 reg |= MAC_CFG_SPEED_1000;
1150 break;
1151 }
1152 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1153 reg |= MAC_CFG_FULL_DUPLEX;
1154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1155 reg |= MAC_CFG_TX_FC;
1156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1157 reg |= MAC_CFG_RX_FC;
1158 }
1159 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1160 }
1161
1162 static void
1163 ale_stats_clear(struct ale_softc *sc)
1164 {
1165 struct smb sb;
1166 uint32_t *reg;
1167 int i;
1168
1169 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1170 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1171 i += sizeof(uint32_t);
1172 }
1173 /* Read Tx statistics. */
1174 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1175 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1176 i += sizeof(uint32_t);
1177 }
1178 }
1179
1180 static void
1181 ale_stats_update(struct ale_softc *sc)
1182 {
1183 struct ifnet *ifp = &sc->sc_ec.ec_if;
1184 struct ale_hw_stats *stat;
1185 struct smb sb, *smb;
1186 uint32_t *reg;
1187 int i;
1188
1189 stat = &sc->ale_stats;
1190 smb = &sb;
1191
1192 /* Read Rx statistics. */
1193 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1194 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1195 i += sizeof(uint32_t);
1196 }
1197 /* Read Tx statistics. */
1198 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1199 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1200 i += sizeof(uint32_t);
1201 }
1202
1203 /* Rx stats. */
1204 stat->rx_frames += smb->rx_frames;
1205 stat->rx_bcast_frames += smb->rx_bcast_frames;
1206 stat->rx_mcast_frames += smb->rx_mcast_frames;
1207 stat->rx_pause_frames += smb->rx_pause_frames;
1208 stat->rx_control_frames += smb->rx_control_frames;
1209 stat->rx_crcerrs += smb->rx_crcerrs;
1210 stat->rx_lenerrs += smb->rx_lenerrs;
1211 stat->rx_bytes += smb->rx_bytes;
1212 stat->rx_runts += smb->rx_runts;
1213 stat->rx_fragments += smb->rx_fragments;
1214 stat->rx_pkts_64 += smb->rx_pkts_64;
1215 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1216 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1217 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1218 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1219 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1220 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1221 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1222 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1223 stat->rx_rrs_errs += smb->rx_rrs_errs;
1224 stat->rx_alignerrs += smb->rx_alignerrs;
1225 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1226 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1227 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1228
1229 /* Tx stats. */
1230 stat->tx_frames += smb->tx_frames;
1231 stat->tx_bcast_frames += smb->tx_bcast_frames;
1232 stat->tx_mcast_frames += smb->tx_mcast_frames;
1233 stat->tx_pause_frames += smb->tx_pause_frames;
1234 stat->tx_excess_defer += smb->tx_excess_defer;
1235 stat->tx_control_frames += smb->tx_control_frames;
1236 stat->tx_deferred += smb->tx_deferred;
1237 stat->tx_bytes += smb->tx_bytes;
1238 stat->tx_pkts_64 += smb->tx_pkts_64;
1239 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1240 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1241 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1242 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1243 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1244 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1245 stat->tx_single_colls += smb->tx_single_colls;
1246 stat->tx_multi_colls += smb->tx_multi_colls;
1247 stat->tx_late_colls += smb->tx_late_colls;
1248 stat->tx_excess_colls += smb->tx_excess_colls;
1249 stat->tx_abort += smb->tx_abort;
1250 stat->tx_underrun += smb->tx_underrun;
1251 stat->tx_desc_underrun += smb->tx_desc_underrun;
1252 stat->tx_lenerrs += smb->tx_lenerrs;
1253 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1254 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1255 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1256
1257 /* Update counters in ifnet. */
1258 ifp->if_opackets += smb->tx_frames;
1259
1260 ifp->if_collisions += smb->tx_single_colls +
1261 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1262 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1263
1264 /*
1265 * XXX
1266 * tx_pkts_truncated counter looks suspicious. It constantly
1267 * increments with no sign of Tx errors. This may indicate
1268 * the counter name is not correct one so I've removed the
1269 * counter in output errors.
1270 */
1271 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1272 smb->tx_underrun;
1273
1274 ifp->if_ipackets += smb->rx_frames;
1275
1276 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1277 smb->rx_runts + smb->rx_pkts_truncated +
1278 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1279 smb->rx_alignerrs;
1280 }
1281
1282 static int
1283 ale_intr(void *xsc)
1284 {
1285 struct ale_softc *sc = xsc;
1286 struct ifnet *ifp = &sc->sc_ec.ec_if;
1287 uint32_t status;
1288
1289 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1290 if ((status & ALE_INTRS) == 0)
1291 return 0;
1292
1293 /* Acknowledge and disable interrupts. */
1294 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1295
1296 if (ifp->if_flags & IFF_RUNNING) {
1297 int error;
1298
1299 error = ale_rxeof(sc);
1300 if (error) {
1301 sc->ale_stats.reset_brk_seq++;
1302 ale_init(ifp);
1303 return 0;
1304 }
1305
1306 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1307 if (status & INTR_DMA_RD_TO_RST)
1308 printf("%s: DMA read error! -- resetting\n",
1309 device_xname(sc->sc_dev));
1310 if (status & INTR_DMA_WR_TO_RST)
1311 printf("%s: DMA write error! -- resetting\n",
1312 device_xname(sc->sc_dev));
1313 ale_init(ifp);
1314 return 0;
1315 }
1316
1317 ale_txeof(sc);
1318 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1319 ale_start(ifp);
1320 }
1321
1322 /* Re-enable interrupts. */
1323 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1324 return 1;
1325 }
1326
1327 static void
1328 ale_txeof(struct ale_softc *sc)
1329 {
1330 struct ifnet *ifp = &sc->sc_ec.ec_if;
1331 struct ale_txdesc *txd;
1332 uint32_t cons, prod;
1333 int prog;
1334
1335 if (sc->ale_cdata.ale_tx_cnt == 0)
1336 return;
1337
1338 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1339 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1340 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1341 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1342 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1343 BUS_DMASYNC_POSTREAD);
1344 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1345 } else
1346 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1347 cons = sc->ale_cdata.ale_tx_cons;
1348 /*
1349 * Go through our Tx list and free mbufs for those
1350 * frames which have been transmitted.
1351 */
1352 for (prog = 0; cons != prod; prog++,
1353 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1354 if (sc->ale_cdata.ale_tx_cnt <= 0)
1355 break;
1356 prog++;
1357 ifp->if_flags &= ~IFF_OACTIVE;
1358 sc->ale_cdata.ale_tx_cnt--;
1359 txd = &sc->ale_cdata.ale_txdesc[cons];
1360 if (txd->tx_m != NULL) {
1361 /* Reclaim transmitted mbufs. */
1362 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1363 m_freem(txd->tx_m);
1364 txd->tx_m = NULL;
1365 }
1366 }
1367
1368 if (prog > 0) {
1369 sc->ale_cdata.ale_tx_cons = cons;
1370 /*
1371 * Unarm watchdog timer only when there is no pending
1372 * Tx descriptors in queue.
1373 */
1374 if (sc->ale_cdata.ale_tx_cnt == 0)
1375 ifp->if_timer = 0;
1376 }
1377 }
1378
1379 static void
1380 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1381 uint32_t length, uint32_t *prod)
1382 {
1383 struct ale_rx_page *rx_page;
1384
1385 rx_page = *page;
1386 /* Update consumer position. */
1387 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1388 ALE_RX_PAGE_ALIGN);
1389 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1390 /*
1391 * End of Rx page reached, let hardware reuse
1392 * this page.
1393 */
1394 rx_page->cons = 0;
1395 *rx_page->cmb_addr = 0;
1396 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1397 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1398 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1399 RXF_VALID);
1400 /* Switch to alternate Rx page. */
1401 sc->ale_cdata.ale_rx_curp ^= 1;
1402 rx_page = *page =
1403 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1404 /* Page flipped, sync CMB and Rx page. */
1405 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1406 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1407 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1408 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 /* Sync completed, cache updated producer index. */
1410 *prod = *rx_page->cmb_addr;
1411 }
1412 }
1413
1414
1415 /*
1416 * It seems that AR81xx controller can compute partial checksum.
1417 * The partial checksum value can be used to accelerate checksum
1418 * computation for fragmented TCP/UDP packets. Upper network stack
1419 * already takes advantage of the partial checksum value in IP
1420 * reassembly stage. But I'm not sure the correctness of the
1421 * partial hardware checksum assistance due to lack of data sheet.
1422 * In addition, the Rx feature of controller that requires copying
1423 * for every frames effectively nullifies one of most nice offload
1424 * capability of controller.
1425 */
1426 static void
1427 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1428 {
1429 if (status & ALE_RD_IPCSUM_NOK)
1430 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1431
1432 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1433 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1434 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1435 (status & ALE_RD_TCP_UDPCSUM_NOK))
1436 {
1437 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1438 }
1439 } else {
1440 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1441 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1442 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1443 }
1444 }
1445 }
1446 /*
1447 * Don't mark bad checksum for TCP/UDP frames
1448 * as fragmented frames may always have set
1449 * bad checksummed bit of frame status.
1450 */
1451 }
1452
1453 /* Process received frames. */
1454 static int
1455 ale_rxeof(struct ale_softc *sc)
1456 {
1457 struct ifnet *ifp = &sc->sc_ec.ec_if;
1458 struct ale_rx_page *rx_page;
1459 struct rx_rs *rs;
1460 struct mbuf *m;
1461 uint32_t length, prod, seqno, status;
1462 int prog;
1463
1464 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1465 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1466 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1467 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1468 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 /*
1470 * Don't directly access producer index as hardware may
1471 * update it while Rx handler is in progress. It would
1472 * be even better if there is a way to let hardware
1473 * know how far driver processed its received frames.
1474 * Alternatively, hardware could provide a way to disable
1475 * CMB updates until driver acknowledges the end of CMB
1476 * access.
1477 */
1478 prod = *rx_page->cmb_addr;
1479 for (prog = 0; ; prog++) {
1480 if (rx_page->cons >= prod)
1481 break;
1482 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1483 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1484 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1485 /*
1486 * Normally I believe this should not happen unless
1487 * severe driver bug or corrupted memory. However
1488 * it seems to happen under certain conditions which
1489 * is triggered by abrupt Rx events such as initiation
1490 * of bulk transfer of remote host. It's not easy to
1491 * reproduce this and I doubt it could be related
1492 * with FIFO overflow of hardware or activity of Tx
1493 * CMB updates. I also remember similar behaviour
1494 * seen on RealTek 8139 which uses resembling Rx
1495 * scheme.
1496 */
1497 if (aledebug)
1498 printf("%s: garbled seq: %u, expected: %u -- "
1499 "resetting!\n", device_xname(sc->sc_dev),
1500 seqno, sc->ale_cdata.ale_rx_seqno);
1501 return EIO;
1502 }
1503 /* Frame received. */
1504 sc->ale_cdata.ale_rx_seqno++;
1505 length = ALE_RX_BYTES(le32toh(rs->length));
1506 status = le32toh(rs->flags);
1507 if (status & ALE_RD_ERROR) {
1508 /*
1509 * We want to pass the following frames to upper
1510 * layer regardless of error status of Rx return
1511 * status.
1512 *
1513 * o IP/TCP/UDP checksum is bad.
1514 * o frame length and protocol specific length
1515 * does not match.
1516 */
1517 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1518 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1519 ALE_RD_TRUNC)) {
1520 ale_rx_update_page(sc, &rx_page, length, &prod);
1521 continue;
1522 }
1523 }
1524 /*
1525 * m_devget(9) is major bottle-neck of ale(4)(It comes
1526 * from hardware limitation). For jumbo frames we could
1527 * get a slightly better performance if driver use
1528 * m_getjcl(9) with proper buffer size argument. However
1529 * that would make code more complicated and I don't
1530 * think users would expect good Rx performance numbers
1531 * on these low-end consumer ethernet controller.
1532 */
1533 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1534 0, ifp, NULL);
1535 if (m == NULL) {
1536 ifp->if_iqdrops++;
1537 ale_rx_update_page(sc, &rx_page, length, &prod);
1538 continue;
1539 }
1540 if (status & ALE_RD_IPV4)
1541 ale_rxcsum(sc, m, status);
1542 #if NVLAN > 0
1543 if (status & ALE_RD_VLAN) {
1544 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1545 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1546 }
1547 #endif
1548
1549
1550 bpf_mtap(ifp, m);
1551
1552 /* Pass it to upper layer. */
1553 (*ifp->if_input)(ifp, m);
1554
1555 ale_rx_update_page(sc, &rx_page, length, &prod);
1556 }
1557
1558 return 0;
1559 }
1560
1561 static void
1562 ale_tick(void *xsc)
1563 {
1564 struct ale_softc *sc = xsc;
1565 struct mii_data *mii = &sc->sc_miibus;
1566 int s;
1567
1568 s = splnet();
1569 mii_tick(mii);
1570 ale_stats_update(sc);
1571 splx(s);
1572
1573 callout_schedule(&sc->sc_tick_ch, hz);
1574 }
1575
1576 static void
1577 ale_reset(struct ale_softc *sc)
1578 {
1579 uint32_t reg;
1580 int i;
1581
1582 /* Initialize PCIe module. From Linux. */
1583 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1584
1585 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1586 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1587 DELAY(10);
1588 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1589 break;
1590 }
1591 if (i == 0)
1592 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1593
1594 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1595 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1596 break;
1597 DELAY(10);
1598 }
1599
1600 if (i == 0)
1601 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1602 reg);
1603 }
1604
1605 static int
1606 ale_init(struct ifnet *ifp)
1607 {
1608 struct ale_softc *sc = ifp->if_softc;
1609 struct mii_data *mii;
1610 uint8_t eaddr[ETHER_ADDR_LEN];
1611 bus_addr_t paddr;
1612 uint32_t reg, rxf_hi, rxf_lo;
1613
1614 /*
1615 * Cancel any pending I/O.
1616 */
1617 ale_stop(ifp, 0);
1618
1619 /*
1620 * Reset the chip to a known state.
1621 */
1622 ale_reset(sc);
1623
1624 /* Initialize Tx descriptors, DMA memory blocks. */
1625 ale_init_rx_pages(sc);
1626 ale_init_tx_ring(sc);
1627
1628 /* Reprogram the station address. */
1629 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1630 CSR_WRITE_4(sc, ALE_PAR0,
1631 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1632 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1633
1634 /*
1635 * Clear WOL status and disable all WOL feature as WOL
1636 * would interfere Rx operation under normal environments.
1637 */
1638 CSR_READ_4(sc, ALE_WOL_CFG);
1639 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1640
1641 /*
1642 * Set Tx descriptor/RXF0/CMB base addresses. They share
1643 * the same high address part of DMAable region.
1644 */
1645 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1646 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1647 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1648 CSR_WRITE_4(sc, ALE_TPD_CNT,
1649 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1650
1651 /* Set Rx page base address, note we use single queue. */
1652 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1653 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1654 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1655 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1656
1657 /* Set Tx/Rx CMB addresses. */
1658 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1659 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1660 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1661 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1662 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1663 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1664
1665 /* Mark RXF0 is valid. */
1666 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1667 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1668 /*
1669 * No need to initialize RFX1/RXF2/RXF3. We don't use
1670 * multi-queue yet.
1671 */
1672
1673 /* Set Rx page size, excluding guard frame size. */
1674 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1675
1676 /* Tell hardware that we're ready to load DMA blocks. */
1677 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1678
1679 /* Set Rx/Tx interrupt trigger threshold. */
1680 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1681 (4 << INT_TRIG_TX_THRESH_SHIFT));
1682 /*
1683 * XXX
1684 * Set interrupt trigger timer, its purpose and relation
1685 * with interrupt moderation mechanism is not clear yet.
1686 */
1687 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1688 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1689 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1690
1691 /* Configure interrupt moderation timer. */
1692 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1693 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1694 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1695 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1696 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1697 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1698 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1699 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1700 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1701 reg |= MASTER_IM_RX_TIMER_ENB;
1702 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1703 reg |= MASTER_IM_TX_TIMER_ENB;
1704 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1705 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1706
1707 /* Set Maximum frame size of controller. */
1708 if (ifp->if_mtu < ETHERMTU)
1709 sc->ale_max_frame_size = ETHERMTU;
1710 else
1711 sc->ale_max_frame_size = ifp->if_mtu;
1712 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1713 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1714
1715 /* Configure IPG/IFG parameters. */
1716 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1717 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1718 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1719 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1720 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1721
1722 /* Set parameters for half-duplex media. */
1723 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1724 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1725 HDPX_CFG_LCOL_MASK) |
1726 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1727 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1728 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1729 HDPX_CFG_ABEBT_MASK) |
1730 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1731 HDPX_CFG_JAMIPG_MASK));
1732
1733 /* Configure Tx jumbo frame parameters. */
1734 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1735 if (ifp->if_mtu < ETHERMTU)
1736 reg = sc->ale_max_frame_size;
1737 else if (ifp->if_mtu < 6 * 1024)
1738 reg = (sc->ale_max_frame_size * 2) / 3;
1739 else
1740 reg = sc->ale_max_frame_size / 2;
1741 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1742 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1743 TX_JUMBO_THRESH_UNIT_SHIFT);
1744 }
1745
1746 /* Configure TxQ. */
1747 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1748 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1749 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1750 TXQ_CFG_TPD_BURST_MASK;
1751 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1752
1753 /* Configure Rx jumbo frame & flow control parameters. */
1754 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1755 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1756 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1757 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1758 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1759 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1760 RX_JUMBO_LKAH_MASK));
1761 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1762 rxf_hi = (reg * 7) / 10;
1763 rxf_lo = (reg * 3)/ 10;
1764 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1765 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1766 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1767 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1768 RX_FIFO_PAUSE_THRESH_HI_MASK));
1769 }
1770
1771 /* Disable RSS. */
1772 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1773 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1774
1775 /* Configure RxQ. */
1776 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1777 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1778
1779 /* Configure DMA parameters. */
1780 reg = 0;
1781 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1782 reg |= DMA_CFG_TXCMB_ENB;
1783 CSR_WRITE_4(sc, ALE_DMA_CFG,
1784 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1785 sc->ale_dma_rd_burst | reg |
1786 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1787 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1788 DMA_CFG_RD_DELAY_CNT_MASK) |
1789 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1790 DMA_CFG_WR_DELAY_CNT_MASK));
1791
1792 /*
1793 * Hardware can be configured to issue SMB interrupt based
1794 * on programmed interval. Since there is a callout that is
1795 * invoked for every hz in driver we use that instead of
1796 * relying on periodic SMB interrupt.
1797 */
1798 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1799
1800 /* Clear MAC statistics. */
1801 ale_stats_clear(sc);
1802
1803 /*
1804 * Configure Tx/Rx MACs.
1805 * - Auto-padding for short frames.
1806 * - Enable CRC generation.
1807 * Actual reconfiguration of MAC for resolved speed/duplex
1808 * is followed after detection of link establishment.
1809 * AR81xx always does checksum computation regardless of
1810 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1811 * cause Rx handling issue for fragmented IP datagrams due
1812 * to silicon bug.
1813 */
1814 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1815 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1816 MAC_CFG_PREAMBLE_MASK);
1817 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1818 reg |= MAC_CFG_SPEED_10_100;
1819 else
1820 reg |= MAC_CFG_SPEED_1000;
1821 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1822
1823 /* Set up the receive filter. */
1824 ale_rxfilter(sc);
1825 ale_rxvlan(sc);
1826
1827 /* Acknowledge all pending interrupts and clear it. */
1828 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1829 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1830 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1831
1832 sc->ale_flags &= ~ALE_FLAG_LINK;
1833
1834 /* Switch to the current media. */
1835 mii = &sc->sc_miibus;
1836 mii_mediachg(mii);
1837
1838 callout_schedule(&sc->sc_tick_ch, hz);
1839
1840 ifp->if_flags |= IFF_RUNNING;
1841 ifp->if_flags &= ~IFF_OACTIVE;
1842
1843 return 0;
1844 }
1845
1846 static void
1847 ale_stop(struct ifnet *ifp, int disable)
1848 {
1849 struct ale_softc *sc = ifp->if_softc;
1850 struct ale_txdesc *txd;
1851 uint32_t reg;
1852 int i;
1853
1854 callout_stop(&sc->sc_tick_ch);
1855
1856 /*
1857 * Mark the interface down and cancel the watchdog timer.
1858 */
1859 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860 ifp->if_timer = 0;
1861
1862 sc->ale_flags &= ~ALE_FLAG_LINK;
1863
1864 ale_stats_update(sc);
1865
1866 mii_down(&sc->sc_miibus);
1867
1868 /* Disable interrupts. */
1869 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1870 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1871
1872 /* Disable queue processing and DMA. */
1873 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1874 reg &= ~TXQ_CFG_ENB;
1875 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1876 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1877 reg &= ~RXQ_CFG_ENB;
1878 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1879 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1880 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1881 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1882 DELAY(1000);
1883
1884 /* Stop Rx/Tx MACs. */
1885 ale_stop_mac(sc);
1886
1887 /* Disable interrupts again? XXX */
1888 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1889
1890 /*
1891 * Free TX mbufs still in the queues.
1892 */
1893 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1894 txd = &sc->ale_cdata.ale_txdesc[i];
1895 if (txd->tx_m != NULL) {
1896 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1897 m_freem(txd->tx_m);
1898 txd->tx_m = NULL;
1899 }
1900 }
1901 }
1902
1903 static void
1904 ale_stop_mac(struct ale_softc *sc)
1905 {
1906 uint32_t reg;
1907 int i;
1908
1909 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1910 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1911 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1912 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1913 }
1914
1915 for (i = ALE_TIMEOUT; i > 0; i--) {
1916 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1917 if (reg == 0)
1918 break;
1919 DELAY(10);
1920 }
1921 if (i == 0)
1922 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1923 device_xname(sc->sc_dev), reg);
1924 }
1925
1926 static void
1927 ale_init_tx_ring(struct ale_softc *sc)
1928 {
1929 struct ale_txdesc *txd;
1930 int i;
1931
1932 sc->ale_cdata.ale_tx_prod = 0;
1933 sc->ale_cdata.ale_tx_cons = 0;
1934 sc->ale_cdata.ale_tx_cnt = 0;
1935
1936 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1937 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1938 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1939 txd = &sc->ale_cdata.ale_txdesc[i];
1940 txd->tx_m = NULL;
1941 }
1942 *sc->ale_cdata.ale_tx_cmb = 0;
1943 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1944 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1945 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1946 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1947 }
1948
1949 static void
1950 ale_init_rx_pages(struct ale_softc *sc)
1951 {
1952 struct ale_rx_page *rx_page;
1953 int i;
1954
1955 sc->ale_cdata.ale_rx_seqno = 0;
1956 sc->ale_cdata.ale_rx_curp = 0;
1957
1958 for (i = 0; i < ALE_RX_PAGES; i++) {
1959 rx_page = &sc->ale_cdata.ale_rx_page[i];
1960 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1961 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1962 rx_page->cons = 0;
1963 *rx_page->cmb_addr = 0;
1964 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1965 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1966 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1967 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1968 }
1969 }
1970
1971 static void
1972 ale_rxvlan(struct ale_softc *sc)
1973 {
1974 uint32_t reg;
1975
1976 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1977 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1978 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1979 reg |= MAC_CFG_VLAN_TAG_STRIP;
1980 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1981 }
1982
1983 static void
1984 ale_rxfilter(struct ale_softc *sc)
1985 {
1986 struct ethercom *ec = &sc->sc_ec;
1987 struct ifnet *ifp = &ec->ec_if;
1988 struct ether_multi *enm;
1989 struct ether_multistep step;
1990 uint32_t crc;
1991 uint32_t mchash[2];
1992 uint32_t rxcfg;
1993
1994 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1995 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1996 ifp->if_flags &= ~IFF_ALLMULTI;
1997
1998 /*
1999 * Always accept broadcast frames.
2000 */
2001 rxcfg |= MAC_CFG_BCAST;
2002
2003 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2004 ifp->if_flags |= IFF_ALLMULTI;
2005 if (ifp->if_flags & IFF_PROMISC)
2006 rxcfg |= MAC_CFG_PROMISC;
2007 else
2008 rxcfg |= MAC_CFG_ALLMULTI;
2009 mchash[0] = mchash[1] = 0xFFFFFFFF;
2010 } else {
2011 /* Program new filter. */
2012 memset(mchash, 0, sizeof(mchash));
2013
2014 ETHER_FIRST_MULTI(step, ec, enm);
2015 while (enm != NULL) {
2016 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2017 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2018 ETHER_NEXT_MULTI(step, enm);
2019 }
2020 }
2021
2022 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2023 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2024 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2025 }
2026