if_ale.c revision 1.2 1 /* $NetBSD: if_ale.c,v 1.2 2009/04/25 17:04:40 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.2 2009/04/25 17:04:40 tsutsui Exp $");
36
37 #include "bpfilter.h"
38 #include "vlan.h"
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52
53 #include <sys/bus.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <sys/rnd.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_alereg.h>
85
86 static int ale_match(device_t, cfdata_t, void *);
87 static void ale_attach(device_t, device_t, void *);
88 static int ale_detach(device_t, int);
89
90 static int ale_miibus_readreg(device_t, int, int);
91 static void ale_miibus_writereg(device_t, int, int, int);
92 static void ale_miibus_statchg(device_t);
93
94 static int ale_init(struct ifnet *);
95 static void ale_start(struct ifnet *);
96 static int ale_ioctl(struct ifnet *, u_long, void *);
97 static void ale_watchdog(struct ifnet *);
98 static int ale_mediachange(struct ifnet *);
99 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
100
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc *sc);
103 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void ale_txeof(struct ale_softc *);
107
108 static int ale_dma_alloc(struct ale_softc *);
109 static void ale_dma_free(struct ale_softc *);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
113
114 static void ale_stop(struct ifnet *, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
125
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 ale_match, ale_attach, ale_detach, NULL);
128
129 int aledebug = 0;
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 struct ale_softc *sc = device_private(dev);
139 uint32_t v;
140 int i;
141
142 if (phy != sc->ale_phyaddr)
143 return 0;
144
145 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
146 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
147 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
148 DELAY(5);
149 v = CSR_READ_4(sc, ALE_MDIO);
150 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
151 break;
152 }
153
154 if (i == 0) {
155 printf("%s: phy read timeout: phy %d, reg %d\n",
156 device_xname(sc->sc_dev), phy, reg);
157 return 0;
158 }
159
160 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
161 }
162
163 static void
164 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
165 {
166 struct ale_softc *sc = device_private(dev);
167 uint32_t v;
168 int i;
169
170 if (phy != sc->ale_phyaddr)
171 return;
172
173 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
174 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
175 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
176 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
177 DELAY(5);
178 v = CSR_READ_4(sc, ALE_MDIO);
179 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
180 break;
181 }
182
183 if (i == 0)
184 printf("%s: phy write timeout: phy %d, reg %d\n",
185 device_xname(sc->sc_dev), phy, reg);
186 }
187
188 static void
189 ale_miibus_statchg(device_t dev)
190 {
191 struct ale_softc *sc = device_private(dev);
192 struct ifnet *ifp = &sc->sc_ec.ec_if;
193 struct mii_data *mii;
194 uint32_t reg;
195
196 if ((ifp->if_flags & IFF_RUNNING) == 0)
197 return;
198
199 mii = &sc->sc_miibus;
200
201 sc->ale_flags &= ~ALE_FLAG_LINK;
202 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
203 (IFM_ACTIVE | IFM_AVALID)) {
204 switch (IFM_SUBTYPE(mii->mii_media_active)) {
205 case IFM_10_T:
206 case IFM_100_TX:
207 sc->ale_flags |= ALE_FLAG_LINK;
208 break;
209
210 case IFM_1000_T:
211 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
212 sc->ale_flags |= ALE_FLAG_LINK;
213 break;
214
215 default:
216 break;
217 }
218 }
219
220 /* Stop Rx/Tx MACs. */
221 ale_stop_mac(sc);
222
223 /* Program MACs with resolved speed/duplex/flow-control. */
224 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
225 ale_mac_config(sc);
226 /* Reenable Tx/Rx MACs. */
227 reg = CSR_READ_4(sc, ALE_MAC_CFG);
228 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
229 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
230 }
231 }
232
233 void
234 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
235 {
236 struct ale_softc *sc = ifp->if_softc;
237 struct mii_data *mii = &sc->sc_miibus;
238
239 mii_pollstat(mii);
240 ifmr->ifm_status = mii->mii_media_status;
241 ifmr->ifm_active = mii->mii_media_active;
242 }
243
244 int
245 ale_mediachange(struct ifnet *ifp)
246 {
247 struct ale_softc *sc = ifp->if_softc;
248 struct mii_data *mii = &sc->sc_miibus;
249 int error;
250
251 if (mii->mii_instance != 0) {
252 struct mii_softc *miisc;
253
254 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
255 mii_phy_reset(miisc);
256 }
257 error = mii_mediachg(mii);
258
259 return error;
260 }
261
262 int
263 ale_match(device_t dev, cfdata_t match, void *aux)
264 {
265 struct pci_attach_args *pa = aux;
266
267 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
268 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
269 }
270
271 void
272 ale_get_macaddr(struct ale_softc *sc)
273 {
274 uint32_t ea[2], reg;
275 int i, vpdc;
276
277 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
278 if ((reg & SPI_VPD_ENB) != 0) {
279 reg &= ~SPI_VPD_ENB;
280 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
281 }
282
283 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
284 &vpdc, NULL)) {
285 /*
286 * PCI VPD capability found, let TWSI reload EEPROM.
287 * This will set ethernet address of controller.
288 */
289 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
290 TWSI_CTRL_SW_LD_START);
291 for (i = 100; i > 0; i--) {
292 DELAY(1000);
293 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
294 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
295 break;
296 }
297 if (i == 0)
298 printf("%s: reloading EEPROM timeout!\n",
299 device_xname(sc->sc_dev));
300 } else {
301 if (aledebug)
302 printf("%s: PCI VPD capability not found!\n",
303 device_xname(sc->sc_dev));
304 }
305
306 ea[0] = CSR_READ_4(sc, ALE_PAR0);
307 ea[1] = CSR_READ_4(sc, ALE_PAR1);
308 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
309 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
310 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
311 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
312 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
313 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
314 }
315
316 void
317 ale_phy_reset(struct ale_softc *sc)
318 {
319 /* Reset magic from Linux. */
320 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
321 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
322 GPHY_CTRL_PHY_PLL_ON);
323 DELAY(1000);
324 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
325 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
326 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
327 DELAY(1000);
328
329 #define ATPHY_DBG_ADDR 0x1D
330 #define ATPHY_DBG_DATA 0x1E
331
332 /* Enable hibernation mode. */
333 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 ATPHY_DBG_ADDR, 0x0B);
335 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 ATPHY_DBG_DATA, 0xBC00);
337 /* Set Class A/B for all modes. */
338 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 ATPHY_DBG_ADDR, 0x00);
340 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 ATPHY_DBG_DATA, 0x02EF);
342 /* Enable 10BT power saving. */
343 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 ATPHY_DBG_ADDR, 0x12);
345 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 ATPHY_DBG_DATA, 0x4C04);
347 /* Adjust 1000T power. */
348 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 ATPHY_DBG_ADDR, 0x04);
350 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 ATPHY_DBG_ADDR, 0x8BBB);
352 /* 10BT center tap voltage. */
353 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 ATPHY_DBG_ADDR, 0x05);
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_ADDR, 0x2C46);
357
358 #undef ATPHY_DBG_ADDR
359 #undef ATPHY_DBG_DATA
360 DELAY(1000);
361 }
362
363 void
364 ale_attach(device_t parent, device_t self, void *aux)
365 {
366 struct ale_softc *sc = device_private(self);
367 struct pci_attach_args *pa = aux;
368 pci_chipset_tag_t pc = pa->pa_pc;
369 pci_intr_handle_t ih;
370 const char *intrstr;
371 struct ifnet *ifp;
372 pcireg_t memtype;
373 int error = 0;
374 uint32_t rxf_len, txf_len;
375
376 aprint_naive("\n");
377 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
378
379 sc->sc_dev = self;
380 sc->sc_dmat = pa->pa_dmat;
381 sc->sc_pct = pa->pa_pc;
382 sc->sc_pcitag = pa->pa_tag;
383
384 /*
385 * Allocate IO memory
386 */
387 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
388 switch (memtype) {
389 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
390 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
391 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
392 break;
393 default:
394 aprint_error_dev(self, "invalid base address register\n");
395 break;
396 }
397
398 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
399 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
400 aprint_error_dev(self, "could not map mem space\n");
401 return;
402 }
403
404 if (pci_intr_map(pa, &ih) != 0) {
405 aprint_error_dev(self, "could not map interrupt\n");
406 goto fail;
407 }
408
409 /*
410 * Allocate IRQ
411 */
412 intrstr = pci_intr_string(sc->sc_pct, ih);
413 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
414 if (sc->sc_irq_handle == NULL) {
415 aprint_error_dev(self, "could not establish interrupt");
416 if (intrstr != NULL)
417 aprint_error(" at %s", intrstr);
418 aprint_error("\n");
419 goto fail;
420 }
421 aprint_normal_dev(self, "%s\n", intrstr);
422
423 /* Set PHY address. */
424 sc->ale_phyaddr = ALE_PHY_ADDR;
425
426 /* Reset PHY. */
427 ale_phy_reset(sc);
428
429 /* Reset the ethernet controller. */
430 ale_reset(sc);
431
432 /* Get PCI and chip id/revision. */
433 sc->ale_rev = PCI_REVISION(pa->pa_class);
434 if (sc->ale_rev >= 0xF0) {
435 /* L2E Rev. B. AR8114 */
436 sc->ale_flags |= ALE_FLAG_FASTETHER;
437 } else {
438 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
439 /* L1E AR8121 */
440 sc->ale_flags |= ALE_FLAG_JUMBO;
441 } else {
442 /* L2E Rev. A. AR8113 */
443 sc->ale_flags |= ALE_FLAG_FASTETHER;
444 }
445 }
446
447 /*
448 * All known controllers seems to require 4 bytes alignment
449 * of Tx buffers to make Tx checksum offload with custom
450 * checksum generation method work.
451 */
452 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
453
454 /*
455 * All known controllers seems to have issues on Rx checksum
456 * offload for fragmented IP datagrams.
457 */
458 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
459
460 /*
461 * Don't use Tx CMB. It is known to cause RRS update failure
462 * under certain circumstances. Typical phenomenon of the
463 * issue would be unexpected sequence number encountered in
464 * Rx handler.
465 */
466 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
467 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
468 MASTER_CHIP_REV_SHIFT;
469 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
470 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
471
472 /*
473 * Uninitialized hardware returns an invalid chip id/revision
474 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
475 */
476 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
477 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
478 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
479 rxf_len == 0xFFFFFFF) {
480 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
481 "%u Rx FIFO -- not initialized?\n",
482 sc->ale_chip_rev, txf_len, rxf_len);
483 goto fail;
484 }
485
486 if (aledebug) {
487 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
488 txf_len, rxf_len);
489 }
490
491 /* Set max allowable DMA size. */
492 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
493 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
494
495 callout_init(&sc->sc_tick_ch, 0);
496 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
497
498 error = ale_dma_alloc(sc);
499 if (error)
500 goto fail;
501
502 /* Load station address. */
503 ale_get_macaddr(sc);
504
505 aprint_normal_dev(self, "Ethernet address %s\n",
506 ether_sprintf(sc->ale_eaddr));
507
508 ifp = &sc->sc_ec.ec_if;
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 ifp->if_init = ale_init;
512 ifp->if_ioctl = ale_ioctl;
513 ifp->if_start = ale_start;
514 ifp->if_stop = ale_stop;
515 ifp->if_watchdog = ale_watchdog;
516 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
517 IFQ_SET_READY(&ifp->if_snd);
518 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
519
520 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
521
522 #ifdef ALE_CHECKSUM
523 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
524 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
525 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
526 #endif
527
528 #if NVLAN > 0
529 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
530 #endif
531
532 /* Set up MII bus. */
533 sc->sc_miibus.mii_ifp = ifp;
534 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
535 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
536 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
537
538 sc->sc_ec.ec_mii = &sc->sc_miibus;
539 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
540 ale_mediastatus);
541 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
542 MII_OFFSET_ANY, 0);
543
544 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
545 aprint_error_dev(self, "no PHY found!\n");
546 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
547 0, NULL);
548 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
549 } else
550 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
551
552 if_attach(ifp);
553 ether_ifattach(ifp, sc->ale_eaddr);
554
555 if (!pmf_device_register(self, NULL, NULL))
556 aprint_error_dev(self, "couldn't establish power handler\n");
557 else
558 pmf_class_network_register(self, ifp);
559
560 return;
561 fail:
562 ale_dma_free(sc);
563 if (sc->sc_irq_handle != NULL) {
564 pci_intr_disestablish(pc, sc->sc_irq_handle);
565 sc->sc_irq_handle = NULL;
566 }
567 if (sc->sc_mem_size) {
568 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
569 sc->sc_mem_size = 0;
570 }
571 }
572
573 static int
574 ale_detach(device_t self, int flags)
575 {
576 struct ale_softc *sc = device_private(self);
577 struct ifnet *ifp = &sc->sc_ec.ec_if;
578 int s;
579
580 s = splnet();
581 ale_stop(ifp, 0);
582 splx(s);
583
584 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
585
586 /* Delete all remaining media. */
587 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
588
589 ether_ifdetach(ifp);
590 if_detach(ifp);
591 ale_dma_free(sc);
592
593 if (sc->sc_irq_handle != NULL) {
594 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
595 sc->sc_irq_handle = NULL;
596 }
597 if (sc->sc_mem_size) {
598 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
599 sc->sc_mem_size = 0;
600 }
601
602 return 0;
603 }
604
605
606 static int
607 ale_dma_alloc(struct ale_softc *sc)
608 {
609 struct ale_txdesc *txd;
610 int nsegs, error, guard_size, i;
611
612 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
613 guard_size = ALE_JUMBO_FRAMELEN;
614 else
615 guard_size = ALE_MAX_FRAMELEN;
616 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
617 ALE_RX_PAGE_ALIGN);
618
619 /*
620 * Create DMA stuffs for TX ring
621 */
622 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
623 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
624 if (error) {
625 sc->ale_cdata.ale_tx_ring_map = NULL;
626 return ENOBUFS;
627 }
628
629 /* Allocate DMA'able memory for TX ring */
630 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
631 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
632 &nsegs, BUS_DMA_WAITOK);
633 if (error) {
634 printf("%s: could not allocate DMA'able memory for Tx ring, "
635 "error = %i\n", device_xname(sc->sc_dev), error);
636 return error;
637 }
638
639 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
640 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
641 BUS_DMA_NOWAIT);
642 if (error)
643 return ENOBUFS;
644
645 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
646
647 /* Load the DMA map for Tx ring. */
648 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
649 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
650 if (error) {
651 printf("%s: could not load DMA'able memory for Tx ring.\n",
652 device_xname(sc->sc_dev));
653 bus_dmamem_free(sc->sc_dmat,
654 &sc->ale_cdata.ale_tx_ring_seg, 1);
655 return error;
656 }
657 sc->ale_cdata.ale_tx_ring_paddr =
658 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
659
660 for (i = 0; i < ALE_RX_PAGES; i++) {
661 /*
662 * Create DMA stuffs for RX pages
663 */
664 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
665 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
666 &sc->ale_cdata.ale_rx_page[i].page_map);
667 if (error) {
668 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
669 return ENOBUFS;
670 }
671
672 /* Allocate DMA'able memory for RX pages */
673 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
674 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
675 1, &nsegs, BUS_DMA_WAITOK);
676 if (error) {
677 printf("%s: could not allocate DMA'able memory for "
678 "Rx ring.\n", device_xname(sc->sc_dev));
679 return error;
680 }
681 error = bus_dmamem_map(sc->sc_dmat,
682 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
683 sc->ale_pagesize,
684 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
685 BUS_DMA_NOWAIT);
686 if (error)
687 return ENOBUFS;
688
689 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
690 sc->ale_pagesize);
691
692 /* Load the DMA map for Rx pages. */
693 error = bus_dmamap_load(sc->sc_dmat,
694 sc->ale_cdata.ale_rx_page[i].page_map,
695 sc->ale_cdata.ale_rx_page[i].page_addr,
696 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
697 if (error) {
698 printf("%s: could not load DMA'able memory for "
699 "Rx pages.\n", device_xname(sc->sc_dev));
700 bus_dmamem_free(sc->sc_dmat,
701 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
702 return error;
703 }
704 sc->ale_cdata.ale_rx_page[i].page_paddr =
705 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
706 }
707
708 /*
709 * Create DMA stuffs for Tx CMB.
710 */
711 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
712 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
713 if (error) {
714 sc->ale_cdata.ale_tx_cmb_map = NULL;
715 return ENOBUFS;
716 }
717
718 /* Allocate DMA'able memory for Tx CMB. */
719 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
720 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
721
722 if (error) {
723 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
724 device_xname(sc->sc_dev));
725 return error;
726 }
727
728 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
729 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
730 BUS_DMA_NOWAIT);
731 if (error)
732 return ENOBUFS;
733
734 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
735
736 /* Load the DMA map for Tx CMB. */
737 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
738 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
739 if (error) {
740 printf("%s: could not load DMA'able memory for Tx CMB.\n",
741 device_xname(sc->sc_dev));
742 bus_dmamem_free(sc->sc_dmat,
743 &sc->ale_cdata.ale_tx_cmb_seg, 1);
744 return error;
745 }
746
747 sc->ale_cdata.ale_tx_cmb_paddr =
748 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
749
750 for (i = 0; i < ALE_RX_PAGES; i++) {
751 /*
752 * Create DMA stuffs for Rx CMB.
753 */
754 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
755 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
756 &sc->ale_cdata.ale_rx_page[i].cmb_map);
757 if (error) {
758 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
759 return ENOBUFS;
760 }
761
762 /* Allocate DMA'able memory for Rx CMB */
763 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
764 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
765 &nsegs, BUS_DMA_WAITOK);
766 if (error) {
767 printf("%s: could not allocate DMA'able memory for "
768 "Rx CMB\n", device_xname(sc->sc_dev));
769 return error;
770 }
771 error = bus_dmamem_map(sc->sc_dmat,
772 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
773 ALE_RX_CMB_SZ,
774 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
775 BUS_DMA_NOWAIT);
776 if (error)
777 return ENOBUFS;
778
779 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
780
781 /* Load the DMA map for Rx CMB */
782 error = bus_dmamap_load(sc->sc_dmat,
783 sc->ale_cdata.ale_rx_page[i].cmb_map,
784 sc->ale_cdata.ale_rx_page[i].cmb_addr,
785 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
786 if (error) {
787 printf("%s: could not load DMA'able memory for Rx CMB"
788 "\n", device_xname(sc->sc_dev));
789 bus_dmamem_free(sc->sc_dmat,
790 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
791 return error;
792 }
793 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
794 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
795 }
796
797
798 /* Create DMA maps for Tx buffers. */
799 for (i = 0; i < ALE_TX_RING_CNT; i++) {
800 txd = &sc->ale_cdata.ale_txdesc[i];
801 txd->tx_m = NULL;
802 txd->tx_dmamap = NULL;
803 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
804 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
805 &txd->tx_dmamap);
806 if (error) {
807 txd->tx_dmamap = NULL;
808 printf("%s: could not create Tx dmamap.\n",
809 device_xname(sc->sc_dev));
810 return error;
811 }
812 }
813
814 return 0;
815 }
816
817 static void
818 ale_dma_free(struct ale_softc *sc)
819 {
820 struct ale_txdesc *txd;
821 int i;
822
823 /* Tx buffers. */
824 for (i = 0; i < ALE_TX_RING_CNT; i++) {
825 txd = &sc->ale_cdata.ale_txdesc[i];
826 if (txd->tx_dmamap != NULL) {
827 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
828 txd->tx_dmamap = NULL;
829 }
830 }
831
832 /* Tx descriptor ring. */
833 if (sc->ale_cdata.ale_tx_ring_map != NULL)
834 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
835 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
836 sc->ale_cdata.ale_tx_ring != NULL)
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->ale_cdata.ale_tx_ring_seg, 1);
839 sc->ale_cdata.ale_tx_ring = NULL;
840 sc->ale_cdata.ale_tx_ring_map = NULL;
841
842 /* Rx page block. */
843 for (i = 0; i < ALE_RX_PAGES; i++) {
844 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
845 bus_dmamap_unload(sc->sc_dmat,
846 sc->ale_cdata.ale_rx_page[i].page_map);
847 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
848 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
849 bus_dmamem_free(sc->sc_dmat,
850 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
851 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
852 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
853 }
854
855 /* Rx CMB. */
856 for (i = 0; i < ALE_RX_PAGES; i++) {
857 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
858 bus_dmamap_unload(sc->sc_dmat,
859 sc->ale_cdata.ale_rx_page[i].cmb_map);
860 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
861 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
862 bus_dmamem_free(sc->sc_dmat,
863 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
864 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
865 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
866 }
867
868 /* Tx CMB. */
869 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
870 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
871 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
872 sc->ale_cdata.ale_tx_cmb != NULL)
873 bus_dmamem_free(sc->sc_dmat,
874 &sc->ale_cdata.ale_tx_cmb_seg, 1);
875 sc->ale_cdata.ale_tx_cmb = NULL;
876 sc->ale_cdata.ale_tx_cmb_map = NULL;
877
878 }
879
880 static int
881 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
882 {
883 struct ale_txdesc *txd, *txd_last;
884 struct tx_desc *desc;
885 struct mbuf *m;
886 bus_dmamap_t map;
887 uint32_t cflags, poff, vtag;
888 int error, i, nsegs, prod;
889 #if NVLAN > 0
890 struct m_tag *mtag;
891 #endif
892
893 m = *m_head;
894 cflags = vtag = 0;
895 poff = 0;
896
897 prod = sc->ale_cdata.ale_tx_prod;
898 txd = &sc->ale_cdata.ale_txdesc[prod];
899 txd_last = txd;
900 map = txd->tx_dmamap;
901
902 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
903 if (error == EFBIG) {
904 error = 0;
905
906 MGETHDR(m, M_DONTWAIT, MT_DATA);
907 if (m == NULL) {
908 printf("%s: can't defrag TX mbuf\n",
909 device_xname(sc->sc_dev));
910 m_freem(*m_head);
911 *m_head = NULL;
912 return ENOBUFS;
913 }
914
915 M_COPY_PKTHDR(m, *m_head);
916 if ((*m_head)->m_pkthdr.len > MHLEN) {
917 MCLGET(m, M_DONTWAIT);
918 if (!(m->m_flags & M_EXT)) {
919 m_freem(*m_head);
920 m_freem(m);
921 *m_head = NULL;
922 return ENOBUFS;
923 }
924 }
925 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
926 mtod(m, void *));
927 m_freem(*m_head);
928 m->m_len = m->m_pkthdr.len;
929 *m_head = m;
930
931 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
932 BUS_DMA_NOWAIT);
933
934 if (error != 0) {
935 printf("%s: could not load defragged TX mbuf\n",
936 device_xname(sc->sc_dev));
937 if (!error) {
938 bus_dmamap_unload(sc->sc_dmat, map);
939 error = EFBIG;
940 }
941 m_freem(*m_head);
942 *m_head = NULL;
943 return error;
944 }
945 } else if (error) {
946 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
947 return error;
948 }
949
950 nsegs = map->dm_nsegs;
951
952 if (nsegs == 0) {
953 m_freem(*m_head);
954 *m_head = NULL;
955 return EIO;
956 }
957
958 /* Check descriptor overrun. */
959 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
960 bus_dmamap_unload(sc->sc_dmat, map);
961 return ENOBUFS;
962 }
963 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
964 BUS_DMASYNC_PREWRITE);
965
966 m = *m_head;
967 /* Configure Tx checksum offload. */
968 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
969 /*
970 * AR81xx supports Tx custom checksum offload feature
971 * that offloads single 16bit checksum computation.
972 * So you can choose one among IP, TCP and UDP.
973 * Normally driver sets checksum start/insertion
974 * position from the information of TCP/UDP frame as
975 * TCP/UDP checksum takes more time than that of IP.
976 * However it seems that custom checksum offload
977 * requires 4 bytes aligned Tx buffers due to hardware
978 * bug.
979 * AR81xx also supports explicit Tx checksum computation
980 * if it is told that the size of IP header and TCP
981 * header(for UDP, the header size does not matter
982 * because it's fixed length). However with this scheme
983 * TSO does not work so you have to choose one either
984 * TSO or explicit Tx checksum offload. I chosen TSO
985 * plus custom checksum offload with work-around which
986 * will cover most common usage for this consumer
987 * ethernet controller. The work-around takes a lot of
988 * CPU cycles if Tx buffer is not aligned on 4 bytes
989 * boundary, though.
990 */
991 cflags |= ALE_TD_CXSUM;
992 /* Set checksum start offset. */
993 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
994 }
995
996 #if NVLAN > 0
997 /* Configure VLAN hardware tag insertion. */
998 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
999 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1000 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1001 cflags |= ALE_TD_INSERT_VLAN_TAG;
1002 }
1003 #endif
1004
1005 desc = NULL;
1006 for (i = 0; i < nsegs; i++) {
1007 desc = &sc->ale_cdata.ale_tx_ring[prod];
1008 desc->addr = htole64(map->dm_segs[i].ds_addr);
1009 desc->len =
1010 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1011 desc->flags = htole32(cflags);
1012 sc->ale_cdata.ale_tx_cnt++;
1013 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1014 }
1015 /* Update producer index. */
1016 sc->ale_cdata.ale_tx_prod = prod;
1017
1018 /* Finally set EOP on the last descriptor. */
1019 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1020 desc = &sc->ale_cdata.ale_tx_ring[prod];
1021 desc->flags |= htole32(ALE_TD_EOP);
1022
1023 /* Swap dmamap of the first and the last. */
1024 txd = &sc->ale_cdata.ale_txdesc[prod];
1025 map = txd_last->tx_dmamap;
1026 txd_last->tx_dmamap = txd->tx_dmamap;
1027 txd->tx_dmamap = map;
1028 txd->tx_m = m;
1029
1030 /* Sync descriptors. */
1031 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1032 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1033
1034 return 0;
1035 }
1036
1037 static void
1038 ale_start(struct ifnet *ifp)
1039 {
1040 struct ale_softc *sc = ifp->if_softc;
1041 struct mbuf *m_head;
1042 int enq;
1043
1044 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1045 return;
1046
1047 /* Reclaim transmitted frames. */
1048 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1049 ale_txeof(sc);
1050
1051 enq = 0;
1052 for (;;) {
1053 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1054 if (m_head == NULL)
1055 break;
1056
1057 /*
1058 * Pack the data into the transmit ring. If we
1059 * don't have room, set the OACTIVE flag and wait
1060 * for the NIC to drain the ring.
1061 */
1062 if (ale_encap(sc, &m_head)) {
1063 if (m_head == NULL)
1064 break;
1065 ifp->if_flags |= IFF_OACTIVE;
1066 break;
1067 }
1068 enq = 1;
1069
1070 #if NBPFILTER > 0
1071 /*
1072 * If there's a BPF listener, bounce a copy of this frame
1073 * to him.
1074 */
1075 if (ifp->if_bpf != NULL)
1076 bpf_mtap(ifp->if_bpf, m_head);
1077 #endif
1078 }
1079
1080 if (enq) {
1081 /* Kick. */
1082 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1083 sc->ale_cdata.ale_tx_prod);
1084
1085 /* Set a timeout in case the chip goes out to lunch. */
1086 ifp->if_timer = ALE_TX_TIMEOUT;
1087 }
1088 }
1089
1090 static void
1091 ale_watchdog(struct ifnet *ifp)
1092 {
1093 struct ale_softc *sc = ifp->if_softc;
1094
1095 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1096 printf("%s: watchdog timeout (missed link)\n",
1097 device_xname(sc->sc_dev));
1098 ifp->if_oerrors++;
1099 ale_init(ifp);
1100 return;
1101 }
1102
1103 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1104 ifp->if_oerrors++;
1105 ale_init(ifp);
1106
1107 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1108 ale_start(ifp);
1109 }
1110
1111 static int
1112 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 struct ale_softc *sc = ifp->if_softc;
1115 int s, error;
1116
1117 s = splnet();
1118
1119 error = ether_ioctl(ifp, cmd, data);
1120 if (error == ENETRESET) {
1121 if (ifp->if_flags & IFF_RUNNING)
1122 ale_rxfilter(sc);
1123 error = 0;
1124 }
1125
1126 splx(s);
1127 return error;
1128 }
1129
1130 static void
1131 ale_mac_config(struct ale_softc *sc)
1132 {
1133 struct mii_data *mii;
1134 uint32_t reg;
1135
1136 mii = &sc->sc_miibus;
1137 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1138 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1139 MAC_CFG_SPEED_MASK);
1140
1141 /* Reprogram MAC with resolved speed/duplex. */
1142 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1143 case IFM_10_T:
1144 case IFM_100_TX:
1145 reg |= MAC_CFG_SPEED_10_100;
1146 break;
1147 case IFM_1000_T:
1148 reg |= MAC_CFG_SPEED_1000;
1149 break;
1150 }
1151 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1152 reg |= MAC_CFG_FULL_DUPLEX;
1153 #ifdef notyet
1154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1155 reg |= MAC_CFG_TX_FC;
1156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1157 reg |= MAC_CFG_RX_FC;
1158 #endif
1159 }
1160 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1161 }
1162
1163 static void
1164 ale_stats_clear(struct ale_softc *sc)
1165 {
1166 struct smb sb;
1167 uint32_t *reg;
1168 int i;
1169
1170 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1171 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1172 i += sizeof(uint32_t);
1173 }
1174 /* Read Tx statistics. */
1175 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1176 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1177 i += sizeof(uint32_t);
1178 }
1179 }
1180
1181 static void
1182 ale_stats_update(struct ale_softc *sc)
1183 {
1184 struct ifnet *ifp = &sc->sc_ec.ec_if;
1185 struct ale_hw_stats *stat;
1186 struct smb sb, *smb;
1187 uint32_t *reg;
1188 int i;
1189
1190 stat = &sc->ale_stats;
1191 smb = &sb;
1192
1193 /* Read Rx statistics. */
1194 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1195 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1196 i += sizeof(uint32_t);
1197 }
1198 /* Read Tx statistics. */
1199 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1200 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1201 i += sizeof(uint32_t);
1202 }
1203
1204 /* Rx stats. */
1205 stat->rx_frames += smb->rx_frames;
1206 stat->rx_bcast_frames += smb->rx_bcast_frames;
1207 stat->rx_mcast_frames += smb->rx_mcast_frames;
1208 stat->rx_pause_frames += smb->rx_pause_frames;
1209 stat->rx_control_frames += smb->rx_control_frames;
1210 stat->rx_crcerrs += smb->rx_crcerrs;
1211 stat->rx_lenerrs += smb->rx_lenerrs;
1212 stat->rx_bytes += smb->rx_bytes;
1213 stat->rx_runts += smb->rx_runts;
1214 stat->rx_fragments += smb->rx_fragments;
1215 stat->rx_pkts_64 += smb->rx_pkts_64;
1216 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1217 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1218 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1219 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1220 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1221 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1222 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1223 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1224 stat->rx_rrs_errs += smb->rx_rrs_errs;
1225 stat->rx_alignerrs += smb->rx_alignerrs;
1226 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1227 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1228 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1229
1230 /* Tx stats. */
1231 stat->tx_frames += smb->tx_frames;
1232 stat->tx_bcast_frames += smb->tx_bcast_frames;
1233 stat->tx_mcast_frames += smb->tx_mcast_frames;
1234 stat->tx_pause_frames += smb->tx_pause_frames;
1235 stat->tx_excess_defer += smb->tx_excess_defer;
1236 stat->tx_control_frames += smb->tx_control_frames;
1237 stat->tx_deferred += smb->tx_deferred;
1238 stat->tx_bytes += smb->tx_bytes;
1239 stat->tx_pkts_64 += smb->tx_pkts_64;
1240 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1241 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1242 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1243 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1244 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1245 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1246 stat->tx_single_colls += smb->tx_single_colls;
1247 stat->tx_multi_colls += smb->tx_multi_colls;
1248 stat->tx_late_colls += smb->tx_late_colls;
1249 stat->tx_excess_colls += smb->tx_excess_colls;
1250 stat->tx_abort += smb->tx_abort;
1251 stat->tx_underrun += smb->tx_underrun;
1252 stat->tx_desc_underrun += smb->tx_desc_underrun;
1253 stat->tx_lenerrs += smb->tx_lenerrs;
1254 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1255 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1256 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1257
1258 /* Update counters in ifnet. */
1259 ifp->if_opackets += smb->tx_frames;
1260
1261 ifp->if_collisions += smb->tx_single_colls +
1262 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1263 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1264
1265 /*
1266 * XXX
1267 * tx_pkts_truncated counter looks suspicious. It constantly
1268 * increments with no sign of Tx errors. This may indicate
1269 * the counter name is not correct one so I've removed the
1270 * counter in output errors.
1271 */
1272 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1273 smb->tx_underrun;
1274
1275 ifp->if_ipackets += smb->rx_frames;
1276
1277 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1278 smb->rx_runts + smb->rx_pkts_truncated +
1279 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1280 smb->rx_alignerrs;
1281 }
1282
1283 static int
1284 ale_intr(void *xsc)
1285 {
1286 struct ale_softc *sc = xsc;
1287 struct ifnet *ifp = &sc->sc_ec.ec_if;
1288 uint32_t status;
1289
1290 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1291 if ((status & ALE_INTRS) == 0)
1292 return 0;
1293
1294 /* Acknowledge and disable interrupts. */
1295 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1296
1297 if (ifp->if_flags & IFF_RUNNING) {
1298 int error;
1299
1300 error = ale_rxeof(sc);
1301 if (error) {
1302 sc->ale_stats.reset_brk_seq++;
1303 ale_init(ifp);
1304 return 0;
1305 }
1306
1307 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1308 if (status & INTR_DMA_RD_TO_RST)
1309 printf("%s: DMA read error! -- resetting\n",
1310 device_xname(sc->sc_dev));
1311 if (status & INTR_DMA_WR_TO_RST)
1312 printf("%s: DMA write error! -- resetting\n",
1313 device_xname(sc->sc_dev));
1314 ale_init(ifp);
1315 return 0;
1316 }
1317
1318 ale_txeof(sc);
1319 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1320 ale_start(ifp);
1321 }
1322
1323 /* Re-enable interrupts. */
1324 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1325 return 1;
1326 }
1327
1328 static void
1329 ale_txeof(struct ale_softc *sc)
1330 {
1331 struct ifnet *ifp = &sc->sc_ec.ec_if;
1332 struct ale_txdesc *txd;
1333 uint32_t cons, prod;
1334 int prog;
1335
1336 if (sc->ale_cdata.ale_tx_cnt == 0)
1337 return;
1338
1339 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1340 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1341 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1342 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1343 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1344 BUS_DMASYNC_POSTREAD);
1345 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1346 } else
1347 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1348 cons = sc->ale_cdata.ale_tx_cons;
1349 /*
1350 * Go through our Tx list and free mbufs for those
1351 * frames which have been transmitted.
1352 */
1353 for (prog = 0; cons != prod; prog++,
1354 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1355 if (sc->ale_cdata.ale_tx_cnt <= 0)
1356 break;
1357 prog++;
1358 ifp->if_flags &= ~IFF_OACTIVE;
1359 sc->ale_cdata.ale_tx_cnt--;
1360 txd = &sc->ale_cdata.ale_txdesc[cons];
1361 if (txd->tx_m != NULL) {
1362 /* Reclaim transmitted mbufs. */
1363 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1364 m_freem(txd->tx_m);
1365 txd->tx_m = NULL;
1366 }
1367 }
1368
1369 if (prog > 0) {
1370 sc->ale_cdata.ale_tx_cons = cons;
1371 /*
1372 * Unarm watchdog timer only when there is no pending
1373 * Tx descriptors in queue.
1374 */
1375 if (sc->ale_cdata.ale_tx_cnt == 0)
1376 ifp->if_timer = 0;
1377 }
1378 }
1379
1380 static void
1381 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1382 uint32_t length, uint32_t *prod)
1383 {
1384 struct ale_rx_page *rx_page;
1385
1386 rx_page = *page;
1387 /* Update consumer position. */
1388 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1389 ALE_RX_PAGE_ALIGN);
1390 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1391 /*
1392 * End of Rx page reached, let hardware reuse
1393 * this page.
1394 */
1395 rx_page->cons = 0;
1396 *rx_page->cmb_addr = 0;
1397 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1398 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1399 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1400 RXF_VALID);
1401 /* Switch to alternate Rx page. */
1402 sc->ale_cdata.ale_rx_curp ^= 1;
1403 rx_page = *page =
1404 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1405 /* Page flipped, sync CMB and Rx page. */
1406 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1407 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1408 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1409 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1410 /* Sync completed, cache updated producer index. */
1411 *prod = *rx_page->cmb_addr;
1412 }
1413 }
1414
1415
1416 /*
1417 * It seems that AR81xx controller can compute partial checksum.
1418 * The partial checksum value can be used to accelerate checksum
1419 * computation for fragmented TCP/UDP packets. Upper network stack
1420 * already takes advantage of the partial checksum value in IP
1421 * reassembly stage. But I'm not sure the correctness of the
1422 * partial hardware checksum assistance due to lack of data sheet.
1423 * In addition, the Rx feature of controller that requires copying
1424 * for every frames effectively nullifies one of most nice offload
1425 * capability of controller.
1426 */
1427 static void
1428 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1429 {
1430 if (status & ALE_RD_IPCSUM_NOK)
1431 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1432
1433 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1434 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1435 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1436 (status & ALE_RD_TCP_UDPCSUM_NOK))
1437 {
1438 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1439 }
1440 } else {
1441 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1442 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1443 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1444 }
1445 }
1446 }
1447 /*
1448 * Don't mark bad checksum for TCP/UDP frames
1449 * as fragmented frames may always have set
1450 * bad checksummed bit of frame status.
1451 */
1452 }
1453
1454 /* Process received frames. */
1455 static int
1456 ale_rxeof(struct ale_softc *sc)
1457 {
1458 struct ifnet *ifp = &sc->sc_ec.ec_if;
1459 struct ale_rx_page *rx_page;
1460 struct rx_rs *rs;
1461 struct mbuf *m;
1462 uint32_t length, prod, seqno, status;
1463 int prog;
1464
1465 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1466 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1467 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1468 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1469 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1470 /*
1471 * Don't directly access producer index as hardware may
1472 * update it while Rx handler is in progress. It would
1473 * be even better if there is a way to let hardware
1474 * know how far driver processed its received frames.
1475 * Alternatively, hardware could provide a way to disable
1476 * CMB updates until driver acknowledges the end of CMB
1477 * access.
1478 */
1479 prod = *rx_page->cmb_addr;
1480 for (prog = 0; ; prog++) {
1481 if (rx_page->cons >= prod)
1482 break;
1483 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1484 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1485 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1486 /*
1487 * Normally I believe this should not happen unless
1488 * severe driver bug or corrupted memory. However
1489 * it seems to happen under certain conditions which
1490 * is triggered by abrupt Rx events such as initiation
1491 * of bulk transfer of remote host. It's not easy to
1492 * reproduce this and I doubt it could be related
1493 * with FIFO overflow of hardware or activity of Tx
1494 * CMB updates. I also remember similar behaviour
1495 * seen on RealTek 8139 which uses resembling Rx
1496 * scheme.
1497 */
1498 if (aledebug)
1499 printf("%s: garbled seq: %u, expected: %u -- "
1500 "resetting!\n", device_xname(sc->sc_dev),
1501 seqno, sc->ale_cdata.ale_rx_seqno);
1502 return EIO;
1503 }
1504 /* Frame received. */
1505 sc->ale_cdata.ale_rx_seqno++;
1506 length = ALE_RX_BYTES(le32toh(rs->length));
1507 status = le32toh(rs->flags);
1508 if (status & ALE_RD_ERROR) {
1509 /*
1510 * We want to pass the following frames to upper
1511 * layer regardless of error status of Rx return
1512 * status.
1513 *
1514 * o IP/TCP/UDP checksum is bad.
1515 * o frame length and protocol specific length
1516 * does not match.
1517 */
1518 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1519 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1520 ALE_RD_TRUNC)) {
1521 ale_rx_update_page(sc, &rx_page, length, &prod);
1522 continue;
1523 }
1524 }
1525 /*
1526 * m_devget(9) is major bottle-neck of ale(4)(It comes
1527 * from hardware limitation). For jumbo frames we could
1528 * get a slightly better performance if driver use
1529 * m_getjcl(9) with proper buffer size argument. However
1530 * that would make code more complicated and I don't
1531 * think users would expect good Rx performance numbers
1532 * on these low-end consumer ethernet controller.
1533 */
1534 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1535 0, ifp, NULL);
1536 if (m == NULL) {
1537 ifp->if_iqdrops++;
1538 ale_rx_update_page(sc, &rx_page, length, &prod);
1539 continue;
1540 }
1541 if (status & ALE_RD_IPV4)
1542 ale_rxcsum(sc, m, status);
1543 #if NVLAN > 0
1544 if (status & ALE_RD_VLAN) {
1545 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1546 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1547 }
1548 #endif
1549
1550
1551 #if NBPFILTER > 0
1552 if (ifp->if_bpf)
1553 bpf_mtap(ifp->if_bpf, m);
1554 #endif
1555
1556 /* Pass it to upper layer. */
1557 ether_input(ifp, m);
1558
1559 ale_rx_update_page(sc, &rx_page, length, &prod);
1560 }
1561
1562 return 0;
1563 }
1564
1565 static void
1566 ale_tick(void *xsc)
1567 {
1568 struct ale_softc *sc = xsc;
1569 struct mii_data *mii = &sc->sc_miibus;
1570 int s;
1571
1572 s = splnet();
1573 mii_tick(mii);
1574 ale_stats_update(sc);
1575 splx(s);
1576
1577 callout_schedule(&sc->sc_tick_ch, hz);
1578 }
1579
1580 static void
1581 ale_reset(struct ale_softc *sc)
1582 {
1583 uint32_t reg;
1584 int i;
1585
1586 /* Initialize PCIe module. From Linux. */
1587 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1588
1589 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1590 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1591 DELAY(10);
1592 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1593 break;
1594 }
1595 if (i == 0)
1596 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1597
1598 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1599 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1600 break;
1601 DELAY(10);
1602 }
1603
1604 if (i == 0)
1605 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 reg);
1607 }
1608
1609 static int
1610 ale_init(struct ifnet *ifp)
1611 {
1612 struct ale_softc *sc = ifp->if_softc;
1613 struct mii_data *mii;
1614 uint8_t eaddr[ETHER_ADDR_LEN];
1615 bus_addr_t paddr;
1616 uint32_t reg, rxf_hi, rxf_lo;
1617
1618 /*
1619 * Cancel any pending I/O.
1620 */
1621 ale_stop(ifp, 0);
1622
1623 /*
1624 * Reset the chip to a known state.
1625 */
1626 ale_reset(sc);
1627
1628 /* Initialize Tx descriptors, DMA memory blocks. */
1629 ale_init_rx_pages(sc);
1630 ale_init_tx_ring(sc);
1631
1632 /* Reprogram the station address. */
1633 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1634 CSR_WRITE_4(sc, ALE_PAR0,
1635 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1636 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1637
1638 /*
1639 * Clear WOL status and disable all WOL feature as WOL
1640 * would interfere Rx operation under normal environments.
1641 */
1642 CSR_READ_4(sc, ALE_WOL_CFG);
1643 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1644
1645 /*
1646 * Set Tx descriptor/RXF0/CMB base addresses. They share
1647 * the same high address part of DMAable region.
1648 */
1649 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1650 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1651 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1652 CSR_WRITE_4(sc, ALE_TPD_CNT,
1653 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1654
1655 /* Set Rx page base address, note we use single queue. */
1656 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1657 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1658 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1659 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1660
1661 /* Set Tx/Rx CMB addresses. */
1662 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1663 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1664 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1665 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1666 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1667 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1668
1669 /* Mark RXF0 is valid. */
1670 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1671 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1672 /*
1673 * No need to initialize RFX1/RXF2/RXF3. We don't use
1674 * multi-queue yet.
1675 */
1676
1677 /* Set Rx page size, excluding guard frame size. */
1678 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1679
1680 /* Tell hardware that we're ready to load DMA blocks. */
1681 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682
1683 /* Set Rx/Tx interrupt trigger threshold. */
1684 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1685 (4 << INT_TRIG_TX_THRESH_SHIFT));
1686 /*
1687 * XXX
1688 * Set interrupt trigger timer, its purpose and relation
1689 * with interrupt moderation mechanism is not clear yet.
1690 */
1691 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1692 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1693 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1694
1695 /* Configure interrupt moderation timer. */
1696 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1697 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1698 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1699 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1700 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1701 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1702 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1703 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1704 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1705 reg |= MASTER_IM_RX_TIMER_ENB;
1706 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1707 reg |= MASTER_IM_TX_TIMER_ENB;
1708 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1709 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1710
1711 /* Set Maximum frame size of controller. */
1712 if (ifp->if_mtu < ETHERMTU)
1713 sc->ale_max_frame_size = ETHERMTU;
1714 else
1715 sc->ale_max_frame_size = ifp->if_mtu;
1716 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1717 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1718
1719 /* Configure IPG/IFG parameters. */
1720 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1721 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1722 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1723 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1724 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1725
1726 /* Set parameters for half-duplex media. */
1727 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1728 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1729 HDPX_CFG_LCOL_MASK) |
1730 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1731 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1732 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1733 HDPX_CFG_ABEBT_MASK) |
1734 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1735 HDPX_CFG_JAMIPG_MASK));
1736
1737 /* Configure Tx jumbo frame parameters. */
1738 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1739 if (ifp->if_mtu < ETHERMTU)
1740 reg = sc->ale_max_frame_size;
1741 else if (ifp->if_mtu < 6 * 1024)
1742 reg = (sc->ale_max_frame_size * 2) / 3;
1743 else
1744 reg = sc->ale_max_frame_size / 2;
1745 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1746 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1747 TX_JUMBO_THRESH_UNIT_SHIFT);
1748 }
1749
1750 /* Configure TxQ. */
1751 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1752 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1753 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1754 TXQ_CFG_TPD_BURST_MASK;
1755 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1756
1757 /* Configure Rx jumbo frame & flow control parameters. */
1758 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1759 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1760 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1761 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1762 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1763 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1764 RX_JUMBO_LKAH_MASK));
1765 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1766 rxf_hi = (reg * 7) / 10;
1767 rxf_lo = (reg * 3)/ 10;
1768 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1769 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1770 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1771 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1772 RX_FIFO_PAUSE_THRESH_HI_MASK));
1773 }
1774
1775 /* Disable RSS. */
1776 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1777 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1778
1779 /* Configure RxQ. */
1780 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1781 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1782
1783 /* Configure DMA parameters. */
1784 reg = 0;
1785 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1786 reg |= DMA_CFG_TXCMB_ENB;
1787 CSR_WRITE_4(sc, ALE_DMA_CFG,
1788 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1789 sc->ale_dma_rd_burst | reg |
1790 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1791 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1792 DMA_CFG_RD_DELAY_CNT_MASK) |
1793 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1794 DMA_CFG_WR_DELAY_CNT_MASK));
1795
1796 /*
1797 * Hardware can be configured to issue SMB interrupt based
1798 * on programmed interval. Since there is a callout that is
1799 * invoked for every hz in driver we use that instead of
1800 * relying on periodic SMB interrupt.
1801 */
1802 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1803
1804 /* Clear MAC statistics. */
1805 ale_stats_clear(sc);
1806
1807 /*
1808 * Configure Tx/Rx MACs.
1809 * - Auto-padding for short frames.
1810 * - Enable CRC generation.
1811 * Actual reconfiguration of MAC for resolved speed/duplex
1812 * is followed after detection of link establishment.
1813 * AR81xx always does checksum computation regardless of
1814 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1815 * cause Rx handling issue for fragmented IP datagrams due
1816 * to silicon bug.
1817 */
1818 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1819 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1820 MAC_CFG_PREAMBLE_MASK);
1821 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1822 reg |= MAC_CFG_SPEED_10_100;
1823 else
1824 reg |= MAC_CFG_SPEED_1000;
1825 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1826
1827 /* Set up the receive filter. */
1828 ale_rxfilter(sc);
1829 ale_rxvlan(sc);
1830
1831 /* Acknowledge all pending interrupts and clear it. */
1832 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1833 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1834 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1835
1836 sc->ale_flags &= ~ALE_FLAG_LINK;
1837
1838 /* Switch to the current media. */
1839 mii = &sc->sc_miibus;
1840 mii_mediachg(mii);
1841
1842 callout_schedule(&sc->sc_tick_ch, hz);
1843
1844 ifp->if_flags |= IFF_RUNNING;
1845 ifp->if_flags &= ~IFF_OACTIVE;
1846
1847 return 0;
1848 }
1849
1850 static void
1851 ale_stop(struct ifnet *ifp, int disable)
1852 {
1853 struct ale_softc *sc = ifp->if_softc;
1854 struct ale_txdesc *txd;
1855 uint32_t reg;
1856 int i;
1857
1858 callout_stop(&sc->sc_tick_ch);
1859
1860 /*
1861 * Mark the interface down and cancel the watchdog timer.
1862 */
1863 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1864 ifp->if_timer = 0;
1865
1866 sc->ale_flags &= ~ALE_FLAG_LINK;
1867
1868 ale_stats_update(sc);
1869
1870 mii_down(&sc->sc_miibus);
1871
1872 /* Disable interrupts. */
1873 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1874 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1875
1876 /* Disable queue processing and DMA. */
1877 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1878 reg &= ~TXQ_CFG_ENB;
1879 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1880 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1881 reg &= ~RXQ_CFG_ENB;
1882 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1883 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1884 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1885 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1886 DELAY(1000);
1887
1888 /* Stop Rx/Tx MACs. */
1889 ale_stop_mac(sc);
1890
1891 /* Disable interrupts again? XXX */
1892 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1893
1894 /*
1895 * Free TX mbufs still in the queues.
1896 */
1897 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1898 txd = &sc->ale_cdata.ale_txdesc[i];
1899 if (txd->tx_m != NULL) {
1900 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1901 m_freem(txd->tx_m);
1902 txd->tx_m = NULL;
1903 }
1904 }
1905 }
1906
1907 static void
1908 ale_stop_mac(struct ale_softc *sc)
1909 {
1910 uint32_t reg;
1911 int i;
1912
1913 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1914 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1915 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1916 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1917 }
1918
1919 for (i = ALE_TIMEOUT; i > 0; i--) {
1920 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1921 if (reg == 0)
1922 break;
1923 DELAY(10);
1924 }
1925 if (i == 0)
1926 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1927 device_xname(sc->sc_dev), reg);
1928 }
1929
1930 static void
1931 ale_init_tx_ring(struct ale_softc *sc)
1932 {
1933 struct ale_txdesc *txd;
1934 int i;
1935
1936 sc->ale_cdata.ale_tx_prod = 0;
1937 sc->ale_cdata.ale_tx_cons = 0;
1938 sc->ale_cdata.ale_tx_cnt = 0;
1939
1940 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1941 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1942 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1943 txd = &sc->ale_cdata.ale_txdesc[i];
1944 txd->tx_m = NULL;
1945 }
1946 *sc->ale_cdata.ale_tx_cmb = 0;
1947 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1948 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1949 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1950 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951 }
1952
1953 static void
1954 ale_init_rx_pages(struct ale_softc *sc)
1955 {
1956 struct ale_rx_page *rx_page;
1957 int i;
1958
1959 sc->ale_cdata.ale_rx_seqno = 0;
1960 sc->ale_cdata.ale_rx_curp = 0;
1961
1962 for (i = 0; i < ALE_RX_PAGES; i++) {
1963 rx_page = &sc->ale_cdata.ale_rx_page[i];
1964 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1965 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1966 rx_page->cons = 0;
1967 *rx_page->cmb_addr = 0;
1968 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1969 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1970 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1971 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1972 }
1973 }
1974
1975 static void
1976 ale_rxvlan(struct ale_softc *sc)
1977 {
1978 struct ifnet *ifp = &sc->sc_ec.ec_if;
1979 uint32_t reg;
1980
1981 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1982 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1983 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1984 reg |= MAC_CFG_VLAN_TAG_STRIP;
1985 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1986 }
1987
1988 static void
1989 ale_rxfilter(struct ale_softc *sc)
1990 {
1991 struct ethercom *ec = &sc->sc_ec;
1992 struct ifnet *ifp = &ec->ec_if;
1993 struct ether_multi *enm;
1994 struct ether_multistep step;
1995 uint32_t crc;
1996 uint32_t mchash[2];
1997 uint32_t rxcfg;
1998
1999 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2000 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2001
2002 /*
2003 * Always accept broadcast frames.
2004 */
2005 rxcfg |= MAC_CFG_BCAST;
2006
2007 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2008 ec->ec_multicnt > 0) {
2009 allmulti:
2010 if (ifp->if_flags & IFF_PROMISC)
2011 rxcfg |= MAC_CFG_PROMISC;
2012 else
2013 rxcfg |= MAC_CFG_ALLMULTI;
2014 mchash[0] = mchash[1] = 0xFFFFFFFF;
2015 } else {
2016 /* Program new filter. */
2017 memset(mchash, 0, sizeof(mchash));
2018
2019 ETHER_FIRST_MULTI(step, ec, enm);
2020 while (enm != NULL) {
2021 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2022 ETHER_ADDR_LEN)) {
2023 ifp->if_flags |= IFF_ALLMULTI;
2024 goto allmulti;
2025 }
2026 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2027
2028 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2029 ETHER_NEXT_MULTI(step, enm);
2030 }
2031 }
2032
2033 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2034 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2035 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2036 }
2037