if_ale.c revision 1.23 1 /* $NetBSD: if_ale.c,v 1.23 2017/09/26 07:42:06 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.23 2017/09/26 07:42:06 knakahara Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78
79 #include <dev/pci/if_alereg.h>
80
81 static int ale_match(device_t, cfdata_t, void *);
82 static void ale_attach(device_t, device_t, void *);
83 static int ale_detach(device_t, int);
84
85 static int ale_miibus_readreg(device_t, int, int);
86 static void ale_miibus_writereg(device_t, int, int, int);
87 static void ale_miibus_statchg(struct ifnet *);
88
89 static int ale_init(struct ifnet *);
90 static void ale_start(struct ifnet *);
91 static int ale_ioctl(struct ifnet *, u_long, void *);
92 static void ale_watchdog(struct ifnet *);
93 static int ale_mediachange(struct ifnet *);
94 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
95
96 static int ale_intr(void *);
97 static int ale_rxeof(struct ale_softc *sc);
98 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 uint32_t, uint32_t *);
100 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void ale_txeof(struct ale_softc *);
102
103 static int ale_dma_alloc(struct ale_softc *);
104 static void ale_dma_free(struct ale_softc *);
105 static int ale_encap(struct ale_softc *, struct mbuf **);
106 static void ale_init_rx_pages(struct ale_softc *);
107 static void ale_init_tx_ring(struct ale_softc *);
108
109 static void ale_stop(struct ifnet *, int);
110 static void ale_tick(void *);
111 static void ale_get_macaddr(struct ale_softc *);
112 static void ale_mac_config(struct ale_softc *);
113 static void ale_phy_reset(struct ale_softc *);
114 static void ale_reset(struct ale_softc *);
115 static void ale_rxfilter(struct ale_softc *);
116 static void ale_rxvlan(struct ale_softc *);
117 static void ale_stats_clear(struct ale_softc *);
118 static void ale_stats_update(struct ale_softc *);
119 static void ale_stop_mac(struct ale_softc *);
120
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 ale_match, ale_attach, ale_detach, NULL);
123
124 int aledebug = 0;
125 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
126
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
129
130 static int
131 ale_miibus_readreg(device_t dev, int phy, int reg)
132 {
133 struct ale_softc *sc = device_private(dev);
134 uint32_t v;
135 int i;
136
137 if (phy != sc->ale_phyaddr)
138 return 0;
139
140 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 switch (reg) {
142 case MII_100T2CR:
143 case MII_100T2SR:
144 case MII_EXTSR:
145 return 0;
146 default:
147 break;
148 }
149 }
150
151 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 DELAY(5);
155 v = CSR_READ_4(sc, ALE_MDIO);
156 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 break;
158 }
159
160 if (i == 0) {
161 printf("%s: phy read timeout: phy %d, reg %d\n",
162 device_xname(sc->sc_dev), phy, reg);
163 return 0;
164 }
165
166 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 }
168
169 static void
170 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
171 {
172 struct ale_softc *sc = device_private(dev);
173 uint32_t v;
174 int i;
175
176 if (phy != sc->ale_phyaddr)
177 return;
178
179 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
180 switch (reg) {
181 case MII_100T2CR:
182 case MII_100T2SR:
183 case MII_EXTSR:
184 return;
185 default:
186 break;
187 }
188 }
189
190 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
191 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
192 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
193 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
194 DELAY(5);
195 v = CSR_READ_4(sc, ALE_MDIO);
196 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
197 break;
198 }
199
200 if (i == 0)
201 printf("%s: phy write timeout: phy %d, reg %d\n",
202 device_xname(sc->sc_dev), phy, reg);
203 }
204
205 static void
206 ale_miibus_statchg(struct ifnet *ifp)
207 {
208 struct ale_softc *sc = ifp->if_softc;
209 struct mii_data *mii = &sc->sc_miibus;
210 uint32_t reg;
211
212 if ((ifp->if_flags & IFF_RUNNING) == 0)
213 return;
214
215 sc->ale_flags &= ~ALE_FLAG_LINK;
216 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
217 (IFM_ACTIVE | IFM_AVALID)) {
218 switch (IFM_SUBTYPE(mii->mii_media_active)) {
219 case IFM_10_T:
220 case IFM_100_TX:
221 sc->ale_flags |= ALE_FLAG_LINK;
222 break;
223
224 case IFM_1000_T:
225 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
226 sc->ale_flags |= ALE_FLAG_LINK;
227 break;
228
229 default:
230 break;
231 }
232 }
233
234 /* Stop Rx/Tx MACs. */
235 ale_stop_mac(sc);
236
237 /* Program MACs with resolved speed/duplex/flow-control. */
238 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
239 ale_mac_config(sc);
240 /* Reenable Tx/Rx MACs. */
241 reg = CSR_READ_4(sc, ALE_MAC_CFG);
242 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
243 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
244 }
245 }
246
247 void
248 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
249 {
250 struct ale_softc *sc = ifp->if_softc;
251 struct mii_data *mii = &sc->sc_miibus;
252
253 mii_pollstat(mii);
254 ifmr->ifm_status = mii->mii_media_status;
255 ifmr->ifm_active = mii->mii_media_active;
256 }
257
258 int
259 ale_mediachange(struct ifnet *ifp)
260 {
261 struct ale_softc *sc = ifp->if_softc;
262 struct mii_data *mii = &sc->sc_miibus;
263 int error;
264
265 if (mii->mii_instance != 0) {
266 struct mii_softc *miisc;
267
268 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
269 mii_phy_reset(miisc);
270 }
271 error = mii_mediachg(mii);
272
273 return error;
274 }
275
276 int
277 ale_match(device_t dev, cfdata_t match, void *aux)
278 {
279 struct pci_attach_args *pa = aux;
280
281 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
282 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
283 }
284
285 void
286 ale_get_macaddr(struct ale_softc *sc)
287 {
288 uint32_t ea[2], reg;
289 int i, vpdc;
290
291 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
292 if ((reg & SPI_VPD_ENB) != 0) {
293 reg &= ~SPI_VPD_ENB;
294 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
295 }
296
297 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
298 &vpdc, NULL)) {
299 /*
300 * PCI VPD capability found, let TWSI reload EEPROM.
301 * This will set ethernet address of controller.
302 */
303 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
304 TWSI_CTRL_SW_LD_START);
305 for (i = 100; i > 0; i--) {
306 DELAY(1000);
307 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
308 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
309 break;
310 }
311 if (i == 0)
312 printf("%s: reloading EEPROM timeout!\n",
313 device_xname(sc->sc_dev));
314 } else {
315 if (aledebug)
316 printf("%s: PCI VPD capability not found!\n",
317 device_xname(sc->sc_dev));
318 }
319
320 ea[0] = CSR_READ_4(sc, ALE_PAR0);
321 ea[1] = CSR_READ_4(sc, ALE_PAR1);
322 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
323 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
324 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
325 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
326 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
327 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
328 }
329
330 void
331 ale_phy_reset(struct ale_softc *sc)
332 {
333 /* Reset magic from Linux. */
334 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
335 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
336 GPHY_CTRL_PHY_PLL_ON);
337 DELAY(1000);
338 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
339 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
340 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
341 DELAY(1000);
342
343 #define ATPHY_DBG_ADDR 0x1D
344 #define ATPHY_DBG_DATA 0x1E
345
346 /* Enable hibernation mode. */
347 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
348 ATPHY_DBG_ADDR, 0x0B);
349 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 ATPHY_DBG_DATA, 0xBC00);
351 /* Set Class A/B for all modes. */
352 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 ATPHY_DBG_ADDR, 0x00);
354 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 ATPHY_DBG_DATA, 0x02EF);
356 /* Enable 10BT power saving. */
357 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 ATPHY_DBG_ADDR, 0x12);
359 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 ATPHY_DBG_DATA, 0x4C04);
361 /* Adjust 1000T power. */
362 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 ATPHY_DBG_ADDR, 0x04);
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_DATA, 0x8BBB);
366 /* 10BT center tap voltage. */
367 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 ATPHY_DBG_ADDR, 0x05);
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_DATA, 0x2C46);
371
372 #undef ATPHY_DBG_ADDR
373 #undef ATPHY_DBG_DATA
374 DELAY(1000);
375 }
376
377 void
378 ale_attach(device_t parent, device_t self, void *aux)
379 {
380 struct ale_softc *sc = device_private(self);
381 struct pci_attach_args *pa = aux;
382 pci_chipset_tag_t pc = pa->pa_pc;
383 pci_intr_handle_t ih;
384 const char *intrstr;
385 struct ifnet *ifp;
386 pcireg_t memtype;
387 int mii_flags, error = 0;
388 uint32_t rxf_len, txf_len;
389 const char *chipname;
390 char intrbuf[PCI_INTRSTR_LEN];
391
392 aprint_naive("\n");
393 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
394
395 sc->sc_dev = self;
396 sc->sc_dmat = pa->pa_dmat;
397 sc->sc_pct = pa->pa_pc;
398 sc->sc_pcitag = pa->pa_tag;
399
400 /*
401 * Allocate IO memory
402 */
403 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
404 switch (memtype) {
405 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
406 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
407 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
408 break;
409 default:
410 aprint_error_dev(self, "invalid base address register\n");
411 break;
412 }
413
414 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
415 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
416 aprint_error_dev(self, "could not map mem space\n");
417 return;
418 }
419
420 if (pci_intr_map(pa, &ih) != 0) {
421 aprint_error_dev(self, "could not map interrupt\n");
422 goto fail;
423 }
424
425 /*
426 * Allocate IRQ
427 */
428 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
429 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
430 if (sc->sc_irq_handle == NULL) {
431 aprint_error_dev(self, "could not establish interrupt");
432 if (intrstr != NULL)
433 aprint_error(" at %s", intrstr);
434 aprint_error("\n");
435 goto fail;
436 }
437
438 /* Set PHY address. */
439 sc->ale_phyaddr = ALE_PHY_ADDR;
440
441 /* Reset PHY. */
442 ale_phy_reset(sc);
443
444 /* Reset the ethernet controller. */
445 ale_reset(sc);
446
447 /* Get PCI and chip id/revision. */
448 sc->ale_rev = PCI_REVISION(pa->pa_class);
449 if (sc->ale_rev >= 0xF0) {
450 /* L2E Rev. B. AR8114 */
451 sc->ale_flags |= ALE_FLAG_FASTETHER;
452 chipname = "AR8114 (L2E RevB)";
453 } else {
454 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
455 /* L1E AR8121 */
456 sc->ale_flags |= ALE_FLAG_JUMBO;
457 chipname = "AR8121 (L1E)";
458 } else {
459 /* L2E Rev. A. AR8113 */
460 sc->ale_flags |= ALE_FLAG_FASTETHER;
461 chipname = "AR8113 (L2E RevA)";
462 }
463 }
464 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
465
466 /*
467 * All known controllers seems to require 4 bytes alignment
468 * of Tx buffers to make Tx checksum offload with custom
469 * checksum generation method work.
470 */
471 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
472
473 /*
474 * All known controllers seems to have issues on Rx checksum
475 * offload for fragmented IP datagrams.
476 */
477 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
478
479 /*
480 * Don't use Tx CMB. It is known to cause RRS update failure
481 * under certain circumstances. Typical phenomenon of the
482 * issue would be unexpected sequence number encountered in
483 * Rx handler.
484 */
485 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
486 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
487 MASTER_CHIP_REV_SHIFT;
488 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
489 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
490
491 /*
492 * Uninitialized hardware returns an invalid chip id/revision
493 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
494 */
495 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
496 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
497 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
498 rxf_len == 0xFFFFFFF) {
499 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
500 "%u Rx FIFO -- not initialized?\n",
501 sc->ale_chip_rev, txf_len, rxf_len);
502 goto fail;
503 }
504
505 if (aledebug) {
506 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
507 txf_len, rxf_len);
508 }
509
510 /* Set max allowable DMA size. */
511 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
512 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
513
514 callout_init(&sc->sc_tick_ch, 0);
515 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
516
517 error = ale_dma_alloc(sc);
518 if (error)
519 goto fail;
520
521 /* Load station address. */
522 ale_get_macaddr(sc);
523
524 aprint_normal_dev(self, "Ethernet address %s\n",
525 ether_sprintf(sc->ale_eaddr));
526
527 ifp = &sc->sc_ec.ec_if;
528 ifp->if_softc = sc;
529 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
530 ifp->if_init = ale_init;
531 ifp->if_ioctl = ale_ioctl;
532 ifp->if_start = ale_start;
533 ifp->if_stop = ale_stop;
534 ifp->if_watchdog = ale_watchdog;
535 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
536 IFQ_SET_READY(&ifp->if_snd);
537 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
538
539 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
540
541 #ifdef ALE_CHECKSUM
542 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
543 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
544 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
545 #endif
546
547 #if NVLAN > 0
548 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
549 #endif
550
551 /* Set up MII bus. */
552 sc->sc_miibus.mii_ifp = ifp;
553 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
554 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
555 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
556
557 sc->sc_ec.ec_mii = &sc->sc_miibus;
558 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
559 ale_mediastatus);
560 mii_flags = 0;
561 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
562 mii_flags |= MIIF_DOPAUSE;
563 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
564 MII_OFFSET_ANY, mii_flags);
565
566 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
567 aprint_error_dev(self, "no PHY found!\n");
568 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
569 0, NULL);
570 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
571 } else
572 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
573
574 if_attach(ifp);
575 if_deferred_start_init(ifp, NULL);
576 ether_ifattach(ifp, sc->ale_eaddr);
577
578 if (pmf_device_register(self, NULL, NULL))
579 pmf_class_network_register(self, ifp);
580 else
581 aprint_error_dev(self, "couldn't establish power handler\n");
582
583 return;
584 fail:
585 ale_dma_free(sc);
586 if (sc->sc_irq_handle != NULL) {
587 pci_intr_disestablish(pc, sc->sc_irq_handle);
588 sc->sc_irq_handle = NULL;
589 }
590 if (sc->sc_mem_size) {
591 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
592 sc->sc_mem_size = 0;
593 }
594 }
595
596 static int
597 ale_detach(device_t self, int flags)
598 {
599 struct ale_softc *sc = device_private(self);
600 struct ifnet *ifp = &sc->sc_ec.ec_if;
601 int s;
602
603 pmf_device_deregister(self);
604 s = splnet();
605 ale_stop(ifp, 0);
606 splx(s);
607
608 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
609
610 /* Delete all remaining media. */
611 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
612
613 ether_ifdetach(ifp);
614 if_detach(ifp);
615 ale_dma_free(sc);
616
617 if (sc->sc_irq_handle != NULL) {
618 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
619 sc->sc_irq_handle = NULL;
620 }
621 if (sc->sc_mem_size) {
622 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
623 sc->sc_mem_size = 0;
624 }
625
626 return 0;
627 }
628
629
630 static int
631 ale_dma_alloc(struct ale_softc *sc)
632 {
633 struct ale_txdesc *txd;
634 int nsegs, error, guard_size, i;
635
636 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
637 guard_size = ALE_JUMBO_FRAMELEN;
638 else
639 guard_size = ALE_MAX_FRAMELEN;
640 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
641 ALE_RX_PAGE_ALIGN);
642
643 /*
644 * Create DMA stuffs for TX ring
645 */
646 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
647 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
648 if (error) {
649 sc->ale_cdata.ale_tx_ring_map = NULL;
650 return ENOBUFS;
651 }
652
653 /* Allocate DMA'able memory for TX ring */
654 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
655 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
656 &nsegs, BUS_DMA_WAITOK);
657 if (error) {
658 printf("%s: could not allocate DMA'able memory for Tx ring, "
659 "error = %i\n", device_xname(sc->sc_dev), error);
660 return error;
661 }
662
663 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
664 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
665 BUS_DMA_NOWAIT);
666 if (error)
667 return ENOBUFS;
668
669 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
670
671 /* Load the DMA map for Tx ring. */
672 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
673 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
674 if (error) {
675 printf("%s: could not load DMA'able memory for Tx ring.\n",
676 device_xname(sc->sc_dev));
677 bus_dmamem_free(sc->sc_dmat,
678 &sc->ale_cdata.ale_tx_ring_seg, 1);
679 return error;
680 }
681 sc->ale_cdata.ale_tx_ring_paddr =
682 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
683
684 for (i = 0; i < ALE_RX_PAGES; i++) {
685 /*
686 * Create DMA stuffs for RX pages
687 */
688 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
689 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
690 &sc->ale_cdata.ale_rx_page[i].page_map);
691 if (error) {
692 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
693 return ENOBUFS;
694 }
695
696 /* Allocate DMA'able memory for RX pages */
697 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
698 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
699 1, &nsegs, BUS_DMA_WAITOK);
700 if (error) {
701 printf("%s: could not allocate DMA'able memory for "
702 "Rx ring.\n", device_xname(sc->sc_dev));
703 return error;
704 }
705 error = bus_dmamem_map(sc->sc_dmat,
706 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
707 sc->ale_pagesize,
708 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
709 BUS_DMA_NOWAIT);
710 if (error)
711 return ENOBUFS;
712
713 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
714 sc->ale_pagesize);
715
716 /* Load the DMA map for Rx pages. */
717 error = bus_dmamap_load(sc->sc_dmat,
718 sc->ale_cdata.ale_rx_page[i].page_map,
719 sc->ale_cdata.ale_rx_page[i].page_addr,
720 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
721 if (error) {
722 printf("%s: could not load DMA'able memory for "
723 "Rx pages.\n", device_xname(sc->sc_dev));
724 bus_dmamem_free(sc->sc_dmat,
725 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
726 return error;
727 }
728 sc->ale_cdata.ale_rx_page[i].page_paddr =
729 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
730 }
731
732 /*
733 * Create DMA stuffs for Tx CMB.
734 */
735 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
736 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
737 if (error) {
738 sc->ale_cdata.ale_tx_cmb_map = NULL;
739 return ENOBUFS;
740 }
741
742 /* Allocate DMA'able memory for Tx CMB. */
743 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
744 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
745
746 if (error) {
747 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
748 device_xname(sc->sc_dev));
749 return error;
750 }
751
752 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
753 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
754 BUS_DMA_NOWAIT);
755 if (error)
756 return ENOBUFS;
757
758 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
759
760 /* Load the DMA map for Tx CMB. */
761 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
762 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
763 if (error) {
764 printf("%s: could not load DMA'able memory for Tx CMB.\n",
765 device_xname(sc->sc_dev));
766 bus_dmamem_free(sc->sc_dmat,
767 &sc->ale_cdata.ale_tx_cmb_seg, 1);
768 return error;
769 }
770
771 sc->ale_cdata.ale_tx_cmb_paddr =
772 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
773
774 for (i = 0; i < ALE_RX_PAGES; i++) {
775 /*
776 * Create DMA stuffs for Rx CMB.
777 */
778 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
779 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
780 &sc->ale_cdata.ale_rx_page[i].cmb_map);
781 if (error) {
782 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
783 return ENOBUFS;
784 }
785
786 /* Allocate DMA'able memory for Rx CMB */
787 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
788 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
789 &nsegs, BUS_DMA_WAITOK);
790 if (error) {
791 printf("%s: could not allocate DMA'able memory for "
792 "Rx CMB\n", device_xname(sc->sc_dev));
793 return error;
794 }
795 error = bus_dmamem_map(sc->sc_dmat,
796 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
797 ALE_RX_CMB_SZ,
798 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
799 BUS_DMA_NOWAIT);
800 if (error)
801 return ENOBUFS;
802
803 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
804
805 /* Load the DMA map for Rx CMB */
806 error = bus_dmamap_load(sc->sc_dmat,
807 sc->ale_cdata.ale_rx_page[i].cmb_map,
808 sc->ale_cdata.ale_rx_page[i].cmb_addr,
809 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
810 if (error) {
811 printf("%s: could not load DMA'able memory for Rx CMB"
812 "\n", device_xname(sc->sc_dev));
813 bus_dmamem_free(sc->sc_dmat,
814 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
815 return error;
816 }
817 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
818 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
819 }
820
821
822 /* Create DMA maps for Tx buffers. */
823 for (i = 0; i < ALE_TX_RING_CNT; i++) {
824 txd = &sc->ale_cdata.ale_txdesc[i];
825 txd->tx_m = NULL;
826 txd->tx_dmamap = NULL;
827 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
828 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
829 &txd->tx_dmamap);
830 if (error) {
831 txd->tx_dmamap = NULL;
832 printf("%s: could not create Tx dmamap.\n",
833 device_xname(sc->sc_dev));
834 return error;
835 }
836 }
837
838 return 0;
839 }
840
841 static void
842 ale_dma_free(struct ale_softc *sc)
843 {
844 struct ale_txdesc *txd;
845 int i;
846
847 /* Tx buffers. */
848 for (i = 0; i < ALE_TX_RING_CNT; i++) {
849 txd = &sc->ale_cdata.ale_txdesc[i];
850 if (txd->tx_dmamap != NULL) {
851 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
852 txd->tx_dmamap = NULL;
853 }
854 }
855
856 /* Tx descriptor ring. */
857 if (sc->ale_cdata.ale_tx_ring_map != NULL)
858 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
859 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
860 sc->ale_cdata.ale_tx_ring != NULL)
861 bus_dmamem_free(sc->sc_dmat,
862 &sc->ale_cdata.ale_tx_ring_seg, 1);
863 sc->ale_cdata.ale_tx_ring = NULL;
864 sc->ale_cdata.ale_tx_ring_map = NULL;
865
866 /* Rx page block. */
867 for (i = 0; i < ALE_RX_PAGES; i++) {
868 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
869 bus_dmamap_unload(sc->sc_dmat,
870 sc->ale_cdata.ale_rx_page[i].page_map);
871 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
872 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
873 bus_dmamem_free(sc->sc_dmat,
874 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
875 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
876 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
877 }
878
879 /* Rx CMB. */
880 for (i = 0; i < ALE_RX_PAGES; i++) {
881 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
882 bus_dmamap_unload(sc->sc_dmat,
883 sc->ale_cdata.ale_rx_page[i].cmb_map);
884 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
885 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
886 bus_dmamem_free(sc->sc_dmat,
887 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
888 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
889 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
890 }
891
892 /* Tx CMB. */
893 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
894 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
895 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
896 sc->ale_cdata.ale_tx_cmb != NULL)
897 bus_dmamem_free(sc->sc_dmat,
898 &sc->ale_cdata.ale_tx_cmb_seg, 1);
899 sc->ale_cdata.ale_tx_cmb = NULL;
900 sc->ale_cdata.ale_tx_cmb_map = NULL;
901
902 }
903
904 static int
905 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
906 {
907 struct ale_txdesc *txd, *txd_last;
908 struct tx_desc *desc;
909 struct mbuf *m;
910 bus_dmamap_t map;
911 uint32_t cflags, poff, vtag;
912 int error, i, nsegs, prod;
913
914 m = *m_head;
915 cflags = vtag = 0;
916 poff = 0;
917
918 prod = sc->ale_cdata.ale_tx_prod;
919 txd = &sc->ale_cdata.ale_txdesc[prod];
920 txd_last = txd;
921 map = txd->tx_dmamap;
922
923 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
924 if (error == EFBIG) {
925 error = 0;
926
927 *m_head = m_pullup(*m_head, MHLEN);
928 if (*m_head == NULL) {
929 printf("%s: can't defrag TX mbuf\n",
930 device_xname(sc->sc_dev));
931 return ENOBUFS;
932 }
933
934 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
935 BUS_DMA_NOWAIT);
936
937 if (error != 0) {
938 printf("%s: could not load defragged TX mbuf\n",
939 device_xname(sc->sc_dev));
940 m_freem(*m_head);
941 *m_head = NULL;
942 return error;
943 }
944 } else if (error) {
945 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
946 return error;
947 }
948
949 nsegs = map->dm_nsegs;
950
951 if (nsegs == 0) {
952 m_freem(*m_head);
953 *m_head = NULL;
954 return EIO;
955 }
956
957 /* Check descriptor overrun. */
958 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
959 bus_dmamap_unload(sc->sc_dmat, map);
960 return ENOBUFS;
961 }
962 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
963 BUS_DMASYNC_PREWRITE);
964
965 m = *m_head;
966 /* Configure Tx checksum offload. */
967 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
968 /*
969 * AR81xx supports Tx custom checksum offload feature
970 * that offloads single 16bit checksum computation.
971 * So you can choose one among IP, TCP and UDP.
972 * Normally driver sets checksum start/insertion
973 * position from the information of TCP/UDP frame as
974 * TCP/UDP checksum takes more time than that of IP.
975 * However it seems that custom checksum offload
976 * requires 4 bytes aligned Tx buffers due to hardware
977 * bug.
978 * AR81xx also supports explicit Tx checksum computation
979 * if it is told that the size of IP header and TCP
980 * header(for UDP, the header size does not matter
981 * because it's fixed length). However with this scheme
982 * TSO does not work so you have to choose one either
983 * TSO or explicit Tx checksum offload. I chosen TSO
984 * plus custom checksum offload with work-around which
985 * will cover most common usage for this consumer
986 * ethernet controller. The work-around takes a lot of
987 * CPU cycles if Tx buffer is not aligned on 4 bytes
988 * boundary, though.
989 */
990 cflags |= ALE_TD_CXSUM;
991 /* Set checksum start offset. */
992 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
993 }
994
995 #if NVLAN > 0
996 /* Configure VLAN hardware tag insertion. */
997 if (vlan_has_tag(m)) {
998 vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
999 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1000 cflags |= ALE_TD_INSERT_VLAN_TAG;
1001 }
1002 #endif
1003
1004 desc = NULL;
1005 for (i = 0; i < nsegs; i++) {
1006 desc = &sc->ale_cdata.ale_tx_ring[prod];
1007 desc->addr = htole64(map->dm_segs[i].ds_addr);
1008 desc->len =
1009 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1010 desc->flags = htole32(cflags);
1011 sc->ale_cdata.ale_tx_cnt++;
1012 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1013 }
1014 /* Update producer index. */
1015 sc->ale_cdata.ale_tx_prod = prod;
1016
1017 /* Finally set EOP on the last descriptor. */
1018 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1019 desc = &sc->ale_cdata.ale_tx_ring[prod];
1020 desc->flags |= htole32(ALE_TD_EOP);
1021
1022 /* Swap dmamap of the first and the last. */
1023 txd = &sc->ale_cdata.ale_txdesc[prod];
1024 map = txd_last->tx_dmamap;
1025 txd_last->tx_dmamap = txd->tx_dmamap;
1026 txd->tx_dmamap = map;
1027 txd->tx_m = m;
1028
1029 /* Sync descriptors. */
1030 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1031 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1032
1033 return 0;
1034 }
1035
1036 static void
1037 ale_start(struct ifnet *ifp)
1038 {
1039 struct ale_softc *sc = ifp->if_softc;
1040 struct mbuf *m_head;
1041 int enq;
1042
1043 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1044 return;
1045
1046 /* Reclaim transmitted frames. */
1047 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1048 ale_txeof(sc);
1049
1050 enq = 0;
1051 for (;;) {
1052 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1053 if (m_head == NULL)
1054 break;
1055
1056 /*
1057 * Pack the data into the transmit ring. If we
1058 * don't have room, set the OACTIVE flag and wait
1059 * for the NIC to drain the ring.
1060 */
1061 if (ale_encap(sc, &m_head)) {
1062 if (m_head == NULL)
1063 break;
1064 IF_PREPEND(&ifp->if_snd, m_head);
1065 ifp->if_flags |= IFF_OACTIVE;
1066 break;
1067 }
1068 enq = 1;
1069
1070 /*
1071 * If there's a BPF listener, bounce a copy of this frame
1072 * to him.
1073 */
1074 bpf_mtap(ifp, m_head);
1075 }
1076
1077 if (enq) {
1078 /* Kick. */
1079 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1080 sc->ale_cdata.ale_tx_prod);
1081
1082 /* Set a timeout in case the chip goes out to lunch. */
1083 ifp->if_timer = ALE_TX_TIMEOUT;
1084 }
1085 }
1086
1087 static void
1088 ale_watchdog(struct ifnet *ifp)
1089 {
1090 struct ale_softc *sc = ifp->if_softc;
1091
1092 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1093 printf("%s: watchdog timeout (missed link)\n",
1094 device_xname(sc->sc_dev));
1095 ifp->if_oerrors++;
1096 ale_init(ifp);
1097 return;
1098 }
1099
1100 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1101 ifp->if_oerrors++;
1102 ale_init(ifp);
1103
1104 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1105 ale_start(ifp);
1106 }
1107
1108 static int
1109 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1110 {
1111 struct ale_softc *sc = ifp->if_softc;
1112 int s, error;
1113
1114 s = splnet();
1115
1116 error = ether_ioctl(ifp, cmd, data);
1117 if (error == ENETRESET) {
1118 if (ifp->if_flags & IFF_RUNNING)
1119 ale_rxfilter(sc);
1120 error = 0;
1121 }
1122
1123 splx(s);
1124 return error;
1125 }
1126
1127 static void
1128 ale_mac_config(struct ale_softc *sc)
1129 {
1130 struct mii_data *mii;
1131 uint32_t reg;
1132
1133 mii = &sc->sc_miibus;
1134 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1135 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1136 MAC_CFG_SPEED_MASK);
1137
1138 /* Reprogram MAC with resolved speed/duplex. */
1139 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1140 case IFM_10_T:
1141 case IFM_100_TX:
1142 reg |= MAC_CFG_SPEED_10_100;
1143 break;
1144 case IFM_1000_T:
1145 reg |= MAC_CFG_SPEED_1000;
1146 break;
1147 }
1148 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1149 reg |= MAC_CFG_FULL_DUPLEX;
1150 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1151 reg |= MAC_CFG_TX_FC;
1152 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1153 reg |= MAC_CFG_RX_FC;
1154 }
1155 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1156 }
1157
1158 static void
1159 ale_stats_clear(struct ale_softc *sc)
1160 {
1161 struct smb sb;
1162 uint32_t *reg;
1163 int i;
1164
1165 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1166 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1167 i += sizeof(uint32_t);
1168 }
1169 /* Read Tx statistics. */
1170 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1171 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1172 i += sizeof(uint32_t);
1173 }
1174 }
1175
1176 static void
1177 ale_stats_update(struct ale_softc *sc)
1178 {
1179 struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 struct ale_hw_stats *stat;
1181 struct smb sb, *smb;
1182 uint32_t *reg;
1183 int i;
1184
1185 stat = &sc->ale_stats;
1186 smb = &sb;
1187
1188 /* Read Rx statistics. */
1189 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1190 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1191 i += sizeof(uint32_t);
1192 }
1193 /* Read Tx statistics. */
1194 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1195 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1196 i += sizeof(uint32_t);
1197 }
1198
1199 /* Rx stats. */
1200 stat->rx_frames += smb->rx_frames;
1201 stat->rx_bcast_frames += smb->rx_bcast_frames;
1202 stat->rx_mcast_frames += smb->rx_mcast_frames;
1203 stat->rx_pause_frames += smb->rx_pause_frames;
1204 stat->rx_control_frames += smb->rx_control_frames;
1205 stat->rx_crcerrs += smb->rx_crcerrs;
1206 stat->rx_lenerrs += smb->rx_lenerrs;
1207 stat->rx_bytes += smb->rx_bytes;
1208 stat->rx_runts += smb->rx_runts;
1209 stat->rx_fragments += smb->rx_fragments;
1210 stat->rx_pkts_64 += smb->rx_pkts_64;
1211 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1212 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1213 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1214 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1215 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1216 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1217 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1218 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1219 stat->rx_rrs_errs += smb->rx_rrs_errs;
1220 stat->rx_alignerrs += smb->rx_alignerrs;
1221 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1222 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1223 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1224
1225 /* Tx stats. */
1226 stat->tx_frames += smb->tx_frames;
1227 stat->tx_bcast_frames += smb->tx_bcast_frames;
1228 stat->tx_mcast_frames += smb->tx_mcast_frames;
1229 stat->tx_pause_frames += smb->tx_pause_frames;
1230 stat->tx_excess_defer += smb->tx_excess_defer;
1231 stat->tx_control_frames += smb->tx_control_frames;
1232 stat->tx_deferred += smb->tx_deferred;
1233 stat->tx_bytes += smb->tx_bytes;
1234 stat->tx_pkts_64 += smb->tx_pkts_64;
1235 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1236 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1237 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1238 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1239 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1240 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1241 stat->tx_single_colls += smb->tx_single_colls;
1242 stat->tx_multi_colls += smb->tx_multi_colls;
1243 stat->tx_late_colls += smb->tx_late_colls;
1244 stat->tx_excess_colls += smb->tx_excess_colls;
1245 stat->tx_abort += smb->tx_abort;
1246 stat->tx_underrun += smb->tx_underrun;
1247 stat->tx_desc_underrun += smb->tx_desc_underrun;
1248 stat->tx_lenerrs += smb->tx_lenerrs;
1249 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1250 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1251 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1252
1253 /* Update counters in ifnet. */
1254 ifp->if_opackets += smb->tx_frames;
1255
1256 ifp->if_collisions += smb->tx_single_colls +
1257 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1258 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1259
1260 /*
1261 * XXX
1262 * tx_pkts_truncated counter looks suspicious. It constantly
1263 * increments with no sign of Tx errors. This may indicate
1264 * the counter name is not correct one so I've removed the
1265 * counter in output errors.
1266 */
1267 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1268 smb->tx_underrun;
1269
1270 ifp->if_ipackets += smb->rx_frames;
1271
1272 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1273 smb->rx_runts + smb->rx_pkts_truncated +
1274 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1275 smb->rx_alignerrs;
1276 }
1277
1278 static int
1279 ale_intr(void *xsc)
1280 {
1281 struct ale_softc *sc = xsc;
1282 struct ifnet *ifp = &sc->sc_ec.ec_if;
1283 uint32_t status;
1284
1285 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1286 if ((status & ALE_INTRS) == 0)
1287 return 0;
1288
1289 /* Acknowledge and disable interrupts. */
1290 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1291
1292 if (ifp->if_flags & IFF_RUNNING) {
1293 int error;
1294
1295 error = ale_rxeof(sc);
1296 if (error) {
1297 sc->ale_stats.reset_brk_seq++;
1298 ale_init(ifp);
1299 return 0;
1300 }
1301
1302 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1303 if (status & INTR_DMA_RD_TO_RST)
1304 printf("%s: DMA read error! -- resetting\n",
1305 device_xname(sc->sc_dev));
1306 if (status & INTR_DMA_WR_TO_RST)
1307 printf("%s: DMA write error! -- resetting\n",
1308 device_xname(sc->sc_dev));
1309 ale_init(ifp);
1310 return 0;
1311 }
1312
1313 ale_txeof(sc);
1314 if_schedule_deferred_start(ifp);
1315 }
1316
1317 /* Re-enable interrupts. */
1318 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1319 return 1;
1320 }
1321
1322 static void
1323 ale_txeof(struct ale_softc *sc)
1324 {
1325 struct ifnet *ifp = &sc->sc_ec.ec_if;
1326 struct ale_txdesc *txd;
1327 uint32_t cons, prod;
1328 int prog;
1329
1330 if (sc->ale_cdata.ale_tx_cnt == 0)
1331 return;
1332
1333 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1334 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1335 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1336 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1337 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1338 BUS_DMASYNC_POSTREAD);
1339 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1340 } else
1341 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1342 cons = sc->ale_cdata.ale_tx_cons;
1343 /*
1344 * Go through our Tx list and free mbufs for those
1345 * frames which have been transmitted.
1346 */
1347 for (prog = 0; cons != prod; prog++,
1348 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1349 if (sc->ale_cdata.ale_tx_cnt <= 0)
1350 break;
1351 prog++;
1352 ifp->if_flags &= ~IFF_OACTIVE;
1353 sc->ale_cdata.ale_tx_cnt--;
1354 txd = &sc->ale_cdata.ale_txdesc[cons];
1355 if (txd->tx_m != NULL) {
1356 /* Reclaim transmitted mbufs. */
1357 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1358 m_freem(txd->tx_m);
1359 txd->tx_m = NULL;
1360 }
1361 }
1362
1363 if (prog > 0) {
1364 sc->ale_cdata.ale_tx_cons = cons;
1365 /*
1366 * Unarm watchdog timer only when there is no pending
1367 * Tx descriptors in queue.
1368 */
1369 if (sc->ale_cdata.ale_tx_cnt == 0)
1370 ifp->if_timer = 0;
1371 }
1372 }
1373
1374 static void
1375 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1376 uint32_t length, uint32_t *prod)
1377 {
1378 struct ale_rx_page *rx_page;
1379
1380 rx_page = *page;
1381 /* Update consumer position. */
1382 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1383 ALE_RX_PAGE_ALIGN);
1384 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1385 /*
1386 * End of Rx page reached, let hardware reuse
1387 * this page.
1388 */
1389 rx_page->cons = 0;
1390 *rx_page->cmb_addr = 0;
1391 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1392 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1393 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1394 RXF_VALID);
1395 /* Switch to alternate Rx page. */
1396 sc->ale_cdata.ale_rx_curp ^= 1;
1397 rx_page = *page =
1398 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1399 /* Page flipped, sync CMB and Rx page. */
1400 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1401 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1402 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1403 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1404 /* Sync completed, cache updated producer index. */
1405 *prod = *rx_page->cmb_addr;
1406 }
1407 }
1408
1409
1410 /*
1411 * It seems that AR81xx controller can compute partial checksum.
1412 * The partial checksum value can be used to accelerate checksum
1413 * computation for fragmented TCP/UDP packets. Upper network stack
1414 * already takes advantage of the partial checksum value in IP
1415 * reassembly stage. But I'm not sure the correctness of the
1416 * partial hardware checksum assistance due to lack of data sheet.
1417 * In addition, the Rx feature of controller that requires copying
1418 * for every frames effectively nullifies one of most nice offload
1419 * capability of controller.
1420 */
1421 static void
1422 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1423 {
1424 if (status & ALE_RD_IPCSUM_NOK)
1425 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1426
1427 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1428 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1429 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1430 (status & ALE_RD_TCP_UDPCSUM_NOK))
1431 {
1432 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1433 }
1434 } else {
1435 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1436 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1437 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1438 }
1439 }
1440 }
1441 /*
1442 * Don't mark bad checksum for TCP/UDP frames
1443 * as fragmented frames may always have set
1444 * bad checksummed bit of frame status.
1445 */
1446 }
1447
1448 /* Process received frames. */
1449 static int
1450 ale_rxeof(struct ale_softc *sc)
1451 {
1452 struct ifnet *ifp = &sc->sc_ec.ec_if;
1453 struct ale_rx_page *rx_page;
1454 struct rx_rs *rs;
1455 struct mbuf *m;
1456 uint32_t length, prod, seqno, status;
1457 int prog;
1458
1459 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1460 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1461 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1462 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1463 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1464 /*
1465 * Don't directly access producer index as hardware may
1466 * update it while Rx handler is in progress. It would
1467 * be even better if there is a way to let hardware
1468 * know how far driver processed its received frames.
1469 * Alternatively, hardware could provide a way to disable
1470 * CMB updates until driver acknowledges the end of CMB
1471 * access.
1472 */
1473 prod = *rx_page->cmb_addr;
1474 for (prog = 0; ; prog++) {
1475 if (rx_page->cons >= prod)
1476 break;
1477 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1478 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1479 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1480 /*
1481 * Normally I believe this should not happen unless
1482 * severe driver bug or corrupted memory. However
1483 * it seems to happen under certain conditions which
1484 * is triggered by abrupt Rx events such as initiation
1485 * of bulk transfer of remote host. It's not easy to
1486 * reproduce this and I doubt it could be related
1487 * with FIFO overflow of hardware or activity of Tx
1488 * CMB updates. I also remember similar behaviour
1489 * seen on RealTek 8139 which uses resembling Rx
1490 * scheme.
1491 */
1492 if (aledebug)
1493 printf("%s: garbled seq: %u, expected: %u -- "
1494 "resetting!\n", device_xname(sc->sc_dev),
1495 seqno, sc->ale_cdata.ale_rx_seqno);
1496 return EIO;
1497 }
1498 /* Frame received. */
1499 sc->ale_cdata.ale_rx_seqno++;
1500 length = ALE_RX_BYTES(le32toh(rs->length));
1501 status = le32toh(rs->flags);
1502 if (status & ALE_RD_ERROR) {
1503 /*
1504 * We want to pass the following frames to upper
1505 * layer regardless of error status of Rx return
1506 * status.
1507 *
1508 * o IP/TCP/UDP checksum is bad.
1509 * o frame length and protocol specific length
1510 * does not match.
1511 */
1512 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1513 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1514 ALE_RD_TRUNC)) {
1515 ale_rx_update_page(sc, &rx_page, length, &prod);
1516 continue;
1517 }
1518 }
1519 /*
1520 * m_devget(9) is major bottle-neck of ale(4)(It comes
1521 * from hardware limitation). For jumbo frames we could
1522 * get a slightly better performance if driver use
1523 * m_getjcl(9) with proper buffer size argument. However
1524 * that would make code more complicated and I don't
1525 * think users would expect good Rx performance numbers
1526 * on these low-end consumer ethernet controller.
1527 */
1528 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1529 0, ifp, NULL);
1530 if (m == NULL) {
1531 ifp->if_iqdrops++;
1532 ale_rx_update_page(sc, &rx_page, length, &prod);
1533 continue;
1534 }
1535 if (status & ALE_RD_IPV4)
1536 ale_rxcsum(sc, m, status);
1537 #if NVLAN > 0
1538 if (status & ALE_RD_VLAN) {
1539 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1540 vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1541 }
1542 #endif
1543
1544 /* Pass it to upper layer. */
1545 if_percpuq_enqueue(ifp->if_percpuq, m);
1546
1547 ale_rx_update_page(sc, &rx_page, length, &prod);
1548 }
1549
1550 return 0;
1551 }
1552
1553 static void
1554 ale_tick(void *xsc)
1555 {
1556 struct ale_softc *sc = xsc;
1557 struct mii_data *mii = &sc->sc_miibus;
1558 int s;
1559
1560 s = splnet();
1561 mii_tick(mii);
1562 ale_stats_update(sc);
1563 splx(s);
1564
1565 callout_schedule(&sc->sc_tick_ch, hz);
1566 }
1567
1568 static void
1569 ale_reset(struct ale_softc *sc)
1570 {
1571 uint32_t reg;
1572 int i;
1573
1574 /* Initialize PCIe module. From Linux. */
1575 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1576
1577 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1578 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1579 DELAY(10);
1580 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1581 break;
1582 }
1583 if (i == 0)
1584 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1585
1586 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1587 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1588 break;
1589 DELAY(10);
1590 }
1591
1592 if (i == 0)
1593 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1594 reg);
1595 }
1596
1597 static int
1598 ale_init(struct ifnet *ifp)
1599 {
1600 struct ale_softc *sc = ifp->if_softc;
1601 struct mii_data *mii;
1602 uint8_t eaddr[ETHER_ADDR_LEN];
1603 bus_addr_t paddr;
1604 uint32_t reg, rxf_hi, rxf_lo;
1605
1606 /*
1607 * Cancel any pending I/O.
1608 */
1609 ale_stop(ifp, 0);
1610
1611 /*
1612 * Reset the chip to a known state.
1613 */
1614 ale_reset(sc);
1615
1616 /* Initialize Tx descriptors, DMA memory blocks. */
1617 ale_init_rx_pages(sc);
1618 ale_init_tx_ring(sc);
1619
1620 /* Reprogram the station address. */
1621 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1622 CSR_WRITE_4(sc, ALE_PAR0,
1623 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1624 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1625
1626 /*
1627 * Clear WOL status and disable all WOL feature as WOL
1628 * would interfere Rx operation under normal environments.
1629 */
1630 CSR_READ_4(sc, ALE_WOL_CFG);
1631 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1632
1633 /*
1634 * Set Tx descriptor/RXF0/CMB base addresses. They share
1635 * the same high address part of DMAable region.
1636 */
1637 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1638 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1639 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1640 CSR_WRITE_4(sc, ALE_TPD_CNT,
1641 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1642
1643 /* Set Rx page base address, note we use single queue. */
1644 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1645 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1646 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1647 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1648
1649 /* Set Tx/Rx CMB addresses. */
1650 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1651 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1652 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1653 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1654 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1655 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1656
1657 /* Mark RXF0 is valid. */
1658 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1659 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1660 /*
1661 * No need to initialize RFX1/RXF2/RXF3. We don't use
1662 * multi-queue yet.
1663 */
1664
1665 /* Set Rx page size, excluding guard frame size. */
1666 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1667
1668 /* Tell hardware that we're ready to load DMA blocks. */
1669 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1670
1671 /* Set Rx/Tx interrupt trigger threshold. */
1672 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1673 (4 << INT_TRIG_TX_THRESH_SHIFT));
1674 /*
1675 * XXX
1676 * Set interrupt trigger timer, its purpose and relation
1677 * with interrupt moderation mechanism is not clear yet.
1678 */
1679 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1680 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1681 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1682
1683 /* Configure interrupt moderation timer. */
1684 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1685 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1686 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1687 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1688 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1689 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1690 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1691 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1692 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1693 reg |= MASTER_IM_RX_TIMER_ENB;
1694 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1695 reg |= MASTER_IM_TX_TIMER_ENB;
1696 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1697 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1698
1699 /* Set Maximum frame size of controller. */
1700 if (ifp->if_mtu < ETHERMTU)
1701 sc->ale_max_frame_size = ETHERMTU;
1702 else
1703 sc->ale_max_frame_size = ifp->if_mtu;
1704 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1705 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1706
1707 /* Configure IPG/IFG parameters. */
1708 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1709 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1710 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1711 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1712 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1713
1714 /* Set parameters for half-duplex media. */
1715 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1716 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1717 HDPX_CFG_LCOL_MASK) |
1718 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1719 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1720 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1721 HDPX_CFG_ABEBT_MASK) |
1722 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1723 HDPX_CFG_JAMIPG_MASK));
1724
1725 /* Configure Tx jumbo frame parameters. */
1726 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1727 if (ifp->if_mtu < ETHERMTU)
1728 reg = sc->ale_max_frame_size;
1729 else if (ifp->if_mtu < 6 * 1024)
1730 reg = (sc->ale_max_frame_size * 2) / 3;
1731 else
1732 reg = sc->ale_max_frame_size / 2;
1733 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1734 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1735 TX_JUMBO_THRESH_UNIT_SHIFT);
1736 }
1737
1738 /* Configure TxQ. */
1739 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1740 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1741 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1742 TXQ_CFG_TPD_BURST_MASK;
1743 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1744
1745 /* Configure Rx jumbo frame & flow control parameters. */
1746 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1747 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1748 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1749 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1750 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1751 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1752 RX_JUMBO_LKAH_MASK));
1753 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1754 rxf_hi = (reg * 7) / 10;
1755 rxf_lo = (reg * 3)/ 10;
1756 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1757 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1758 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1759 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1760 RX_FIFO_PAUSE_THRESH_HI_MASK));
1761 }
1762
1763 /* Disable RSS. */
1764 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1765 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1766
1767 /* Configure RxQ. */
1768 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1769 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1770
1771 /* Configure DMA parameters. */
1772 reg = 0;
1773 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1774 reg |= DMA_CFG_TXCMB_ENB;
1775 CSR_WRITE_4(sc, ALE_DMA_CFG,
1776 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1777 sc->ale_dma_rd_burst | reg |
1778 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1779 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1780 DMA_CFG_RD_DELAY_CNT_MASK) |
1781 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1782 DMA_CFG_WR_DELAY_CNT_MASK));
1783
1784 /*
1785 * Hardware can be configured to issue SMB interrupt based
1786 * on programmed interval. Since there is a callout that is
1787 * invoked for every hz in driver we use that instead of
1788 * relying on periodic SMB interrupt.
1789 */
1790 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1791
1792 /* Clear MAC statistics. */
1793 ale_stats_clear(sc);
1794
1795 /*
1796 * Configure Tx/Rx MACs.
1797 * - Auto-padding for short frames.
1798 * - Enable CRC generation.
1799 * Actual reconfiguration of MAC for resolved speed/duplex
1800 * is followed after detection of link establishment.
1801 * AR81xx always does checksum computation regardless of
1802 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1803 * cause Rx handling issue for fragmented IP datagrams due
1804 * to silicon bug.
1805 */
1806 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1807 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1808 MAC_CFG_PREAMBLE_MASK);
1809 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1810 reg |= MAC_CFG_SPEED_10_100;
1811 else
1812 reg |= MAC_CFG_SPEED_1000;
1813 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1814
1815 /* Set up the receive filter. */
1816 ale_rxfilter(sc);
1817 ale_rxvlan(sc);
1818
1819 /* Acknowledge all pending interrupts and clear it. */
1820 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1821 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1822 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1823
1824 sc->ale_flags &= ~ALE_FLAG_LINK;
1825
1826 /* Switch to the current media. */
1827 mii = &sc->sc_miibus;
1828 mii_mediachg(mii);
1829
1830 callout_schedule(&sc->sc_tick_ch, hz);
1831
1832 ifp->if_flags |= IFF_RUNNING;
1833 ifp->if_flags &= ~IFF_OACTIVE;
1834
1835 return 0;
1836 }
1837
1838 static void
1839 ale_stop(struct ifnet *ifp, int disable)
1840 {
1841 struct ale_softc *sc = ifp->if_softc;
1842 struct ale_txdesc *txd;
1843 uint32_t reg;
1844 int i;
1845
1846 callout_stop(&sc->sc_tick_ch);
1847
1848 /*
1849 * Mark the interface down and cancel the watchdog timer.
1850 */
1851 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1852 ifp->if_timer = 0;
1853
1854 sc->ale_flags &= ~ALE_FLAG_LINK;
1855
1856 ale_stats_update(sc);
1857
1858 mii_down(&sc->sc_miibus);
1859
1860 /* Disable interrupts. */
1861 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1862 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1863
1864 /* Disable queue processing and DMA. */
1865 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1866 reg &= ~TXQ_CFG_ENB;
1867 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1868 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1869 reg &= ~RXQ_CFG_ENB;
1870 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1871 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1872 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1873 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1874 DELAY(1000);
1875
1876 /* Stop Rx/Tx MACs. */
1877 ale_stop_mac(sc);
1878
1879 /* Disable interrupts again? XXX */
1880 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1881
1882 /*
1883 * Free TX mbufs still in the queues.
1884 */
1885 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1886 txd = &sc->ale_cdata.ale_txdesc[i];
1887 if (txd->tx_m != NULL) {
1888 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1889 m_freem(txd->tx_m);
1890 txd->tx_m = NULL;
1891 }
1892 }
1893 }
1894
1895 static void
1896 ale_stop_mac(struct ale_softc *sc)
1897 {
1898 uint32_t reg;
1899 int i;
1900
1901 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1902 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1903 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1904 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1905 }
1906
1907 for (i = ALE_TIMEOUT; i > 0; i--) {
1908 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1909 if (reg == 0)
1910 break;
1911 DELAY(10);
1912 }
1913 if (i == 0)
1914 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1915 device_xname(sc->sc_dev), reg);
1916 }
1917
1918 static void
1919 ale_init_tx_ring(struct ale_softc *sc)
1920 {
1921 struct ale_txdesc *txd;
1922 int i;
1923
1924 sc->ale_cdata.ale_tx_prod = 0;
1925 sc->ale_cdata.ale_tx_cons = 0;
1926 sc->ale_cdata.ale_tx_cnt = 0;
1927
1928 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1929 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1930 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1931 txd = &sc->ale_cdata.ale_txdesc[i];
1932 txd->tx_m = NULL;
1933 }
1934 *sc->ale_cdata.ale_tx_cmb = 0;
1935 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1936 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1937 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1938 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1939 }
1940
1941 static void
1942 ale_init_rx_pages(struct ale_softc *sc)
1943 {
1944 struct ale_rx_page *rx_page;
1945 int i;
1946
1947 sc->ale_cdata.ale_rx_seqno = 0;
1948 sc->ale_cdata.ale_rx_curp = 0;
1949
1950 for (i = 0; i < ALE_RX_PAGES; i++) {
1951 rx_page = &sc->ale_cdata.ale_rx_page[i];
1952 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1953 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1954 rx_page->cons = 0;
1955 *rx_page->cmb_addr = 0;
1956 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1957 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1958 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1959 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1960 }
1961 }
1962
1963 static void
1964 ale_rxvlan(struct ale_softc *sc)
1965 {
1966 uint32_t reg;
1967
1968 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1969 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1970 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1971 reg |= MAC_CFG_VLAN_TAG_STRIP;
1972 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1973 }
1974
1975 static void
1976 ale_rxfilter(struct ale_softc *sc)
1977 {
1978 struct ethercom *ec = &sc->sc_ec;
1979 struct ifnet *ifp = &ec->ec_if;
1980 struct ether_multi *enm;
1981 struct ether_multistep step;
1982 uint32_t crc;
1983 uint32_t mchash[2];
1984 uint32_t rxcfg;
1985
1986 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1987 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1988 ifp->if_flags &= ~IFF_ALLMULTI;
1989
1990 /*
1991 * Always accept broadcast frames.
1992 */
1993 rxcfg |= MAC_CFG_BCAST;
1994
1995 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1996 ifp->if_flags |= IFF_ALLMULTI;
1997 if (ifp->if_flags & IFF_PROMISC)
1998 rxcfg |= MAC_CFG_PROMISC;
1999 else
2000 rxcfg |= MAC_CFG_ALLMULTI;
2001 mchash[0] = mchash[1] = 0xFFFFFFFF;
2002 } else {
2003 /* Program new filter. */
2004 memset(mchash, 0, sizeof(mchash));
2005
2006 ETHER_FIRST_MULTI(step, ec, enm);
2007 while (enm != NULL) {
2008 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2009 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2010 ETHER_NEXT_MULTI(step, enm);
2011 }
2012 }
2013
2014 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2015 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2016 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2017 }
2018