if_ale.c revision 1.26 1 /* $NetBSD: if_ale.c,v 1.26 2018/12/09 11:14:02 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.26 2018/12/09 11:14:02 jdolecek Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78
79 #include <dev/pci/if_alereg.h>
80
81 static int ale_match(device_t, cfdata_t, void *);
82 static void ale_attach(device_t, device_t, void *);
83 static int ale_detach(device_t, int);
84
85 static int ale_miibus_readreg(device_t, int, int);
86 static void ale_miibus_writereg(device_t, int, int, int);
87 static void ale_miibus_statchg(struct ifnet *);
88
89 static int ale_init(struct ifnet *);
90 static void ale_start(struct ifnet *);
91 static int ale_ioctl(struct ifnet *, u_long, void *);
92 static void ale_watchdog(struct ifnet *);
93 static int ale_mediachange(struct ifnet *);
94 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
95
96 static int ale_intr(void *);
97 static int ale_rxeof(struct ale_softc *sc);
98 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 uint32_t, uint32_t *);
100 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void ale_txeof(struct ale_softc *);
102
103 static int ale_dma_alloc(struct ale_softc *);
104 static void ale_dma_free(struct ale_softc *);
105 static int ale_encap(struct ale_softc *, struct mbuf **);
106 static void ale_init_rx_pages(struct ale_softc *);
107 static void ale_init_tx_ring(struct ale_softc *);
108
109 static void ale_stop(struct ifnet *, int);
110 static void ale_tick(void *);
111 static void ale_get_macaddr(struct ale_softc *);
112 static void ale_mac_config(struct ale_softc *);
113 static void ale_phy_reset(struct ale_softc *);
114 static void ale_reset(struct ale_softc *);
115 static void ale_rxfilter(struct ale_softc *);
116 static void ale_rxvlan(struct ale_softc *);
117 static void ale_stats_clear(struct ale_softc *);
118 static void ale_stats_update(struct ale_softc *);
119 static void ale_stop_mac(struct ale_softc *);
120
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 ale_match, ale_attach, ale_detach, NULL);
123
124 int aledebug = 0;
125 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
126
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
129
130 static int
131 ale_miibus_readreg(device_t dev, int phy, int reg)
132 {
133 struct ale_softc *sc = device_private(dev);
134 uint32_t v;
135 int i;
136
137 if (phy != sc->ale_phyaddr)
138 return 0;
139
140 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 switch (reg) {
142 case MII_100T2CR:
143 case MII_100T2SR:
144 case MII_EXTSR:
145 return 0;
146 default:
147 break;
148 }
149 }
150
151 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 DELAY(5);
155 v = CSR_READ_4(sc, ALE_MDIO);
156 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 break;
158 }
159
160 if (i == 0) {
161 printf("%s: phy read timeout: phy %d, reg %d\n",
162 device_xname(sc->sc_dev), phy, reg);
163 return 0;
164 }
165
166 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 }
168
169 static void
170 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
171 {
172 struct ale_softc *sc = device_private(dev);
173 uint32_t v;
174 int i;
175
176 if (phy != sc->ale_phyaddr)
177 return;
178
179 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
180 switch (reg) {
181 case MII_100T2CR:
182 case MII_100T2SR:
183 case MII_EXTSR:
184 return;
185 default:
186 break;
187 }
188 }
189
190 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
191 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
192 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
193 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
194 DELAY(5);
195 v = CSR_READ_4(sc, ALE_MDIO);
196 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
197 break;
198 }
199
200 if (i == 0)
201 printf("%s: phy write timeout: phy %d, reg %d\n",
202 device_xname(sc->sc_dev), phy, reg);
203 }
204
205 static void
206 ale_miibus_statchg(struct ifnet *ifp)
207 {
208 struct ale_softc *sc = ifp->if_softc;
209 struct mii_data *mii = &sc->sc_miibus;
210 uint32_t reg;
211
212 if ((ifp->if_flags & IFF_RUNNING) == 0)
213 return;
214
215 sc->ale_flags &= ~ALE_FLAG_LINK;
216 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
217 (IFM_ACTIVE | IFM_AVALID)) {
218 switch (IFM_SUBTYPE(mii->mii_media_active)) {
219 case IFM_10_T:
220 case IFM_100_TX:
221 sc->ale_flags |= ALE_FLAG_LINK;
222 break;
223
224 case IFM_1000_T:
225 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
226 sc->ale_flags |= ALE_FLAG_LINK;
227 break;
228
229 default:
230 break;
231 }
232 }
233
234 /* Stop Rx/Tx MACs. */
235 ale_stop_mac(sc);
236
237 /* Program MACs with resolved speed/duplex/flow-control. */
238 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
239 ale_mac_config(sc);
240 /* Reenable Tx/Rx MACs. */
241 reg = CSR_READ_4(sc, ALE_MAC_CFG);
242 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
243 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
244 }
245 }
246
247 void
248 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
249 {
250 struct ale_softc *sc = ifp->if_softc;
251 struct mii_data *mii = &sc->sc_miibus;
252
253 mii_pollstat(mii);
254 ifmr->ifm_status = mii->mii_media_status;
255 ifmr->ifm_active = mii->mii_media_active;
256 }
257
258 int
259 ale_mediachange(struct ifnet *ifp)
260 {
261 struct ale_softc *sc = ifp->if_softc;
262 struct mii_data *mii = &sc->sc_miibus;
263 int error;
264
265 if (mii->mii_instance != 0) {
266 struct mii_softc *miisc;
267
268 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
269 mii_phy_reset(miisc);
270 }
271 error = mii_mediachg(mii);
272
273 return error;
274 }
275
276 int
277 ale_match(device_t dev, cfdata_t match, void *aux)
278 {
279 struct pci_attach_args *pa = aux;
280
281 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
282 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
283 }
284
285 void
286 ale_get_macaddr(struct ale_softc *sc)
287 {
288 uint32_t ea[2], reg;
289 int i, vpdc;
290
291 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
292 if ((reg & SPI_VPD_ENB) != 0) {
293 reg &= ~SPI_VPD_ENB;
294 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
295 }
296
297 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
298 &vpdc, NULL)) {
299 /*
300 * PCI VPD capability found, let TWSI reload EEPROM.
301 * This will set ethernet address of controller.
302 */
303 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
304 TWSI_CTRL_SW_LD_START);
305 for (i = 100; i > 0; i--) {
306 DELAY(1000);
307 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
308 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
309 break;
310 }
311 if (i == 0)
312 printf("%s: reloading EEPROM timeout!\n",
313 device_xname(sc->sc_dev));
314 } else {
315 if (aledebug)
316 printf("%s: PCI VPD capability not found!\n",
317 device_xname(sc->sc_dev));
318 }
319
320 ea[0] = CSR_READ_4(sc, ALE_PAR0);
321 ea[1] = CSR_READ_4(sc, ALE_PAR1);
322 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
323 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
324 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
325 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
326 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
327 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
328 }
329
330 void
331 ale_phy_reset(struct ale_softc *sc)
332 {
333 /* Reset magic from Linux. */
334 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
335 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
336 GPHY_CTRL_PHY_PLL_ON);
337 DELAY(1000);
338 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
339 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
340 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
341 DELAY(1000);
342
343 #define ATPHY_DBG_ADDR 0x1D
344 #define ATPHY_DBG_DATA 0x1E
345
346 /* Enable hibernation mode. */
347 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
348 ATPHY_DBG_ADDR, 0x0B);
349 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 ATPHY_DBG_DATA, 0xBC00);
351 /* Set Class A/B for all modes. */
352 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 ATPHY_DBG_ADDR, 0x00);
354 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 ATPHY_DBG_DATA, 0x02EF);
356 /* Enable 10BT power saving. */
357 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 ATPHY_DBG_ADDR, 0x12);
359 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 ATPHY_DBG_DATA, 0x4C04);
361 /* Adjust 1000T power. */
362 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 ATPHY_DBG_ADDR, 0x04);
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_DATA, 0x8BBB);
366 /* 10BT center tap voltage. */
367 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 ATPHY_DBG_ADDR, 0x05);
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_DATA, 0x2C46);
371
372 #undef ATPHY_DBG_ADDR
373 #undef ATPHY_DBG_DATA
374 DELAY(1000);
375 }
376
377 void
378 ale_attach(device_t parent, device_t self, void *aux)
379 {
380 struct ale_softc *sc = device_private(self);
381 struct pci_attach_args *pa = aux;
382 pci_chipset_tag_t pc = pa->pa_pc;
383 pci_intr_handle_t ih;
384 const char *intrstr;
385 struct ifnet *ifp;
386 pcireg_t memtype;
387 int mii_flags, error = 0;
388 uint32_t rxf_len, txf_len;
389 const char *chipname;
390 char intrbuf[PCI_INTRSTR_LEN];
391
392 aprint_naive("\n");
393 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
394
395 sc->sc_dev = self;
396 sc->sc_dmat = pa->pa_dmat;
397 sc->sc_pct = pa->pa_pc;
398 sc->sc_pcitag = pa->pa_tag;
399
400 /*
401 * Allocate IO memory
402 */
403 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
404 switch (memtype) {
405 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
406 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
407 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
408 break;
409 default:
410 aprint_error_dev(self, "invalid base address register\n");
411 break;
412 }
413
414 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
415 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
416 aprint_error_dev(self, "could not map mem space\n");
417 return;
418 }
419
420 if (pci_intr_map(pa, &ih) != 0) {
421 aprint_error_dev(self, "could not map interrupt\n");
422 goto fail;
423 }
424
425 /*
426 * Allocate IRQ
427 */
428 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
429 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, ale_intr,
430 sc, device_xname(self));
431 if (sc->sc_irq_handle == NULL) {
432 aprint_error_dev(self, "could not establish interrupt");
433 if (intrstr != NULL)
434 aprint_error(" at %s", intrstr);
435 aprint_error("\n");
436 goto fail;
437 }
438
439 /* Set PHY address. */
440 sc->ale_phyaddr = ALE_PHY_ADDR;
441
442 /* Reset PHY. */
443 ale_phy_reset(sc);
444
445 /* Reset the ethernet controller. */
446 ale_reset(sc);
447
448 /* Get PCI and chip id/revision. */
449 sc->ale_rev = PCI_REVISION(pa->pa_class);
450 if (sc->ale_rev >= 0xF0) {
451 /* L2E Rev. B. AR8114 */
452 sc->ale_flags |= ALE_FLAG_FASTETHER;
453 chipname = "AR8114 (L2E RevB)";
454 } else {
455 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
456 /* L1E AR8121 */
457 sc->ale_flags |= ALE_FLAG_JUMBO;
458 chipname = "AR8121 (L1E)";
459 } else {
460 /* L2E Rev. A. AR8113 */
461 sc->ale_flags |= ALE_FLAG_FASTETHER;
462 chipname = "AR8113 (L2E RevA)";
463 }
464 }
465 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
466
467 /*
468 * All known controllers seems to require 4 bytes alignment
469 * of Tx buffers to make Tx checksum offload with custom
470 * checksum generation method work.
471 */
472 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
473
474 /*
475 * All known controllers seems to have issues on Rx checksum
476 * offload for fragmented IP datagrams.
477 */
478 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
479
480 /*
481 * Don't use Tx CMB. It is known to cause RRS update failure
482 * under certain circumstances. Typical phenomenon of the
483 * issue would be unexpected sequence number encountered in
484 * Rx handler.
485 */
486 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
487 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
488 MASTER_CHIP_REV_SHIFT;
489 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
490 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
491
492 /*
493 * Uninitialized hardware returns an invalid chip id/revision
494 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
495 */
496 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
497 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
498 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
499 rxf_len == 0xFFFFFFF) {
500 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
501 "%u Rx FIFO -- not initialized?\n",
502 sc->ale_chip_rev, txf_len, rxf_len);
503 goto fail;
504 }
505
506 if (aledebug) {
507 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
508 txf_len, rxf_len);
509 }
510
511 /* Set max allowable DMA size. */
512 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
513 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
514
515 callout_init(&sc->sc_tick_ch, 0);
516 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
517
518 error = ale_dma_alloc(sc);
519 if (error)
520 goto fail;
521
522 /* Load station address. */
523 ale_get_macaddr(sc);
524
525 aprint_normal_dev(self, "Ethernet address %s\n",
526 ether_sprintf(sc->ale_eaddr));
527
528 ifp = &sc->sc_ec.ec_if;
529 ifp->if_softc = sc;
530 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
531 ifp->if_init = ale_init;
532 ifp->if_ioctl = ale_ioctl;
533 ifp->if_start = ale_start;
534 ifp->if_stop = ale_stop;
535 ifp->if_watchdog = ale_watchdog;
536 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
537 IFQ_SET_READY(&ifp->if_snd);
538 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
539
540 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
541
542 #ifdef ALE_CHECKSUM
543 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
544 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
545 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
546 #endif
547
548 #if NVLAN > 0
549 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
550 #endif
551
552 /* Set up MII bus. */
553 sc->sc_miibus.mii_ifp = ifp;
554 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
555 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
556 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
557
558 sc->sc_ec.ec_mii = &sc->sc_miibus;
559 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
560 ale_mediastatus);
561 mii_flags = 0;
562 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
563 mii_flags |= MIIF_DOPAUSE;
564 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, mii_flags);
566
567 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
568 aprint_error_dev(self, "no PHY found!\n");
569 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
570 0, NULL);
571 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
572 } else
573 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
574
575 if_attach(ifp);
576 if_deferred_start_init(ifp, NULL);
577 ether_ifattach(ifp, sc->ale_eaddr);
578
579 if (pmf_device_register(self, NULL, NULL))
580 pmf_class_network_register(self, ifp);
581 else
582 aprint_error_dev(self, "couldn't establish power handler\n");
583
584 return;
585 fail:
586 ale_dma_free(sc);
587 if (sc->sc_irq_handle != NULL) {
588 pci_intr_disestablish(pc, sc->sc_irq_handle);
589 sc->sc_irq_handle = NULL;
590 }
591 if (sc->sc_mem_size) {
592 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
593 sc->sc_mem_size = 0;
594 }
595 }
596
597 static int
598 ale_detach(device_t self, int flags)
599 {
600 struct ale_softc *sc = device_private(self);
601 struct ifnet *ifp = &sc->sc_ec.ec_if;
602 int s;
603
604 pmf_device_deregister(self);
605 s = splnet();
606 ale_stop(ifp, 0);
607 splx(s);
608
609 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
610
611 /* Delete all remaining media. */
612 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
613
614 ether_ifdetach(ifp);
615 if_detach(ifp);
616 ale_dma_free(sc);
617
618 if (sc->sc_irq_handle != NULL) {
619 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
620 sc->sc_irq_handle = NULL;
621 }
622 if (sc->sc_mem_size) {
623 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
624 sc->sc_mem_size = 0;
625 }
626
627 return 0;
628 }
629
630
631 static int
632 ale_dma_alloc(struct ale_softc *sc)
633 {
634 struct ale_txdesc *txd;
635 int nsegs, error, guard_size, i;
636
637 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
638 guard_size = ALE_JUMBO_FRAMELEN;
639 else
640 guard_size = ALE_MAX_FRAMELEN;
641 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
642 ALE_RX_PAGE_ALIGN);
643
644 /*
645 * Create DMA stuffs for TX ring
646 */
647 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
648 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
649 if (error) {
650 sc->ale_cdata.ale_tx_ring_map = NULL;
651 return ENOBUFS;
652 }
653
654 /* Allocate DMA'able memory for TX ring */
655 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
656 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
657 &nsegs, BUS_DMA_WAITOK);
658 if (error) {
659 printf("%s: could not allocate DMA'able memory for Tx ring, "
660 "error = %i\n", device_xname(sc->sc_dev), error);
661 return error;
662 }
663
664 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
665 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
666 BUS_DMA_NOWAIT);
667 if (error)
668 return ENOBUFS;
669
670 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
671
672 /* Load the DMA map for Tx ring. */
673 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
674 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
675 if (error) {
676 printf("%s: could not load DMA'able memory for Tx ring.\n",
677 device_xname(sc->sc_dev));
678 bus_dmamem_free(sc->sc_dmat,
679 &sc->ale_cdata.ale_tx_ring_seg, 1);
680 return error;
681 }
682 sc->ale_cdata.ale_tx_ring_paddr =
683 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
684
685 for (i = 0; i < ALE_RX_PAGES; i++) {
686 /*
687 * Create DMA stuffs for RX pages
688 */
689 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
690 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
691 &sc->ale_cdata.ale_rx_page[i].page_map);
692 if (error) {
693 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
694 return ENOBUFS;
695 }
696
697 /* Allocate DMA'able memory for RX pages */
698 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
699 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
700 1, &nsegs, BUS_DMA_WAITOK);
701 if (error) {
702 printf("%s: could not allocate DMA'able memory for "
703 "Rx ring.\n", device_xname(sc->sc_dev));
704 return error;
705 }
706 error = bus_dmamem_map(sc->sc_dmat,
707 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
708 sc->ale_pagesize,
709 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
710 BUS_DMA_NOWAIT);
711 if (error)
712 return ENOBUFS;
713
714 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
715 sc->ale_pagesize);
716
717 /* Load the DMA map for Rx pages. */
718 error = bus_dmamap_load(sc->sc_dmat,
719 sc->ale_cdata.ale_rx_page[i].page_map,
720 sc->ale_cdata.ale_rx_page[i].page_addr,
721 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
722 if (error) {
723 printf("%s: could not load DMA'able memory for "
724 "Rx pages.\n", device_xname(sc->sc_dev));
725 bus_dmamem_free(sc->sc_dmat,
726 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
727 return error;
728 }
729 sc->ale_cdata.ale_rx_page[i].page_paddr =
730 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
731 }
732
733 /*
734 * Create DMA stuffs for Tx CMB.
735 */
736 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
737 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
738 if (error) {
739 sc->ale_cdata.ale_tx_cmb_map = NULL;
740 return ENOBUFS;
741 }
742
743 /* Allocate DMA'able memory for Tx CMB. */
744 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
745 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
746
747 if (error) {
748 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
749 device_xname(sc->sc_dev));
750 return error;
751 }
752
753 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
754 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
755 BUS_DMA_NOWAIT);
756 if (error)
757 return ENOBUFS;
758
759 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
760
761 /* Load the DMA map for Tx CMB. */
762 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
763 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
764 if (error) {
765 printf("%s: could not load DMA'able memory for Tx CMB.\n",
766 device_xname(sc->sc_dev));
767 bus_dmamem_free(sc->sc_dmat,
768 &sc->ale_cdata.ale_tx_cmb_seg, 1);
769 return error;
770 }
771
772 sc->ale_cdata.ale_tx_cmb_paddr =
773 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
774
775 for (i = 0; i < ALE_RX_PAGES; i++) {
776 /*
777 * Create DMA stuffs for Rx CMB.
778 */
779 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
780 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
781 &sc->ale_cdata.ale_rx_page[i].cmb_map);
782 if (error) {
783 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
784 return ENOBUFS;
785 }
786
787 /* Allocate DMA'able memory for Rx CMB */
788 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
789 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
790 &nsegs, BUS_DMA_WAITOK);
791 if (error) {
792 printf("%s: could not allocate DMA'able memory for "
793 "Rx CMB\n", device_xname(sc->sc_dev));
794 return error;
795 }
796 error = bus_dmamem_map(sc->sc_dmat,
797 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
798 ALE_RX_CMB_SZ,
799 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
800 BUS_DMA_NOWAIT);
801 if (error)
802 return ENOBUFS;
803
804 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
805
806 /* Load the DMA map for Rx CMB */
807 error = bus_dmamap_load(sc->sc_dmat,
808 sc->ale_cdata.ale_rx_page[i].cmb_map,
809 sc->ale_cdata.ale_rx_page[i].cmb_addr,
810 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not load DMA'able memory for Rx CMB"
813 "\n", device_xname(sc->sc_dev));
814 bus_dmamem_free(sc->sc_dmat,
815 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
816 return error;
817 }
818 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
819 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
820 }
821
822
823 /* Create DMA maps for Tx buffers. */
824 for (i = 0; i < ALE_TX_RING_CNT; i++) {
825 txd = &sc->ale_cdata.ale_txdesc[i];
826 txd->tx_m = NULL;
827 txd->tx_dmamap = NULL;
828 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
829 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
830 &txd->tx_dmamap);
831 if (error) {
832 txd->tx_dmamap = NULL;
833 printf("%s: could not create Tx dmamap.\n",
834 device_xname(sc->sc_dev));
835 return error;
836 }
837 }
838
839 return 0;
840 }
841
842 static void
843 ale_dma_free(struct ale_softc *sc)
844 {
845 struct ale_txdesc *txd;
846 int i;
847
848 /* Tx buffers. */
849 for (i = 0; i < ALE_TX_RING_CNT; i++) {
850 txd = &sc->ale_cdata.ale_txdesc[i];
851 if (txd->tx_dmamap != NULL) {
852 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
853 txd->tx_dmamap = NULL;
854 }
855 }
856
857 /* Tx descriptor ring. */
858 if (sc->ale_cdata.ale_tx_ring_map != NULL)
859 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
860 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
861 sc->ale_cdata.ale_tx_ring != NULL)
862 bus_dmamem_free(sc->sc_dmat,
863 &sc->ale_cdata.ale_tx_ring_seg, 1);
864 sc->ale_cdata.ale_tx_ring = NULL;
865 sc->ale_cdata.ale_tx_ring_map = NULL;
866
867 /* Rx page block. */
868 for (i = 0; i < ALE_RX_PAGES; i++) {
869 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
870 bus_dmamap_unload(sc->sc_dmat,
871 sc->ale_cdata.ale_rx_page[i].page_map);
872 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
873 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
874 bus_dmamem_free(sc->sc_dmat,
875 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
876 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
877 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
878 }
879
880 /* Rx CMB. */
881 for (i = 0; i < ALE_RX_PAGES; i++) {
882 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
883 bus_dmamap_unload(sc->sc_dmat,
884 sc->ale_cdata.ale_rx_page[i].cmb_map);
885 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
886 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
887 bus_dmamem_free(sc->sc_dmat,
888 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
889 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
890 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
891 }
892
893 /* Tx CMB. */
894 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
895 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
896 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
897 sc->ale_cdata.ale_tx_cmb != NULL)
898 bus_dmamem_free(sc->sc_dmat,
899 &sc->ale_cdata.ale_tx_cmb_seg, 1);
900 sc->ale_cdata.ale_tx_cmb = NULL;
901 sc->ale_cdata.ale_tx_cmb_map = NULL;
902
903 }
904
905 static int
906 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
907 {
908 struct ale_txdesc *txd, *txd_last;
909 struct tx_desc *desc;
910 struct mbuf *m;
911 bus_dmamap_t map;
912 uint32_t cflags, poff, vtag;
913 int error, i, nsegs, prod;
914
915 m = *m_head;
916 cflags = vtag = 0;
917 poff = 0;
918
919 prod = sc->ale_cdata.ale_tx_prod;
920 txd = &sc->ale_cdata.ale_txdesc[prod];
921 txd_last = txd;
922 map = txd->tx_dmamap;
923
924 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
925 if (error == EFBIG) {
926 error = 0;
927
928 *m_head = m_pullup(*m_head, MHLEN);
929 if (*m_head == NULL) {
930 printf("%s: can't defrag TX mbuf\n",
931 device_xname(sc->sc_dev));
932 return ENOBUFS;
933 }
934
935 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
936 BUS_DMA_NOWAIT);
937
938 if (error != 0) {
939 printf("%s: could not load defragged TX mbuf\n",
940 device_xname(sc->sc_dev));
941 m_freem(*m_head);
942 *m_head = NULL;
943 return error;
944 }
945 } else if (error) {
946 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
947 return error;
948 }
949
950 nsegs = map->dm_nsegs;
951
952 if (nsegs == 0) {
953 m_freem(*m_head);
954 *m_head = NULL;
955 return EIO;
956 }
957
958 /* Check descriptor overrun. */
959 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
960 bus_dmamap_unload(sc->sc_dmat, map);
961 return ENOBUFS;
962 }
963 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
964 BUS_DMASYNC_PREWRITE);
965
966 m = *m_head;
967 /* Configure Tx checksum offload. */
968 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
969 /*
970 * AR81xx supports Tx custom checksum offload feature
971 * that offloads single 16bit checksum computation.
972 * So you can choose one among IP, TCP and UDP.
973 * Normally driver sets checksum start/insertion
974 * position from the information of TCP/UDP frame as
975 * TCP/UDP checksum takes more time than that of IP.
976 * However it seems that custom checksum offload
977 * requires 4 bytes aligned Tx buffers due to hardware
978 * bug.
979 * AR81xx also supports explicit Tx checksum computation
980 * if it is told that the size of IP header and TCP
981 * header(for UDP, the header size does not matter
982 * because it's fixed length). However with this scheme
983 * TSO does not work so you have to choose one either
984 * TSO or explicit Tx checksum offload. I chosen TSO
985 * plus custom checksum offload with work-around which
986 * will cover most common usage for this consumer
987 * ethernet controller. The work-around takes a lot of
988 * CPU cycles if Tx buffer is not aligned on 4 bytes
989 * boundary, though.
990 */
991 cflags |= ALE_TD_CXSUM;
992 /* Set checksum start offset. */
993 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
994 }
995
996 #if NVLAN > 0
997 /* Configure VLAN hardware tag insertion. */
998 if (vlan_has_tag(m)) {
999 vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1000 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1001 cflags |= ALE_TD_INSERT_VLAN_TAG;
1002 }
1003 #endif
1004
1005 desc = NULL;
1006 for (i = 0; i < nsegs; i++) {
1007 desc = &sc->ale_cdata.ale_tx_ring[prod];
1008 desc->addr = htole64(map->dm_segs[i].ds_addr);
1009 desc->len =
1010 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1011 desc->flags = htole32(cflags);
1012 sc->ale_cdata.ale_tx_cnt++;
1013 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1014 }
1015 /* Update producer index. */
1016 sc->ale_cdata.ale_tx_prod = prod;
1017
1018 /* Finally set EOP on the last descriptor. */
1019 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1020 desc = &sc->ale_cdata.ale_tx_ring[prod];
1021 desc->flags |= htole32(ALE_TD_EOP);
1022
1023 /* Swap dmamap of the first and the last. */
1024 txd = &sc->ale_cdata.ale_txdesc[prod];
1025 map = txd_last->tx_dmamap;
1026 txd_last->tx_dmamap = txd->tx_dmamap;
1027 txd->tx_dmamap = map;
1028 txd->tx_m = m;
1029
1030 /* Sync descriptors. */
1031 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1032 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1033
1034 return 0;
1035 }
1036
1037 static void
1038 ale_start(struct ifnet *ifp)
1039 {
1040 struct ale_softc *sc = ifp->if_softc;
1041 struct mbuf *m_head;
1042 int enq;
1043
1044 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1045 return;
1046
1047 /* Reclaim transmitted frames. */
1048 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1049 ale_txeof(sc);
1050
1051 enq = 0;
1052 for (;;) {
1053 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1054 if (m_head == NULL)
1055 break;
1056
1057 /*
1058 * Pack the data into the transmit ring. If we
1059 * don't have room, set the OACTIVE flag and wait
1060 * for the NIC to drain the ring.
1061 */
1062 if (ale_encap(sc, &m_head)) {
1063 if (m_head == NULL)
1064 break;
1065 IF_PREPEND(&ifp->if_snd, m_head);
1066 ifp->if_flags |= IFF_OACTIVE;
1067 break;
1068 }
1069 enq = 1;
1070
1071 /*
1072 * If there's a BPF listener, bounce a copy of this frame
1073 * to him.
1074 */
1075 bpf_mtap(ifp, m_head, BPF_D_OUT);
1076 }
1077
1078 if (enq) {
1079 /* Kick. */
1080 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1081 sc->ale_cdata.ale_tx_prod);
1082
1083 /* Set a timeout in case the chip goes out to lunch. */
1084 ifp->if_timer = ALE_TX_TIMEOUT;
1085 }
1086 }
1087
1088 static void
1089 ale_watchdog(struct ifnet *ifp)
1090 {
1091 struct ale_softc *sc = ifp->if_softc;
1092
1093 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1094 printf("%s: watchdog timeout (missed link)\n",
1095 device_xname(sc->sc_dev));
1096 ifp->if_oerrors++;
1097 ale_init(ifp);
1098 return;
1099 }
1100
1101 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1102 ifp->if_oerrors++;
1103 ale_init(ifp);
1104
1105 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1106 ale_start(ifp);
1107 }
1108
1109 static int
1110 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1111 {
1112 struct ale_softc *sc = ifp->if_softc;
1113 int s, error;
1114
1115 s = splnet();
1116
1117 error = ether_ioctl(ifp, cmd, data);
1118 if (error == ENETRESET) {
1119 if (ifp->if_flags & IFF_RUNNING)
1120 ale_rxfilter(sc);
1121 error = 0;
1122 }
1123
1124 splx(s);
1125 return error;
1126 }
1127
1128 static void
1129 ale_mac_config(struct ale_softc *sc)
1130 {
1131 struct mii_data *mii;
1132 uint32_t reg;
1133
1134 mii = &sc->sc_miibus;
1135 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1136 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1137 MAC_CFG_SPEED_MASK);
1138
1139 /* Reprogram MAC with resolved speed/duplex. */
1140 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1141 case IFM_10_T:
1142 case IFM_100_TX:
1143 reg |= MAC_CFG_SPEED_10_100;
1144 break;
1145 case IFM_1000_T:
1146 reg |= MAC_CFG_SPEED_1000;
1147 break;
1148 }
1149 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1150 reg |= MAC_CFG_FULL_DUPLEX;
1151 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1152 reg |= MAC_CFG_TX_FC;
1153 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1154 reg |= MAC_CFG_RX_FC;
1155 }
1156 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1157 }
1158
1159 static void
1160 ale_stats_clear(struct ale_softc *sc)
1161 {
1162 struct smb sb;
1163 uint32_t *reg;
1164 int i;
1165
1166 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1167 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1168 i += sizeof(uint32_t);
1169 }
1170 /* Read Tx statistics. */
1171 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1172 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1173 i += sizeof(uint32_t);
1174 }
1175 }
1176
1177 static void
1178 ale_stats_update(struct ale_softc *sc)
1179 {
1180 struct ifnet *ifp = &sc->sc_ec.ec_if;
1181 struct ale_hw_stats *stat;
1182 struct smb sb, *smb;
1183 uint32_t *reg;
1184 int i;
1185
1186 stat = &sc->ale_stats;
1187 smb = &sb;
1188
1189 /* Read Rx statistics. */
1190 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1191 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1192 i += sizeof(uint32_t);
1193 }
1194 /* Read Tx statistics. */
1195 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1196 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1197 i += sizeof(uint32_t);
1198 }
1199
1200 /* Rx stats. */
1201 stat->rx_frames += smb->rx_frames;
1202 stat->rx_bcast_frames += smb->rx_bcast_frames;
1203 stat->rx_mcast_frames += smb->rx_mcast_frames;
1204 stat->rx_pause_frames += smb->rx_pause_frames;
1205 stat->rx_control_frames += smb->rx_control_frames;
1206 stat->rx_crcerrs += smb->rx_crcerrs;
1207 stat->rx_lenerrs += smb->rx_lenerrs;
1208 stat->rx_bytes += smb->rx_bytes;
1209 stat->rx_runts += smb->rx_runts;
1210 stat->rx_fragments += smb->rx_fragments;
1211 stat->rx_pkts_64 += smb->rx_pkts_64;
1212 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1213 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1214 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1215 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1216 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1217 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1218 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1219 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1220 stat->rx_rrs_errs += smb->rx_rrs_errs;
1221 stat->rx_alignerrs += smb->rx_alignerrs;
1222 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1223 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1224 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1225
1226 /* Tx stats. */
1227 stat->tx_frames += smb->tx_frames;
1228 stat->tx_bcast_frames += smb->tx_bcast_frames;
1229 stat->tx_mcast_frames += smb->tx_mcast_frames;
1230 stat->tx_pause_frames += smb->tx_pause_frames;
1231 stat->tx_excess_defer += smb->tx_excess_defer;
1232 stat->tx_control_frames += smb->tx_control_frames;
1233 stat->tx_deferred += smb->tx_deferred;
1234 stat->tx_bytes += smb->tx_bytes;
1235 stat->tx_pkts_64 += smb->tx_pkts_64;
1236 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1237 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1238 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1239 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1240 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1241 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1242 stat->tx_single_colls += smb->tx_single_colls;
1243 stat->tx_multi_colls += smb->tx_multi_colls;
1244 stat->tx_late_colls += smb->tx_late_colls;
1245 stat->tx_excess_colls += smb->tx_excess_colls;
1246 stat->tx_abort += smb->tx_abort;
1247 stat->tx_underrun += smb->tx_underrun;
1248 stat->tx_desc_underrun += smb->tx_desc_underrun;
1249 stat->tx_lenerrs += smb->tx_lenerrs;
1250 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1251 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1252 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1253
1254 /* Update counters in ifnet. */
1255 ifp->if_opackets += smb->tx_frames;
1256
1257 ifp->if_collisions += smb->tx_single_colls +
1258 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1259 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1260
1261 /*
1262 * XXX
1263 * tx_pkts_truncated counter looks suspicious. It constantly
1264 * increments with no sign of Tx errors. This may indicate
1265 * the counter name is not correct one so I've removed the
1266 * counter in output errors.
1267 */
1268 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1269 smb->tx_underrun;
1270
1271 ifp->if_ipackets += smb->rx_frames;
1272
1273 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1274 smb->rx_runts + smb->rx_pkts_truncated +
1275 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1276 smb->rx_alignerrs;
1277 }
1278
1279 static int
1280 ale_intr(void *xsc)
1281 {
1282 struct ale_softc *sc = xsc;
1283 struct ifnet *ifp = &sc->sc_ec.ec_if;
1284 uint32_t status;
1285
1286 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1287 if ((status & ALE_INTRS) == 0)
1288 return 0;
1289
1290 /* Acknowledge and disable interrupts. */
1291 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1292
1293 if (ifp->if_flags & IFF_RUNNING) {
1294 int error;
1295
1296 error = ale_rxeof(sc);
1297 if (error) {
1298 sc->ale_stats.reset_brk_seq++;
1299 ale_init(ifp);
1300 return 0;
1301 }
1302
1303 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1304 if (status & INTR_DMA_RD_TO_RST)
1305 printf("%s: DMA read error! -- resetting\n",
1306 device_xname(sc->sc_dev));
1307 if (status & INTR_DMA_WR_TO_RST)
1308 printf("%s: DMA write error! -- resetting\n",
1309 device_xname(sc->sc_dev));
1310 ale_init(ifp);
1311 return 0;
1312 }
1313
1314 ale_txeof(sc);
1315 if_schedule_deferred_start(ifp);
1316 }
1317
1318 /* Re-enable interrupts. */
1319 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1320 return 1;
1321 }
1322
1323 static void
1324 ale_txeof(struct ale_softc *sc)
1325 {
1326 struct ifnet *ifp = &sc->sc_ec.ec_if;
1327 struct ale_txdesc *txd;
1328 uint32_t cons, prod;
1329 int prog;
1330
1331 if (sc->ale_cdata.ale_tx_cnt == 0)
1332 return;
1333
1334 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1335 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1336 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1337 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1338 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1339 BUS_DMASYNC_POSTREAD);
1340 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1341 } else
1342 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1343 cons = sc->ale_cdata.ale_tx_cons;
1344 /*
1345 * Go through our Tx list and free mbufs for those
1346 * frames which have been transmitted.
1347 */
1348 for (prog = 0; cons != prod; prog++,
1349 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1350 if (sc->ale_cdata.ale_tx_cnt <= 0)
1351 break;
1352 prog++;
1353 ifp->if_flags &= ~IFF_OACTIVE;
1354 sc->ale_cdata.ale_tx_cnt--;
1355 txd = &sc->ale_cdata.ale_txdesc[cons];
1356 if (txd->tx_m != NULL) {
1357 /* Reclaim transmitted mbufs. */
1358 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1359 m_freem(txd->tx_m);
1360 txd->tx_m = NULL;
1361 }
1362 }
1363
1364 if (prog > 0) {
1365 sc->ale_cdata.ale_tx_cons = cons;
1366 /*
1367 * Unarm watchdog timer only when there is no pending
1368 * Tx descriptors in queue.
1369 */
1370 if (sc->ale_cdata.ale_tx_cnt == 0)
1371 ifp->if_timer = 0;
1372 }
1373 }
1374
1375 static void
1376 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1377 uint32_t length, uint32_t *prod)
1378 {
1379 struct ale_rx_page *rx_page;
1380
1381 rx_page = *page;
1382 /* Update consumer position. */
1383 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1384 ALE_RX_PAGE_ALIGN);
1385 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1386 /*
1387 * End of Rx page reached, let hardware reuse
1388 * this page.
1389 */
1390 rx_page->cons = 0;
1391 *rx_page->cmb_addr = 0;
1392 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1393 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1394 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1395 RXF_VALID);
1396 /* Switch to alternate Rx page. */
1397 sc->ale_cdata.ale_rx_curp ^= 1;
1398 rx_page = *page =
1399 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1400 /* Page flipped, sync CMB and Rx page. */
1401 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1402 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1404 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1405 /* Sync completed, cache updated producer index. */
1406 *prod = *rx_page->cmb_addr;
1407 }
1408 }
1409
1410
1411 /*
1412 * It seems that AR81xx controller can compute partial checksum.
1413 * The partial checksum value can be used to accelerate checksum
1414 * computation for fragmented TCP/UDP packets. Upper network stack
1415 * already takes advantage of the partial checksum value in IP
1416 * reassembly stage. But I'm not sure the correctness of the
1417 * partial hardware checksum assistance due to lack of data sheet.
1418 * In addition, the Rx feature of controller that requires copying
1419 * for every frames effectively nullifies one of most nice offload
1420 * capability of controller.
1421 */
1422 static void
1423 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1424 {
1425 if (status & ALE_RD_IPCSUM_NOK)
1426 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1427
1428 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1429 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1430 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1431 (status & ALE_RD_TCP_UDPCSUM_NOK))
1432 {
1433 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1434 }
1435 } else {
1436 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1437 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1438 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1439 }
1440 }
1441 }
1442 /*
1443 * Don't mark bad checksum for TCP/UDP frames
1444 * as fragmented frames may always have set
1445 * bad checksummed bit of frame status.
1446 */
1447 }
1448
1449 /* Process received frames. */
1450 static int
1451 ale_rxeof(struct ale_softc *sc)
1452 {
1453 struct ifnet *ifp = &sc->sc_ec.ec_if;
1454 struct ale_rx_page *rx_page;
1455 struct rx_rs *rs;
1456 struct mbuf *m;
1457 uint32_t length, prod, seqno, status;
1458 int prog;
1459
1460 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1461 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1462 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1463 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1464 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1465 /*
1466 * Don't directly access producer index as hardware may
1467 * update it while Rx handler is in progress. It would
1468 * be even better if there is a way to let hardware
1469 * know how far driver processed its received frames.
1470 * Alternatively, hardware could provide a way to disable
1471 * CMB updates until driver acknowledges the end of CMB
1472 * access.
1473 */
1474 prod = *rx_page->cmb_addr;
1475 for (prog = 0; ; prog++) {
1476 if (rx_page->cons >= prod)
1477 break;
1478 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1479 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1480 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1481 /*
1482 * Normally I believe this should not happen unless
1483 * severe driver bug or corrupted memory. However
1484 * it seems to happen under certain conditions which
1485 * is triggered by abrupt Rx events such as initiation
1486 * of bulk transfer of remote host. It's not easy to
1487 * reproduce this and I doubt it could be related
1488 * with FIFO overflow of hardware or activity of Tx
1489 * CMB updates. I also remember similar behaviour
1490 * seen on RealTek 8139 which uses resembling Rx
1491 * scheme.
1492 */
1493 if (aledebug)
1494 printf("%s: garbled seq: %u, expected: %u -- "
1495 "resetting!\n", device_xname(sc->sc_dev),
1496 seqno, sc->ale_cdata.ale_rx_seqno);
1497 return EIO;
1498 }
1499 /* Frame received. */
1500 sc->ale_cdata.ale_rx_seqno++;
1501 length = ALE_RX_BYTES(le32toh(rs->length));
1502 status = le32toh(rs->flags);
1503 if (status & ALE_RD_ERROR) {
1504 /*
1505 * We want to pass the following frames to upper
1506 * layer regardless of error status of Rx return
1507 * status.
1508 *
1509 * o IP/TCP/UDP checksum is bad.
1510 * o frame length and protocol specific length
1511 * does not match.
1512 */
1513 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1514 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1515 ALE_RD_TRUNC)) {
1516 ale_rx_update_page(sc, &rx_page, length, &prod);
1517 continue;
1518 }
1519 }
1520 /*
1521 * m_devget(9) is major bottle-neck of ale(4)(It comes
1522 * from hardware limitation). For jumbo frames we could
1523 * get a slightly better performance if driver use
1524 * m_getjcl(9) with proper buffer size argument. However
1525 * that would make code more complicated and I don't
1526 * think users would expect good Rx performance numbers
1527 * on these low-end consumer ethernet controller.
1528 */
1529 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1530 0, ifp);
1531 if (m == NULL) {
1532 ifp->if_iqdrops++;
1533 ale_rx_update_page(sc, &rx_page, length, &prod);
1534 continue;
1535 }
1536 if (status & ALE_RD_IPV4)
1537 ale_rxcsum(sc, m, status);
1538 #if NVLAN > 0
1539 if (status & ALE_RD_VLAN) {
1540 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1541 vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1542 }
1543 #endif
1544
1545 /* Pass it to upper layer. */
1546 if_percpuq_enqueue(ifp->if_percpuq, m);
1547
1548 ale_rx_update_page(sc, &rx_page, length, &prod);
1549 }
1550
1551 return 0;
1552 }
1553
1554 static void
1555 ale_tick(void *xsc)
1556 {
1557 struct ale_softc *sc = xsc;
1558 struct mii_data *mii = &sc->sc_miibus;
1559 int s;
1560
1561 s = splnet();
1562 mii_tick(mii);
1563 ale_stats_update(sc);
1564 splx(s);
1565
1566 callout_schedule(&sc->sc_tick_ch, hz);
1567 }
1568
1569 static void
1570 ale_reset(struct ale_softc *sc)
1571 {
1572 uint32_t reg;
1573 int i;
1574
1575 /* Initialize PCIe module. From Linux. */
1576 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1577
1578 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1579 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1580 DELAY(10);
1581 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1582 break;
1583 }
1584 if (i == 0)
1585 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1586
1587 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1588 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1589 break;
1590 DELAY(10);
1591 }
1592
1593 if (i == 0)
1594 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1595 reg);
1596 }
1597
1598 static int
1599 ale_init(struct ifnet *ifp)
1600 {
1601 struct ale_softc *sc = ifp->if_softc;
1602 struct mii_data *mii;
1603 uint8_t eaddr[ETHER_ADDR_LEN];
1604 bus_addr_t paddr;
1605 uint32_t reg, rxf_hi, rxf_lo;
1606
1607 /*
1608 * Cancel any pending I/O.
1609 */
1610 ale_stop(ifp, 0);
1611
1612 /*
1613 * Reset the chip to a known state.
1614 */
1615 ale_reset(sc);
1616
1617 /* Initialize Tx descriptors, DMA memory blocks. */
1618 ale_init_rx_pages(sc);
1619 ale_init_tx_ring(sc);
1620
1621 /* Reprogram the station address. */
1622 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1623 CSR_WRITE_4(sc, ALE_PAR0,
1624 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1625 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1626
1627 /*
1628 * Clear WOL status and disable all WOL feature as WOL
1629 * would interfere Rx operation under normal environments.
1630 */
1631 CSR_READ_4(sc, ALE_WOL_CFG);
1632 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1633
1634 /*
1635 * Set Tx descriptor/RXF0/CMB base addresses. They share
1636 * the same high address part of DMAable region.
1637 */
1638 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1639 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1640 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1641 CSR_WRITE_4(sc, ALE_TPD_CNT,
1642 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1643
1644 /* Set Rx page base address, note we use single queue. */
1645 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1646 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1647 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1648 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1649
1650 /* Set Tx/Rx CMB addresses. */
1651 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1652 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1653 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1654 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1655 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1656 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1657
1658 /* Mark RXF0 is valid. */
1659 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1660 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1661 /*
1662 * No need to initialize RFX1/RXF2/RXF3. We don't use
1663 * multi-queue yet.
1664 */
1665
1666 /* Set Rx page size, excluding guard frame size. */
1667 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1668
1669 /* Tell hardware that we're ready to load DMA blocks. */
1670 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1671
1672 /* Set Rx/Tx interrupt trigger threshold. */
1673 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1674 (4 << INT_TRIG_TX_THRESH_SHIFT));
1675 /*
1676 * XXX
1677 * Set interrupt trigger timer, its purpose and relation
1678 * with interrupt moderation mechanism is not clear yet.
1679 */
1680 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1681 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1682 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1683
1684 /* Configure interrupt moderation timer. */
1685 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1686 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1687 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1688 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1689 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1690 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1691 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1692 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1693 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1694 reg |= MASTER_IM_RX_TIMER_ENB;
1695 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1696 reg |= MASTER_IM_TX_TIMER_ENB;
1697 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1698 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1699
1700 /* Set Maximum frame size of controller. */
1701 if (ifp->if_mtu < ETHERMTU)
1702 sc->ale_max_frame_size = ETHERMTU;
1703 else
1704 sc->ale_max_frame_size = ifp->if_mtu;
1705 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1706 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1707
1708 /* Configure IPG/IFG parameters. */
1709 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1710 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1711 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1712 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1713 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1714
1715 /* Set parameters for half-duplex media. */
1716 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1717 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1718 HDPX_CFG_LCOL_MASK) |
1719 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1720 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1721 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1722 HDPX_CFG_ABEBT_MASK) |
1723 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1724 HDPX_CFG_JAMIPG_MASK));
1725
1726 /* Configure Tx jumbo frame parameters. */
1727 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1728 if (ifp->if_mtu < ETHERMTU)
1729 reg = sc->ale_max_frame_size;
1730 else if (ifp->if_mtu < 6 * 1024)
1731 reg = (sc->ale_max_frame_size * 2) / 3;
1732 else
1733 reg = sc->ale_max_frame_size / 2;
1734 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1735 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1736 TX_JUMBO_THRESH_UNIT_SHIFT);
1737 }
1738
1739 /* Configure TxQ. */
1740 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1741 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1742 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1743 TXQ_CFG_TPD_BURST_MASK;
1744 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1745
1746 /* Configure Rx jumbo frame & flow control parameters. */
1747 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1748 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1749 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1750 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1751 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1752 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1753 RX_JUMBO_LKAH_MASK));
1754 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1755 rxf_hi = (reg * 7) / 10;
1756 rxf_lo = (reg * 3)/ 10;
1757 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1758 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1759 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1760 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1761 RX_FIFO_PAUSE_THRESH_HI_MASK));
1762 }
1763
1764 /* Disable RSS. */
1765 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1766 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1767
1768 /* Configure RxQ. */
1769 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1770 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1771
1772 /* Configure DMA parameters. */
1773 reg = 0;
1774 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1775 reg |= DMA_CFG_TXCMB_ENB;
1776 CSR_WRITE_4(sc, ALE_DMA_CFG,
1777 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1778 sc->ale_dma_rd_burst | reg |
1779 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1780 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1781 DMA_CFG_RD_DELAY_CNT_MASK) |
1782 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1783 DMA_CFG_WR_DELAY_CNT_MASK));
1784
1785 /*
1786 * Hardware can be configured to issue SMB interrupt based
1787 * on programmed interval. Since there is a callout that is
1788 * invoked for every hz in driver we use that instead of
1789 * relying on periodic SMB interrupt.
1790 */
1791 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1792
1793 /* Clear MAC statistics. */
1794 ale_stats_clear(sc);
1795
1796 /*
1797 * Configure Tx/Rx MACs.
1798 * - Auto-padding for short frames.
1799 * - Enable CRC generation.
1800 * Actual reconfiguration of MAC for resolved speed/duplex
1801 * is followed after detection of link establishment.
1802 * AR81xx always does checksum computation regardless of
1803 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1804 * cause Rx handling issue for fragmented IP datagrams due
1805 * to silicon bug.
1806 */
1807 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1808 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1809 MAC_CFG_PREAMBLE_MASK);
1810 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1811 reg |= MAC_CFG_SPEED_10_100;
1812 else
1813 reg |= MAC_CFG_SPEED_1000;
1814 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1815
1816 /* Set up the receive filter. */
1817 ale_rxfilter(sc);
1818 ale_rxvlan(sc);
1819
1820 /* Acknowledge all pending interrupts and clear it. */
1821 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1822 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1823 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1824
1825 sc->ale_flags &= ~ALE_FLAG_LINK;
1826
1827 /* Switch to the current media. */
1828 mii = &sc->sc_miibus;
1829 mii_mediachg(mii);
1830
1831 callout_schedule(&sc->sc_tick_ch, hz);
1832
1833 ifp->if_flags |= IFF_RUNNING;
1834 ifp->if_flags &= ~IFF_OACTIVE;
1835
1836 return 0;
1837 }
1838
1839 static void
1840 ale_stop(struct ifnet *ifp, int disable)
1841 {
1842 struct ale_softc *sc = ifp->if_softc;
1843 struct ale_txdesc *txd;
1844 uint32_t reg;
1845 int i;
1846
1847 callout_stop(&sc->sc_tick_ch);
1848
1849 /*
1850 * Mark the interface down and cancel the watchdog timer.
1851 */
1852 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1853 ifp->if_timer = 0;
1854
1855 sc->ale_flags &= ~ALE_FLAG_LINK;
1856
1857 ale_stats_update(sc);
1858
1859 mii_down(&sc->sc_miibus);
1860
1861 /* Disable interrupts. */
1862 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1863 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1864
1865 /* Disable queue processing and DMA. */
1866 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1867 reg &= ~TXQ_CFG_ENB;
1868 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1869 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1870 reg &= ~RXQ_CFG_ENB;
1871 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1872 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1873 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1874 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1875 DELAY(1000);
1876
1877 /* Stop Rx/Tx MACs. */
1878 ale_stop_mac(sc);
1879
1880 /* Disable interrupts again? XXX */
1881 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1882
1883 /*
1884 * Free TX mbufs still in the queues.
1885 */
1886 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1887 txd = &sc->ale_cdata.ale_txdesc[i];
1888 if (txd->tx_m != NULL) {
1889 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1890 m_freem(txd->tx_m);
1891 txd->tx_m = NULL;
1892 }
1893 }
1894 }
1895
1896 static void
1897 ale_stop_mac(struct ale_softc *sc)
1898 {
1899 uint32_t reg;
1900 int i;
1901
1902 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1903 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1904 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1905 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1906 }
1907
1908 for (i = ALE_TIMEOUT; i > 0; i--) {
1909 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1910 if (reg == 0)
1911 break;
1912 DELAY(10);
1913 }
1914 if (i == 0)
1915 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1916 device_xname(sc->sc_dev), reg);
1917 }
1918
1919 static void
1920 ale_init_tx_ring(struct ale_softc *sc)
1921 {
1922 struct ale_txdesc *txd;
1923 int i;
1924
1925 sc->ale_cdata.ale_tx_prod = 0;
1926 sc->ale_cdata.ale_tx_cons = 0;
1927 sc->ale_cdata.ale_tx_cnt = 0;
1928
1929 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1930 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1931 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1932 txd = &sc->ale_cdata.ale_txdesc[i];
1933 txd->tx_m = NULL;
1934 }
1935 *sc->ale_cdata.ale_tx_cmb = 0;
1936 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1937 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1938 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1939 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1940 }
1941
1942 static void
1943 ale_init_rx_pages(struct ale_softc *sc)
1944 {
1945 struct ale_rx_page *rx_page;
1946 int i;
1947
1948 sc->ale_cdata.ale_rx_seqno = 0;
1949 sc->ale_cdata.ale_rx_curp = 0;
1950
1951 for (i = 0; i < ALE_RX_PAGES; i++) {
1952 rx_page = &sc->ale_cdata.ale_rx_page[i];
1953 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1954 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1955 rx_page->cons = 0;
1956 *rx_page->cmb_addr = 0;
1957 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1958 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1959 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1960 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1961 }
1962 }
1963
1964 static void
1965 ale_rxvlan(struct ale_softc *sc)
1966 {
1967 uint32_t reg;
1968
1969 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1970 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1971 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1972 reg |= MAC_CFG_VLAN_TAG_STRIP;
1973 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1974 }
1975
1976 static void
1977 ale_rxfilter(struct ale_softc *sc)
1978 {
1979 struct ethercom *ec = &sc->sc_ec;
1980 struct ifnet *ifp = &ec->ec_if;
1981 struct ether_multi *enm;
1982 struct ether_multistep step;
1983 uint32_t crc;
1984 uint32_t mchash[2];
1985 uint32_t rxcfg;
1986
1987 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1988 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1989 ifp->if_flags &= ~IFF_ALLMULTI;
1990
1991 /*
1992 * Always accept broadcast frames.
1993 */
1994 rxcfg |= MAC_CFG_BCAST;
1995
1996 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1997 ifp->if_flags |= IFF_ALLMULTI;
1998 if (ifp->if_flags & IFF_PROMISC)
1999 rxcfg |= MAC_CFG_PROMISC;
2000 else
2001 rxcfg |= MAC_CFG_ALLMULTI;
2002 mchash[0] = mchash[1] = 0xFFFFFFFF;
2003 } else {
2004 /* Program new filter. */
2005 memset(mchash, 0, sizeof(mchash));
2006
2007 ETHER_FIRST_MULTI(step, ec, enm);
2008 while (enm != NULL) {
2009 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2010 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2011 ETHER_NEXT_MULTI(step, enm);
2012 }
2013 }
2014
2015 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2016 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2017 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2018 }
2019