if_ale.c revision 1.27 1 /* $NetBSD: if_ale.c,v 1.27 2019/01/22 03:42:27 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.27 2019/01/22 03:42:27 msaitoh Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78
79 #include <dev/pci/if_alereg.h>
80
81 static int ale_match(device_t, cfdata_t, void *);
82 static void ale_attach(device_t, device_t, void *);
83 static int ale_detach(device_t, int);
84
85 static int ale_miibus_readreg(device_t, int, int, uint16_t *);
86 static int ale_miibus_writereg(device_t, int, int, uint16_t);
87 static void ale_miibus_statchg(struct ifnet *);
88
89 static int ale_init(struct ifnet *);
90 static void ale_start(struct ifnet *);
91 static int ale_ioctl(struct ifnet *, u_long, void *);
92 static void ale_watchdog(struct ifnet *);
93 static int ale_mediachange(struct ifnet *);
94 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
95
96 static int ale_intr(void *);
97 static int ale_rxeof(struct ale_softc *sc);
98 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 uint32_t, uint32_t *);
100 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void ale_txeof(struct ale_softc *);
102
103 static int ale_dma_alloc(struct ale_softc *);
104 static void ale_dma_free(struct ale_softc *);
105 static int ale_encap(struct ale_softc *, struct mbuf **);
106 static void ale_init_rx_pages(struct ale_softc *);
107 static void ale_init_tx_ring(struct ale_softc *);
108
109 static void ale_stop(struct ifnet *, int);
110 static void ale_tick(void *);
111 static void ale_get_macaddr(struct ale_softc *);
112 static void ale_mac_config(struct ale_softc *);
113 static void ale_phy_reset(struct ale_softc *);
114 static void ale_reset(struct ale_softc *);
115 static void ale_rxfilter(struct ale_softc *);
116 static void ale_rxvlan(struct ale_softc *);
117 static void ale_stats_clear(struct ale_softc *);
118 static void ale_stats_update(struct ale_softc *);
119 static void ale_stop_mac(struct ale_softc *);
120
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 ale_match, ale_attach, ale_detach, NULL);
123
124 int aledebug = 0;
125 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
126
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
129
130 static int
131 ale_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
132 {
133 struct ale_softc *sc = device_private(dev);
134 uint32_t v;
135 int i;
136
137 if (phy != sc->ale_phyaddr)
138 return -1;
139
140 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 switch (reg) {
142 case MII_100T2CR:
143 case MII_100T2SR:
144 case MII_EXTSR:
145 *val = 0;
146 return 0;
147 default:
148 break;
149 }
150 }
151
152 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
153 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
154 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
155 DELAY(5);
156 v = CSR_READ_4(sc, ALE_MDIO);
157 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
158 break;
159 }
160
161 if (i == 0) {
162 printf("%s: phy read timeout: phy %d, reg %d\n",
163 device_xname(sc->sc_dev), phy, reg);
164 return ETIMEDOUT;
165 }
166
167 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
168 return 0;
169 }
170
171 static int
172 ale_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
173 {
174 struct ale_softc *sc = device_private(dev);
175 uint32_t v;
176 int i;
177
178 if (phy != sc->ale_phyaddr)
179 return -1;
180
181 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 switch (reg) {
183 case MII_100T2CR:
184 case MII_100T2SR:
185 case MII_EXTSR:
186 return 0;
187 default:
188 break;
189 }
190 }
191
192 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 DELAY(5);
197 v = CSR_READ_4(sc, ALE_MDIO);
198 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 break;
200 }
201
202 if (i == 0) {
203 printf("%s: phy write timeout: phy %d, reg %d\n",
204 device_xname(sc->sc_dev), phy, reg);
205 return ETIMEDOUT;
206 }
207
208 return 0;
209 }
210
211 static void
212 ale_miibus_statchg(struct ifnet *ifp)
213 {
214 struct ale_softc *sc = ifp->if_softc;
215 struct mii_data *mii = &sc->sc_miibus;
216 uint32_t reg;
217
218 if ((ifp->if_flags & IFF_RUNNING) == 0)
219 return;
220
221 sc->ale_flags &= ~ALE_FLAG_LINK;
222 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
223 (IFM_ACTIVE | IFM_AVALID)) {
224 switch (IFM_SUBTYPE(mii->mii_media_active)) {
225 case IFM_10_T:
226 case IFM_100_TX:
227 sc->ale_flags |= ALE_FLAG_LINK;
228 break;
229
230 case IFM_1000_T:
231 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
232 sc->ale_flags |= ALE_FLAG_LINK;
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 /* Stop Rx/Tx MACs. */
241 ale_stop_mac(sc);
242
243 /* Program MACs with resolved speed/duplex/flow-control. */
244 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
245 ale_mac_config(sc);
246 /* Reenable Tx/Rx MACs. */
247 reg = CSR_READ_4(sc, ALE_MAC_CFG);
248 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
249 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
250 }
251 }
252
253 void
254 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
255 {
256 struct ale_softc *sc = ifp->if_softc;
257 struct mii_data *mii = &sc->sc_miibus;
258
259 mii_pollstat(mii);
260 ifmr->ifm_status = mii->mii_media_status;
261 ifmr->ifm_active = mii->mii_media_active;
262 }
263
264 int
265 ale_mediachange(struct ifnet *ifp)
266 {
267 struct ale_softc *sc = ifp->if_softc;
268 struct mii_data *mii = &sc->sc_miibus;
269 int error;
270
271 if (mii->mii_instance != 0) {
272 struct mii_softc *miisc;
273
274 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
275 mii_phy_reset(miisc);
276 }
277 error = mii_mediachg(mii);
278
279 return error;
280 }
281
282 int
283 ale_match(device_t dev, cfdata_t match, void *aux)
284 {
285 struct pci_attach_args *pa = aux;
286
287 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
288 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
289 }
290
291 void
292 ale_get_macaddr(struct ale_softc *sc)
293 {
294 uint32_t ea[2], reg;
295 int i, vpdc;
296
297 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
298 if ((reg & SPI_VPD_ENB) != 0) {
299 reg &= ~SPI_VPD_ENB;
300 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
301 }
302
303 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
304 &vpdc, NULL)) {
305 /*
306 * PCI VPD capability found, let TWSI reload EEPROM.
307 * This will set ethernet address of controller.
308 */
309 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
310 TWSI_CTRL_SW_LD_START);
311 for (i = 100; i > 0; i--) {
312 DELAY(1000);
313 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
314 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
315 break;
316 }
317 if (i == 0)
318 printf("%s: reloading EEPROM timeout!\n",
319 device_xname(sc->sc_dev));
320 } else {
321 if (aledebug)
322 printf("%s: PCI VPD capability not found!\n",
323 device_xname(sc->sc_dev));
324 }
325
326 ea[0] = CSR_READ_4(sc, ALE_PAR0);
327 ea[1] = CSR_READ_4(sc, ALE_PAR1);
328 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
329 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
330 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
331 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
332 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
333 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
334 }
335
336 void
337 ale_phy_reset(struct ale_softc *sc)
338 {
339 /* Reset magic from Linux. */
340 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
341 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
342 GPHY_CTRL_PHY_PLL_ON);
343 DELAY(1000);
344 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
345 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
346 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
347 DELAY(1000);
348
349 #define ATPHY_DBG_ADDR 0x1D
350 #define ATPHY_DBG_DATA 0x1E
351
352 /* Enable hibernation mode. */
353 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 ATPHY_DBG_ADDR, 0x0B);
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_DATA, 0xBC00);
357 /* Set Class A/B for all modes. */
358 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
359 ATPHY_DBG_ADDR, 0x00);
360 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
361 ATPHY_DBG_DATA, 0x02EF);
362 /* Enable 10BT power saving. */
363 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
364 ATPHY_DBG_ADDR, 0x12);
365 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
366 ATPHY_DBG_DATA, 0x4C04);
367 /* Adjust 1000T power. */
368 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
369 ATPHY_DBG_ADDR, 0x04);
370 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
371 ATPHY_DBG_DATA, 0x8BBB);
372 /* 10BT center tap voltage. */
373 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
374 ATPHY_DBG_ADDR, 0x05);
375 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
376 ATPHY_DBG_DATA, 0x2C46);
377
378 #undef ATPHY_DBG_ADDR
379 #undef ATPHY_DBG_DATA
380 DELAY(1000);
381 }
382
383 void
384 ale_attach(device_t parent, device_t self, void *aux)
385 {
386 struct ale_softc *sc = device_private(self);
387 struct pci_attach_args *pa = aux;
388 pci_chipset_tag_t pc = pa->pa_pc;
389 pci_intr_handle_t ih;
390 const char *intrstr;
391 struct ifnet *ifp;
392 pcireg_t memtype;
393 int mii_flags, error = 0;
394 uint32_t rxf_len, txf_len;
395 const char *chipname;
396 char intrbuf[PCI_INTRSTR_LEN];
397
398 aprint_naive("\n");
399 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
400
401 sc->sc_dev = self;
402 sc->sc_dmat = pa->pa_dmat;
403 sc->sc_pct = pa->pa_pc;
404 sc->sc_pcitag = pa->pa_tag;
405
406 /*
407 * Allocate IO memory
408 */
409 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
410 switch (memtype) {
411 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
412 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
413 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
414 break;
415 default:
416 aprint_error_dev(self, "invalid base address register\n");
417 break;
418 }
419
420 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
421 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
422 aprint_error_dev(self, "could not map mem space\n");
423 return;
424 }
425
426 if (pci_intr_map(pa, &ih) != 0) {
427 aprint_error_dev(self, "could not map interrupt\n");
428 goto fail;
429 }
430
431 /*
432 * Allocate IRQ
433 */
434 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
435 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, ale_intr,
436 sc, device_xname(self));
437 if (sc->sc_irq_handle == NULL) {
438 aprint_error_dev(self, "could not establish interrupt");
439 if (intrstr != NULL)
440 aprint_error(" at %s", intrstr);
441 aprint_error("\n");
442 goto fail;
443 }
444
445 /* Set PHY address. */
446 sc->ale_phyaddr = ALE_PHY_ADDR;
447
448 /* Reset PHY. */
449 ale_phy_reset(sc);
450
451 /* Reset the ethernet controller. */
452 ale_reset(sc);
453
454 /* Get PCI and chip id/revision. */
455 sc->ale_rev = PCI_REVISION(pa->pa_class);
456 if (sc->ale_rev >= 0xF0) {
457 /* L2E Rev. B. AR8114 */
458 sc->ale_flags |= ALE_FLAG_FASTETHER;
459 chipname = "AR8114 (L2E RevB)";
460 } else {
461 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 /* L1E AR8121 */
463 sc->ale_flags |= ALE_FLAG_JUMBO;
464 chipname = "AR8121 (L1E)";
465 } else {
466 /* L2E Rev. A. AR8113 */
467 sc->ale_flags |= ALE_FLAG_FASTETHER;
468 chipname = "AR8113 (L2E RevA)";
469 }
470 }
471 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
472
473 /*
474 * All known controllers seems to require 4 bytes alignment
475 * of Tx buffers to make Tx checksum offload with custom
476 * checksum generation method work.
477 */
478 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
479
480 /*
481 * All known controllers seems to have issues on Rx checksum
482 * offload for fragmented IP datagrams.
483 */
484 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
485
486 /*
487 * Don't use Tx CMB. It is known to cause RRS update failure
488 * under certain circumstances. Typical phenomenon of the
489 * issue would be unexpected sequence number encountered in
490 * Rx handler.
491 */
492 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 MASTER_CHIP_REV_SHIFT;
495 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
497
498 /*
499 * Uninitialized hardware returns an invalid chip id/revision
500 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
501 */
502 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 rxf_len == 0xFFFFFFF) {
506 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 "%u Rx FIFO -- not initialized?\n",
508 sc->ale_chip_rev, txf_len, rxf_len);
509 goto fail;
510 }
511
512 if (aledebug) {
513 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 txf_len, rxf_len);
515 }
516
517 /* Set max allowable DMA size. */
518 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
520
521 callout_init(&sc->sc_tick_ch, 0);
522 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
523
524 error = ale_dma_alloc(sc);
525 if (error)
526 goto fail;
527
528 /* Load station address. */
529 ale_get_macaddr(sc);
530
531 aprint_normal_dev(self, "Ethernet address %s\n",
532 ether_sprintf(sc->ale_eaddr));
533
534 ifp = &sc->sc_ec.ec_if;
535 ifp->if_softc = sc;
536 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 ifp->if_init = ale_init;
538 ifp->if_ioctl = ale_ioctl;
539 ifp->if_start = ale_start;
540 ifp->if_stop = ale_stop;
541 ifp->if_watchdog = ale_watchdog;
542 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 IFQ_SET_READY(&ifp->if_snd);
544 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
545
546 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
547
548 #ifdef ALE_CHECKSUM
549 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
552 #endif
553
554 #if NVLAN > 0
555 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 #endif
557
558 /* Set up MII bus. */
559 sc->sc_miibus.mii_ifp = ifp;
560 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
561 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
562 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
563
564 sc->sc_ec.ec_mii = &sc->sc_miibus;
565 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
566 ale_mediastatus);
567 mii_flags = 0;
568 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 mii_flags |= MIIF_DOPAUSE;
570 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
571 MII_OFFSET_ANY, mii_flags);
572
573 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
574 aprint_error_dev(self, "no PHY found!\n");
575 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
576 0, NULL);
577 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
578 } else
579 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
580
581 if_attach(ifp);
582 if_deferred_start_init(ifp, NULL);
583 ether_ifattach(ifp, sc->ale_eaddr);
584
585 if (pmf_device_register(self, NULL, NULL))
586 pmf_class_network_register(self, ifp);
587 else
588 aprint_error_dev(self, "couldn't establish power handler\n");
589
590 return;
591 fail:
592 ale_dma_free(sc);
593 if (sc->sc_irq_handle != NULL) {
594 pci_intr_disestablish(pc, sc->sc_irq_handle);
595 sc->sc_irq_handle = NULL;
596 }
597 if (sc->sc_mem_size) {
598 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
599 sc->sc_mem_size = 0;
600 }
601 }
602
603 static int
604 ale_detach(device_t self, int flags)
605 {
606 struct ale_softc *sc = device_private(self);
607 struct ifnet *ifp = &sc->sc_ec.ec_if;
608 int s;
609
610 pmf_device_deregister(self);
611 s = splnet();
612 ale_stop(ifp, 0);
613 splx(s);
614
615 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
616
617 /* Delete all remaining media. */
618 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
619
620 ether_ifdetach(ifp);
621 if_detach(ifp);
622 ale_dma_free(sc);
623
624 if (sc->sc_irq_handle != NULL) {
625 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
626 sc->sc_irq_handle = NULL;
627 }
628 if (sc->sc_mem_size) {
629 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
630 sc->sc_mem_size = 0;
631 }
632
633 return 0;
634 }
635
636
637 static int
638 ale_dma_alloc(struct ale_softc *sc)
639 {
640 struct ale_txdesc *txd;
641 int nsegs, error, guard_size, i;
642
643 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
644 guard_size = ALE_JUMBO_FRAMELEN;
645 else
646 guard_size = ALE_MAX_FRAMELEN;
647 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
648 ALE_RX_PAGE_ALIGN);
649
650 /*
651 * Create DMA stuffs for TX ring
652 */
653 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
654 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
655 if (error) {
656 sc->ale_cdata.ale_tx_ring_map = NULL;
657 return ENOBUFS;
658 }
659
660 /* Allocate DMA'able memory for TX ring */
661 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
662 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
663 &nsegs, BUS_DMA_WAITOK);
664 if (error) {
665 printf("%s: could not allocate DMA'able memory for Tx ring, "
666 "error = %i\n", device_xname(sc->sc_dev), error);
667 return error;
668 }
669
670 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
671 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
672 BUS_DMA_NOWAIT);
673 if (error)
674 return ENOBUFS;
675
676 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
677
678 /* Load the DMA map for Tx ring. */
679 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
680 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
681 if (error) {
682 printf("%s: could not load DMA'able memory for Tx ring.\n",
683 device_xname(sc->sc_dev));
684 bus_dmamem_free(sc->sc_dmat,
685 &sc->ale_cdata.ale_tx_ring_seg, 1);
686 return error;
687 }
688 sc->ale_cdata.ale_tx_ring_paddr =
689 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
690
691 for (i = 0; i < ALE_RX_PAGES; i++) {
692 /*
693 * Create DMA stuffs for RX pages
694 */
695 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
696 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
697 &sc->ale_cdata.ale_rx_page[i].page_map);
698 if (error) {
699 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
700 return ENOBUFS;
701 }
702
703 /* Allocate DMA'able memory for RX pages */
704 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
705 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
706 1, &nsegs, BUS_DMA_WAITOK);
707 if (error) {
708 printf("%s: could not allocate DMA'able memory for "
709 "Rx ring.\n", device_xname(sc->sc_dev));
710 return error;
711 }
712 error = bus_dmamem_map(sc->sc_dmat,
713 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
714 sc->ale_pagesize,
715 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
716 BUS_DMA_NOWAIT);
717 if (error)
718 return ENOBUFS;
719
720 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
721 sc->ale_pagesize);
722
723 /* Load the DMA map for Rx pages. */
724 error = bus_dmamap_load(sc->sc_dmat,
725 sc->ale_cdata.ale_rx_page[i].page_map,
726 sc->ale_cdata.ale_rx_page[i].page_addr,
727 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
728 if (error) {
729 printf("%s: could not load DMA'able memory for "
730 "Rx pages.\n", device_xname(sc->sc_dev));
731 bus_dmamem_free(sc->sc_dmat,
732 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
733 return error;
734 }
735 sc->ale_cdata.ale_rx_page[i].page_paddr =
736 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
737 }
738
739 /*
740 * Create DMA stuffs for Tx CMB.
741 */
742 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
743 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
744 if (error) {
745 sc->ale_cdata.ale_tx_cmb_map = NULL;
746 return ENOBUFS;
747 }
748
749 /* Allocate DMA'able memory for Tx CMB. */
750 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
751 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
752
753 if (error) {
754 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
755 device_xname(sc->sc_dev));
756 return error;
757 }
758
759 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
760 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
761 BUS_DMA_NOWAIT);
762 if (error)
763 return ENOBUFS;
764
765 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
766
767 /* Load the DMA map for Tx CMB. */
768 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
769 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
770 if (error) {
771 printf("%s: could not load DMA'able memory for Tx CMB.\n",
772 device_xname(sc->sc_dev));
773 bus_dmamem_free(sc->sc_dmat,
774 &sc->ale_cdata.ale_tx_cmb_seg, 1);
775 return error;
776 }
777
778 sc->ale_cdata.ale_tx_cmb_paddr =
779 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
780
781 for (i = 0; i < ALE_RX_PAGES; i++) {
782 /*
783 * Create DMA stuffs for Rx CMB.
784 */
785 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
786 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
787 &sc->ale_cdata.ale_rx_page[i].cmb_map);
788 if (error) {
789 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
790 return ENOBUFS;
791 }
792
793 /* Allocate DMA'able memory for Rx CMB */
794 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
795 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
796 &nsegs, BUS_DMA_WAITOK);
797 if (error) {
798 printf("%s: could not allocate DMA'able memory for "
799 "Rx CMB\n", device_xname(sc->sc_dev));
800 return error;
801 }
802 error = bus_dmamem_map(sc->sc_dmat,
803 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
804 ALE_RX_CMB_SZ,
805 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
806 BUS_DMA_NOWAIT);
807 if (error)
808 return ENOBUFS;
809
810 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
811
812 /* Load the DMA map for Rx CMB */
813 error = bus_dmamap_load(sc->sc_dmat,
814 sc->ale_cdata.ale_rx_page[i].cmb_map,
815 sc->ale_cdata.ale_rx_page[i].cmb_addr,
816 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
817 if (error) {
818 printf("%s: could not load DMA'able memory for Rx CMB"
819 "\n", device_xname(sc->sc_dev));
820 bus_dmamem_free(sc->sc_dmat,
821 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
822 return error;
823 }
824 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
825 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
826 }
827
828
829 /* Create DMA maps for Tx buffers. */
830 for (i = 0; i < ALE_TX_RING_CNT; i++) {
831 txd = &sc->ale_cdata.ale_txdesc[i];
832 txd->tx_m = NULL;
833 txd->tx_dmamap = NULL;
834 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
835 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
836 &txd->tx_dmamap);
837 if (error) {
838 txd->tx_dmamap = NULL;
839 printf("%s: could not create Tx dmamap.\n",
840 device_xname(sc->sc_dev));
841 return error;
842 }
843 }
844
845 return 0;
846 }
847
848 static void
849 ale_dma_free(struct ale_softc *sc)
850 {
851 struct ale_txdesc *txd;
852 int i;
853
854 /* Tx buffers. */
855 for (i = 0; i < ALE_TX_RING_CNT; i++) {
856 txd = &sc->ale_cdata.ale_txdesc[i];
857 if (txd->tx_dmamap != NULL) {
858 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
859 txd->tx_dmamap = NULL;
860 }
861 }
862
863 /* Tx descriptor ring. */
864 if (sc->ale_cdata.ale_tx_ring_map != NULL)
865 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
866 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
867 sc->ale_cdata.ale_tx_ring != NULL)
868 bus_dmamem_free(sc->sc_dmat,
869 &sc->ale_cdata.ale_tx_ring_seg, 1);
870 sc->ale_cdata.ale_tx_ring = NULL;
871 sc->ale_cdata.ale_tx_ring_map = NULL;
872
873 /* Rx page block. */
874 for (i = 0; i < ALE_RX_PAGES; i++) {
875 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
876 bus_dmamap_unload(sc->sc_dmat,
877 sc->ale_cdata.ale_rx_page[i].page_map);
878 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
879 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
880 bus_dmamem_free(sc->sc_dmat,
881 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
882 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
883 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
884 }
885
886 /* Rx CMB. */
887 for (i = 0; i < ALE_RX_PAGES; i++) {
888 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
889 bus_dmamap_unload(sc->sc_dmat,
890 sc->ale_cdata.ale_rx_page[i].cmb_map);
891 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
892 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
893 bus_dmamem_free(sc->sc_dmat,
894 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
895 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
896 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
897 }
898
899 /* Tx CMB. */
900 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
901 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
902 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
903 sc->ale_cdata.ale_tx_cmb != NULL)
904 bus_dmamem_free(sc->sc_dmat,
905 &sc->ale_cdata.ale_tx_cmb_seg, 1);
906 sc->ale_cdata.ale_tx_cmb = NULL;
907 sc->ale_cdata.ale_tx_cmb_map = NULL;
908
909 }
910
911 static int
912 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
913 {
914 struct ale_txdesc *txd, *txd_last;
915 struct tx_desc *desc;
916 struct mbuf *m;
917 bus_dmamap_t map;
918 uint32_t cflags, poff, vtag;
919 int error, i, nsegs, prod;
920
921 m = *m_head;
922 cflags = vtag = 0;
923 poff = 0;
924
925 prod = sc->ale_cdata.ale_tx_prod;
926 txd = &sc->ale_cdata.ale_txdesc[prod];
927 txd_last = txd;
928 map = txd->tx_dmamap;
929
930 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
931 if (error == EFBIG) {
932 error = 0;
933
934 *m_head = m_pullup(*m_head, MHLEN);
935 if (*m_head == NULL) {
936 printf("%s: can't defrag TX mbuf\n",
937 device_xname(sc->sc_dev));
938 return ENOBUFS;
939 }
940
941 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
942 BUS_DMA_NOWAIT);
943
944 if (error != 0) {
945 printf("%s: could not load defragged TX mbuf\n",
946 device_xname(sc->sc_dev));
947 m_freem(*m_head);
948 *m_head = NULL;
949 return error;
950 }
951 } else if (error) {
952 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
953 return error;
954 }
955
956 nsegs = map->dm_nsegs;
957
958 if (nsegs == 0) {
959 m_freem(*m_head);
960 *m_head = NULL;
961 return EIO;
962 }
963
964 /* Check descriptor overrun. */
965 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
966 bus_dmamap_unload(sc->sc_dmat, map);
967 return ENOBUFS;
968 }
969 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
970 BUS_DMASYNC_PREWRITE);
971
972 m = *m_head;
973 /* Configure Tx checksum offload. */
974 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
975 /*
976 * AR81xx supports Tx custom checksum offload feature
977 * that offloads single 16bit checksum computation.
978 * So you can choose one among IP, TCP and UDP.
979 * Normally driver sets checksum start/insertion
980 * position from the information of TCP/UDP frame as
981 * TCP/UDP checksum takes more time than that of IP.
982 * However it seems that custom checksum offload
983 * requires 4 bytes aligned Tx buffers due to hardware
984 * bug.
985 * AR81xx also supports explicit Tx checksum computation
986 * if it is told that the size of IP header and TCP
987 * header(for UDP, the header size does not matter
988 * because it's fixed length). However with this scheme
989 * TSO does not work so you have to choose one either
990 * TSO or explicit Tx checksum offload. I chosen TSO
991 * plus custom checksum offload with work-around which
992 * will cover most common usage for this consumer
993 * ethernet controller. The work-around takes a lot of
994 * CPU cycles if Tx buffer is not aligned on 4 bytes
995 * boundary, though.
996 */
997 cflags |= ALE_TD_CXSUM;
998 /* Set checksum start offset. */
999 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1000 }
1001
1002 #if NVLAN > 0
1003 /* Configure VLAN hardware tag insertion. */
1004 if (vlan_has_tag(m)) {
1005 vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1006 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1007 cflags |= ALE_TD_INSERT_VLAN_TAG;
1008 }
1009 #endif
1010
1011 desc = NULL;
1012 for (i = 0; i < nsegs; i++) {
1013 desc = &sc->ale_cdata.ale_tx_ring[prod];
1014 desc->addr = htole64(map->dm_segs[i].ds_addr);
1015 desc->len =
1016 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1017 desc->flags = htole32(cflags);
1018 sc->ale_cdata.ale_tx_cnt++;
1019 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1020 }
1021 /* Update producer index. */
1022 sc->ale_cdata.ale_tx_prod = prod;
1023
1024 /* Finally set EOP on the last descriptor. */
1025 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1026 desc = &sc->ale_cdata.ale_tx_ring[prod];
1027 desc->flags |= htole32(ALE_TD_EOP);
1028
1029 /* Swap dmamap of the first and the last. */
1030 txd = &sc->ale_cdata.ale_txdesc[prod];
1031 map = txd_last->tx_dmamap;
1032 txd_last->tx_dmamap = txd->tx_dmamap;
1033 txd->tx_dmamap = map;
1034 txd->tx_m = m;
1035
1036 /* Sync descriptors. */
1037 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1038 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1039
1040 return 0;
1041 }
1042
1043 static void
1044 ale_start(struct ifnet *ifp)
1045 {
1046 struct ale_softc *sc = ifp->if_softc;
1047 struct mbuf *m_head;
1048 int enq;
1049
1050 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1051 return;
1052
1053 /* Reclaim transmitted frames. */
1054 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1055 ale_txeof(sc);
1056
1057 enq = 0;
1058 for (;;) {
1059 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1060 if (m_head == NULL)
1061 break;
1062
1063 /*
1064 * Pack the data into the transmit ring. If we
1065 * don't have room, set the OACTIVE flag and wait
1066 * for the NIC to drain the ring.
1067 */
1068 if (ale_encap(sc, &m_head)) {
1069 if (m_head == NULL)
1070 break;
1071 IF_PREPEND(&ifp->if_snd, m_head);
1072 ifp->if_flags |= IFF_OACTIVE;
1073 break;
1074 }
1075 enq = 1;
1076
1077 /*
1078 * If there's a BPF listener, bounce a copy of this frame
1079 * to him.
1080 */
1081 bpf_mtap(ifp, m_head, BPF_D_OUT);
1082 }
1083
1084 if (enq) {
1085 /* Kick. */
1086 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1087 sc->ale_cdata.ale_tx_prod);
1088
1089 /* Set a timeout in case the chip goes out to lunch. */
1090 ifp->if_timer = ALE_TX_TIMEOUT;
1091 }
1092 }
1093
1094 static void
1095 ale_watchdog(struct ifnet *ifp)
1096 {
1097 struct ale_softc *sc = ifp->if_softc;
1098
1099 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1100 printf("%s: watchdog timeout (missed link)\n",
1101 device_xname(sc->sc_dev));
1102 ifp->if_oerrors++;
1103 ale_init(ifp);
1104 return;
1105 }
1106
1107 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1108 ifp->if_oerrors++;
1109 ale_init(ifp);
1110
1111 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1112 ale_start(ifp);
1113 }
1114
1115 static int
1116 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 struct ale_softc *sc = ifp->if_softc;
1119 int s, error;
1120
1121 s = splnet();
1122
1123 error = ether_ioctl(ifp, cmd, data);
1124 if (error == ENETRESET) {
1125 if (ifp->if_flags & IFF_RUNNING)
1126 ale_rxfilter(sc);
1127 error = 0;
1128 }
1129
1130 splx(s);
1131 return error;
1132 }
1133
1134 static void
1135 ale_mac_config(struct ale_softc *sc)
1136 {
1137 struct mii_data *mii;
1138 uint32_t reg;
1139
1140 mii = &sc->sc_miibus;
1141 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1142 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1143 MAC_CFG_SPEED_MASK);
1144
1145 /* Reprogram MAC with resolved speed/duplex. */
1146 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1147 case IFM_10_T:
1148 case IFM_100_TX:
1149 reg |= MAC_CFG_SPEED_10_100;
1150 break;
1151 case IFM_1000_T:
1152 reg |= MAC_CFG_SPEED_1000;
1153 break;
1154 }
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1156 reg |= MAC_CFG_FULL_DUPLEX;
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1158 reg |= MAC_CFG_TX_FC;
1159 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1160 reg |= MAC_CFG_RX_FC;
1161 }
1162 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1163 }
1164
1165 static void
1166 ale_stats_clear(struct ale_softc *sc)
1167 {
1168 struct smb sb;
1169 uint32_t *reg;
1170 int i;
1171
1172 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1173 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1174 i += sizeof(uint32_t);
1175 }
1176 /* Read Tx statistics. */
1177 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1178 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1179 i += sizeof(uint32_t);
1180 }
1181 }
1182
1183 static void
1184 ale_stats_update(struct ale_softc *sc)
1185 {
1186 struct ifnet *ifp = &sc->sc_ec.ec_if;
1187 struct ale_hw_stats *stat;
1188 struct smb sb, *smb;
1189 uint32_t *reg;
1190 int i;
1191
1192 stat = &sc->ale_stats;
1193 smb = &sb;
1194
1195 /* Read Rx statistics. */
1196 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1197 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1198 i += sizeof(uint32_t);
1199 }
1200 /* Read Tx statistics. */
1201 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1202 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1203 i += sizeof(uint32_t);
1204 }
1205
1206 /* Rx stats. */
1207 stat->rx_frames += smb->rx_frames;
1208 stat->rx_bcast_frames += smb->rx_bcast_frames;
1209 stat->rx_mcast_frames += smb->rx_mcast_frames;
1210 stat->rx_pause_frames += smb->rx_pause_frames;
1211 stat->rx_control_frames += smb->rx_control_frames;
1212 stat->rx_crcerrs += smb->rx_crcerrs;
1213 stat->rx_lenerrs += smb->rx_lenerrs;
1214 stat->rx_bytes += smb->rx_bytes;
1215 stat->rx_runts += smb->rx_runts;
1216 stat->rx_fragments += smb->rx_fragments;
1217 stat->rx_pkts_64 += smb->rx_pkts_64;
1218 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1219 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1220 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1221 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1222 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1223 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1224 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1225 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1226 stat->rx_rrs_errs += smb->rx_rrs_errs;
1227 stat->rx_alignerrs += smb->rx_alignerrs;
1228 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1229 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1230 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1231
1232 /* Tx stats. */
1233 stat->tx_frames += smb->tx_frames;
1234 stat->tx_bcast_frames += smb->tx_bcast_frames;
1235 stat->tx_mcast_frames += smb->tx_mcast_frames;
1236 stat->tx_pause_frames += smb->tx_pause_frames;
1237 stat->tx_excess_defer += smb->tx_excess_defer;
1238 stat->tx_control_frames += smb->tx_control_frames;
1239 stat->tx_deferred += smb->tx_deferred;
1240 stat->tx_bytes += smb->tx_bytes;
1241 stat->tx_pkts_64 += smb->tx_pkts_64;
1242 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1243 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1244 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1245 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1246 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1247 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1248 stat->tx_single_colls += smb->tx_single_colls;
1249 stat->tx_multi_colls += smb->tx_multi_colls;
1250 stat->tx_late_colls += smb->tx_late_colls;
1251 stat->tx_excess_colls += smb->tx_excess_colls;
1252 stat->tx_abort += smb->tx_abort;
1253 stat->tx_underrun += smb->tx_underrun;
1254 stat->tx_desc_underrun += smb->tx_desc_underrun;
1255 stat->tx_lenerrs += smb->tx_lenerrs;
1256 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1257 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1258 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1259
1260 /* Update counters in ifnet. */
1261 ifp->if_opackets += smb->tx_frames;
1262
1263 ifp->if_collisions += smb->tx_single_colls +
1264 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1265 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1266
1267 /*
1268 * XXX
1269 * tx_pkts_truncated counter looks suspicious. It constantly
1270 * increments with no sign of Tx errors. This may indicate
1271 * the counter name is not correct one so I've removed the
1272 * counter in output errors.
1273 */
1274 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1275 smb->tx_underrun;
1276
1277 ifp->if_ipackets += smb->rx_frames;
1278
1279 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1280 smb->rx_runts + smb->rx_pkts_truncated +
1281 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1282 smb->rx_alignerrs;
1283 }
1284
1285 static int
1286 ale_intr(void *xsc)
1287 {
1288 struct ale_softc *sc = xsc;
1289 struct ifnet *ifp = &sc->sc_ec.ec_if;
1290 uint32_t status;
1291
1292 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1293 if ((status & ALE_INTRS) == 0)
1294 return 0;
1295
1296 /* Acknowledge and disable interrupts. */
1297 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1298
1299 if (ifp->if_flags & IFF_RUNNING) {
1300 int error;
1301
1302 error = ale_rxeof(sc);
1303 if (error) {
1304 sc->ale_stats.reset_brk_seq++;
1305 ale_init(ifp);
1306 return 0;
1307 }
1308
1309 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1310 if (status & INTR_DMA_RD_TO_RST)
1311 printf("%s: DMA read error! -- resetting\n",
1312 device_xname(sc->sc_dev));
1313 if (status & INTR_DMA_WR_TO_RST)
1314 printf("%s: DMA write error! -- resetting\n",
1315 device_xname(sc->sc_dev));
1316 ale_init(ifp);
1317 return 0;
1318 }
1319
1320 ale_txeof(sc);
1321 if_schedule_deferred_start(ifp);
1322 }
1323
1324 /* Re-enable interrupts. */
1325 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1326 return 1;
1327 }
1328
1329 static void
1330 ale_txeof(struct ale_softc *sc)
1331 {
1332 struct ifnet *ifp = &sc->sc_ec.ec_if;
1333 struct ale_txdesc *txd;
1334 uint32_t cons, prod;
1335 int prog;
1336
1337 if (sc->ale_cdata.ale_tx_cnt == 0)
1338 return;
1339
1340 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1341 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1342 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1343 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1344 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1345 BUS_DMASYNC_POSTREAD);
1346 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1347 } else
1348 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1349 cons = sc->ale_cdata.ale_tx_cons;
1350 /*
1351 * Go through our Tx list and free mbufs for those
1352 * frames which have been transmitted.
1353 */
1354 for (prog = 0; cons != prod; prog++,
1355 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1356 if (sc->ale_cdata.ale_tx_cnt <= 0)
1357 break;
1358 prog++;
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360 sc->ale_cdata.ale_tx_cnt--;
1361 txd = &sc->ale_cdata.ale_txdesc[cons];
1362 if (txd->tx_m != NULL) {
1363 /* Reclaim transmitted mbufs. */
1364 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1365 m_freem(txd->tx_m);
1366 txd->tx_m = NULL;
1367 }
1368 }
1369
1370 if (prog > 0) {
1371 sc->ale_cdata.ale_tx_cons = cons;
1372 /*
1373 * Unarm watchdog timer only when there is no pending
1374 * Tx descriptors in queue.
1375 */
1376 if (sc->ale_cdata.ale_tx_cnt == 0)
1377 ifp->if_timer = 0;
1378 }
1379 }
1380
1381 static void
1382 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1383 uint32_t length, uint32_t *prod)
1384 {
1385 struct ale_rx_page *rx_page;
1386
1387 rx_page = *page;
1388 /* Update consumer position. */
1389 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1390 ALE_RX_PAGE_ALIGN);
1391 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1392 /*
1393 * End of Rx page reached, let hardware reuse
1394 * this page.
1395 */
1396 rx_page->cons = 0;
1397 *rx_page->cmb_addr = 0;
1398 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1399 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1400 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1401 RXF_VALID);
1402 /* Switch to alternate Rx page. */
1403 sc->ale_cdata.ale_rx_curp ^= 1;
1404 rx_page = *page =
1405 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1406 /* Page flipped, sync CMB and Rx page. */
1407 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1408 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1410 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1411 /* Sync completed, cache updated producer index. */
1412 *prod = *rx_page->cmb_addr;
1413 }
1414 }
1415
1416
1417 /*
1418 * It seems that AR81xx controller can compute partial checksum.
1419 * The partial checksum value can be used to accelerate checksum
1420 * computation for fragmented TCP/UDP packets. Upper network stack
1421 * already takes advantage of the partial checksum value in IP
1422 * reassembly stage. But I'm not sure the correctness of the
1423 * partial hardware checksum assistance due to lack of data sheet.
1424 * In addition, the Rx feature of controller that requires copying
1425 * for every frames effectively nullifies one of most nice offload
1426 * capability of controller.
1427 */
1428 static void
1429 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1430 {
1431 if (status & ALE_RD_IPCSUM_NOK)
1432 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1433
1434 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1435 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1436 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1437 (status & ALE_RD_TCP_UDPCSUM_NOK))
1438 {
1439 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1440 }
1441 } else {
1442 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1443 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1444 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1445 }
1446 }
1447 }
1448 /*
1449 * Don't mark bad checksum for TCP/UDP frames
1450 * as fragmented frames may always have set
1451 * bad checksummed bit of frame status.
1452 */
1453 }
1454
1455 /* Process received frames. */
1456 static int
1457 ale_rxeof(struct ale_softc *sc)
1458 {
1459 struct ifnet *ifp = &sc->sc_ec.ec_if;
1460 struct ale_rx_page *rx_page;
1461 struct rx_rs *rs;
1462 struct mbuf *m;
1463 uint32_t length, prod, seqno, status;
1464 int prog;
1465
1466 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1467 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1468 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1470 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1471 /*
1472 * Don't directly access producer index as hardware may
1473 * update it while Rx handler is in progress. It would
1474 * be even better if there is a way to let hardware
1475 * know how far driver processed its received frames.
1476 * Alternatively, hardware could provide a way to disable
1477 * CMB updates until driver acknowledges the end of CMB
1478 * access.
1479 */
1480 prod = *rx_page->cmb_addr;
1481 for (prog = 0; ; prog++) {
1482 if (rx_page->cons >= prod)
1483 break;
1484 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1485 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1486 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1487 /*
1488 * Normally I believe this should not happen unless
1489 * severe driver bug or corrupted memory. However
1490 * it seems to happen under certain conditions which
1491 * is triggered by abrupt Rx events such as initiation
1492 * of bulk transfer of remote host. It's not easy to
1493 * reproduce this and I doubt it could be related
1494 * with FIFO overflow of hardware or activity of Tx
1495 * CMB updates. I also remember similar behaviour
1496 * seen on RealTek 8139 which uses resembling Rx
1497 * scheme.
1498 */
1499 if (aledebug)
1500 printf("%s: garbled seq: %u, expected: %u -- "
1501 "resetting!\n", device_xname(sc->sc_dev),
1502 seqno, sc->ale_cdata.ale_rx_seqno);
1503 return EIO;
1504 }
1505 /* Frame received. */
1506 sc->ale_cdata.ale_rx_seqno++;
1507 length = ALE_RX_BYTES(le32toh(rs->length));
1508 status = le32toh(rs->flags);
1509 if (status & ALE_RD_ERROR) {
1510 /*
1511 * We want to pass the following frames to upper
1512 * layer regardless of error status of Rx return
1513 * status.
1514 *
1515 * o IP/TCP/UDP checksum is bad.
1516 * o frame length and protocol specific length
1517 * does not match.
1518 */
1519 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1520 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1521 ALE_RD_TRUNC)) {
1522 ale_rx_update_page(sc, &rx_page, length, &prod);
1523 continue;
1524 }
1525 }
1526 /*
1527 * m_devget(9) is major bottle-neck of ale(4)(It comes
1528 * from hardware limitation). For jumbo frames we could
1529 * get a slightly better performance if driver use
1530 * m_getjcl(9) with proper buffer size argument. However
1531 * that would make code more complicated and I don't
1532 * think users would expect good Rx performance numbers
1533 * on these low-end consumer ethernet controller.
1534 */
1535 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1536 0, ifp);
1537 if (m == NULL) {
1538 ifp->if_iqdrops++;
1539 ale_rx_update_page(sc, &rx_page, length, &prod);
1540 continue;
1541 }
1542 if (status & ALE_RD_IPV4)
1543 ale_rxcsum(sc, m, status);
1544 #if NVLAN > 0
1545 if (status & ALE_RD_VLAN) {
1546 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1547 vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1548 }
1549 #endif
1550
1551 /* Pass it to upper layer. */
1552 if_percpuq_enqueue(ifp->if_percpuq, m);
1553
1554 ale_rx_update_page(sc, &rx_page, length, &prod);
1555 }
1556
1557 return 0;
1558 }
1559
1560 static void
1561 ale_tick(void *xsc)
1562 {
1563 struct ale_softc *sc = xsc;
1564 struct mii_data *mii = &sc->sc_miibus;
1565 int s;
1566
1567 s = splnet();
1568 mii_tick(mii);
1569 ale_stats_update(sc);
1570 splx(s);
1571
1572 callout_schedule(&sc->sc_tick_ch, hz);
1573 }
1574
1575 static void
1576 ale_reset(struct ale_softc *sc)
1577 {
1578 uint32_t reg;
1579 int i;
1580
1581 /* Initialize PCIe module. From Linux. */
1582 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1583
1584 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1585 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1586 DELAY(10);
1587 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1588 break;
1589 }
1590 if (i == 0)
1591 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1592
1593 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1594 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1595 break;
1596 DELAY(10);
1597 }
1598
1599 if (i == 0)
1600 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 reg);
1602 }
1603
1604 static int
1605 ale_init(struct ifnet *ifp)
1606 {
1607 struct ale_softc *sc = ifp->if_softc;
1608 struct mii_data *mii;
1609 uint8_t eaddr[ETHER_ADDR_LEN];
1610 bus_addr_t paddr;
1611 uint32_t reg, rxf_hi, rxf_lo;
1612
1613 /*
1614 * Cancel any pending I/O.
1615 */
1616 ale_stop(ifp, 0);
1617
1618 /*
1619 * Reset the chip to a known state.
1620 */
1621 ale_reset(sc);
1622
1623 /* Initialize Tx descriptors, DMA memory blocks. */
1624 ale_init_rx_pages(sc);
1625 ale_init_tx_ring(sc);
1626
1627 /* Reprogram the station address. */
1628 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1629 CSR_WRITE_4(sc, ALE_PAR0,
1630 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1631 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1632
1633 /*
1634 * Clear WOL status and disable all WOL feature as WOL
1635 * would interfere Rx operation under normal environments.
1636 */
1637 CSR_READ_4(sc, ALE_WOL_CFG);
1638 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1639
1640 /*
1641 * Set Tx descriptor/RXF0/CMB base addresses. They share
1642 * the same high address part of DMAable region.
1643 */
1644 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1645 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1646 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1647 CSR_WRITE_4(sc, ALE_TPD_CNT,
1648 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1649
1650 /* Set Rx page base address, note we use single queue. */
1651 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1652 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1653 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1654 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1655
1656 /* Set Tx/Rx CMB addresses. */
1657 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1658 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1659 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1660 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1661 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1662 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1663
1664 /* Mark RXF0 is valid. */
1665 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1666 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1667 /*
1668 * No need to initialize RFX1/RXF2/RXF3. We don't use
1669 * multi-queue yet.
1670 */
1671
1672 /* Set Rx page size, excluding guard frame size. */
1673 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1674
1675 /* Tell hardware that we're ready to load DMA blocks. */
1676 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677
1678 /* Set Rx/Tx interrupt trigger threshold. */
1679 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1680 (4 << INT_TRIG_TX_THRESH_SHIFT));
1681 /*
1682 * XXX
1683 * Set interrupt trigger timer, its purpose and relation
1684 * with interrupt moderation mechanism is not clear yet.
1685 */
1686 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1687 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1688 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1689
1690 /* Configure interrupt moderation timer. */
1691 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1692 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1693 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1694 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1695 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1696 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1697 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1698 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1699 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1700 reg |= MASTER_IM_RX_TIMER_ENB;
1701 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1702 reg |= MASTER_IM_TX_TIMER_ENB;
1703 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1704 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1705
1706 /* Set Maximum frame size of controller. */
1707 if (ifp->if_mtu < ETHERMTU)
1708 sc->ale_max_frame_size = ETHERMTU;
1709 else
1710 sc->ale_max_frame_size = ifp->if_mtu;
1711 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1712 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1713
1714 /* Configure IPG/IFG parameters. */
1715 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1716 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1717 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1718 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1719 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1720
1721 /* Set parameters for half-duplex media. */
1722 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1723 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1724 HDPX_CFG_LCOL_MASK) |
1725 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1726 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1727 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1728 HDPX_CFG_ABEBT_MASK) |
1729 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1730 HDPX_CFG_JAMIPG_MASK));
1731
1732 /* Configure Tx jumbo frame parameters. */
1733 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1734 if (ifp->if_mtu < ETHERMTU)
1735 reg = sc->ale_max_frame_size;
1736 else if (ifp->if_mtu < 6 * 1024)
1737 reg = (sc->ale_max_frame_size * 2) / 3;
1738 else
1739 reg = sc->ale_max_frame_size / 2;
1740 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1741 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1742 TX_JUMBO_THRESH_UNIT_SHIFT);
1743 }
1744
1745 /* Configure TxQ. */
1746 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1747 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1748 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1749 TXQ_CFG_TPD_BURST_MASK;
1750 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1751
1752 /* Configure Rx jumbo frame & flow control parameters. */
1753 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1754 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1755 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1756 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1757 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1758 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1759 RX_JUMBO_LKAH_MASK));
1760 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1761 rxf_hi = (reg * 7) / 10;
1762 rxf_lo = (reg * 3)/ 10;
1763 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1764 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1765 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1766 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1767 RX_FIFO_PAUSE_THRESH_HI_MASK));
1768 }
1769
1770 /* Disable RSS. */
1771 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1772 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1773
1774 /* Configure RxQ. */
1775 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1776 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1777
1778 /* Configure DMA parameters. */
1779 reg = 0;
1780 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1781 reg |= DMA_CFG_TXCMB_ENB;
1782 CSR_WRITE_4(sc, ALE_DMA_CFG,
1783 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1784 sc->ale_dma_rd_burst | reg |
1785 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1786 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1787 DMA_CFG_RD_DELAY_CNT_MASK) |
1788 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1789 DMA_CFG_WR_DELAY_CNT_MASK));
1790
1791 /*
1792 * Hardware can be configured to issue SMB interrupt based
1793 * on programmed interval. Since there is a callout that is
1794 * invoked for every hz in driver we use that instead of
1795 * relying on periodic SMB interrupt.
1796 */
1797 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1798
1799 /* Clear MAC statistics. */
1800 ale_stats_clear(sc);
1801
1802 /*
1803 * Configure Tx/Rx MACs.
1804 * - Auto-padding for short frames.
1805 * - Enable CRC generation.
1806 * Actual reconfiguration of MAC for resolved speed/duplex
1807 * is followed after detection of link establishment.
1808 * AR81xx always does checksum computation regardless of
1809 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1810 * cause Rx handling issue for fragmented IP datagrams due
1811 * to silicon bug.
1812 */
1813 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1814 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1815 MAC_CFG_PREAMBLE_MASK);
1816 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1817 reg |= MAC_CFG_SPEED_10_100;
1818 else
1819 reg |= MAC_CFG_SPEED_1000;
1820 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1821
1822 /* Set up the receive filter. */
1823 ale_rxfilter(sc);
1824 ale_rxvlan(sc);
1825
1826 /* Acknowledge all pending interrupts and clear it. */
1827 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1828 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1829 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1830
1831 sc->ale_flags &= ~ALE_FLAG_LINK;
1832
1833 /* Switch to the current media. */
1834 mii = &sc->sc_miibus;
1835 mii_mediachg(mii);
1836
1837 callout_schedule(&sc->sc_tick_ch, hz);
1838
1839 ifp->if_flags |= IFF_RUNNING;
1840 ifp->if_flags &= ~IFF_OACTIVE;
1841
1842 return 0;
1843 }
1844
1845 static void
1846 ale_stop(struct ifnet *ifp, int disable)
1847 {
1848 struct ale_softc *sc = ifp->if_softc;
1849 struct ale_txdesc *txd;
1850 uint32_t reg;
1851 int i;
1852
1853 callout_stop(&sc->sc_tick_ch);
1854
1855 /*
1856 * Mark the interface down and cancel the watchdog timer.
1857 */
1858 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 ifp->if_timer = 0;
1860
1861 sc->ale_flags &= ~ALE_FLAG_LINK;
1862
1863 ale_stats_update(sc);
1864
1865 mii_down(&sc->sc_miibus);
1866
1867 /* Disable interrupts. */
1868 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1869 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1870
1871 /* Disable queue processing and DMA. */
1872 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1873 reg &= ~TXQ_CFG_ENB;
1874 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1875 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1876 reg &= ~RXQ_CFG_ENB;
1877 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1878 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1879 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1880 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1881 DELAY(1000);
1882
1883 /* Stop Rx/Tx MACs. */
1884 ale_stop_mac(sc);
1885
1886 /* Disable interrupts again? XXX */
1887 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1888
1889 /*
1890 * Free TX mbufs still in the queues.
1891 */
1892 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1893 txd = &sc->ale_cdata.ale_txdesc[i];
1894 if (txd->tx_m != NULL) {
1895 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1896 m_freem(txd->tx_m);
1897 txd->tx_m = NULL;
1898 }
1899 }
1900 }
1901
1902 static void
1903 ale_stop_mac(struct ale_softc *sc)
1904 {
1905 uint32_t reg;
1906 int i;
1907
1908 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1909 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1910 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1911 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1912 }
1913
1914 for (i = ALE_TIMEOUT; i > 0; i--) {
1915 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1916 if (reg == 0)
1917 break;
1918 DELAY(10);
1919 }
1920 if (i == 0)
1921 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1922 device_xname(sc->sc_dev), reg);
1923 }
1924
1925 static void
1926 ale_init_tx_ring(struct ale_softc *sc)
1927 {
1928 struct ale_txdesc *txd;
1929 int i;
1930
1931 sc->ale_cdata.ale_tx_prod = 0;
1932 sc->ale_cdata.ale_tx_cons = 0;
1933 sc->ale_cdata.ale_tx_cnt = 0;
1934
1935 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1936 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1937 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1938 txd = &sc->ale_cdata.ale_txdesc[i];
1939 txd->tx_m = NULL;
1940 }
1941 *sc->ale_cdata.ale_tx_cmb = 0;
1942 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1943 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1944 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1945 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1946 }
1947
1948 static void
1949 ale_init_rx_pages(struct ale_softc *sc)
1950 {
1951 struct ale_rx_page *rx_page;
1952 int i;
1953
1954 sc->ale_cdata.ale_rx_seqno = 0;
1955 sc->ale_cdata.ale_rx_curp = 0;
1956
1957 for (i = 0; i < ALE_RX_PAGES; i++) {
1958 rx_page = &sc->ale_cdata.ale_rx_page[i];
1959 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1960 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1961 rx_page->cons = 0;
1962 *rx_page->cmb_addr = 0;
1963 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1964 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1965 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1966 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1967 }
1968 }
1969
1970 static void
1971 ale_rxvlan(struct ale_softc *sc)
1972 {
1973 uint32_t reg;
1974
1975 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1976 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1977 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1978 reg |= MAC_CFG_VLAN_TAG_STRIP;
1979 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1980 }
1981
1982 static void
1983 ale_rxfilter(struct ale_softc *sc)
1984 {
1985 struct ethercom *ec = &sc->sc_ec;
1986 struct ifnet *ifp = &ec->ec_if;
1987 struct ether_multi *enm;
1988 struct ether_multistep step;
1989 uint32_t crc;
1990 uint32_t mchash[2];
1991 uint32_t rxcfg;
1992
1993 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1994 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1995 ifp->if_flags &= ~IFF_ALLMULTI;
1996
1997 /*
1998 * Always accept broadcast frames.
1999 */
2000 rxcfg |= MAC_CFG_BCAST;
2001
2002 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2003 ifp->if_flags |= IFF_ALLMULTI;
2004 if (ifp->if_flags & IFF_PROMISC)
2005 rxcfg |= MAC_CFG_PROMISC;
2006 else
2007 rxcfg |= MAC_CFG_ALLMULTI;
2008 mchash[0] = mchash[1] = 0xFFFFFFFF;
2009 } else {
2010 /* Program new filter. */
2011 memset(mchash, 0, sizeof(mchash));
2012
2013 ETHER_FIRST_MULTI(step, ec, enm);
2014 while (enm != NULL) {
2015 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2016 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2017 ETHER_NEXT_MULTI(step, enm);
2018 }
2019 }
2020
2021 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2022 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2023 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2024 }
2025