if_ale.c revision 1.3 1 /* $NetBSD: if_ale.c,v 1.3 2009/04/28 11:49:15 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.3 2009/04/28 11:49:15 cegger Exp $");
36
37 #include "bpfilter.h"
38 #include "vlan.h"
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52
53 #include <sys/bus.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <sys/rnd.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_alereg.h>
85
86 static int ale_match(device_t, cfdata_t, void *);
87 static void ale_attach(device_t, device_t, void *);
88 static int ale_detach(device_t, int);
89
90 static int ale_miibus_readreg(device_t, int, int);
91 static void ale_miibus_writereg(device_t, int, int, int);
92 static void ale_miibus_statchg(device_t);
93
94 static int ale_init(struct ifnet *);
95 static void ale_start(struct ifnet *);
96 static int ale_ioctl(struct ifnet *, u_long, void *);
97 static void ale_watchdog(struct ifnet *);
98 static int ale_mediachange(struct ifnet *);
99 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
100
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc *sc);
103 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void ale_txeof(struct ale_softc *);
107
108 static int ale_dma_alloc(struct ale_softc *);
109 static void ale_dma_free(struct ale_softc *);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
113
114 static void ale_stop(struct ifnet *, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
125
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 ale_match, ale_attach, ale_detach, NULL);
128
129 int aledebug = 0;
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 struct ale_softc *sc = device_private(dev);
139 uint32_t v;
140 int i;
141
142 if (phy != sc->ale_phyaddr)
143 return 0;
144
145 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
146 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
147 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
148 DELAY(5);
149 v = CSR_READ_4(sc, ALE_MDIO);
150 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
151 break;
152 }
153
154 if (i == 0) {
155 printf("%s: phy read timeout: phy %d, reg %d\n",
156 device_xname(sc->sc_dev), phy, reg);
157 return 0;
158 }
159
160 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
161 }
162
163 static void
164 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
165 {
166 struct ale_softc *sc = device_private(dev);
167 uint32_t v;
168 int i;
169
170 if (phy != sc->ale_phyaddr)
171 return;
172
173 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
174 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
175 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
176 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
177 DELAY(5);
178 v = CSR_READ_4(sc, ALE_MDIO);
179 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
180 break;
181 }
182
183 if (i == 0)
184 printf("%s: phy write timeout: phy %d, reg %d\n",
185 device_xname(sc->sc_dev), phy, reg);
186 }
187
188 static void
189 ale_miibus_statchg(device_t dev)
190 {
191 struct ale_softc *sc = device_private(dev);
192 struct ifnet *ifp = &sc->sc_ec.ec_if;
193 struct mii_data *mii;
194 uint32_t reg;
195
196 if ((ifp->if_flags & IFF_RUNNING) == 0)
197 return;
198
199 mii = &sc->sc_miibus;
200
201 sc->ale_flags &= ~ALE_FLAG_LINK;
202 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
203 (IFM_ACTIVE | IFM_AVALID)) {
204 switch (IFM_SUBTYPE(mii->mii_media_active)) {
205 case IFM_10_T:
206 case IFM_100_TX:
207 sc->ale_flags |= ALE_FLAG_LINK;
208 break;
209
210 case IFM_1000_T:
211 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
212 sc->ale_flags |= ALE_FLAG_LINK;
213 break;
214
215 default:
216 break;
217 }
218 }
219
220 /* Stop Rx/Tx MACs. */
221 ale_stop_mac(sc);
222
223 /* Program MACs with resolved speed/duplex/flow-control. */
224 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
225 ale_mac_config(sc);
226 /* Reenable Tx/Rx MACs. */
227 reg = CSR_READ_4(sc, ALE_MAC_CFG);
228 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
229 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
230 }
231 }
232
233 void
234 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
235 {
236 struct ale_softc *sc = ifp->if_softc;
237 struct mii_data *mii = &sc->sc_miibus;
238
239 mii_pollstat(mii);
240 ifmr->ifm_status = mii->mii_media_status;
241 ifmr->ifm_active = mii->mii_media_active;
242 }
243
244 int
245 ale_mediachange(struct ifnet *ifp)
246 {
247 struct ale_softc *sc = ifp->if_softc;
248 struct mii_data *mii = &sc->sc_miibus;
249 int error;
250
251 if (mii->mii_instance != 0) {
252 struct mii_softc *miisc;
253
254 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
255 mii_phy_reset(miisc);
256 }
257 error = mii_mediachg(mii);
258
259 return error;
260 }
261
262 int
263 ale_match(device_t dev, cfdata_t match, void *aux)
264 {
265 struct pci_attach_args *pa = aux;
266
267 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
268 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
269 }
270
271 void
272 ale_get_macaddr(struct ale_softc *sc)
273 {
274 uint32_t ea[2], reg;
275 int i, vpdc;
276
277 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
278 if ((reg & SPI_VPD_ENB) != 0) {
279 reg &= ~SPI_VPD_ENB;
280 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
281 }
282
283 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
284 &vpdc, NULL)) {
285 /*
286 * PCI VPD capability found, let TWSI reload EEPROM.
287 * This will set ethernet address of controller.
288 */
289 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
290 TWSI_CTRL_SW_LD_START);
291 for (i = 100; i > 0; i--) {
292 DELAY(1000);
293 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
294 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
295 break;
296 }
297 if (i == 0)
298 printf("%s: reloading EEPROM timeout!\n",
299 device_xname(sc->sc_dev));
300 } else {
301 if (aledebug)
302 printf("%s: PCI VPD capability not found!\n",
303 device_xname(sc->sc_dev));
304 }
305
306 ea[0] = CSR_READ_4(sc, ALE_PAR0);
307 ea[1] = CSR_READ_4(sc, ALE_PAR1);
308 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
309 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
310 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
311 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
312 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
313 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
314 }
315
316 void
317 ale_phy_reset(struct ale_softc *sc)
318 {
319 /* Reset magic from Linux. */
320 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
321 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
322 GPHY_CTRL_PHY_PLL_ON);
323 DELAY(1000);
324 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
325 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
326 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
327 DELAY(1000);
328
329 #define ATPHY_DBG_ADDR 0x1D
330 #define ATPHY_DBG_DATA 0x1E
331
332 /* Enable hibernation mode. */
333 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 ATPHY_DBG_ADDR, 0x0B);
335 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 ATPHY_DBG_DATA, 0xBC00);
337 /* Set Class A/B for all modes. */
338 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 ATPHY_DBG_ADDR, 0x00);
340 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 ATPHY_DBG_DATA, 0x02EF);
342 /* Enable 10BT power saving. */
343 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 ATPHY_DBG_ADDR, 0x12);
345 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 ATPHY_DBG_DATA, 0x4C04);
347 /* Adjust 1000T power. */
348 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 ATPHY_DBG_ADDR, 0x04);
350 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 ATPHY_DBG_ADDR, 0x8BBB);
352 /* 10BT center tap voltage. */
353 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 ATPHY_DBG_ADDR, 0x05);
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_ADDR, 0x2C46);
357
358 #undef ATPHY_DBG_ADDR
359 #undef ATPHY_DBG_DATA
360 DELAY(1000);
361 }
362
363 void
364 ale_attach(device_t parent, device_t self, void *aux)
365 {
366 struct ale_softc *sc = device_private(self);
367 struct pci_attach_args *pa = aux;
368 pci_chipset_tag_t pc = pa->pa_pc;
369 pci_intr_handle_t ih;
370 const char *intrstr;
371 struct ifnet *ifp;
372 pcireg_t memtype;
373 int error = 0;
374 uint32_t rxf_len, txf_len;
375
376 aprint_naive("\n");
377 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
378
379 sc->sc_dev = self;
380 sc->sc_dmat = pa->pa_dmat;
381 sc->sc_pct = pa->pa_pc;
382 sc->sc_pcitag = pa->pa_tag;
383
384 /*
385 * Allocate IO memory
386 */
387 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
388 switch (memtype) {
389 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
390 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
391 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
392 break;
393 default:
394 aprint_error_dev(self, "invalid base address register\n");
395 break;
396 }
397
398 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
399 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
400 aprint_error_dev(self, "could not map mem space\n");
401 return;
402 }
403
404 if (pci_intr_map(pa, &ih) != 0) {
405 aprint_error_dev(self, "could not map interrupt\n");
406 goto fail;
407 }
408
409 /*
410 * Allocate IRQ
411 */
412 intrstr = pci_intr_string(sc->sc_pct, ih);
413 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
414 if (sc->sc_irq_handle == NULL) {
415 aprint_error_dev(self, "could not establish interrupt");
416 if (intrstr != NULL)
417 aprint_error(" at %s", intrstr);
418 aprint_error("\n");
419 goto fail;
420 }
421 aprint_normal_dev(self, "%s\n", intrstr);
422
423 /* Set PHY address. */
424 sc->ale_phyaddr = ALE_PHY_ADDR;
425
426 /* Reset PHY. */
427 ale_phy_reset(sc);
428
429 /* Reset the ethernet controller. */
430 ale_reset(sc);
431
432 /* Get PCI and chip id/revision. */
433 sc->ale_rev = PCI_REVISION(pa->pa_class);
434 if (sc->ale_rev >= 0xF0) {
435 /* L2E Rev. B. AR8114 */
436 sc->ale_flags |= ALE_FLAG_FASTETHER;
437 } else {
438 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
439 /* L1E AR8121 */
440 sc->ale_flags |= ALE_FLAG_JUMBO;
441 } else {
442 /* L2E Rev. A. AR8113 */
443 sc->ale_flags |= ALE_FLAG_FASTETHER;
444 }
445 }
446
447 /*
448 * All known controllers seems to require 4 bytes alignment
449 * of Tx buffers to make Tx checksum offload with custom
450 * checksum generation method work.
451 */
452 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
453
454 /*
455 * All known controllers seems to have issues on Rx checksum
456 * offload for fragmented IP datagrams.
457 */
458 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
459
460 /*
461 * Don't use Tx CMB. It is known to cause RRS update failure
462 * under certain circumstances. Typical phenomenon of the
463 * issue would be unexpected sequence number encountered in
464 * Rx handler.
465 */
466 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
467 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
468 MASTER_CHIP_REV_SHIFT;
469 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
470 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
471
472 /*
473 * Uninitialized hardware returns an invalid chip id/revision
474 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
475 */
476 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
477 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
478 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
479 rxf_len == 0xFFFFFFF) {
480 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
481 "%u Rx FIFO -- not initialized?\n",
482 sc->ale_chip_rev, txf_len, rxf_len);
483 goto fail;
484 }
485
486 if (aledebug) {
487 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
488 txf_len, rxf_len);
489 }
490
491 /* Set max allowable DMA size. */
492 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
493 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
494
495 callout_init(&sc->sc_tick_ch, 0);
496 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
497
498 error = ale_dma_alloc(sc);
499 if (error)
500 goto fail;
501
502 /* Load station address. */
503 ale_get_macaddr(sc);
504
505 aprint_normal_dev(self, "Ethernet address %s\n",
506 ether_sprintf(sc->ale_eaddr));
507
508 ifp = &sc->sc_ec.ec_if;
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 ifp->if_init = ale_init;
512 ifp->if_ioctl = ale_ioctl;
513 ifp->if_start = ale_start;
514 ifp->if_stop = ale_stop;
515 ifp->if_watchdog = ale_watchdog;
516 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
517 IFQ_SET_READY(&ifp->if_snd);
518 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
519
520 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
521
522 #ifdef ALE_CHECKSUM
523 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
524 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
525 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
526 #endif
527
528 #if NVLAN > 0
529 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
530 #endif
531
532 /* Set up MII bus. */
533 sc->sc_miibus.mii_ifp = ifp;
534 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
535 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
536 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
537
538 sc->sc_ec.ec_mii = &sc->sc_miibus;
539 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
540 ale_mediastatus);
541 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
542 MII_OFFSET_ANY, 0);
543
544 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
545 aprint_error_dev(self, "no PHY found!\n");
546 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
547 0, NULL);
548 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
549 } else
550 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
551
552 if_attach(ifp);
553 ether_ifattach(ifp, sc->ale_eaddr);
554
555 if (!pmf_device_register(self, NULL, NULL))
556 aprint_error_dev(self, "couldn't establish power handler\n");
557 else
558 pmf_class_network_register(self, ifp);
559
560 return;
561 fail:
562 ale_dma_free(sc);
563 if (sc->sc_irq_handle != NULL) {
564 pci_intr_disestablish(pc, sc->sc_irq_handle);
565 sc->sc_irq_handle = NULL;
566 }
567 if (sc->sc_mem_size) {
568 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
569 sc->sc_mem_size = 0;
570 }
571 }
572
573 static int
574 ale_detach(device_t self, int flags)
575 {
576 struct ale_softc *sc = device_private(self);
577 struct ifnet *ifp = &sc->sc_ec.ec_if;
578 int s;
579
580 pmf_device_deregister(self);
581 s = splnet();
582 ale_stop(ifp, 0);
583 splx(s);
584
585 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
586
587 /* Delete all remaining media. */
588 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
589
590 ether_ifdetach(ifp);
591 if_detach(ifp);
592 ale_dma_free(sc);
593
594 if (sc->sc_irq_handle != NULL) {
595 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
596 sc->sc_irq_handle = NULL;
597 }
598 if (sc->sc_mem_size) {
599 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
600 sc->sc_mem_size = 0;
601 }
602
603 return 0;
604 }
605
606
607 static int
608 ale_dma_alloc(struct ale_softc *sc)
609 {
610 struct ale_txdesc *txd;
611 int nsegs, error, guard_size, i;
612
613 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
614 guard_size = ALE_JUMBO_FRAMELEN;
615 else
616 guard_size = ALE_MAX_FRAMELEN;
617 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
618 ALE_RX_PAGE_ALIGN);
619
620 /*
621 * Create DMA stuffs for TX ring
622 */
623 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
624 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
625 if (error) {
626 sc->ale_cdata.ale_tx_ring_map = NULL;
627 return ENOBUFS;
628 }
629
630 /* Allocate DMA'able memory for TX ring */
631 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
632 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
633 &nsegs, BUS_DMA_WAITOK);
634 if (error) {
635 printf("%s: could not allocate DMA'able memory for Tx ring, "
636 "error = %i\n", device_xname(sc->sc_dev), error);
637 return error;
638 }
639
640 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
641 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
642 BUS_DMA_NOWAIT);
643 if (error)
644 return ENOBUFS;
645
646 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
647
648 /* Load the DMA map for Tx ring. */
649 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
650 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
651 if (error) {
652 printf("%s: could not load DMA'able memory for Tx ring.\n",
653 device_xname(sc->sc_dev));
654 bus_dmamem_free(sc->sc_dmat,
655 &sc->ale_cdata.ale_tx_ring_seg, 1);
656 return error;
657 }
658 sc->ale_cdata.ale_tx_ring_paddr =
659 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
660
661 for (i = 0; i < ALE_RX_PAGES; i++) {
662 /*
663 * Create DMA stuffs for RX pages
664 */
665 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
666 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
667 &sc->ale_cdata.ale_rx_page[i].page_map);
668 if (error) {
669 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
670 return ENOBUFS;
671 }
672
673 /* Allocate DMA'able memory for RX pages */
674 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
675 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
676 1, &nsegs, BUS_DMA_WAITOK);
677 if (error) {
678 printf("%s: could not allocate DMA'able memory for "
679 "Rx ring.\n", device_xname(sc->sc_dev));
680 return error;
681 }
682 error = bus_dmamem_map(sc->sc_dmat,
683 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
684 sc->ale_pagesize,
685 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
686 BUS_DMA_NOWAIT);
687 if (error)
688 return ENOBUFS;
689
690 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
691 sc->ale_pagesize);
692
693 /* Load the DMA map for Rx pages. */
694 error = bus_dmamap_load(sc->sc_dmat,
695 sc->ale_cdata.ale_rx_page[i].page_map,
696 sc->ale_cdata.ale_rx_page[i].page_addr,
697 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
698 if (error) {
699 printf("%s: could not load DMA'able memory for "
700 "Rx pages.\n", device_xname(sc->sc_dev));
701 bus_dmamem_free(sc->sc_dmat,
702 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
703 return error;
704 }
705 sc->ale_cdata.ale_rx_page[i].page_paddr =
706 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
707 }
708
709 /*
710 * Create DMA stuffs for Tx CMB.
711 */
712 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
713 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
714 if (error) {
715 sc->ale_cdata.ale_tx_cmb_map = NULL;
716 return ENOBUFS;
717 }
718
719 /* Allocate DMA'able memory for Tx CMB. */
720 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
721 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
722
723 if (error) {
724 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
725 device_xname(sc->sc_dev));
726 return error;
727 }
728
729 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
730 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
731 BUS_DMA_NOWAIT);
732 if (error)
733 return ENOBUFS;
734
735 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
736
737 /* Load the DMA map for Tx CMB. */
738 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
739 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
740 if (error) {
741 printf("%s: could not load DMA'able memory for Tx CMB.\n",
742 device_xname(sc->sc_dev));
743 bus_dmamem_free(sc->sc_dmat,
744 &sc->ale_cdata.ale_tx_cmb_seg, 1);
745 return error;
746 }
747
748 sc->ale_cdata.ale_tx_cmb_paddr =
749 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
750
751 for (i = 0; i < ALE_RX_PAGES; i++) {
752 /*
753 * Create DMA stuffs for Rx CMB.
754 */
755 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
756 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
757 &sc->ale_cdata.ale_rx_page[i].cmb_map);
758 if (error) {
759 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
760 return ENOBUFS;
761 }
762
763 /* Allocate DMA'able memory for Rx CMB */
764 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
765 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
766 &nsegs, BUS_DMA_WAITOK);
767 if (error) {
768 printf("%s: could not allocate DMA'able memory for "
769 "Rx CMB\n", device_xname(sc->sc_dev));
770 return error;
771 }
772 error = bus_dmamem_map(sc->sc_dmat,
773 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
774 ALE_RX_CMB_SZ,
775 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
776 BUS_DMA_NOWAIT);
777 if (error)
778 return ENOBUFS;
779
780 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
781
782 /* Load the DMA map for Rx CMB */
783 error = bus_dmamap_load(sc->sc_dmat,
784 sc->ale_cdata.ale_rx_page[i].cmb_map,
785 sc->ale_cdata.ale_rx_page[i].cmb_addr,
786 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
787 if (error) {
788 printf("%s: could not load DMA'able memory for Rx CMB"
789 "\n", device_xname(sc->sc_dev));
790 bus_dmamem_free(sc->sc_dmat,
791 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
792 return error;
793 }
794 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
795 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
796 }
797
798
799 /* Create DMA maps for Tx buffers. */
800 for (i = 0; i < ALE_TX_RING_CNT; i++) {
801 txd = &sc->ale_cdata.ale_txdesc[i];
802 txd->tx_m = NULL;
803 txd->tx_dmamap = NULL;
804 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
805 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
806 &txd->tx_dmamap);
807 if (error) {
808 txd->tx_dmamap = NULL;
809 printf("%s: could not create Tx dmamap.\n",
810 device_xname(sc->sc_dev));
811 return error;
812 }
813 }
814
815 return 0;
816 }
817
818 static void
819 ale_dma_free(struct ale_softc *sc)
820 {
821 struct ale_txdesc *txd;
822 int i;
823
824 /* Tx buffers. */
825 for (i = 0; i < ALE_TX_RING_CNT; i++) {
826 txd = &sc->ale_cdata.ale_txdesc[i];
827 if (txd->tx_dmamap != NULL) {
828 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
829 txd->tx_dmamap = NULL;
830 }
831 }
832
833 /* Tx descriptor ring. */
834 if (sc->ale_cdata.ale_tx_ring_map != NULL)
835 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
836 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
837 sc->ale_cdata.ale_tx_ring != NULL)
838 bus_dmamem_free(sc->sc_dmat,
839 &sc->ale_cdata.ale_tx_ring_seg, 1);
840 sc->ale_cdata.ale_tx_ring = NULL;
841 sc->ale_cdata.ale_tx_ring_map = NULL;
842
843 /* Rx page block. */
844 for (i = 0; i < ALE_RX_PAGES; i++) {
845 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
846 bus_dmamap_unload(sc->sc_dmat,
847 sc->ale_cdata.ale_rx_page[i].page_map);
848 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
849 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
852 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
853 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
854 }
855
856 /* Rx CMB. */
857 for (i = 0; i < ALE_RX_PAGES; i++) {
858 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
859 bus_dmamap_unload(sc->sc_dmat,
860 sc->ale_cdata.ale_rx_page[i].cmb_map);
861 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
862 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
863 bus_dmamem_free(sc->sc_dmat,
864 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
865 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
866 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
867 }
868
869 /* Tx CMB. */
870 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
871 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
872 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
873 sc->ale_cdata.ale_tx_cmb != NULL)
874 bus_dmamem_free(sc->sc_dmat,
875 &sc->ale_cdata.ale_tx_cmb_seg, 1);
876 sc->ale_cdata.ale_tx_cmb = NULL;
877 sc->ale_cdata.ale_tx_cmb_map = NULL;
878
879 }
880
881 static int
882 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
883 {
884 struct ale_txdesc *txd, *txd_last;
885 struct tx_desc *desc;
886 struct mbuf *m;
887 bus_dmamap_t map;
888 uint32_t cflags, poff, vtag;
889 int error, i, nsegs, prod;
890 #if NVLAN > 0
891 struct m_tag *mtag;
892 #endif
893
894 m = *m_head;
895 cflags = vtag = 0;
896 poff = 0;
897
898 prod = sc->ale_cdata.ale_tx_prod;
899 txd = &sc->ale_cdata.ale_txdesc[prod];
900 txd_last = txd;
901 map = txd->tx_dmamap;
902
903 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
904 if (error == EFBIG) {
905 error = 0;
906
907 MGETHDR(m, M_DONTWAIT, MT_DATA);
908 if (m == NULL) {
909 printf("%s: can't defrag TX mbuf\n",
910 device_xname(sc->sc_dev));
911 m_freem(*m_head);
912 *m_head = NULL;
913 return ENOBUFS;
914 }
915
916 M_COPY_PKTHDR(m, *m_head);
917 if ((*m_head)->m_pkthdr.len > MHLEN) {
918 MCLGET(m, M_DONTWAIT);
919 if (!(m->m_flags & M_EXT)) {
920 m_freem(*m_head);
921 m_freem(m);
922 *m_head = NULL;
923 return ENOBUFS;
924 }
925 }
926 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
927 mtod(m, void *));
928 m_freem(*m_head);
929 m->m_len = m->m_pkthdr.len;
930 *m_head = m;
931
932 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
933 BUS_DMA_NOWAIT);
934
935 if (error != 0) {
936 printf("%s: could not load defragged TX mbuf\n",
937 device_xname(sc->sc_dev));
938 if (!error) {
939 bus_dmamap_unload(sc->sc_dmat, map);
940 error = EFBIG;
941 }
942 m_freem(*m_head);
943 *m_head = NULL;
944 return error;
945 }
946 } else if (error) {
947 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
948 return error;
949 }
950
951 nsegs = map->dm_nsegs;
952
953 if (nsegs == 0) {
954 m_freem(*m_head);
955 *m_head = NULL;
956 return EIO;
957 }
958
959 /* Check descriptor overrun. */
960 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
961 bus_dmamap_unload(sc->sc_dmat, map);
962 return ENOBUFS;
963 }
964 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
965 BUS_DMASYNC_PREWRITE);
966
967 m = *m_head;
968 /* Configure Tx checksum offload. */
969 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
970 /*
971 * AR81xx supports Tx custom checksum offload feature
972 * that offloads single 16bit checksum computation.
973 * So you can choose one among IP, TCP and UDP.
974 * Normally driver sets checksum start/insertion
975 * position from the information of TCP/UDP frame as
976 * TCP/UDP checksum takes more time than that of IP.
977 * However it seems that custom checksum offload
978 * requires 4 bytes aligned Tx buffers due to hardware
979 * bug.
980 * AR81xx also supports explicit Tx checksum computation
981 * if it is told that the size of IP header and TCP
982 * header(for UDP, the header size does not matter
983 * because it's fixed length). However with this scheme
984 * TSO does not work so you have to choose one either
985 * TSO or explicit Tx checksum offload. I chosen TSO
986 * plus custom checksum offload with work-around which
987 * will cover most common usage for this consumer
988 * ethernet controller. The work-around takes a lot of
989 * CPU cycles if Tx buffer is not aligned on 4 bytes
990 * boundary, though.
991 */
992 cflags |= ALE_TD_CXSUM;
993 /* Set checksum start offset. */
994 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
995 }
996
997 #if NVLAN > 0
998 /* Configure VLAN hardware tag insertion. */
999 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1000 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1001 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1002 cflags |= ALE_TD_INSERT_VLAN_TAG;
1003 }
1004 #endif
1005
1006 desc = NULL;
1007 for (i = 0; i < nsegs; i++) {
1008 desc = &sc->ale_cdata.ale_tx_ring[prod];
1009 desc->addr = htole64(map->dm_segs[i].ds_addr);
1010 desc->len =
1011 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1012 desc->flags = htole32(cflags);
1013 sc->ale_cdata.ale_tx_cnt++;
1014 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1015 }
1016 /* Update producer index. */
1017 sc->ale_cdata.ale_tx_prod = prod;
1018
1019 /* Finally set EOP on the last descriptor. */
1020 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1021 desc = &sc->ale_cdata.ale_tx_ring[prod];
1022 desc->flags |= htole32(ALE_TD_EOP);
1023
1024 /* Swap dmamap of the first and the last. */
1025 txd = &sc->ale_cdata.ale_txdesc[prod];
1026 map = txd_last->tx_dmamap;
1027 txd_last->tx_dmamap = txd->tx_dmamap;
1028 txd->tx_dmamap = map;
1029 txd->tx_m = m;
1030
1031 /* Sync descriptors. */
1032 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1033 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1034
1035 return 0;
1036 }
1037
1038 static void
1039 ale_start(struct ifnet *ifp)
1040 {
1041 struct ale_softc *sc = ifp->if_softc;
1042 struct mbuf *m_head;
1043 int enq;
1044
1045 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1046 return;
1047
1048 /* Reclaim transmitted frames. */
1049 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1050 ale_txeof(sc);
1051
1052 enq = 0;
1053 for (;;) {
1054 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1055 if (m_head == NULL)
1056 break;
1057
1058 /*
1059 * Pack the data into the transmit ring. If we
1060 * don't have room, set the OACTIVE flag and wait
1061 * for the NIC to drain the ring.
1062 */
1063 if (ale_encap(sc, &m_head)) {
1064 if (m_head == NULL)
1065 break;
1066 ifp->if_flags |= IFF_OACTIVE;
1067 break;
1068 }
1069 enq = 1;
1070
1071 #if NBPFILTER > 0
1072 /*
1073 * If there's a BPF listener, bounce a copy of this frame
1074 * to him.
1075 */
1076 if (ifp->if_bpf != NULL)
1077 bpf_mtap(ifp->if_bpf, m_head);
1078 #endif
1079 }
1080
1081 if (enq) {
1082 /* Kick. */
1083 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1084 sc->ale_cdata.ale_tx_prod);
1085
1086 /* Set a timeout in case the chip goes out to lunch. */
1087 ifp->if_timer = ALE_TX_TIMEOUT;
1088 }
1089 }
1090
1091 static void
1092 ale_watchdog(struct ifnet *ifp)
1093 {
1094 struct ale_softc *sc = ifp->if_softc;
1095
1096 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1097 printf("%s: watchdog timeout (missed link)\n",
1098 device_xname(sc->sc_dev));
1099 ifp->if_oerrors++;
1100 ale_init(ifp);
1101 return;
1102 }
1103
1104 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1105 ifp->if_oerrors++;
1106 ale_init(ifp);
1107
1108 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1109 ale_start(ifp);
1110 }
1111
1112 static int
1113 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 struct ale_softc *sc = ifp->if_softc;
1116 int s, error;
1117
1118 s = splnet();
1119
1120 error = ether_ioctl(ifp, cmd, data);
1121 if (error == ENETRESET) {
1122 if (ifp->if_flags & IFF_RUNNING)
1123 ale_rxfilter(sc);
1124 error = 0;
1125 }
1126
1127 splx(s);
1128 return error;
1129 }
1130
1131 static void
1132 ale_mac_config(struct ale_softc *sc)
1133 {
1134 struct mii_data *mii;
1135 uint32_t reg;
1136
1137 mii = &sc->sc_miibus;
1138 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1139 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1140 MAC_CFG_SPEED_MASK);
1141
1142 /* Reprogram MAC with resolved speed/duplex. */
1143 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1144 case IFM_10_T:
1145 case IFM_100_TX:
1146 reg |= MAC_CFG_SPEED_10_100;
1147 break;
1148 case IFM_1000_T:
1149 reg |= MAC_CFG_SPEED_1000;
1150 break;
1151 }
1152 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1153 reg |= MAC_CFG_FULL_DUPLEX;
1154 #ifdef notyet
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1156 reg |= MAC_CFG_TX_FC;
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1158 reg |= MAC_CFG_RX_FC;
1159 #endif
1160 }
1161 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1162 }
1163
1164 static void
1165 ale_stats_clear(struct ale_softc *sc)
1166 {
1167 struct smb sb;
1168 uint32_t *reg;
1169 int i;
1170
1171 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1172 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1173 i += sizeof(uint32_t);
1174 }
1175 /* Read Tx statistics. */
1176 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1177 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1178 i += sizeof(uint32_t);
1179 }
1180 }
1181
1182 static void
1183 ale_stats_update(struct ale_softc *sc)
1184 {
1185 struct ifnet *ifp = &sc->sc_ec.ec_if;
1186 struct ale_hw_stats *stat;
1187 struct smb sb, *smb;
1188 uint32_t *reg;
1189 int i;
1190
1191 stat = &sc->ale_stats;
1192 smb = &sb;
1193
1194 /* Read Rx statistics. */
1195 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1196 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1197 i += sizeof(uint32_t);
1198 }
1199 /* Read Tx statistics. */
1200 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1201 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1202 i += sizeof(uint32_t);
1203 }
1204
1205 /* Rx stats. */
1206 stat->rx_frames += smb->rx_frames;
1207 stat->rx_bcast_frames += smb->rx_bcast_frames;
1208 stat->rx_mcast_frames += smb->rx_mcast_frames;
1209 stat->rx_pause_frames += smb->rx_pause_frames;
1210 stat->rx_control_frames += smb->rx_control_frames;
1211 stat->rx_crcerrs += smb->rx_crcerrs;
1212 stat->rx_lenerrs += smb->rx_lenerrs;
1213 stat->rx_bytes += smb->rx_bytes;
1214 stat->rx_runts += smb->rx_runts;
1215 stat->rx_fragments += smb->rx_fragments;
1216 stat->rx_pkts_64 += smb->rx_pkts_64;
1217 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1218 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1219 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1220 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1221 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1222 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1223 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1224 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1225 stat->rx_rrs_errs += smb->rx_rrs_errs;
1226 stat->rx_alignerrs += smb->rx_alignerrs;
1227 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1228 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1229 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1230
1231 /* Tx stats. */
1232 stat->tx_frames += smb->tx_frames;
1233 stat->tx_bcast_frames += smb->tx_bcast_frames;
1234 stat->tx_mcast_frames += smb->tx_mcast_frames;
1235 stat->tx_pause_frames += smb->tx_pause_frames;
1236 stat->tx_excess_defer += smb->tx_excess_defer;
1237 stat->tx_control_frames += smb->tx_control_frames;
1238 stat->tx_deferred += smb->tx_deferred;
1239 stat->tx_bytes += smb->tx_bytes;
1240 stat->tx_pkts_64 += smb->tx_pkts_64;
1241 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1242 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1243 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1244 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1245 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1246 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1247 stat->tx_single_colls += smb->tx_single_colls;
1248 stat->tx_multi_colls += smb->tx_multi_colls;
1249 stat->tx_late_colls += smb->tx_late_colls;
1250 stat->tx_excess_colls += smb->tx_excess_colls;
1251 stat->tx_abort += smb->tx_abort;
1252 stat->tx_underrun += smb->tx_underrun;
1253 stat->tx_desc_underrun += smb->tx_desc_underrun;
1254 stat->tx_lenerrs += smb->tx_lenerrs;
1255 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1256 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1257 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1258
1259 /* Update counters in ifnet. */
1260 ifp->if_opackets += smb->tx_frames;
1261
1262 ifp->if_collisions += smb->tx_single_colls +
1263 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1264 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1265
1266 /*
1267 * XXX
1268 * tx_pkts_truncated counter looks suspicious. It constantly
1269 * increments with no sign of Tx errors. This may indicate
1270 * the counter name is not correct one so I've removed the
1271 * counter in output errors.
1272 */
1273 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1274 smb->tx_underrun;
1275
1276 ifp->if_ipackets += smb->rx_frames;
1277
1278 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1279 smb->rx_runts + smb->rx_pkts_truncated +
1280 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1281 smb->rx_alignerrs;
1282 }
1283
1284 static int
1285 ale_intr(void *xsc)
1286 {
1287 struct ale_softc *sc = xsc;
1288 struct ifnet *ifp = &sc->sc_ec.ec_if;
1289 uint32_t status;
1290
1291 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1292 if ((status & ALE_INTRS) == 0)
1293 return 0;
1294
1295 /* Acknowledge and disable interrupts. */
1296 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1297
1298 if (ifp->if_flags & IFF_RUNNING) {
1299 int error;
1300
1301 error = ale_rxeof(sc);
1302 if (error) {
1303 sc->ale_stats.reset_brk_seq++;
1304 ale_init(ifp);
1305 return 0;
1306 }
1307
1308 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1309 if (status & INTR_DMA_RD_TO_RST)
1310 printf("%s: DMA read error! -- resetting\n",
1311 device_xname(sc->sc_dev));
1312 if (status & INTR_DMA_WR_TO_RST)
1313 printf("%s: DMA write error! -- resetting\n",
1314 device_xname(sc->sc_dev));
1315 ale_init(ifp);
1316 return 0;
1317 }
1318
1319 ale_txeof(sc);
1320 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1321 ale_start(ifp);
1322 }
1323
1324 /* Re-enable interrupts. */
1325 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1326 return 1;
1327 }
1328
1329 static void
1330 ale_txeof(struct ale_softc *sc)
1331 {
1332 struct ifnet *ifp = &sc->sc_ec.ec_if;
1333 struct ale_txdesc *txd;
1334 uint32_t cons, prod;
1335 int prog;
1336
1337 if (sc->ale_cdata.ale_tx_cnt == 0)
1338 return;
1339
1340 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1341 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1342 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1343 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1344 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1345 BUS_DMASYNC_POSTREAD);
1346 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1347 } else
1348 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1349 cons = sc->ale_cdata.ale_tx_cons;
1350 /*
1351 * Go through our Tx list and free mbufs for those
1352 * frames which have been transmitted.
1353 */
1354 for (prog = 0; cons != prod; prog++,
1355 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1356 if (sc->ale_cdata.ale_tx_cnt <= 0)
1357 break;
1358 prog++;
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360 sc->ale_cdata.ale_tx_cnt--;
1361 txd = &sc->ale_cdata.ale_txdesc[cons];
1362 if (txd->tx_m != NULL) {
1363 /* Reclaim transmitted mbufs. */
1364 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1365 m_freem(txd->tx_m);
1366 txd->tx_m = NULL;
1367 }
1368 }
1369
1370 if (prog > 0) {
1371 sc->ale_cdata.ale_tx_cons = cons;
1372 /*
1373 * Unarm watchdog timer only when there is no pending
1374 * Tx descriptors in queue.
1375 */
1376 if (sc->ale_cdata.ale_tx_cnt == 0)
1377 ifp->if_timer = 0;
1378 }
1379 }
1380
1381 static void
1382 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1383 uint32_t length, uint32_t *prod)
1384 {
1385 struct ale_rx_page *rx_page;
1386
1387 rx_page = *page;
1388 /* Update consumer position. */
1389 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1390 ALE_RX_PAGE_ALIGN);
1391 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1392 /*
1393 * End of Rx page reached, let hardware reuse
1394 * this page.
1395 */
1396 rx_page->cons = 0;
1397 *rx_page->cmb_addr = 0;
1398 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1399 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1400 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1401 RXF_VALID);
1402 /* Switch to alternate Rx page. */
1403 sc->ale_cdata.ale_rx_curp ^= 1;
1404 rx_page = *page =
1405 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1406 /* Page flipped, sync CMB and Rx page. */
1407 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1408 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1410 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1411 /* Sync completed, cache updated producer index. */
1412 *prod = *rx_page->cmb_addr;
1413 }
1414 }
1415
1416
1417 /*
1418 * It seems that AR81xx controller can compute partial checksum.
1419 * The partial checksum value can be used to accelerate checksum
1420 * computation for fragmented TCP/UDP packets. Upper network stack
1421 * already takes advantage of the partial checksum value in IP
1422 * reassembly stage. But I'm not sure the correctness of the
1423 * partial hardware checksum assistance due to lack of data sheet.
1424 * In addition, the Rx feature of controller that requires copying
1425 * for every frames effectively nullifies one of most nice offload
1426 * capability of controller.
1427 */
1428 static void
1429 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1430 {
1431 if (status & ALE_RD_IPCSUM_NOK)
1432 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1433
1434 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1435 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1436 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1437 (status & ALE_RD_TCP_UDPCSUM_NOK))
1438 {
1439 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1440 }
1441 } else {
1442 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1443 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1444 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1445 }
1446 }
1447 }
1448 /*
1449 * Don't mark bad checksum for TCP/UDP frames
1450 * as fragmented frames may always have set
1451 * bad checksummed bit of frame status.
1452 */
1453 }
1454
1455 /* Process received frames. */
1456 static int
1457 ale_rxeof(struct ale_softc *sc)
1458 {
1459 struct ifnet *ifp = &sc->sc_ec.ec_if;
1460 struct ale_rx_page *rx_page;
1461 struct rx_rs *rs;
1462 struct mbuf *m;
1463 uint32_t length, prod, seqno, status;
1464 int prog;
1465
1466 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1467 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1468 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1470 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1471 /*
1472 * Don't directly access producer index as hardware may
1473 * update it while Rx handler is in progress. It would
1474 * be even better if there is a way to let hardware
1475 * know how far driver processed its received frames.
1476 * Alternatively, hardware could provide a way to disable
1477 * CMB updates until driver acknowledges the end of CMB
1478 * access.
1479 */
1480 prod = *rx_page->cmb_addr;
1481 for (prog = 0; ; prog++) {
1482 if (rx_page->cons >= prod)
1483 break;
1484 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1485 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1486 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1487 /*
1488 * Normally I believe this should not happen unless
1489 * severe driver bug or corrupted memory. However
1490 * it seems to happen under certain conditions which
1491 * is triggered by abrupt Rx events such as initiation
1492 * of bulk transfer of remote host. It's not easy to
1493 * reproduce this and I doubt it could be related
1494 * with FIFO overflow of hardware or activity of Tx
1495 * CMB updates. I also remember similar behaviour
1496 * seen on RealTek 8139 which uses resembling Rx
1497 * scheme.
1498 */
1499 if (aledebug)
1500 printf("%s: garbled seq: %u, expected: %u -- "
1501 "resetting!\n", device_xname(sc->sc_dev),
1502 seqno, sc->ale_cdata.ale_rx_seqno);
1503 return EIO;
1504 }
1505 /* Frame received. */
1506 sc->ale_cdata.ale_rx_seqno++;
1507 length = ALE_RX_BYTES(le32toh(rs->length));
1508 status = le32toh(rs->flags);
1509 if (status & ALE_RD_ERROR) {
1510 /*
1511 * We want to pass the following frames to upper
1512 * layer regardless of error status of Rx return
1513 * status.
1514 *
1515 * o IP/TCP/UDP checksum is bad.
1516 * o frame length and protocol specific length
1517 * does not match.
1518 */
1519 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1520 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1521 ALE_RD_TRUNC)) {
1522 ale_rx_update_page(sc, &rx_page, length, &prod);
1523 continue;
1524 }
1525 }
1526 /*
1527 * m_devget(9) is major bottle-neck of ale(4)(It comes
1528 * from hardware limitation). For jumbo frames we could
1529 * get a slightly better performance if driver use
1530 * m_getjcl(9) with proper buffer size argument. However
1531 * that would make code more complicated and I don't
1532 * think users would expect good Rx performance numbers
1533 * on these low-end consumer ethernet controller.
1534 */
1535 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1536 0, ifp, NULL);
1537 if (m == NULL) {
1538 ifp->if_iqdrops++;
1539 ale_rx_update_page(sc, &rx_page, length, &prod);
1540 continue;
1541 }
1542 if (status & ALE_RD_IPV4)
1543 ale_rxcsum(sc, m, status);
1544 #if NVLAN > 0
1545 if (status & ALE_RD_VLAN) {
1546 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1547 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1548 }
1549 #endif
1550
1551
1552 #if NBPFILTER > 0
1553 if (ifp->if_bpf)
1554 bpf_mtap(ifp->if_bpf, m);
1555 #endif
1556
1557 /* Pass it to upper layer. */
1558 ether_input(ifp, m);
1559
1560 ale_rx_update_page(sc, &rx_page, length, &prod);
1561 }
1562
1563 return 0;
1564 }
1565
1566 static void
1567 ale_tick(void *xsc)
1568 {
1569 struct ale_softc *sc = xsc;
1570 struct mii_data *mii = &sc->sc_miibus;
1571 int s;
1572
1573 s = splnet();
1574 mii_tick(mii);
1575 ale_stats_update(sc);
1576 splx(s);
1577
1578 callout_schedule(&sc->sc_tick_ch, hz);
1579 }
1580
1581 static void
1582 ale_reset(struct ale_softc *sc)
1583 {
1584 uint32_t reg;
1585 int i;
1586
1587 /* Initialize PCIe module. From Linux. */
1588 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1589
1590 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1591 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1592 DELAY(10);
1593 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1594 break;
1595 }
1596 if (i == 0)
1597 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1598
1599 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1600 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1601 break;
1602 DELAY(10);
1603 }
1604
1605 if (i == 0)
1606 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1607 reg);
1608 }
1609
1610 static int
1611 ale_init(struct ifnet *ifp)
1612 {
1613 struct ale_softc *sc = ifp->if_softc;
1614 struct mii_data *mii;
1615 uint8_t eaddr[ETHER_ADDR_LEN];
1616 bus_addr_t paddr;
1617 uint32_t reg, rxf_hi, rxf_lo;
1618
1619 /*
1620 * Cancel any pending I/O.
1621 */
1622 ale_stop(ifp, 0);
1623
1624 /*
1625 * Reset the chip to a known state.
1626 */
1627 ale_reset(sc);
1628
1629 /* Initialize Tx descriptors, DMA memory blocks. */
1630 ale_init_rx_pages(sc);
1631 ale_init_tx_ring(sc);
1632
1633 /* Reprogram the station address. */
1634 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1635 CSR_WRITE_4(sc, ALE_PAR0,
1636 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1637 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1638
1639 /*
1640 * Clear WOL status and disable all WOL feature as WOL
1641 * would interfere Rx operation under normal environments.
1642 */
1643 CSR_READ_4(sc, ALE_WOL_CFG);
1644 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1645
1646 /*
1647 * Set Tx descriptor/RXF0/CMB base addresses. They share
1648 * the same high address part of DMAable region.
1649 */
1650 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1651 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1652 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1653 CSR_WRITE_4(sc, ALE_TPD_CNT,
1654 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1655
1656 /* Set Rx page base address, note we use single queue. */
1657 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1658 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1659 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1660 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1661
1662 /* Set Tx/Rx CMB addresses. */
1663 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1664 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1665 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1666 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1667 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1668 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1669
1670 /* Mark RXF0 is valid. */
1671 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1672 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1673 /*
1674 * No need to initialize RFX1/RXF2/RXF3. We don't use
1675 * multi-queue yet.
1676 */
1677
1678 /* Set Rx page size, excluding guard frame size. */
1679 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1680
1681 /* Tell hardware that we're ready to load DMA blocks. */
1682 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1683
1684 /* Set Rx/Tx interrupt trigger threshold. */
1685 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1686 (4 << INT_TRIG_TX_THRESH_SHIFT));
1687 /*
1688 * XXX
1689 * Set interrupt trigger timer, its purpose and relation
1690 * with interrupt moderation mechanism is not clear yet.
1691 */
1692 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1693 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1694 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1695
1696 /* Configure interrupt moderation timer. */
1697 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1698 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1699 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1700 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1701 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1702 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1703 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1704 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1705 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1706 reg |= MASTER_IM_RX_TIMER_ENB;
1707 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1708 reg |= MASTER_IM_TX_TIMER_ENB;
1709 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1710 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1711
1712 /* Set Maximum frame size of controller. */
1713 if (ifp->if_mtu < ETHERMTU)
1714 sc->ale_max_frame_size = ETHERMTU;
1715 else
1716 sc->ale_max_frame_size = ifp->if_mtu;
1717 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1718 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1719
1720 /* Configure IPG/IFG parameters. */
1721 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1722 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1723 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1724 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1725 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1726
1727 /* Set parameters for half-duplex media. */
1728 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1729 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1730 HDPX_CFG_LCOL_MASK) |
1731 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1732 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1733 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1734 HDPX_CFG_ABEBT_MASK) |
1735 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1736 HDPX_CFG_JAMIPG_MASK));
1737
1738 /* Configure Tx jumbo frame parameters. */
1739 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1740 if (ifp->if_mtu < ETHERMTU)
1741 reg = sc->ale_max_frame_size;
1742 else if (ifp->if_mtu < 6 * 1024)
1743 reg = (sc->ale_max_frame_size * 2) / 3;
1744 else
1745 reg = sc->ale_max_frame_size / 2;
1746 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1747 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1748 TX_JUMBO_THRESH_UNIT_SHIFT);
1749 }
1750
1751 /* Configure TxQ. */
1752 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1753 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1754 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1755 TXQ_CFG_TPD_BURST_MASK;
1756 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1757
1758 /* Configure Rx jumbo frame & flow control parameters. */
1759 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1760 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1761 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1762 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1763 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1764 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1765 RX_JUMBO_LKAH_MASK));
1766 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1767 rxf_hi = (reg * 7) / 10;
1768 rxf_lo = (reg * 3)/ 10;
1769 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1770 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1771 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1772 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1773 RX_FIFO_PAUSE_THRESH_HI_MASK));
1774 }
1775
1776 /* Disable RSS. */
1777 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1778 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1779
1780 /* Configure RxQ. */
1781 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1782 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1783
1784 /* Configure DMA parameters. */
1785 reg = 0;
1786 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1787 reg |= DMA_CFG_TXCMB_ENB;
1788 CSR_WRITE_4(sc, ALE_DMA_CFG,
1789 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1790 sc->ale_dma_rd_burst | reg |
1791 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1792 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1793 DMA_CFG_RD_DELAY_CNT_MASK) |
1794 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1795 DMA_CFG_WR_DELAY_CNT_MASK));
1796
1797 /*
1798 * Hardware can be configured to issue SMB interrupt based
1799 * on programmed interval. Since there is a callout that is
1800 * invoked for every hz in driver we use that instead of
1801 * relying on periodic SMB interrupt.
1802 */
1803 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1804
1805 /* Clear MAC statistics. */
1806 ale_stats_clear(sc);
1807
1808 /*
1809 * Configure Tx/Rx MACs.
1810 * - Auto-padding for short frames.
1811 * - Enable CRC generation.
1812 * Actual reconfiguration of MAC for resolved speed/duplex
1813 * is followed after detection of link establishment.
1814 * AR81xx always does checksum computation regardless of
1815 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1816 * cause Rx handling issue for fragmented IP datagrams due
1817 * to silicon bug.
1818 */
1819 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1820 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1821 MAC_CFG_PREAMBLE_MASK);
1822 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1823 reg |= MAC_CFG_SPEED_10_100;
1824 else
1825 reg |= MAC_CFG_SPEED_1000;
1826 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1827
1828 /* Set up the receive filter. */
1829 ale_rxfilter(sc);
1830 ale_rxvlan(sc);
1831
1832 /* Acknowledge all pending interrupts and clear it. */
1833 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1834 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1835 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1836
1837 sc->ale_flags &= ~ALE_FLAG_LINK;
1838
1839 /* Switch to the current media. */
1840 mii = &sc->sc_miibus;
1841 mii_mediachg(mii);
1842
1843 callout_schedule(&sc->sc_tick_ch, hz);
1844
1845 ifp->if_flags |= IFF_RUNNING;
1846 ifp->if_flags &= ~IFF_OACTIVE;
1847
1848 return 0;
1849 }
1850
1851 static void
1852 ale_stop(struct ifnet *ifp, int disable)
1853 {
1854 struct ale_softc *sc = ifp->if_softc;
1855 struct ale_txdesc *txd;
1856 uint32_t reg;
1857 int i;
1858
1859 callout_stop(&sc->sc_tick_ch);
1860
1861 /*
1862 * Mark the interface down and cancel the watchdog timer.
1863 */
1864 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1865 ifp->if_timer = 0;
1866
1867 sc->ale_flags &= ~ALE_FLAG_LINK;
1868
1869 ale_stats_update(sc);
1870
1871 mii_down(&sc->sc_miibus);
1872
1873 /* Disable interrupts. */
1874 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1875 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1876
1877 /* Disable queue processing and DMA. */
1878 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1879 reg &= ~TXQ_CFG_ENB;
1880 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1881 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1882 reg &= ~RXQ_CFG_ENB;
1883 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1884 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1885 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1886 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1887 DELAY(1000);
1888
1889 /* Stop Rx/Tx MACs. */
1890 ale_stop_mac(sc);
1891
1892 /* Disable interrupts again? XXX */
1893 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1894
1895 /*
1896 * Free TX mbufs still in the queues.
1897 */
1898 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1899 txd = &sc->ale_cdata.ale_txdesc[i];
1900 if (txd->tx_m != NULL) {
1901 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1902 m_freem(txd->tx_m);
1903 txd->tx_m = NULL;
1904 }
1905 }
1906 }
1907
1908 static void
1909 ale_stop_mac(struct ale_softc *sc)
1910 {
1911 uint32_t reg;
1912 int i;
1913
1914 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1915 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1916 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1917 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1918 }
1919
1920 for (i = ALE_TIMEOUT; i > 0; i--) {
1921 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1922 if (reg == 0)
1923 break;
1924 DELAY(10);
1925 }
1926 if (i == 0)
1927 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1928 device_xname(sc->sc_dev), reg);
1929 }
1930
1931 static void
1932 ale_init_tx_ring(struct ale_softc *sc)
1933 {
1934 struct ale_txdesc *txd;
1935 int i;
1936
1937 sc->ale_cdata.ale_tx_prod = 0;
1938 sc->ale_cdata.ale_tx_cons = 0;
1939 sc->ale_cdata.ale_tx_cnt = 0;
1940
1941 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1942 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1943 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1944 txd = &sc->ale_cdata.ale_txdesc[i];
1945 txd->tx_m = NULL;
1946 }
1947 *sc->ale_cdata.ale_tx_cmb = 0;
1948 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1949 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1951 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1952 }
1953
1954 static void
1955 ale_init_rx_pages(struct ale_softc *sc)
1956 {
1957 struct ale_rx_page *rx_page;
1958 int i;
1959
1960 sc->ale_cdata.ale_rx_seqno = 0;
1961 sc->ale_cdata.ale_rx_curp = 0;
1962
1963 for (i = 0; i < ALE_RX_PAGES; i++) {
1964 rx_page = &sc->ale_cdata.ale_rx_page[i];
1965 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1966 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1967 rx_page->cons = 0;
1968 *rx_page->cmb_addr = 0;
1969 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1970 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1971 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1972 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1973 }
1974 }
1975
1976 static void
1977 ale_rxvlan(struct ale_softc *sc)
1978 {
1979 struct ifnet *ifp = &sc->sc_ec.ec_if;
1980 uint32_t reg;
1981
1982 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1983 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1984 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1985 reg |= MAC_CFG_VLAN_TAG_STRIP;
1986 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1987 }
1988
1989 static void
1990 ale_rxfilter(struct ale_softc *sc)
1991 {
1992 struct ethercom *ec = &sc->sc_ec;
1993 struct ifnet *ifp = &ec->ec_if;
1994 struct ether_multi *enm;
1995 struct ether_multistep step;
1996 uint32_t crc;
1997 uint32_t mchash[2];
1998 uint32_t rxcfg;
1999
2000 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2001 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2002
2003 /*
2004 * Always accept broadcast frames.
2005 */
2006 rxcfg |= MAC_CFG_BCAST;
2007
2008 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2009 ec->ec_multicnt > 0) {
2010 allmulti:
2011 if (ifp->if_flags & IFF_PROMISC)
2012 rxcfg |= MAC_CFG_PROMISC;
2013 else
2014 rxcfg |= MAC_CFG_ALLMULTI;
2015 mchash[0] = mchash[1] = 0xFFFFFFFF;
2016 } else {
2017 /* Program new filter. */
2018 memset(mchash, 0, sizeof(mchash));
2019
2020 ETHER_FIRST_MULTI(step, ec, enm);
2021 while (enm != NULL) {
2022 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2023 ETHER_ADDR_LEN)) {
2024 ifp->if_flags |= IFF_ALLMULTI;
2025 goto allmulti;
2026 }
2027 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2028
2029 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2030 ETHER_NEXT_MULTI(step, enm);
2031 }
2032 }
2033
2034 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2035 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2036 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2037 }
2038