if_ale.c revision 1.3.4.5 1 /* $NetBSD: if_ale.c,v 1.3.4.5 2010/03/11 15:03:44 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.3.4.5 2010/03/11 15:03:44 yamt Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <sys/rnd.h>
73
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80
81 #include <dev/pci/if_alereg.h>
82
83 static int ale_match(device_t, cfdata_t, void *);
84 static void ale_attach(device_t, device_t, void *);
85 static int ale_detach(device_t, int);
86
87 static int ale_miibus_readreg(device_t, int, int);
88 static void ale_miibus_writereg(device_t, int, int, int);
89 static void ale_miibus_statchg(device_t);
90
91 static int ale_init(struct ifnet *);
92 static void ale_start(struct ifnet *);
93 static int ale_ioctl(struct ifnet *, u_long, void *);
94 static void ale_watchdog(struct ifnet *);
95 static int ale_mediachange(struct ifnet *);
96 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
97
98 static int ale_intr(void *);
99 static int ale_rxeof(struct ale_softc *sc);
100 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 uint32_t, uint32_t *);
102 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void ale_txeof(struct ale_softc *);
104
105 static int ale_dma_alloc(struct ale_softc *);
106 static void ale_dma_free(struct ale_softc *);
107 static int ale_encap(struct ale_softc *, struct mbuf **);
108 static void ale_init_rx_pages(struct ale_softc *);
109 static void ale_init_tx_ring(struct ale_softc *);
110
111 static void ale_stop(struct ifnet *, int);
112 static void ale_tick(void *);
113 static void ale_get_macaddr(struct ale_softc *);
114 static void ale_mac_config(struct ale_softc *);
115 static void ale_phy_reset(struct ale_softc *);
116 static void ale_reset(struct ale_softc *);
117 static void ale_rxfilter(struct ale_softc *);
118 static void ale_rxvlan(struct ale_softc *);
119 static void ale_stats_clear(struct ale_softc *);
120 static void ale_stats_update(struct ale_softc *);
121 static void ale_stop_mac(struct ale_softc *);
122
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 ale_match, ale_attach, ale_detach, NULL);
125
126 int aledebug = 0;
127 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
128
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
131
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 struct ale_softc *sc = device_private(dev);
136 uint32_t v;
137 int i;
138
139 if (phy != sc->ale_phyaddr)
140 return 0;
141
142 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 switch (reg) {
144 case MII_100T2CR:
145 case MII_100T2SR:
146 case MII_EXTSR:
147 return 0;
148 default:
149 break;
150 }
151 }
152
153 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 DELAY(5);
157 v = CSR_READ_4(sc, ALE_MDIO);
158 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 break;
160 }
161
162 if (i == 0) {
163 printf("%s: phy read timeout: phy %d, reg %d\n",
164 device_xname(sc->sc_dev), phy, reg);
165 return 0;
166 }
167
168 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 struct ale_softc *sc = device_private(dev);
175 uint32_t v;
176 int i;
177
178 if (phy != sc->ale_phyaddr)
179 return;
180
181 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 switch (reg) {
183 case MII_100T2CR:
184 case MII_100T2SR:
185 case MII_EXTSR:
186 return;
187 default:
188 break;
189 }
190 }
191
192 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 DELAY(5);
197 v = CSR_READ_4(sc, ALE_MDIO);
198 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 break;
200 }
201
202 if (i == 0)
203 printf("%s: phy write timeout: phy %d, reg %d\n",
204 device_xname(sc->sc_dev), phy, reg);
205 }
206
207 static void
208 ale_miibus_statchg(device_t dev)
209 {
210 struct ale_softc *sc = device_private(dev);
211 struct ifnet *ifp = &sc->sc_ec.ec_if;
212 struct mii_data *mii;
213 uint32_t reg;
214
215 if ((ifp->if_flags & IFF_RUNNING) == 0)
216 return;
217
218 mii = &sc->sc_miibus;
219
220 sc->ale_flags &= ~ALE_FLAG_LINK;
221 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
222 (IFM_ACTIVE | IFM_AVALID)) {
223 switch (IFM_SUBTYPE(mii->mii_media_active)) {
224 case IFM_10_T:
225 case IFM_100_TX:
226 sc->ale_flags |= ALE_FLAG_LINK;
227 break;
228
229 case IFM_1000_T:
230 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
231 sc->ale_flags |= ALE_FLAG_LINK;
232 break;
233
234 default:
235 break;
236 }
237 }
238
239 /* Stop Rx/Tx MACs. */
240 ale_stop_mac(sc);
241
242 /* Program MACs with resolved speed/duplex/flow-control. */
243 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
244 ale_mac_config(sc);
245 /* Reenable Tx/Rx MACs. */
246 reg = CSR_READ_4(sc, ALE_MAC_CFG);
247 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
248 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
249 }
250 }
251
252 void
253 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
254 {
255 struct ale_softc *sc = ifp->if_softc;
256 struct mii_data *mii = &sc->sc_miibus;
257
258 mii_pollstat(mii);
259 ifmr->ifm_status = mii->mii_media_status;
260 ifmr->ifm_active = mii->mii_media_active;
261 }
262
263 int
264 ale_mediachange(struct ifnet *ifp)
265 {
266 struct ale_softc *sc = ifp->if_softc;
267 struct mii_data *mii = &sc->sc_miibus;
268 int error;
269
270 if (mii->mii_instance != 0) {
271 struct mii_softc *miisc;
272
273 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
274 mii_phy_reset(miisc);
275 }
276 error = mii_mediachg(mii);
277
278 return error;
279 }
280
281 int
282 ale_match(device_t dev, cfdata_t match, void *aux)
283 {
284 struct pci_attach_args *pa = aux;
285
286 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
287 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
288 }
289
290 void
291 ale_get_macaddr(struct ale_softc *sc)
292 {
293 uint32_t ea[2], reg;
294 int i, vpdc;
295
296 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
297 if ((reg & SPI_VPD_ENB) != 0) {
298 reg &= ~SPI_VPD_ENB;
299 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
300 }
301
302 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
303 &vpdc, NULL)) {
304 /*
305 * PCI VPD capability found, let TWSI reload EEPROM.
306 * This will set ethernet address of controller.
307 */
308 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
309 TWSI_CTRL_SW_LD_START);
310 for (i = 100; i > 0; i--) {
311 DELAY(1000);
312 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
313 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
314 break;
315 }
316 if (i == 0)
317 printf("%s: reloading EEPROM timeout!\n",
318 device_xname(sc->sc_dev));
319 } else {
320 if (aledebug)
321 printf("%s: PCI VPD capability not found!\n",
322 device_xname(sc->sc_dev));
323 }
324
325 ea[0] = CSR_READ_4(sc, ALE_PAR0);
326 ea[1] = CSR_READ_4(sc, ALE_PAR1);
327 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
328 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
329 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
330 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
331 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
332 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
333 }
334
335 void
336 ale_phy_reset(struct ale_softc *sc)
337 {
338 /* Reset magic from Linux. */
339 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
340 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
341 GPHY_CTRL_PHY_PLL_ON);
342 DELAY(1000);
343 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
344 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
345 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
346 DELAY(1000);
347
348 #define ATPHY_DBG_ADDR 0x1D
349 #define ATPHY_DBG_DATA 0x1E
350
351 /* Enable hibernation mode. */
352 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 ATPHY_DBG_ADDR, 0x0B);
354 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 ATPHY_DBG_DATA, 0xBC00);
356 /* Set Class A/B for all modes. */
357 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 ATPHY_DBG_ADDR, 0x00);
359 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 ATPHY_DBG_DATA, 0x02EF);
361 /* Enable 10BT power saving. */
362 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 ATPHY_DBG_ADDR, 0x12);
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_DATA, 0x4C04);
366 /* Adjust 1000T power. */
367 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 ATPHY_DBG_ADDR, 0x04);
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_ADDR, 0x8BBB);
371 /* 10BT center tap voltage. */
372 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 ATPHY_DBG_ADDR, 0x05);
374 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
375 ATPHY_DBG_ADDR, 0x2C46);
376
377 #undef ATPHY_DBG_ADDR
378 #undef ATPHY_DBG_DATA
379 DELAY(1000);
380 }
381
382 void
383 ale_attach(device_t parent, device_t self, void *aux)
384 {
385 struct ale_softc *sc = device_private(self);
386 struct pci_attach_args *pa = aux;
387 pci_chipset_tag_t pc = pa->pa_pc;
388 pci_intr_handle_t ih;
389 const char *intrstr;
390 struct ifnet *ifp;
391 pcireg_t memtype;
392 int mii_flags, error = 0;
393 uint32_t rxf_len, txf_len;
394 const char *chipname;
395
396 aprint_naive("\n");
397 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
398
399 sc->sc_dev = self;
400 sc->sc_dmat = pa->pa_dmat;
401 sc->sc_pct = pa->pa_pc;
402 sc->sc_pcitag = pa->pa_tag;
403
404 /*
405 * Allocate IO memory
406 */
407 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
408 switch (memtype) {
409 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
410 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
411 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
412 break;
413 default:
414 aprint_error_dev(self, "invalid base address register\n");
415 break;
416 }
417
418 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
419 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
420 aprint_error_dev(self, "could not map mem space\n");
421 return;
422 }
423
424 if (pci_intr_map(pa, &ih) != 0) {
425 aprint_error_dev(self, "could not map interrupt\n");
426 goto fail;
427 }
428
429 /*
430 * Allocate IRQ
431 */
432 intrstr = pci_intr_string(sc->sc_pct, ih);
433 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
434 if (sc->sc_irq_handle == NULL) {
435 aprint_error_dev(self, "could not establish interrupt");
436 if (intrstr != NULL)
437 aprint_error(" at %s", intrstr);
438 aprint_error("\n");
439 goto fail;
440 }
441
442 /* Set PHY address. */
443 sc->ale_phyaddr = ALE_PHY_ADDR;
444
445 /* Reset PHY. */
446 ale_phy_reset(sc);
447
448 /* Reset the ethernet controller. */
449 ale_reset(sc);
450
451 /* Get PCI and chip id/revision. */
452 sc->ale_rev = PCI_REVISION(pa->pa_class);
453 if (sc->ale_rev >= 0xF0) {
454 /* L2E Rev. B. AR8114 */
455 sc->ale_flags |= ALE_FLAG_FASTETHER;
456 chipname = "AR8114 (L2E RevB)";
457 } else {
458 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
459 /* L1E AR8121 */
460 sc->ale_flags |= ALE_FLAG_JUMBO;
461 chipname = "AR8121 (L1E)";
462 } else {
463 /* L2E Rev. A. AR8113 */
464 sc->ale_flags |= ALE_FLAG_FASTETHER;
465 chipname = "AR8113 (L2E RevA)";
466 }
467 }
468 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
469
470 /*
471 * All known controllers seems to require 4 bytes alignment
472 * of Tx buffers to make Tx checksum offload with custom
473 * checksum generation method work.
474 */
475 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
476
477 /*
478 * All known controllers seems to have issues on Rx checksum
479 * offload for fragmented IP datagrams.
480 */
481 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
482
483 /*
484 * Don't use Tx CMB. It is known to cause RRS update failure
485 * under certain circumstances. Typical phenomenon of the
486 * issue would be unexpected sequence number encountered in
487 * Rx handler.
488 */
489 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
490 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
491 MASTER_CHIP_REV_SHIFT;
492 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
493 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
494
495 /*
496 * Uninitialized hardware returns an invalid chip id/revision
497 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
498 */
499 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
500 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
501 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
502 rxf_len == 0xFFFFFFF) {
503 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
504 "%u Rx FIFO -- not initialized?\n",
505 sc->ale_chip_rev, txf_len, rxf_len);
506 goto fail;
507 }
508
509 if (aledebug) {
510 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
511 txf_len, rxf_len);
512 }
513
514 /* Set max allowable DMA size. */
515 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
516 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
517
518 callout_init(&sc->sc_tick_ch, 0);
519 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
520
521 error = ale_dma_alloc(sc);
522 if (error)
523 goto fail;
524
525 /* Load station address. */
526 ale_get_macaddr(sc);
527
528 aprint_normal_dev(self, "Ethernet address %s\n",
529 ether_sprintf(sc->ale_eaddr));
530
531 ifp = &sc->sc_ec.ec_if;
532 ifp->if_softc = sc;
533 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
534 ifp->if_init = ale_init;
535 ifp->if_ioctl = ale_ioctl;
536 ifp->if_start = ale_start;
537 ifp->if_stop = ale_stop;
538 ifp->if_watchdog = ale_watchdog;
539 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
540 IFQ_SET_READY(&ifp->if_snd);
541 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
542
543 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
544
545 #ifdef ALE_CHECKSUM
546 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
547 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
548 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
549 #endif
550
551 #if NVLAN > 0
552 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
553 #endif
554
555 /* Set up MII bus. */
556 sc->sc_miibus.mii_ifp = ifp;
557 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
558 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
559 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
560
561 sc->sc_ec.ec_mii = &sc->sc_miibus;
562 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
563 ale_mediastatus);
564 mii_flags = 0;
565 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
566 mii_flags |= MIIF_DOPAUSE;
567 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
568 MII_OFFSET_ANY, mii_flags);
569
570 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
571 aprint_error_dev(self, "no PHY found!\n");
572 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
573 0, NULL);
574 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
575 } else
576 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
577
578 if_attach(ifp);
579 ether_ifattach(ifp, sc->ale_eaddr);
580
581 if (pmf_device_register(self, NULL, NULL))
582 pmf_class_network_register(self, ifp);
583 else
584 aprint_error_dev(self, "couldn't establish power handler\n");
585
586 return;
587 fail:
588 ale_dma_free(sc);
589 if (sc->sc_irq_handle != NULL) {
590 pci_intr_disestablish(pc, sc->sc_irq_handle);
591 sc->sc_irq_handle = NULL;
592 }
593 if (sc->sc_mem_size) {
594 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
595 sc->sc_mem_size = 0;
596 }
597 }
598
599 static int
600 ale_detach(device_t self, int flags)
601 {
602 struct ale_softc *sc = device_private(self);
603 struct ifnet *ifp = &sc->sc_ec.ec_if;
604 int s;
605
606 pmf_device_deregister(self);
607 s = splnet();
608 ale_stop(ifp, 0);
609 splx(s);
610
611 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
612
613 /* Delete all remaining media. */
614 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
615
616 ether_ifdetach(ifp);
617 if_detach(ifp);
618 ale_dma_free(sc);
619
620 if (sc->sc_irq_handle != NULL) {
621 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
622 sc->sc_irq_handle = NULL;
623 }
624 if (sc->sc_mem_size) {
625 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
626 sc->sc_mem_size = 0;
627 }
628
629 return 0;
630 }
631
632
633 static int
634 ale_dma_alloc(struct ale_softc *sc)
635 {
636 struct ale_txdesc *txd;
637 int nsegs, error, guard_size, i;
638
639 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
640 guard_size = ALE_JUMBO_FRAMELEN;
641 else
642 guard_size = ALE_MAX_FRAMELEN;
643 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
644 ALE_RX_PAGE_ALIGN);
645
646 /*
647 * Create DMA stuffs for TX ring
648 */
649 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
650 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
651 if (error) {
652 sc->ale_cdata.ale_tx_ring_map = NULL;
653 return ENOBUFS;
654 }
655
656 /* Allocate DMA'able memory for TX ring */
657 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
658 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
659 &nsegs, BUS_DMA_WAITOK);
660 if (error) {
661 printf("%s: could not allocate DMA'able memory for Tx ring, "
662 "error = %i\n", device_xname(sc->sc_dev), error);
663 return error;
664 }
665
666 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
667 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
668 BUS_DMA_NOWAIT);
669 if (error)
670 return ENOBUFS;
671
672 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
673
674 /* Load the DMA map for Tx ring. */
675 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
676 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
677 if (error) {
678 printf("%s: could not load DMA'able memory for Tx ring.\n",
679 device_xname(sc->sc_dev));
680 bus_dmamem_free(sc->sc_dmat,
681 &sc->ale_cdata.ale_tx_ring_seg, 1);
682 return error;
683 }
684 sc->ale_cdata.ale_tx_ring_paddr =
685 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
686
687 for (i = 0; i < ALE_RX_PAGES; i++) {
688 /*
689 * Create DMA stuffs for RX pages
690 */
691 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
692 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
693 &sc->ale_cdata.ale_rx_page[i].page_map);
694 if (error) {
695 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
696 return ENOBUFS;
697 }
698
699 /* Allocate DMA'able memory for RX pages */
700 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
701 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
702 1, &nsegs, BUS_DMA_WAITOK);
703 if (error) {
704 printf("%s: could not allocate DMA'able memory for "
705 "Rx ring.\n", device_xname(sc->sc_dev));
706 return error;
707 }
708 error = bus_dmamem_map(sc->sc_dmat,
709 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
710 sc->ale_pagesize,
711 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
712 BUS_DMA_NOWAIT);
713 if (error)
714 return ENOBUFS;
715
716 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
717 sc->ale_pagesize);
718
719 /* Load the DMA map for Rx pages. */
720 error = bus_dmamap_load(sc->sc_dmat,
721 sc->ale_cdata.ale_rx_page[i].page_map,
722 sc->ale_cdata.ale_rx_page[i].page_addr,
723 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
724 if (error) {
725 printf("%s: could not load DMA'able memory for "
726 "Rx pages.\n", device_xname(sc->sc_dev));
727 bus_dmamem_free(sc->sc_dmat,
728 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
729 return error;
730 }
731 sc->ale_cdata.ale_rx_page[i].page_paddr =
732 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
733 }
734
735 /*
736 * Create DMA stuffs for Tx CMB.
737 */
738 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
739 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
740 if (error) {
741 sc->ale_cdata.ale_tx_cmb_map = NULL;
742 return ENOBUFS;
743 }
744
745 /* Allocate DMA'able memory for Tx CMB. */
746 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
747 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
748
749 if (error) {
750 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
751 device_xname(sc->sc_dev));
752 return error;
753 }
754
755 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
756 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
757 BUS_DMA_NOWAIT);
758 if (error)
759 return ENOBUFS;
760
761 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
762
763 /* Load the DMA map for Tx CMB. */
764 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
765 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
766 if (error) {
767 printf("%s: could not load DMA'able memory for Tx CMB.\n",
768 device_xname(sc->sc_dev));
769 bus_dmamem_free(sc->sc_dmat,
770 &sc->ale_cdata.ale_tx_cmb_seg, 1);
771 return error;
772 }
773
774 sc->ale_cdata.ale_tx_cmb_paddr =
775 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
776
777 for (i = 0; i < ALE_RX_PAGES; i++) {
778 /*
779 * Create DMA stuffs for Rx CMB.
780 */
781 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
782 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
783 &sc->ale_cdata.ale_rx_page[i].cmb_map);
784 if (error) {
785 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
786 return ENOBUFS;
787 }
788
789 /* Allocate DMA'able memory for Rx CMB */
790 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
791 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
792 &nsegs, BUS_DMA_WAITOK);
793 if (error) {
794 printf("%s: could not allocate DMA'able memory for "
795 "Rx CMB\n", device_xname(sc->sc_dev));
796 return error;
797 }
798 error = bus_dmamem_map(sc->sc_dmat,
799 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
800 ALE_RX_CMB_SZ,
801 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
802 BUS_DMA_NOWAIT);
803 if (error)
804 return ENOBUFS;
805
806 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
807
808 /* Load the DMA map for Rx CMB */
809 error = bus_dmamap_load(sc->sc_dmat,
810 sc->ale_cdata.ale_rx_page[i].cmb_map,
811 sc->ale_cdata.ale_rx_page[i].cmb_addr,
812 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
813 if (error) {
814 printf("%s: could not load DMA'able memory for Rx CMB"
815 "\n", device_xname(sc->sc_dev));
816 bus_dmamem_free(sc->sc_dmat,
817 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
818 return error;
819 }
820 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
821 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
822 }
823
824
825 /* Create DMA maps for Tx buffers. */
826 for (i = 0; i < ALE_TX_RING_CNT; i++) {
827 txd = &sc->ale_cdata.ale_txdesc[i];
828 txd->tx_m = NULL;
829 txd->tx_dmamap = NULL;
830 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
831 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
832 &txd->tx_dmamap);
833 if (error) {
834 txd->tx_dmamap = NULL;
835 printf("%s: could not create Tx dmamap.\n",
836 device_xname(sc->sc_dev));
837 return error;
838 }
839 }
840
841 return 0;
842 }
843
844 static void
845 ale_dma_free(struct ale_softc *sc)
846 {
847 struct ale_txdesc *txd;
848 int i;
849
850 /* Tx buffers. */
851 for (i = 0; i < ALE_TX_RING_CNT; i++) {
852 txd = &sc->ale_cdata.ale_txdesc[i];
853 if (txd->tx_dmamap != NULL) {
854 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
855 txd->tx_dmamap = NULL;
856 }
857 }
858
859 /* Tx descriptor ring. */
860 if (sc->ale_cdata.ale_tx_ring_map != NULL)
861 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
862 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
863 sc->ale_cdata.ale_tx_ring != NULL)
864 bus_dmamem_free(sc->sc_dmat,
865 &sc->ale_cdata.ale_tx_ring_seg, 1);
866 sc->ale_cdata.ale_tx_ring = NULL;
867 sc->ale_cdata.ale_tx_ring_map = NULL;
868
869 /* Rx page block. */
870 for (i = 0; i < ALE_RX_PAGES; i++) {
871 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
872 bus_dmamap_unload(sc->sc_dmat,
873 sc->ale_cdata.ale_rx_page[i].page_map);
874 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
875 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
876 bus_dmamem_free(sc->sc_dmat,
877 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
878 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
879 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
880 }
881
882 /* Rx CMB. */
883 for (i = 0; i < ALE_RX_PAGES; i++) {
884 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
885 bus_dmamap_unload(sc->sc_dmat,
886 sc->ale_cdata.ale_rx_page[i].cmb_map);
887 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
888 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
889 bus_dmamem_free(sc->sc_dmat,
890 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
891 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
892 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
893 }
894
895 /* Tx CMB. */
896 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
897 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
898 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
899 sc->ale_cdata.ale_tx_cmb != NULL)
900 bus_dmamem_free(sc->sc_dmat,
901 &sc->ale_cdata.ale_tx_cmb_seg, 1);
902 sc->ale_cdata.ale_tx_cmb = NULL;
903 sc->ale_cdata.ale_tx_cmb_map = NULL;
904
905 }
906
907 static int
908 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
909 {
910 struct ale_txdesc *txd, *txd_last;
911 struct tx_desc *desc;
912 struct mbuf *m;
913 bus_dmamap_t map;
914 uint32_t cflags, poff, vtag;
915 int error, i, nsegs, prod;
916 #if NVLAN > 0
917 struct m_tag *mtag;
918 #endif
919
920 m = *m_head;
921 cflags = vtag = 0;
922 poff = 0;
923
924 prod = sc->ale_cdata.ale_tx_prod;
925 txd = &sc->ale_cdata.ale_txdesc[prod];
926 txd_last = txd;
927 map = txd->tx_dmamap;
928
929 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
930 if (error == EFBIG) {
931 error = 0;
932
933 *m_head = m_pullup(*m_head, MHLEN);
934 if (*m_head == NULL) {
935 printf("%s: can't defrag TX mbuf\n",
936 device_xname(sc->sc_dev));
937 return ENOBUFS;
938 }
939
940 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
941 BUS_DMA_NOWAIT);
942
943 if (error != 0) {
944 printf("%s: could not load defragged TX mbuf\n",
945 device_xname(sc->sc_dev));
946 m_freem(*m_head);
947 *m_head = NULL;
948 return error;
949 }
950 } else if (error) {
951 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
952 return error;
953 }
954
955 nsegs = map->dm_nsegs;
956
957 if (nsegs == 0) {
958 m_freem(*m_head);
959 *m_head = NULL;
960 return EIO;
961 }
962
963 /* Check descriptor overrun. */
964 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
965 bus_dmamap_unload(sc->sc_dmat, map);
966 return ENOBUFS;
967 }
968 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
969 BUS_DMASYNC_PREWRITE);
970
971 m = *m_head;
972 /* Configure Tx checksum offload. */
973 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
974 /*
975 * AR81xx supports Tx custom checksum offload feature
976 * that offloads single 16bit checksum computation.
977 * So you can choose one among IP, TCP and UDP.
978 * Normally driver sets checksum start/insertion
979 * position from the information of TCP/UDP frame as
980 * TCP/UDP checksum takes more time than that of IP.
981 * However it seems that custom checksum offload
982 * requires 4 bytes aligned Tx buffers due to hardware
983 * bug.
984 * AR81xx also supports explicit Tx checksum computation
985 * if it is told that the size of IP header and TCP
986 * header(for UDP, the header size does not matter
987 * because it's fixed length). However with this scheme
988 * TSO does not work so you have to choose one either
989 * TSO or explicit Tx checksum offload. I chosen TSO
990 * plus custom checksum offload with work-around which
991 * will cover most common usage for this consumer
992 * ethernet controller. The work-around takes a lot of
993 * CPU cycles if Tx buffer is not aligned on 4 bytes
994 * boundary, though.
995 */
996 cflags |= ALE_TD_CXSUM;
997 /* Set checksum start offset. */
998 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
999 }
1000
1001 #if NVLAN > 0
1002 /* Configure VLAN hardware tag insertion. */
1003 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1004 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1005 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1006 cflags |= ALE_TD_INSERT_VLAN_TAG;
1007 }
1008 #endif
1009
1010 desc = NULL;
1011 for (i = 0; i < nsegs; i++) {
1012 desc = &sc->ale_cdata.ale_tx_ring[prod];
1013 desc->addr = htole64(map->dm_segs[i].ds_addr);
1014 desc->len =
1015 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1016 desc->flags = htole32(cflags);
1017 sc->ale_cdata.ale_tx_cnt++;
1018 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1019 }
1020 /* Update producer index. */
1021 sc->ale_cdata.ale_tx_prod = prod;
1022
1023 /* Finally set EOP on the last descriptor. */
1024 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1025 desc = &sc->ale_cdata.ale_tx_ring[prod];
1026 desc->flags |= htole32(ALE_TD_EOP);
1027
1028 /* Swap dmamap of the first and the last. */
1029 txd = &sc->ale_cdata.ale_txdesc[prod];
1030 map = txd_last->tx_dmamap;
1031 txd_last->tx_dmamap = txd->tx_dmamap;
1032 txd->tx_dmamap = map;
1033 txd->tx_m = m;
1034
1035 /* Sync descriptors. */
1036 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1037 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1038
1039 return 0;
1040 }
1041
1042 static void
1043 ale_start(struct ifnet *ifp)
1044 {
1045 struct ale_softc *sc = ifp->if_softc;
1046 struct mbuf *m_head;
1047 int enq;
1048
1049 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1050 return;
1051
1052 /* Reclaim transmitted frames. */
1053 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1054 ale_txeof(sc);
1055
1056 enq = 0;
1057 for (;;) {
1058 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1059 if (m_head == NULL)
1060 break;
1061
1062 /*
1063 * Pack the data into the transmit ring. If we
1064 * don't have room, set the OACTIVE flag and wait
1065 * for the NIC to drain the ring.
1066 */
1067 if (ale_encap(sc, &m_head)) {
1068 if (m_head == NULL)
1069 break;
1070 IF_PREPEND(&ifp->if_snd, m_head);
1071 ifp->if_flags |= IFF_OACTIVE;
1072 break;
1073 }
1074 enq = 1;
1075
1076 /*
1077 * If there's a BPF listener, bounce a copy of this frame
1078 * to him.
1079 */
1080 if (ifp->if_bpf != NULL)
1081 bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
1082 }
1083
1084 if (enq) {
1085 /* Kick. */
1086 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1087 sc->ale_cdata.ale_tx_prod);
1088
1089 /* Set a timeout in case the chip goes out to lunch. */
1090 ifp->if_timer = ALE_TX_TIMEOUT;
1091 }
1092 }
1093
1094 static void
1095 ale_watchdog(struct ifnet *ifp)
1096 {
1097 struct ale_softc *sc = ifp->if_softc;
1098
1099 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1100 printf("%s: watchdog timeout (missed link)\n",
1101 device_xname(sc->sc_dev));
1102 ifp->if_oerrors++;
1103 ale_init(ifp);
1104 return;
1105 }
1106
1107 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1108 ifp->if_oerrors++;
1109 ale_init(ifp);
1110
1111 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1112 ale_start(ifp);
1113 }
1114
1115 static int
1116 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 struct ale_softc *sc = ifp->if_softc;
1119 int s, error;
1120
1121 s = splnet();
1122
1123 error = ether_ioctl(ifp, cmd, data);
1124 if (error == ENETRESET) {
1125 if (ifp->if_flags & IFF_RUNNING)
1126 ale_rxfilter(sc);
1127 error = 0;
1128 }
1129
1130 splx(s);
1131 return error;
1132 }
1133
1134 static void
1135 ale_mac_config(struct ale_softc *sc)
1136 {
1137 struct mii_data *mii;
1138 uint32_t reg;
1139
1140 mii = &sc->sc_miibus;
1141 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1142 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1143 MAC_CFG_SPEED_MASK);
1144
1145 /* Reprogram MAC with resolved speed/duplex. */
1146 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1147 case IFM_10_T:
1148 case IFM_100_TX:
1149 reg |= MAC_CFG_SPEED_10_100;
1150 break;
1151 case IFM_1000_T:
1152 reg |= MAC_CFG_SPEED_1000;
1153 break;
1154 }
1155 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1156 reg |= MAC_CFG_FULL_DUPLEX;
1157 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1158 reg |= MAC_CFG_TX_FC;
1159 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1160 reg |= MAC_CFG_RX_FC;
1161 }
1162 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1163 }
1164
1165 static void
1166 ale_stats_clear(struct ale_softc *sc)
1167 {
1168 struct smb sb;
1169 uint32_t *reg;
1170 int i;
1171
1172 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1173 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1174 i += sizeof(uint32_t);
1175 }
1176 /* Read Tx statistics. */
1177 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1178 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1179 i += sizeof(uint32_t);
1180 }
1181 }
1182
1183 static void
1184 ale_stats_update(struct ale_softc *sc)
1185 {
1186 struct ifnet *ifp = &sc->sc_ec.ec_if;
1187 struct ale_hw_stats *stat;
1188 struct smb sb, *smb;
1189 uint32_t *reg;
1190 int i;
1191
1192 stat = &sc->ale_stats;
1193 smb = &sb;
1194
1195 /* Read Rx statistics. */
1196 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1197 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1198 i += sizeof(uint32_t);
1199 }
1200 /* Read Tx statistics. */
1201 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1202 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1203 i += sizeof(uint32_t);
1204 }
1205
1206 /* Rx stats. */
1207 stat->rx_frames += smb->rx_frames;
1208 stat->rx_bcast_frames += smb->rx_bcast_frames;
1209 stat->rx_mcast_frames += smb->rx_mcast_frames;
1210 stat->rx_pause_frames += smb->rx_pause_frames;
1211 stat->rx_control_frames += smb->rx_control_frames;
1212 stat->rx_crcerrs += smb->rx_crcerrs;
1213 stat->rx_lenerrs += smb->rx_lenerrs;
1214 stat->rx_bytes += smb->rx_bytes;
1215 stat->rx_runts += smb->rx_runts;
1216 stat->rx_fragments += smb->rx_fragments;
1217 stat->rx_pkts_64 += smb->rx_pkts_64;
1218 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1219 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1220 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1221 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1222 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1223 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1224 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1225 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1226 stat->rx_rrs_errs += smb->rx_rrs_errs;
1227 stat->rx_alignerrs += smb->rx_alignerrs;
1228 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1229 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1230 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1231
1232 /* Tx stats. */
1233 stat->tx_frames += smb->tx_frames;
1234 stat->tx_bcast_frames += smb->tx_bcast_frames;
1235 stat->tx_mcast_frames += smb->tx_mcast_frames;
1236 stat->tx_pause_frames += smb->tx_pause_frames;
1237 stat->tx_excess_defer += smb->tx_excess_defer;
1238 stat->tx_control_frames += smb->tx_control_frames;
1239 stat->tx_deferred += smb->tx_deferred;
1240 stat->tx_bytes += smb->tx_bytes;
1241 stat->tx_pkts_64 += smb->tx_pkts_64;
1242 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1243 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1244 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1245 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1246 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1247 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1248 stat->tx_single_colls += smb->tx_single_colls;
1249 stat->tx_multi_colls += smb->tx_multi_colls;
1250 stat->tx_late_colls += smb->tx_late_colls;
1251 stat->tx_excess_colls += smb->tx_excess_colls;
1252 stat->tx_abort += smb->tx_abort;
1253 stat->tx_underrun += smb->tx_underrun;
1254 stat->tx_desc_underrun += smb->tx_desc_underrun;
1255 stat->tx_lenerrs += smb->tx_lenerrs;
1256 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1257 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1258 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1259
1260 /* Update counters in ifnet. */
1261 ifp->if_opackets += smb->tx_frames;
1262
1263 ifp->if_collisions += smb->tx_single_colls +
1264 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1265 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1266
1267 /*
1268 * XXX
1269 * tx_pkts_truncated counter looks suspicious. It constantly
1270 * increments with no sign of Tx errors. This may indicate
1271 * the counter name is not correct one so I've removed the
1272 * counter in output errors.
1273 */
1274 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1275 smb->tx_underrun;
1276
1277 ifp->if_ipackets += smb->rx_frames;
1278
1279 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1280 smb->rx_runts + smb->rx_pkts_truncated +
1281 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1282 smb->rx_alignerrs;
1283 }
1284
1285 static int
1286 ale_intr(void *xsc)
1287 {
1288 struct ale_softc *sc = xsc;
1289 struct ifnet *ifp = &sc->sc_ec.ec_if;
1290 uint32_t status;
1291
1292 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1293 if ((status & ALE_INTRS) == 0)
1294 return 0;
1295
1296 /* Acknowledge and disable interrupts. */
1297 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1298
1299 if (ifp->if_flags & IFF_RUNNING) {
1300 int error;
1301
1302 error = ale_rxeof(sc);
1303 if (error) {
1304 sc->ale_stats.reset_brk_seq++;
1305 ale_init(ifp);
1306 return 0;
1307 }
1308
1309 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1310 if (status & INTR_DMA_RD_TO_RST)
1311 printf("%s: DMA read error! -- resetting\n",
1312 device_xname(sc->sc_dev));
1313 if (status & INTR_DMA_WR_TO_RST)
1314 printf("%s: DMA write error! -- resetting\n",
1315 device_xname(sc->sc_dev));
1316 ale_init(ifp);
1317 return 0;
1318 }
1319
1320 ale_txeof(sc);
1321 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1322 ale_start(ifp);
1323 }
1324
1325 /* Re-enable interrupts. */
1326 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1327 return 1;
1328 }
1329
1330 static void
1331 ale_txeof(struct ale_softc *sc)
1332 {
1333 struct ifnet *ifp = &sc->sc_ec.ec_if;
1334 struct ale_txdesc *txd;
1335 uint32_t cons, prod;
1336 int prog;
1337
1338 if (sc->ale_cdata.ale_tx_cnt == 0)
1339 return;
1340
1341 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1342 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1343 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1344 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1345 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1346 BUS_DMASYNC_POSTREAD);
1347 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1348 } else
1349 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1350 cons = sc->ale_cdata.ale_tx_cons;
1351 /*
1352 * Go through our Tx list and free mbufs for those
1353 * frames which have been transmitted.
1354 */
1355 for (prog = 0; cons != prod; prog++,
1356 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1357 if (sc->ale_cdata.ale_tx_cnt <= 0)
1358 break;
1359 prog++;
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361 sc->ale_cdata.ale_tx_cnt--;
1362 txd = &sc->ale_cdata.ale_txdesc[cons];
1363 if (txd->tx_m != NULL) {
1364 /* Reclaim transmitted mbufs. */
1365 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1366 m_freem(txd->tx_m);
1367 txd->tx_m = NULL;
1368 }
1369 }
1370
1371 if (prog > 0) {
1372 sc->ale_cdata.ale_tx_cons = cons;
1373 /*
1374 * Unarm watchdog timer only when there is no pending
1375 * Tx descriptors in queue.
1376 */
1377 if (sc->ale_cdata.ale_tx_cnt == 0)
1378 ifp->if_timer = 0;
1379 }
1380 }
1381
1382 static void
1383 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1384 uint32_t length, uint32_t *prod)
1385 {
1386 struct ale_rx_page *rx_page;
1387
1388 rx_page = *page;
1389 /* Update consumer position. */
1390 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1391 ALE_RX_PAGE_ALIGN);
1392 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1393 /*
1394 * End of Rx page reached, let hardware reuse
1395 * this page.
1396 */
1397 rx_page->cons = 0;
1398 *rx_page->cmb_addr = 0;
1399 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1400 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1401 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1402 RXF_VALID);
1403 /* Switch to alternate Rx page. */
1404 sc->ale_cdata.ale_rx_curp ^= 1;
1405 rx_page = *page =
1406 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1407 /* Page flipped, sync CMB and Rx page. */
1408 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1409 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1410 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1411 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1412 /* Sync completed, cache updated producer index. */
1413 *prod = *rx_page->cmb_addr;
1414 }
1415 }
1416
1417
1418 /*
1419 * It seems that AR81xx controller can compute partial checksum.
1420 * The partial checksum value can be used to accelerate checksum
1421 * computation for fragmented TCP/UDP packets. Upper network stack
1422 * already takes advantage of the partial checksum value in IP
1423 * reassembly stage. But I'm not sure the correctness of the
1424 * partial hardware checksum assistance due to lack of data sheet.
1425 * In addition, the Rx feature of controller that requires copying
1426 * for every frames effectively nullifies one of most nice offload
1427 * capability of controller.
1428 */
1429 static void
1430 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1431 {
1432 if (status & ALE_RD_IPCSUM_NOK)
1433 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1434
1435 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1436 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1437 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1438 (status & ALE_RD_TCP_UDPCSUM_NOK))
1439 {
1440 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1441 }
1442 } else {
1443 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1444 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1445 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1446 }
1447 }
1448 }
1449 /*
1450 * Don't mark bad checksum for TCP/UDP frames
1451 * as fragmented frames may always have set
1452 * bad checksummed bit of frame status.
1453 */
1454 }
1455
1456 /* Process received frames. */
1457 static int
1458 ale_rxeof(struct ale_softc *sc)
1459 {
1460 struct ifnet *ifp = &sc->sc_ec.ec_if;
1461 struct ale_rx_page *rx_page;
1462 struct rx_rs *rs;
1463 struct mbuf *m;
1464 uint32_t length, prod, seqno, status;
1465 int prog;
1466
1467 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1468 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1469 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1470 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1471 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1472 /*
1473 * Don't directly access producer index as hardware may
1474 * update it while Rx handler is in progress. It would
1475 * be even better if there is a way to let hardware
1476 * know how far driver processed its received frames.
1477 * Alternatively, hardware could provide a way to disable
1478 * CMB updates until driver acknowledges the end of CMB
1479 * access.
1480 */
1481 prod = *rx_page->cmb_addr;
1482 for (prog = 0; ; prog++) {
1483 if (rx_page->cons >= prod)
1484 break;
1485 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1486 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1487 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1488 /*
1489 * Normally I believe this should not happen unless
1490 * severe driver bug or corrupted memory. However
1491 * it seems to happen under certain conditions which
1492 * is triggered by abrupt Rx events such as initiation
1493 * of bulk transfer of remote host. It's not easy to
1494 * reproduce this and I doubt it could be related
1495 * with FIFO overflow of hardware or activity of Tx
1496 * CMB updates. I also remember similar behaviour
1497 * seen on RealTek 8139 which uses resembling Rx
1498 * scheme.
1499 */
1500 if (aledebug)
1501 printf("%s: garbled seq: %u, expected: %u -- "
1502 "resetting!\n", device_xname(sc->sc_dev),
1503 seqno, sc->ale_cdata.ale_rx_seqno);
1504 return EIO;
1505 }
1506 /* Frame received. */
1507 sc->ale_cdata.ale_rx_seqno++;
1508 length = ALE_RX_BYTES(le32toh(rs->length));
1509 status = le32toh(rs->flags);
1510 if (status & ALE_RD_ERROR) {
1511 /*
1512 * We want to pass the following frames to upper
1513 * layer regardless of error status of Rx return
1514 * status.
1515 *
1516 * o IP/TCP/UDP checksum is bad.
1517 * o frame length and protocol specific length
1518 * does not match.
1519 */
1520 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1521 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1522 ALE_RD_TRUNC)) {
1523 ale_rx_update_page(sc, &rx_page, length, &prod);
1524 continue;
1525 }
1526 }
1527 /*
1528 * m_devget(9) is major bottle-neck of ale(4)(It comes
1529 * from hardware limitation). For jumbo frames we could
1530 * get a slightly better performance if driver use
1531 * m_getjcl(9) with proper buffer size argument. However
1532 * that would make code more complicated and I don't
1533 * think users would expect good Rx performance numbers
1534 * on these low-end consumer ethernet controller.
1535 */
1536 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1537 0, ifp, NULL);
1538 if (m == NULL) {
1539 ifp->if_iqdrops++;
1540 ale_rx_update_page(sc, &rx_page, length, &prod);
1541 continue;
1542 }
1543 if (status & ALE_RD_IPV4)
1544 ale_rxcsum(sc, m, status);
1545 #if NVLAN > 0
1546 if (status & ALE_RD_VLAN) {
1547 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1548 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1549 }
1550 #endif
1551
1552
1553 if (ifp->if_bpf)
1554 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1555
1556 /* Pass it to upper layer. */
1557 ether_input(ifp, m);
1558
1559 ale_rx_update_page(sc, &rx_page, length, &prod);
1560 }
1561
1562 return 0;
1563 }
1564
1565 static void
1566 ale_tick(void *xsc)
1567 {
1568 struct ale_softc *sc = xsc;
1569 struct mii_data *mii = &sc->sc_miibus;
1570 int s;
1571
1572 s = splnet();
1573 mii_tick(mii);
1574 ale_stats_update(sc);
1575 splx(s);
1576
1577 callout_schedule(&sc->sc_tick_ch, hz);
1578 }
1579
1580 static void
1581 ale_reset(struct ale_softc *sc)
1582 {
1583 uint32_t reg;
1584 int i;
1585
1586 /* Initialize PCIe module. From Linux. */
1587 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1588
1589 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1590 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1591 DELAY(10);
1592 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1593 break;
1594 }
1595 if (i == 0)
1596 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1597
1598 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1599 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1600 break;
1601 DELAY(10);
1602 }
1603
1604 if (i == 0)
1605 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 reg);
1607 }
1608
1609 static int
1610 ale_init(struct ifnet *ifp)
1611 {
1612 struct ale_softc *sc = ifp->if_softc;
1613 struct mii_data *mii;
1614 uint8_t eaddr[ETHER_ADDR_LEN];
1615 bus_addr_t paddr;
1616 uint32_t reg, rxf_hi, rxf_lo;
1617
1618 /*
1619 * Cancel any pending I/O.
1620 */
1621 ale_stop(ifp, 0);
1622
1623 /*
1624 * Reset the chip to a known state.
1625 */
1626 ale_reset(sc);
1627
1628 /* Initialize Tx descriptors, DMA memory blocks. */
1629 ale_init_rx_pages(sc);
1630 ale_init_tx_ring(sc);
1631
1632 /* Reprogram the station address. */
1633 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1634 CSR_WRITE_4(sc, ALE_PAR0,
1635 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1636 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1637
1638 /*
1639 * Clear WOL status and disable all WOL feature as WOL
1640 * would interfere Rx operation under normal environments.
1641 */
1642 CSR_READ_4(sc, ALE_WOL_CFG);
1643 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1644
1645 /*
1646 * Set Tx descriptor/RXF0/CMB base addresses. They share
1647 * the same high address part of DMAable region.
1648 */
1649 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1650 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1651 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1652 CSR_WRITE_4(sc, ALE_TPD_CNT,
1653 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1654
1655 /* Set Rx page base address, note we use single queue. */
1656 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1657 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1658 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1659 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1660
1661 /* Set Tx/Rx CMB addresses. */
1662 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1663 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1664 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1665 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1666 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1667 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1668
1669 /* Mark RXF0 is valid. */
1670 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1671 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1672 /*
1673 * No need to initialize RFX1/RXF2/RXF3. We don't use
1674 * multi-queue yet.
1675 */
1676
1677 /* Set Rx page size, excluding guard frame size. */
1678 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1679
1680 /* Tell hardware that we're ready to load DMA blocks. */
1681 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682
1683 /* Set Rx/Tx interrupt trigger threshold. */
1684 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1685 (4 << INT_TRIG_TX_THRESH_SHIFT));
1686 /*
1687 * XXX
1688 * Set interrupt trigger timer, its purpose and relation
1689 * with interrupt moderation mechanism is not clear yet.
1690 */
1691 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1692 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1693 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1694
1695 /* Configure interrupt moderation timer. */
1696 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1697 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1698 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1699 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1700 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1701 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1702 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1703 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1704 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1705 reg |= MASTER_IM_RX_TIMER_ENB;
1706 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1707 reg |= MASTER_IM_TX_TIMER_ENB;
1708 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1709 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1710
1711 /* Set Maximum frame size of controller. */
1712 if (ifp->if_mtu < ETHERMTU)
1713 sc->ale_max_frame_size = ETHERMTU;
1714 else
1715 sc->ale_max_frame_size = ifp->if_mtu;
1716 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1717 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1718
1719 /* Configure IPG/IFG parameters. */
1720 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1721 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1722 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1723 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1724 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1725
1726 /* Set parameters for half-duplex media. */
1727 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1728 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1729 HDPX_CFG_LCOL_MASK) |
1730 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1731 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1732 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1733 HDPX_CFG_ABEBT_MASK) |
1734 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1735 HDPX_CFG_JAMIPG_MASK));
1736
1737 /* Configure Tx jumbo frame parameters. */
1738 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1739 if (ifp->if_mtu < ETHERMTU)
1740 reg = sc->ale_max_frame_size;
1741 else if (ifp->if_mtu < 6 * 1024)
1742 reg = (sc->ale_max_frame_size * 2) / 3;
1743 else
1744 reg = sc->ale_max_frame_size / 2;
1745 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1746 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1747 TX_JUMBO_THRESH_UNIT_SHIFT);
1748 }
1749
1750 /* Configure TxQ. */
1751 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1752 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1753 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1754 TXQ_CFG_TPD_BURST_MASK;
1755 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1756
1757 /* Configure Rx jumbo frame & flow control parameters. */
1758 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1759 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1760 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1761 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1762 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1763 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1764 RX_JUMBO_LKAH_MASK));
1765 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1766 rxf_hi = (reg * 7) / 10;
1767 rxf_lo = (reg * 3)/ 10;
1768 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1769 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1770 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1771 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1772 RX_FIFO_PAUSE_THRESH_HI_MASK));
1773 }
1774
1775 /* Disable RSS. */
1776 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1777 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1778
1779 /* Configure RxQ. */
1780 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1781 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1782
1783 /* Configure DMA parameters. */
1784 reg = 0;
1785 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1786 reg |= DMA_CFG_TXCMB_ENB;
1787 CSR_WRITE_4(sc, ALE_DMA_CFG,
1788 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1789 sc->ale_dma_rd_burst | reg |
1790 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1791 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1792 DMA_CFG_RD_DELAY_CNT_MASK) |
1793 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1794 DMA_CFG_WR_DELAY_CNT_MASK));
1795
1796 /*
1797 * Hardware can be configured to issue SMB interrupt based
1798 * on programmed interval. Since there is a callout that is
1799 * invoked for every hz in driver we use that instead of
1800 * relying on periodic SMB interrupt.
1801 */
1802 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1803
1804 /* Clear MAC statistics. */
1805 ale_stats_clear(sc);
1806
1807 /*
1808 * Configure Tx/Rx MACs.
1809 * - Auto-padding for short frames.
1810 * - Enable CRC generation.
1811 * Actual reconfiguration of MAC for resolved speed/duplex
1812 * is followed after detection of link establishment.
1813 * AR81xx always does checksum computation regardless of
1814 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1815 * cause Rx handling issue for fragmented IP datagrams due
1816 * to silicon bug.
1817 */
1818 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1819 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1820 MAC_CFG_PREAMBLE_MASK);
1821 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1822 reg |= MAC_CFG_SPEED_10_100;
1823 else
1824 reg |= MAC_CFG_SPEED_1000;
1825 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1826
1827 /* Set up the receive filter. */
1828 ale_rxfilter(sc);
1829 ale_rxvlan(sc);
1830
1831 /* Acknowledge all pending interrupts and clear it. */
1832 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1833 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1834 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1835
1836 sc->ale_flags &= ~ALE_FLAG_LINK;
1837
1838 /* Switch to the current media. */
1839 mii = &sc->sc_miibus;
1840 mii_mediachg(mii);
1841
1842 callout_schedule(&sc->sc_tick_ch, hz);
1843
1844 ifp->if_flags |= IFF_RUNNING;
1845 ifp->if_flags &= ~IFF_OACTIVE;
1846
1847 return 0;
1848 }
1849
1850 static void
1851 ale_stop(struct ifnet *ifp, int disable)
1852 {
1853 struct ale_softc *sc = ifp->if_softc;
1854 struct ale_txdesc *txd;
1855 uint32_t reg;
1856 int i;
1857
1858 callout_stop(&sc->sc_tick_ch);
1859
1860 /*
1861 * Mark the interface down and cancel the watchdog timer.
1862 */
1863 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1864 ifp->if_timer = 0;
1865
1866 sc->ale_flags &= ~ALE_FLAG_LINK;
1867
1868 ale_stats_update(sc);
1869
1870 mii_down(&sc->sc_miibus);
1871
1872 /* Disable interrupts. */
1873 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1874 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1875
1876 /* Disable queue processing and DMA. */
1877 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1878 reg &= ~TXQ_CFG_ENB;
1879 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1880 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1881 reg &= ~RXQ_CFG_ENB;
1882 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1883 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1884 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1885 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1886 DELAY(1000);
1887
1888 /* Stop Rx/Tx MACs. */
1889 ale_stop_mac(sc);
1890
1891 /* Disable interrupts again? XXX */
1892 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1893
1894 /*
1895 * Free TX mbufs still in the queues.
1896 */
1897 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1898 txd = &sc->ale_cdata.ale_txdesc[i];
1899 if (txd->tx_m != NULL) {
1900 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1901 m_freem(txd->tx_m);
1902 txd->tx_m = NULL;
1903 }
1904 }
1905 }
1906
1907 static void
1908 ale_stop_mac(struct ale_softc *sc)
1909 {
1910 uint32_t reg;
1911 int i;
1912
1913 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1914 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1915 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1916 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1917 }
1918
1919 for (i = ALE_TIMEOUT; i > 0; i--) {
1920 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1921 if (reg == 0)
1922 break;
1923 DELAY(10);
1924 }
1925 if (i == 0)
1926 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1927 device_xname(sc->sc_dev), reg);
1928 }
1929
1930 static void
1931 ale_init_tx_ring(struct ale_softc *sc)
1932 {
1933 struct ale_txdesc *txd;
1934 int i;
1935
1936 sc->ale_cdata.ale_tx_prod = 0;
1937 sc->ale_cdata.ale_tx_cons = 0;
1938 sc->ale_cdata.ale_tx_cnt = 0;
1939
1940 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1941 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1942 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1943 txd = &sc->ale_cdata.ale_txdesc[i];
1944 txd->tx_m = NULL;
1945 }
1946 *sc->ale_cdata.ale_tx_cmb = 0;
1947 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1948 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1949 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1950 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951 }
1952
1953 static void
1954 ale_init_rx_pages(struct ale_softc *sc)
1955 {
1956 struct ale_rx_page *rx_page;
1957 int i;
1958
1959 sc->ale_cdata.ale_rx_seqno = 0;
1960 sc->ale_cdata.ale_rx_curp = 0;
1961
1962 for (i = 0; i < ALE_RX_PAGES; i++) {
1963 rx_page = &sc->ale_cdata.ale_rx_page[i];
1964 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1965 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1966 rx_page->cons = 0;
1967 *rx_page->cmb_addr = 0;
1968 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1969 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1970 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1971 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1972 }
1973 }
1974
1975 static void
1976 ale_rxvlan(struct ale_softc *sc)
1977 {
1978 struct ifnet *ifp = &sc->sc_ec.ec_if;
1979 uint32_t reg;
1980
1981 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1982 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1983 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1984 reg |= MAC_CFG_VLAN_TAG_STRIP;
1985 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1986 }
1987
1988 static void
1989 ale_rxfilter(struct ale_softc *sc)
1990 {
1991 struct ethercom *ec = &sc->sc_ec;
1992 struct ifnet *ifp = &ec->ec_if;
1993 struct ether_multi *enm;
1994 struct ether_multistep step;
1995 uint32_t crc;
1996 uint32_t mchash[2];
1997 uint32_t rxcfg;
1998
1999 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2000 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2001 ifp->if_flags &= ~IFF_ALLMULTI;
2002
2003 /*
2004 * Always accept broadcast frames.
2005 */
2006 rxcfg |= MAC_CFG_BCAST;
2007
2008 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2009 ifp->if_flags |= IFF_ALLMULTI;
2010 if (ifp->if_flags & IFF_PROMISC)
2011 rxcfg |= MAC_CFG_PROMISC;
2012 else
2013 rxcfg |= MAC_CFG_ALLMULTI;
2014 mchash[0] = mchash[1] = 0xFFFFFFFF;
2015 } else {
2016 /* Program new filter. */
2017 memset(mchash, 0, sizeof(mchash));
2018
2019 ETHER_FIRST_MULTI(step, ec, enm);
2020 while (enm != NULL) {
2021 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2023 ETHER_NEXT_MULTI(step, enm);
2024 }
2025 }
2026
2027 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2028 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2029 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2030 }
2031