if_ale.c revision 1.35 1 /* $NetBSD: if_ale.c,v 1.35 2019/11/21 09:12:30 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.35 2019/11/21 09:12:30 msaitoh Exp $");
36
37 #include "vlan.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51
52 #include <sys/bus.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69
70 #include <net/bpf.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78
79 #include <dev/pci/if_alereg.h>
80
81 static int ale_match(device_t, cfdata_t, void *);
82 static void ale_attach(device_t, device_t, void *);
83 static int ale_detach(device_t, int);
84
85 static int ale_miibus_readreg(device_t, int, int, uint16_t *);
86 static int ale_miibus_writereg(device_t, int, int, uint16_t);
87 static void ale_miibus_statchg(struct ifnet *);
88
89 static int ale_init(struct ifnet *);
90 static void ale_start(struct ifnet *);
91 static int ale_ioctl(struct ifnet *, u_long, void *);
92 static void ale_watchdog(struct ifnet *);
93 static int ale_mediachange(struct ifnet *);
94 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
95
96 static int ale_intr(void *);
97 static int ale_rxeof(struct ale_softc *sc);
98 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 uint32_t, uint32_t *);
100 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void ale_txeof(struct ale_softc *);
102
103 static int ale_dma_alloc(struct ale_softc *);
104 static void ale_dma_free(struct ale_softc *);
105 static int ale_encap(struct ale_softc *, struct mbuf **);
106 static void ale_init_rx_pages(struct ale_softc *);
107 static void ale_init_tx_ring(struct ale_softc *);
108
109 static void ale_stop(struct ifnet *, int);
110 static void ale_tick(void *);
111 static void ale_get_macaddr(struct ale_softc *);
112 static void ale_mac_config(struct ale_softc *);
113 static void ale_phy_reset(struct ale_softc *);
114 static void ale_reset(struct ale_softc *);
115 static void ale_rxfilter(struct ale_softc *);
116 static void ale_rxvlan(struct ale_softc *);
117 static void ale_stats_clear(struct ale_softc *);
118 static void ale_stats_update(struct ale_softc *);
119 static void ale_stop_mac(struct ale_softc *);
120
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 ale_match, ale_attach, ale_detach, NULL);
123
124 int aledebug = 0;
125 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
126
127 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
128
129 static int
130 ale_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
131 {
132 struct ale_softc *sc = device_private(dev);
133 uint32_t v;
134 int i;
135
136 if (phy != sc->ale_phyaddr)
137 return -1;
138
139 #if 1
140 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 switch (reg) {
142 case MII_EXTSR:
143 *val = 0;
144 return 0;
145 default:
146 break;
147 }
148 }
149 #endif
150
151 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 DELAY(5);
155 v = CSR_READ_4(sc, ALE_MDIO);
156 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 break;
158 }
159
160 if (i == 0) {
161 printf("%s: phy read timeout: phy %d, reg %d\n",
162 device_xname(sc->sc_dev), phy, reg);
163 return ETIMEDOUT;
164 }
165
166 *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 return 0;
168 }
169
170 static int
171 ale_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
172 {
173 struct ale_softc *sc = device_private(dev);
174 uint32_t v;
175 int i;
176
177 if (phy != sc->ale_phyaddr)
178 return -1;
179
180 #if 1
181 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 #if 0
183 switch (reg) {
184 case MII_EXTSR:
185 printf("%s: XXXX write EXTSR with %04hx\n", __func__,
186 val);
187 return 0;
188 default:
189 break;
190 }
191 #endif
192 }
193 #endif
194
195 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
196 ((uint32_t)val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
197 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
198 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
199 DELAY(5);
200 v = CSR_READ_4(sc, ALE_MDIO);
201 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
202 break;
203 }
204
205 if (i == 0) {
206 printf("%s: phy write timeout: phy %d, reg %d\n",
207 device_xname(sc->sc_dev), phy, reg);
208 return ETIMEDOUT;
209 }
210
211 return 0;
212 }
213
214 static void
215 ale_miibus_statchg(struct ifnet *ifp)
216 {
217 struct ale_softc *sc = ifp->if_softc;
218 struct mii_data *mii = &sc->sc_miibus;
219 uint32_t reg;
220
221 if ((ifp->if_flags & IFF_RUNNING) == 0)
222 return;
223
224 sc->ale_flags &= ~ALE_FLAG_LINK;
225 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
226 (IFM_ACTIVE | IFM_AVALID)) {
227 switch (IFM_SUBTYPE(mii->mii_media_active)) {
228 case IFM_10_T:
229 case IFM_100_TX:
230 sc->ale_flags |= ALE_FLAG_LINK;
231 break;
232
233 case IFM_1000_T:
234 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
235 sc->ale_flags |= ALE_FLAG_LINK;
236 break;
237
238 default:
239 break;
240 }
241 }
242
243 /* Stop Rx/Tx MACs. */
244 ale_stop_mac(sc);
245
246 /* Program MACs with resolved speed/duplex/flow-control. */
247 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
248 ale_mac_config(sc);
249 /* Reenable Tx/Rx MACs. */
250 reg = CSR_READ_4(sc, ALE_MAC_CFG);
251 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
252 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
253 }
254 }
255
256 void
257 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
258 {
259 struct ale_softc *sc = ifp->if_softc;
260 struct mii_data *mii = &sc->sc_miibus;
261
262 if ((ifp->if_flags & IFF_UP) == 0)
263 return;
264
265 mii_pollstat(mii);
266 ifmr->ifm_status = mii->mii_media_status;
267 ifmr->ifm_active = mii->mii_media_active;
268 }
269
270 int
271 ale_mediachange(struct ifnet *ifp)
272 {
273 struct ale_softc *sc = ifp->if_softc;
274 struct mii_data *mii = &sc->sc_miibus;
275 int error;
276
277 printf("%s: called\n", __func__);
278 if (mii->mii_instance != 0) {
279 struct mii_softc *miisc;
280
281 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
282 mii_phy_reset(miisc);
283 }
284 error = mii_mediachg(mii);
285
286 return error;
287 }
288
289 int
290 ale_match(device_t dev, cfdata_t match, void *aux)
291 {
292 struct pci_attach_args *pa = aux;
293
294 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
295 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
296 }
297
298 void
299 ale_get_macaddr(struct ale_softc *sc)
300 {
301 uint32_t ea[2], reg;
302 int i, vpdc;
303
304 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
305 if ((reg & SPI_VPD_ENB) != 0) {
306 reg &= ~SPI_VPD_ENB;
307 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
308 }
309
310 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
311 &vpdc, NULL)) {
312 /*
313 * PCI VPD capability found, let TWSI reload EEPROM.
314 * This will set ethernet address of controller.
315 */
316 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
317 TWSI_CTRL_SW_LD_START);
318 for (i = 100; i > 0; i--) {
319 DELAY(1000);
320 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
321 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
322 break;
323 }
324 if (i == 0)
325 printf("%s: reloading EEPROM timeout!\n",
326 device_xname(sc->sc_dev));
327 } else {
328 if (aledebug)
329 printf("%s: PCI VPD capability not found!\n",
330 device_xname(sc->sc_dev));
331 }
332
333 ea[0] = CSR_READ_4(sc, ALE_PAR0);
334 ea[1] = CSR_READ_4(sc, ALE_PAR1);
335 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
336 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
337 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
338 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
339 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
340 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
341 }
342
343 void
344 ale_phy_reset(struct ale_softc *sc)
345 {
346 // int error;
347
348 printf("%s: called\n", __func__);
349 /* Reset magic from Linux. */
350 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
351 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
352 GPHY_CTRL_PHY_PLL_ON);
353 DELAY(2000);
354 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
355 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
356 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
357 DELAY(2000);
358
359 #define ATPHY_INT_CTRL 0x12
360 #define ATPHY_DBG_ADDR 0x1D
361 #define ATPHY_DBG_DATA 0x1E
362
363 /* Enable hibernation mode. */
364 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 ATPHY_DBG_ADDR, 0x0B);
366 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
367 ATPHY_DBG_DATA, 0xBC00);
368 /* Set Class A/B for all modes. */
369 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 ATPHY_DBG_ADDR, 0x00);
371 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
372 ATPHY_DBG_DATA, 0x02EF);
373 /* Enable 10BT power saving. */
374 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
375 ATPHY_DBG_ADDR, 0x12);
376 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
377 ATPHY_DBG_DATA, 0x4C04);
378 /* Adjust 1000T power. */
379 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
380 ATPHY_DBG_ADDR, 0x04);
381 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
382 ATPHY_DBG_DATA, 0x8BBB);
383 /* 10BT center tap voltage. */
384 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
385 ATPHY_DBG_ADDR, 0x05);
386 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
387 ATPHY_DBG_DATA, 0x2C46);
388
389 DELAY(1000);
390
391 #undef ATPHY_DBG_ADDR
392 #undef ATPHY_DBG_DATA
393 }
394
395 void
396 ale_attach(device_t parent, device_t self, void *aux)
397 {
398 struct ale_softc *sc = device_private(self);
399 struct pci_attach_args *pa = aux;
400 pci_chipset_tag_t pc = pa->pa_pc;
401 pci_intr_handle_t ih;
402 const char *intrstr;
403 struct ifnet *ifp;
404 struct mii_data * const mii = &sc->sc_miibus;
405 pcireg_t memtype, pcireg, capoff;
406 int mii_flags, error = 0;
407 uint32_t rxf_len, txf_len;
408 const char *chipname;
409 char intrbuf[PCI_INTRSTR_LEN];
410
411 aprint_naive("\n");
412 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
413
414 sc->sc_dev = self;
415 sc->sc_dmat = pa->pa_dmat;
416 sc->sc_pct = pa->pa_pc;
417 sc->sc_pcitag = pa->pa_tag;
418
419 /*
420 * Allocate IO memory
421 */
422 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
423 switch (memtype) {
424 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
425 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
426 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
427 break;
428 default:
429 aprint_error_dev(self, "invalid base address register\n");
430 break;
431 }
432
433 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
434 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
435 aprint_error_dev(self, "could not map mem space\n");
436 return;
437 }
438
439 pcireg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
440 PCI_COMMAND_STATUS_REG);
441 printf("%s: command = %08x\n", __func__, pcireg);
442 pcireg |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
443 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, pcireg);
444
445 #if 1
446 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PWRMGMT, &capoff,
447 NULL) != 0) {
448 pcireg = pci_conf_read(pa->pa_pc, pa->pa_tag,
449 PCI_COMMAND_STATUS_REG);
450 printf("%s: CSR was %#08x\n", __func__, pcireg);
451 pcireg = pci_conf_read(pa->pa_pc, pa->pa_tag,
452 capoff + PCI_PMCSR);
453 printf("%s: PMCSR was %#08x\n", __func__, pcireg);
454 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_PMCSR, 0);
455 delay(1000);
456 }
457 #endif
458
459 if (pci_intr_map(pa, &ih) != 0) {
460 aprint_error_dev(self, "could not map interrupt\n");
461 goto fail;
462 }
463
464 /*
465 * Allocate IRQ
466 */
467 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
468 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, ale_intr,
469 sc, device_xname(self));
470 if (sc->sc_irq_handle == NULL) {
471 aprint_error_dev(self, "could not establish interrupt");
472 if (intrstr != NULL)
473 aprint_error(" at %s", intrstr);
474 aprint_error("\n");
475 goto fail;
476 }
477
478 /* Set PHY address. */
479 sc->ale_phyaddr = ALE_PHY_ADDR;
480
481 /* Reset PHY. */
482 /* Get PCI and chip id/revision. */
483 sc->ale_rev = PCI_REVISION(pa->pa_class);
484 if (sc->ale_rev >= 0xF0) {
485 /* L2E Rev. B. AR8114 */
486 sc->ale_flags |= ALE_FLAG_FASTETHER;
487 chipname = "AR8114 (L2E RevB)";
488 } else {
489 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
490 /* L1E AR8121 */
491 sc->ale_flags |= ALE_FLAG_JUMBO;
492 chipname = "AR8121 (L1E)";
493 } else {
494 /* L2E Rev. A. AR8113 */
495 sc->ale_flags |= ALE_FLAG_FASTETHER;
496 chipname = "AR8113 (L2E RevA)";
497 }
498 }
499 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
500
501 ale_phy_reset(sc);
502
503 /* Reset the ethernet controller. */
504 ale_reset(sc);
505
506 /*
507 * All known controllers seems to require 4 bytes alignment
508 * of Tx buffers to make Tx checksum offload with custom
509 * checksum generation method work.
510 */
511 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
512
513 /*
514 * All known controllers seems to have issues on Rx checksum
515 * offload for fragmented IP datagrams.
516 */
517 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
518
519 /*
520 * Don't use Tx CMB. It is known to cause RRS update failure
521 * under certain circumstances. Typical phenomenon of the
522 * issue would be unexpected sequence number encountered in
523 * Rx handler.
524 */
525 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
526 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
527 MASTER_CHIP_REV_SHIFT;
528 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
529 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
530
531 /*
532 * Uninitialized hardware returns an invalid chip id/revision
533 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
534 */
535 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
536 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
537 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
538 rxf_len == 0xFFFFFFF) {
539 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
540 "%u Rx FIFO -- not initialized?\n",
541 sc->ale_chip_rev, txf_len, rxf_len);
542 goto fail;
543 }
544
545 if (aledebug) {
546 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
547 txf_len, rxf_len);
548 }
549
550 /* Set max allowable DMA size. */
551 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
552 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
553
554 callout_init(&sc->sc_tick_ch, 0);
555 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
556
557 error = ale_dma_alloc(sc);
558 if (error)
559 goto fail;
560
561 /* Load station address. */
562 ale_get_macaddr(sc);
563
564 aprint_normal_dev(self, "Ethernet address %s\n",
565 ether_sprintf(sc->ale_eaddr));
566
567 ifp = &sc->sc_ec.ec_if;
568 ifp->if_softc = sc;
569 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
570 ifp->if_init = ale_init;
571 ifp->if_ioctl = ale_ioctl;
572 ifp->if_start = ale_start;
573 ifp->if_stop = ale_stop;
574 ifp->if_watchdog = ale_watchdog;
575 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
576 IFQ_SET_READY(&ifp->if_snd);
577 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
578
579 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
580
581 #ifdef ALE_CHECKSUM
582 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
583 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
584 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
585 #endif
586
587 #if NVLAN > 0
588 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
589 sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
590 #endif
591
592 /* Set up MII bus. */
593 mii->mii_ifp = ifp;
594 mii->mii_readreg = ale_miibus_readreg;
595 mii->mii_writereg = ale_miibus_writereg;
596 mii->mii_statchg = ale_miibus_statchg;
597
598 sc->sc_ec.ec_mii = mii;
599 ifmedia_init(&mii->mii_media, 0, ale_mediachange, ale_mediastatus);
600 mii_flags = 0;
601 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
602 mii_flags |= MIIF_DOPAUSE;
603 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
604 MII_OFFSET_ANY, mii_flags);
605
606 if (LIST_FIRST(&mii->mii_phys) == NULL) {
607 aprint_error_dev(self, "no PHY found!\n");
608 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
609 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
610 } else
611 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
612
613 if_attach(ifp);
614 if_deferred_start_init(ifp, NULL);
615 ether_ifattach(ifp, sc->ale_eaddr);
616
617 if (pmf_device_register(self, NULL, NULL))
618 pmf_class_network_register(self, ifp);
619 else
620 aprint_error_dev(self, "couldn't establish power handler\n");
621
622 return;
623 fail:
624 ale_dma_free(sc);
625 if (sc->sc_irq_handle != NULL) {
626 pci_intr_disestablish(pc, sc->sc_irq_handle);
627 sc->sc_irq_handle = NULL;
628 }
629 if (sc->sc_mem_size) {
630 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
631 sc->sc_mem_size = 0;
632 }
633 }
634
635 static int
636 ale_detach(device_t self, int flags)
637 {
638 struct ale_softc *sc = device_private(self);
639 struct ifnet *ifp = &sc->sc_ec.ec_if;
640 int s;
641
642 pmf_device_deregister(self);
643 s = splnet();
644 ale_stop(ifp, 0);
645 splx(s);
646
647 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
648
649 /* Delete all remaining media. */
650 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
651
652 ether_ifdetach(ifp);
653 if_detach(ifp);
654 ale_dma_free(sc);
655
656 if (sc->sc_irq_handle != NULL) {
657 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
658 sc->sc_irq_handle = NULL;
659 }
660 if (sc->sc_mem_size) {
661 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
662 sc->sc_mem_size = 0;
663 }
664
665 return 0;
666 }
667
668
669 static int
670 ale_dma_alloc(struct ale_softc *sc)
671 {
672 struct ale_txdesc *txd;
673 int nsegs, error, guard_size, i;
674
675 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
676 guard_size = ALE_JUMBO_FRAMELEN;
677 else
678 guard_size = ALE_MAX_FRAMELEN;
679 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
680 ALE_RX_PAGE_ALIGN);
681
682 /*
683 * Create DMA stuffs for TX ring
684 */
685 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
686 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
687 if (error) {
688 sc->ale_cdata.ale_tx_ring_map = NULL;
689 return ENOBUFS;
690 }
691
692 /* Allocate DMA'able memory for TX ring */
693 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
694 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
695 &nsegs, BUS_DMA_WAITOK);
696 if (error) {
697 printf("%s: could not allocate DMA'able memory for Tx ring, "
698 "error = %i\n", device_xname(sc->sc_dev), error);
699 return error;
700 }
701
702 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
703 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
704 BUS_DMA_NOWAIT);
705 if (error)
706 return ENOBUFS;
707
708 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
709
710 /* Load the DMA map for Tx ring. */
711 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
712 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
713 if (error) {
714 printf("%s: could not load DMA'able memory for Tx ring.\n",
715 device_xname(sc->sc_dev));
716 bus_dmamem_free(sc->sc_dmat,
717 &sc->ale_cdata.ale_tx_ring_seg, 1);
718 return error;
719 }
720 sc->ale_cdata.ale_tx_ring_paddr =
721 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
722
723 for (i = 0; i < ALE_RX_PAGES; i++) {
724 /*
725 * Create DMA stuffs for RX pages
726 */
727 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
728 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
729 &sc->ale_cdata.ale_rx_page[i].page_map);
730 if (error) {
731 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
732 return ENOBUFS;
733 }
734
735 /* Allocate DMA'able memory for RX pages */
736 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
737 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
738 1, &nsegs, BUS_DMA_WAITOK);
739 if (error) {
740 printf("%s: could not allocate DMA'able memory for "
741 "Rx ring.\n", device_xname(sc->sc_dev));
742 return error;
743 }
744 error = bus_dmamem_map(sc->sc_dmat,
745 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
746 sc->ale_pagesize,
747 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
748 BUS_DMA_NOWAIT);
749 if (error)
750 return ENOBUFS;
751
752 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
753 sc->ale_pagesize);
754
755 /* Load the DMA map for Rx pages. */
756 error = bus_dmamap_load(sc->sc_dmat,
757 sc->ale_cdata.ale_rx_page[i].page_map,
758 sc->ale_cdata.ale_rx_page[i].page_addr,
759 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
760 if (error) {
761 printf("%s: could not load DMA'able memory for "
762 "Rx pages.\n", device_xname(sc->sc_dev));
763 bus_dmamem_free(sc->sc_dmat,
764 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
765 return error;
766 }
767 sc->ale_cdata.ale_rx_page[i].page_paddr =
768 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
769 }
770
771 /*
772 * Create DMA stuffs for Tx CMB.
773 */
774 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
775 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
776 if (error) {
777 sc->ale_cdata.ale_tx_cmb_map = NULL;
778 return ENOBUFS;
779 }
780
781 /* Allocate DMA'able memory for Tx CMB. */
782 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
783 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
784
785 if (error) {
786 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
787 device_xname(sc->sc_dev));
788 return error;
789 }
790
791 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
792 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
793 BUS_DMA_NOWAIT);
794 if (error)
795 return ENOBUFS;
796
797 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
798
799 /* Load the DMA map for Tx CMB. */
800 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
801 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
802 if (error) {
803 printf("%s: could not load DMA'able memory for Tx CMB.\n",
804 device_xname(sc->sc_dev));
805 bus_dmamem_free(sc->sc_dmat,
806 &sc->ale_cdata.ale_tx_cmb_seg, 1);
807 return error;
808 }
809
810 sc->ale_cdata.ale_tx_cmb_paddr =
811 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
812
813 for (i = 0; i < ALE_RX_PAGES; i++) {
814 /*
815 * Create DMA stuffs for Rx CMB.
816 */
817 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
818 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
819 &sc->ale_cdata.ale_rx_page[i].cmb_map);
820 if (error) {
821 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
822 return ENOBUFS;
823 }
824
825 /* Allocate DMA'able memory for Rx CMB */
826 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
827 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
828 &nsegs, BUS_DMA_WAITOK);
829 if (error) {
830 printf("%s: could not allocate DMA'able memory for "
831 "Rx CMB\n", device_xname(sc->sc_dev));
832 return error;
833 }
834 error = bus_dmamem_map(sc->sc_dmat,
835 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
836 ALE_RX_CMB_SZ,
837 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
838 BUS_DMA_NOWAIT);
839 if (error)
840 return ENOBUFS;
841
842 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
843
844 /* Load the DMA map for Rx CMB */
845 error = bus_dmamap_load(sc->sc_dmat,
846 sc->ale_cdata.ale_rx_page[i].cmb_map,
847 sc->ale_cdata.ale_rx_page[i].cmb_addr,
848 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
849 if (error) {
850 printf("%s: could not load DMA'able memory for Rx CMB"
851 "\n", device_xname(sc->sc_dev));
852 bus_dmamem_free(sc->sc_dmat,
853 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
854 return error;
855 }
856 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
857 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
858 }
859
860
861 /* Create DMA maps for Tx buffers. */
862 for (i = 0; i < ALE_TX_RING_CNT; i++) {
863 txd = &sc->ale_cdata.ale_txdesc[i];
864 txd->tx_m = NULL;
865 txd->tx_dmamap = NULL;
866 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
867 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
868 &txd->tx_dmamap);
869 if (error) {
870 txd->tx_dmamap = NULL;
871 printf("%s: could not create Tx dmamap.\n",
872 device_xname(sc->sc_dev));
873 return error;
874 }
875 }
876
877 return 0;
878 }
879
880 static void
881 ale_dma_free(struct ale_softc *sc)
882 {
883 struct ale_txdesc *txd;
884 int i;
885
886 /* Tx buffers. */
887 for (i = 0; i < ALE_TX_RING_CNT; i++) {
888 txd = &sc->ale_cdata.ale_txdesc[i];
889 if (txd->tx_dmamap != NULL) {
890 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
891 txd->tx_dmamap = NULL;
892 }
893 }
894
895 /* Tx descriptor ring. */
896 if (sc->ale_cdata.ale_tx_ring_map != NULL)
897 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
898 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
899 sc->ale_cdata.ale_tx_ring != NULL)
900 bus_dmamem_free(sc->sc_dmat,
901 &sc->ale_cdata.ale_tx_ring_seg, 1);
902 sc->ale_cdata.ale_tx_ring = NULL;
903 sc->ale_cdata.ale_tx_ring_map = NULL;
904
905 /* Rx page block. */
906 for (i = 0; i < ALE_RX_PAGES; i++) {
907 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
908 bus_dmamap_unload(sc->sc_dmat,
909 sc->ale_cdata.ale_rx_page[i].page_map);
910 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
911 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
912 bus_dmamem_free(sc->sc_dmat,
913 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
914 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
915 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
916 }
917
918 /* Rx CMB. */
919 for (i = 0; i < ALE_RX_PAGES; i++) {
920 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
921 bus_dmamap_unload(sc->sc_dmat,
922 sc->ale_cdata.ale_rx_page[i].cmb_map);
923 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
924 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
925 bus_dmamem_free(sc->sc_dmat,
926 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
927 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
928 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
929 }
930
931 /* Tx CMB. */
932 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
933 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
934 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
935 sc->ale_cdata.ale_tx_cmb != NULL)
936 bus_dmamem_free(sc->sc_dmat,
937 &sc->ale_cdata.ale_tx_cmb_seg, 1);
938 sc->ale_cdata.ale_tx_cmb = NULL;
939 sc->ale_cdata.ale_tx_cmb_map = NULL;
940
941 }
942
943 static int
944 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
945 {
946 struct ale_txdesc *txd, *txd_last;
947 struct tx_desc *desc;
948 struct mbuf *m;
949 bus_dmamap_t map;
950 uint32_t cflags, poff, vtag;
951 int error, i, nsegs, prod;
952
953 m = *m_head;
954 cflags = vtag = 0;
955 poff = 0;
956
957 prod = sc->ale_cdata.ale_tx_prod;
958 txd = &sc->ale_cdata.ale_txdesc[prod];
959 txd_last = txd;
960 map = txd->tx_dmamap;
961
962 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
963 if (error == EFBIG) {
964 error = 0;
965
966 *m_head = m_pullup(*m_head, MHLEN);
967 if (*m_head == NULL) {
968 printf("%s: can't defrag TX mbuf\n",
969 device_xname(sc->sc_dev));
970 return ENOBUFS;
971 }
972
973 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
974 BUS_DMA_NOWAIT);
975
976 if (error != 0) {
977 printf("%s: could not load defragged TX mbuf\n",
978 device_xname(sc->sc_dev));
979 m_freem(*m_head);
980 *m_head = NULL;
981 return error;
982 }
983 } else if (error) {
984 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
985 return error;
986 }
987
988 nsegs = map->dm_nsegs;
989
990 if (nsegs == 0) {
991 m_freem(*m_head);
992 *m_head = NULL;
993 return EIO;
994 }
995
996 /* Check descriptor overrun. */
997 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
998 bus_dmamap_unload(sc->sc_dmat, map);
999 return ENOBUFS;
1000 }
1001 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1002 BUS_DMASYNC_PREWRITE);
1003
1004 m = *m_head;
1005 /* Configure Tx checksum offload. */
1006 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1007 /*
1008 * AR81xx supports Tx custom checksum offload feature
1009 * that offloads single 16bit checksum computation.
1010 * So you can choose one among IP, TCP and UDP.
1011 * Normally driver sets checksum start/insertion
1012 * position from the information of TCP/UDP frame as
1013 * TCP/UDP checksum takes more time than that of IP.
1014 * However it seems that custom checksum offload
1015 * requires 4 bytes aligned Tx buffers due to hardware
1016 * bug.
1017 * AR81xx also supports explicit Tx checksum computation
1018 * if it is told that the size of IP header and TCP
1019 * header(for UDP, the header size does not matter
1020 * because it's fixed length). However with this scheme
1021 * TSO does not work so you have to choose one either
1022 * TSO or explicit Tx checksum offload. I chosen TSO
1023 * plus custom checksum offload with work-around which
1024 * will cover most common usage for this consumer
1025 * ethernet controller. The work-around takes a lot of
1026 * CPU cycles if Tx buffer is not aligned on 4 bytes
1027 * boundary, though.
1028 */
1029 cflags |= ALE_TD_CXSUM;
1030 /* Set checksum start offset. */
1031 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1032 }
1033
1034 #if NVLAN > 0
1035 /* Configure VLAN hardware tag insertion. */
1036 if (vlan_has_tag(m)) {
1037 vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1038 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1039 cflags |= ALE_TD_INSERT_VLAN_TAG;
1040 }
1041 #endif
1042
1043 desc = NULL;
1044 for (i = 0; i < nsegs; i++) {
1045 desc = &sc->ale_cdata.ale_tx_ring[prod];
1046 desc->addr = htole64(map->dm_segs[i].ds_addr);
1047 desc->len =
1048 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1049 desc->flags = htole32(cflags);
1050 sc->ale_cdata.ale_tx_cnt++;
1051 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1052 }
1053 /* Update producer index. */
1054 sc->ale_cdata.ale_tx_prod = prod;
1055
1056 /* Finally set EOP on the last descriptor. */
1057 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1058 desc = &sc->ale_cdata.ale_tx_ring[prod];
1059 desc->flags |= htole32(ALE_TD_EOP);
1060
1061 /* Swap dmamap of the first and the last. */
1062 txd = &sc->ale_cdata.ale_txdesc[prod];
1063 map = txd_last->tx_dmamap;
1064 txd_last->tx_dmamap = txd->tx_dmamap;
1065 txd->tx_dmamap = map;
1066 txd->tx_m = m;
1067
1068 /* Sync descriptors. */
1069 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1070 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1071
1072 return 0;
1073 }
1074
1075 static void
1076 ale_start(struct ifnet *ifp)
1077 {
1078 struct ale_softc *sc = ifp->if_softc;
1079 struct mbuf *m_head;
1080 int enq;
1081
1082 /* Reclaim transmitted frames. */
1083 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1084 ale_txeof(sc);
1085
1086 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1087 return;
1088
1089 enq = 0;
1090 for (;;) {
1091 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1092 if (m_head == NULL)
1093 break;
1094
1095 /*
1096 * Pack the data into the transmit ring. If we
1097 * don't have room, set the OACTIVE flag and wait
1098 * for the NIC to drain the ring.
1099 */
1100 if (ale_encap(sc, &m_head)) {
1101 if (m_head == NULL)
1102 break;
1103 IF_PREPEND(&ifp->if_snd, m_head);
1104 ifp->if_flags |= IFF_OACTIVE;
1105 break;
1106 }
1107 enq = 1;
1108
1109 /*
1110 * If there's a BPF listener, bounce a copy of this frame
1111 * to him.
1112 */
1113 bpf_mtap(ifp, m_head, BPF_D_OUT);
1114 }
1115
1116 if (enq) {
1117 /* Kick. */
1118 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1119 sc->ale_cdata.ale_tx_prod);
1120
1121 /* Set a timeout in case the chip goes out to lunch. */
1122 ifp->if_timer = ALE_TX_TIMEOUT;
1123 }
1124 }
1125
1126 static void
1127 ale_watchdog(struct ifnet *ifp)
1128 {
1129 struct ale_softc *sc = ifp->if_softc;
1130
1131 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1132 printf("%s: watchdog timeout (missed link)\n",
1133 device_xname(sc->sc_dev));
1134 ifp->if_oerrors++;
1135 ale_init(ifp);
1136 return;
1137 }
1138
1139 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1140 ifp->if_oerrors++;
1141 ale_init(ifp);
1142
1143 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1144 ale_start(ifp);
1145 }
1146
1147 static int
1148 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1149 {
1150 struct ale_softc *sc = ifp->if_softc;
1151 int s, error;
1152
1153 s = splnet();
1154
1155 error = ether_ioctl(ifp, cmd, data);
1156 if (error == ENETRESET) {
1157 if (ifp->if_flags & IFF_RUNNING)
1158 ale_rxfilter(sc);
1159 error = 0;
1160 }
1161
1162 splx(s);
1163 return error;
1164 }
1165
1166 static void
1167 ale_mac_config(struct ale_softc *sc)
1168 {
1169 struct mii_data *mii;
1170 uint32_t reg;
1171
1172 mii = &sc->sc_miibus;
1173 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1174 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1175 MAC_CFG_SPEED_MASK);
1176
1177 /* Reprogram MAC with resolved speed/duplex. */
1178 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1179 case IFM_10_T:
1180 case IFM_100_TX:
1181 reg |= MAC_CFG_SPEED_10_100;
1182 break;
1183 case IFM_1000_T:
1184 reg |= MAC_CFG_SPEED_1000;
1185 break;
1186 }
1187 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1188 reg |= MAC_CFG_FULL_DUPLEX;
1189 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1190 reg |= MAC_CFG_TX_FC;
1191 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1192 reg |= MAC_CFG_RX_FC;
1193 }
1194 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1195 }
1196
1197 static void
1198 ale_stats_clear(struct ale_softc *sc)
1199 {
1200 struct smb sb;
1201 uint32_t *reg;
1202 int i;
1203
1204 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1205 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1206 i += sizeof(uint32_t);
1207 }
1208 /* Read Tx statistics. */
1209 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1210 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1211 i += sizeof(uint32_t);
1212 }
1213 }
1214
1215 static void
1216 ale_stats_update(struct ale_softc *sc)
1217 {
1218 struct ifnet *ifp = &sc->sc_ec.ec_if;
1219 struct ale_hw_stats *stat;
1220 struct smb sb, *smb;
1221 uint32_t *reg;
1222 int i;
1223
1224 stat = &sc->ale_stats;
1225 smb = &sb;
1226
1227 /* Read Rx statistics. */
1228 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1229 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1230 i += sizeof(uint32_t);
1231 }
1232 /* Read Tx statistics. */
1233 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1234 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1235 i += sizeof(uint32_t);
1236 }
1237
1238 /* Rx stats. */
1239 stat->rx_frames += smb->rx_frames;
1240 stat->rx_bcast_frames += smb->rx_bcast_frames;
1241 stat->rx_mcast_frames += smb->rx_mcast_frames;
1242 stat->rx_pause_frames += smb->rx_pause_frames;
1243 stat->rx_control_frames += smb->rx_control_frames;
1244 stat->rx_crcerrs += smb->rx_crcerrs;
1245 stat->rx_lenerrs += smb->rx_lenerrs;
1246 stat->rx_bytes += smb->rx_bytes;
1247 stat->rx_runts += smb->rx_runts;
1248 stat->rx_fragments += smb->rx_fragments;
1249 stat->rx_pkts_64 += smb->rx_pkts_64;
1250 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1251 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1252 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1253 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1254 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1255 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1256 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1257 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1258 stat->rx_rrs_errs += smb->rx_rrs_errs;
1259 stat->rx_alignerrs += smb->rx_alignerrs;
1260 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1261 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1262 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1263
1264 /* Tx stats. */
1265 stat->tx_frames += smb->tx_frames;
1266 stat->tx_bcast_frames += smb->tx_bcast_frames;
1267 stat->tx_mcast_frames += smb->tx_mcast_frames;
1268 stat->tx_pause_frames += smb->tx_pause_frames;
1269 stat->tx_excess_defer += smb->tx_excess_defer;
1270 stat->tx_control_frames += smb->tx_control_frames;
1271 stat->tx_deferred += smb->tx_deferred;
1272 stat->tx_bytes += smb->tx_bytes;
1273 stat->tx_pkts_64 += smb->tx_pkts_64;
1274 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1275 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1276 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1277 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1278 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1279 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1280 stat->tx_single_colls += smb->tx_single_colls;
1281 stat->tx_multi_colls += smb->tx_multi_colls;
1282 stat->tx_late_colls += smb->tx_late_colls;
1283 stat->tx_excess_colls += smb->tx_excess_colls;
1284 stat->tx_underrun += smb->tx_underrun;
1285 stat->tx_desc_underrun += smb->tx_desc_underrun;
1286 stat->tx_lenerrs += smb->tx_lenerrs;
1287 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1288 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1289 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1290
1291 /* Update counters in ifnet. */
1292 ifp->if_opackets += smb->tx_frames;
1293
1294 ifp->if_collisions += smb->tx_single_colls +
1295 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1296 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1297
1298 ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
1299 smb->tx_underrun + smb->tx_pkts_truncated;
1300
1301 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1302 smb->rx_runts + smb->rx_pkts_truncated +
1303 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1304 smb->rx_alignerrs;
1305 }
1306
1307 static int
1308 ale_intr(void *xsc)
1309 {
1310 struct ale_softc *sc = xsc;
1311 struct ifnet *ifp = &sc->sc_ec.ec_if;
1312 uint32_t status;
1313
1314 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1315 printf("%s: status = %#08x\n", __func__, status);
1316 if ((status & ALE_INTRS) == 0)
1317 return 0;
1318
1319 /* Acknowledge and disable interrupts. */
1320 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1321
1322 if (ifp->if_flags & IFF_RUNNING) {
1323 int error;
1324
1325 error = ale_rxeof(sc);
1326 if (error) {
1327 sc->ale_stats.reset_brk_seq++;
1328 ale_init(ifp);
1329 return 0;
1330 }
1331
1332 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1333 if (status & INTR_DMA_RD_TO_RST)
1334 printf("%s: DMA read error! -- resetting\n",
1335 device_xname(sc->sc_dev));
1336 if (status & INTR_DMA_WR_TO_RST)
1337 printf("%s: DMA write error! -- resetting\n",
1338 device_xname(sc->sc_dev));
1339 ale_init(ifp);
1340 return 0;
1341 }
1342
1343 ale_txeof(sc);
1344 if_schedule_deferred_start(ifp);
1345 }
1346
1347 /* Re-enable interrupts. */
1348 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1349 return 1;
1350 }
1351
1352 static void
1353 ale_txeof(struct ale_softc *sc)
1354 {
1355 struct ifnet *ifp = &sc->sc_ec.ec_if;
1356 struct ale_txdesc *txd;
1357 uint32_t cons, prod;
1358 int prog;
1359
1360 if (sc->ale_cdata.ale_tx_cnt == 0)
1361 return;
1362
1363 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1364 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1365 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1366 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1367 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1368 BUS_DMASYNC_POSTREAD);
1369 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1370 } else
1371 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1372 cons = sc->ale_cdata.ale_tx_cons;
1373 /*
1374 * Go through our Tx list and free mbufs for those
1375 * frames which have been transmitted.
1376 */
1377 for (prog = 0; cons != prod; prog++,
1378 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1379 if (sc->ale_cdata.ale_tx_cnt <= 0)
1380 break;
1381 prog++;
1382 ifp->if_flags &= ~IFF_OACTIVE;
1383 sc->ale_cdata.ale_tx_cnt--;
1384 txd = &sc->ale_cdata.ale_txdesc[cons];
1385 if (txd->tx_m != NULL) {
1386 /* Reclaim transmitted mbufs. */
1387 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1388 m_freem(txd->tx_m);
1389 txd->tx_m = NULL;
1390 }
1391 }
1392
1393 if (prog > 0) {
1394 sc->ale_cdata.ale_tx_cons = cons;
1395 /*
1396 * Unarm watchdog timer only when there is no pending
1397 * Tx descriptors in queue.
1398 */
1399 if (sc->ale_cdata.ale_tx_cnt == 0)
1400 ifp->if_timer = 0;
1401 }
1402 }
1403
1404 static void
1405 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1406 uint32_t length, uint32_t *prod)
1407 {
1408 struct ale_rx_page *rx_page;
1409
1410 rx_page = *page;
1411 /* Update consumer position. */
1412 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1413 ALE_RX_PAGE_ALIGN);
1414 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1415 /*
1416 * End of Rx page reached, let hardware reuse
1417 * this page.
1418 */
1419 rx_page->cons = 0;
1420 *rx_page->cmb_addr = 0;
1421 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1422 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1423 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1424 RXF_VALID);
1425 /* Switch to alternate Rx page. */
1426 sc->ale_cdata.ale_rx_curp ^= 1;
1427 rx_page = *page =
1428 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1429 /* Page flipped, sync CMB and Rx page. */
1430 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1431 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1432 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1433 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1434 /* Sync completed, cache updated producer index. */
1435 *prod = *rx_page->cmb_addr;
1436 }
1437 }
1438
1439
1440 /*
1441 * It seems that AR81xx controller can compute partial checksum.
1442 * The partial checksum value can be used to accelerate checksum
1443 * computation for fragmented TCP/UDP packets. Upper network stack
1444 * already takes advantage of the partial checksum value in IP
1445 * reassembly stage. But I'm not sure the correctness of the
1446 * partial hardware checksum assistance due to lack of data sheet.
1447 * In addition, the Rx feature of controller that requires copying
1448 * for every frames effectively nullifies one of most nice offload
1449 * capability of controller.
1450 */
1451 static void
1452 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1453 {
1454 if (status & ALE_RD_IPCSUM_NOK)
1455 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1456
1457 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1458 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1459 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1460 (status & ALE_RD_TCP_UDPCSUM_NOK))
1461 {
1462 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1463 }
1464 } else {
1465 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1466 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1467 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1468 }
1469 }
1470 }
1471 /*
1472 * Don't mark bad checksum for TCP/UDP frames
1473 * as fragmented frames may always have set
1474 * bad checksummed bit of frame status.
1475 */
1476 }
1477
1478 /* Process received frames. */
1479 static int
1480 ale_rxeof(struct ale_softc *sc)
1481 {
1482 struct ifnet *ifp = &sc->sc_ec.ec_if;
1483 struct ale_rx_page *rx_page;
1484 struct rx_rs *rs;
1485 struct mbuf *m;
1486 uint32_t length, prod, seqno, status;
1487 int prog;
1488
1489 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1490 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1491 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1492 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1493 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1494 /*
1495 * Don't directly access producer index as hardware may
1496 * update it while Rx handler is in progress. It would
1497 * be even better if there is a way to let hardware
1498 * know how far driver processed its received frames.
1499 * Alternatively, hardware could provide a way to disable
1500 * CMB updates until driver acknowledges the end of CMB
1501 * access.
1502 */
1503 prod = *rx_page->cmb_addr;
1504 for (prog = 0; ; prog++) {
1505 if (rx_page->cons >= prod)
1506 break;
1507 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1508 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1509 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1510 /*
1511 * Normally I believe this should not happen unless
1512 * severe driver bug or corrupted memory. However
1513 * it seems to happen under certain conditions which
1514 * is triggered by abrupt Rx events such as initiation
1515 * of bulk transfer of remote host. It's not easy to
1516 * reproduce this and I doubt it could be related
1517 * with FIFO overflow of hardware or activity of Tx
1518 * CMB updates. I also remember similar behaviour
1519 * seen on RealTek 8139 which uses resembling Rx
1520 * scheme.
1521 */
1522 if (aledebug)
1523 printf("%s: garbled seq: %u, expected: %u -- "
1524 "resetting!\n", device_xname(sc->sc_dev),
1525 seqno, sc->ale_cdata.ale_rx_seqno);
1526 return EIO;
1527 }
1528 /* Frame received. */
1529 sc->ale_cdata.ale_rx_seqno++;
1530 length = ALE_RX_BYTES(le32toh(rs->length));
1531 status = le32toh(rs->flags);
1532 if (status & ALE_RD_ERROR) {
1533 /*
1534 * We want to pass the following frames to upper
1535 * layer regardless of error status of Rx return
1536 * status.
1537 *
1538 * o IP/TCP/UDP checksum is bad.
1539 * o frame length and protocol specific length
1540 * does not match.
1541 */
1542 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1543 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1544 ALE_RD_TRUNC)) {
1545 ale_rx_update_page(sc, &rx_page, length, &prod);
1546 continue;
1547 }
1548 }
1549 /*
1550 * m_devget(9) is major bottle-neck of ale(4)(It comes
1551 * from hardware limitation). For jumbo frames we could
1552 * get a slightly better performance if driver use
1553 * m_getjcl(9) with proper buffer size argument. However
1554 * that would make code more complicated and I don't
1555 * think users would expect good Rx performance numbers
1556 * on these low-end consumer ethernet controller.
1557 */
1558 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1559 0, ifp);
1560 if (m == NULL) {
1561 ifp->if_iqdrops++;
1562 ale_rx_update_page(sc, &rx_page, length, &prod);
1563 continue;
1564 }
1565 if (status & ALE_RD_IPV4)
1566 ale_rxcsum(sc, m, status);
1567 #if NVLAN > 0
1568 if (status & ALE_RD_VLAN) {
1569 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1570 vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1571 }
1572 #endif
1573
1574 /* Pass it to upper layer. */
1575 if_percpuq_enqueue(ifp->if_percpuq, m);
1576
1577 ale_rx_update_page(sc, &rx_page, length, &prod);
1578 }
1579
1580 return 0;
1581 }
1582
1583 static void
1584 ale_tick(void *xsc)
1585 {
1586 struct ale_softc *sc = xsc;
1587 struct mii_data *mii = &sc->sc_miibus;
1588 int s;
1589
1590 printf("%s: called\n", __func__);
1591 s = splnet();
1592 mii_tick(mii);
1593 ale_stats_update(sc);
1594 splx(s);
1595
1596 callout_schedule(&sc->sc_tick_ch, hz);
1597 }
1598
1599 static void
1600 ale_reset(struct ale_softc *sc)
1601 {
1602 uint32_t reg;
1603 int i;
1604
1605 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_LED_MODE | MASTER_RESET);
1606
1607 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1608 DELAY(10);
1609 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1610 break;
1611 }
1612 if (i == 0)
1613 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1614
1615 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1616 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1617 break;
1618 DELAY(10);
1619 }
1620
1621 if (i == 0)
1622 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1623 reg);
1624
1625 /* Initialize PCIe module. From Linux. */
1626 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1627 }
1628
1629 static int
1630 ale_init(struct ifnet *ifp)
1631 {
1632 struct ale_softc *sc = ifp->if_softc;
1633 struct mii_data *mii;
1634 uint8_t eaddr[ETHER_ADDR_LEN];
1635 bus_addr_t paddr;
1636 uint32_t reg, rxf_hi, rxf_lo;
1637
1638 /*
1639 * Cancel any pending I/O.
1640 */
1641 ale_stop(ifp, 0);
1642
1643 /*
1644 * Reset the chip to a known state.
1645 */
1646 ale_reset(sc);
1647
1648 /* Initialize Tx descriptors, DMA memory blocks. */
1649 ale_init_rx_pages(sc);
1650 ale_init_tx_ring(sc);
1651
1652 /* Reprogram the station address. */
1653 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1654 CSR_WRITE_4(sc, ALE_PAR0,
1655 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1656 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1657
1658 /*
1659 * Clear WOL status and disable all WOL feature as WOL
1660 * would interfere Rx operation under normal environments.
1661 */
1662 CSR_READ_4(sc, ALE_WOL_CFG);
1663 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1664
1665 /*
1666 * Set Tx descriptor/RXF0/CMB base addresses. They share
1667 * the same high address part of DMAable region.
1668 */
1669 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1670 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1671 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1672 CSR_WRITE_4(sc, ALE_TPD_CNT,
1673 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1674
1675 /* Set Rx page base address, note we use single queue. */
1676 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1677 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1678 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1679 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1680
1681 /* Set Tx/Rx CMB addresses. */
1682 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1683 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1684 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1685 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1686 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1687 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1688
1689 /* Mark RXF0 is valid. */
1690 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1691 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1692 /*
1693 * No need to initialize RFX1/RXF2/RXF3. We don't use
1694 * multi-queue yet.
1695 */
1696
1697 /* Set Rx page size, excluding guard frame size. */
1698 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1699
1700 /* Tell hardware that we're ready to load DMA blocks. */
1701 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1702
1703 /* Set Rx/Tx interrupt trigger threshold. */
1704 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1705 (4 << INT_TRIG_TX_THRESH_SHIFT));
1706 /*
1707 * XXX
1708 * Set interrupt trigger timer, its purpose and relation
1709 * with interrupt moderation mechanism is not clear yet.
1710 */
1711 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1712 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1713 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1714
1715 /* Configure interrupt moderation timer. */
1716 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1717 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1718 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1719 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1720 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1721 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1722 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1723 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1724 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1725 reg |= MASTER_IM_RX_TIMER_ENB;
1726 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1727 reg |= MASTER_IM_TX_TIMER_ENB;
1728 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1729 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1730
1731 /* Set Maximum frame size of controller. */
1732 if (ifp->if_mtu < ETHERMTU)
1733 sc->ale_max_frame_size = ETHERMTU;
1734 else
1735 sc->ale_max_frame_size = ifp->if_mtu;
1736 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1737 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1738
1739 /* Configure IPG/IFG parameters. */
1740 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1741 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1742 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1743 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1744 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1745
1746 /* Set parameters for half-duplex media. */
1747 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1748 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1749 HDPX_CFG_LCOL_MASK) |
1750 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1751 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1752 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1753 HDPX_CFG_ABEBT_MASK) |
1754 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1755 HDPX_CFG_JAMIPG_MASK));
1756
1757 /* Configure Tx jumbo frame parameters. */
1758 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1759 if (ifp->if_mtu < ETHERMTU)
1760 reg = sc->ale_max_frame_size;
1761 else if (ifp->if_mtu < 6 * 1024)
1762 reg = (sc->ale_max_frame_size * 2) / 3;
1763 else
1764 reg = sc->ale_max_frame_size / 2;
1765 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1766 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1767 TX_JUMBO_THRESH_UNIT_SHIFT);
1768 }
1769
1770 /* Configure TxQ. */
1771 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1772 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1773 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1774 TXQ_CFG_TPD_BURST_MASK;
1775 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1776
1777 /* Configure Rx jumbo frame & flow control parameters. */
1778 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1779 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1780 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1781 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1782 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1783 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1784 RX_JUMBO_LKAH_MASK));
1785 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1786 rxf_hi = (reg * 7) / 10;
1787 rxf_lo = (reg * 3)/ 10;
1788 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1789 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1790 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1791 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1792 RX_FIFO_PAUSE_THRESH_HI_MASK));
1793 }
1794
1795 /* Disable RSS. */
1796 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1797 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1798
1799 /* Configure RxQ. */
1800 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1801 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1802
1803 /* Configure DMA parameters. */
1804 reg = 0;
1805 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1806 reg |= DMA_CFG_TXCMB_ENB;
1807 CSR_WRITE_4(sc, ALE_DMA_CFG,
1808 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1809 sc->ale_dma_rd_burst | reg |
1810 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1811 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1812 DMA_CFG_RD_DELAY_CNT_MASK) |
1813 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1814 DMA_CFG_WR_DELAY_CNT_MASK));
1815
1816 /*
1817 * Hardware can be configured to issue SMB interrupt based
1818 * on programmed interval. Since there is a callout that is
1819 * invoked for every hz in driver we use that instead of
1820 * relying on periodic SMB interrupt.
1821 */
1822 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1823
1824 /* Clear MAC statistics. */
1825 ale_stats_clear(sc);
1826
1827 /*
1828 * Configure Tx/Rx MACs.
1829 * - Auto-padding for short frames.
1830 * - Enable CRC generation.
1831 * Actual reconfiguration of MAC for resolved speed/duplex
1832 * is followed after detection of link establishment.
1833 * AR81xx always does checksum computation regardless of
1834 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1835 * cause Rx handling issue for fragmented IP datagrams due
1836 * to silicon bug.
1837 */
1838 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1839 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1840 MAC_CFG_PREAMBLE_MASK);
1841 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1842 reg |= MAC_CFG_SPEED_10_100;
1843 else
1844 reg |= MAC_CFG_SPEED_1000;
1845 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1846
1847 /* Set up the receive filter. */
1848 ale_rxfilter(sc);
1849 ale_rxvlan(sc);
1850
1851 /* Acknowledge all pending interrupts and clear it. */
1852 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1853 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1854 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1855
1856 sc->ale_flags &= ~ALE_FLAG_LINK;
1857
1858 /* Switch to the current media. */
1859 mii = &sc->sc_miibus;
1860 mii_mediachg(mii);
1861
1862 callout_schedule(&sc->sc_tick_ch, hz);
1863
1864 ifp->if_flags |= IFF_RUNNING;
1865 ifp->if_flags &= ~IFF_OACTIVE;
1866
1867 return 0;
1868 }
1869
1870 static void
1871 ale_stop(struct ifnet *ifp, int disable)
1872 {
1873 struct ale_softc *sc = ifp->if_softc;
1874 struct ale_txdesc *txd;
1875 uint32_t reg;
1876 int i;
1877
1878 callout_stop(&sc->sc_tick_ch);
1879
1880 /*
1881 * Mark the interface down and cancel the watchdog timer.
1882 */
1883 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1884 ifp->if_timer = 0;
1885
1886 sc->ale_flags &= ~ALE_FLAG_LINK;
1887
1888 ale_stats_update(sc);
1889
1890 mii_down(&sc->sc_miibus);
1891
1892 /* Disable interrupts. */
1893 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1894 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1895
1896 /* Disable queue processing and DMA. */
1897 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1898 reg &= ~TXQ_CFG_ENB;
1899 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1900 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1901 reg &= ~RXQ_CFG_ENB;
1902 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1903 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1904 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1905 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1906 DELAY(1000);
1907
1908 /* Stop Rx/Tx MACs. */
1909 ale_stop_mac(sc);
1910
1911 /* Disable interrupts again? XXX */
1912 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1913
1914 /*
1915 * Free TX mbufs still in the queues.
1916 */
1917 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1918 txd = &sc->ale_cdata.ale_txdesc[i];
1919 if (txd->tx_m != NULL) {
1920 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1921 m_freem(txd->tx_m);
1922 txd->tx_m = NULL;
1923 }
1924 }
1925 }
1926
1927 static void
1928 ale_stop_mac(struct ale_softc *sc)
1929 {
1930 uint32_t reg;
1931 int i;
1932
1933 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1934 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1935 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1936 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1937 }
1938
1939 for (i = ALE_TIMEOUT; i > 0; i--) {
1940 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1941 if (reg == 0)
1942 break;
1943 DELAY(10);
1944 }
1945 if (i == 0)
1946 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1947 device_xname(sc->sc_dev), reg);
1948 }
1949
1950 static void
1951 ale_init_tx_ring(struct ale_softc *sc)
1952 {
1953 struct ale_txdesc *txd;
1954 int i;
1955
1956 sc->ale_cdata.ale_tx_prod = 0;
1957 sc->ale_cdata.ale_tx_cons = 0;
1958 sc->ale_cdata.ale_tx_cnt = 0;
1959
1960 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1961 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1962 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1963 txd = &sc->ale_cdata.ale_txdesc[i];
1964 txd->tx_m = NULL;
1965 }
1966 *sc->ale_cdata.ale_tx_cmb = 0;
1967 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1968 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1969 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1970 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1971 }
1972
1973 static void
1974 ale_init_rx_pages(struct ale_softc *sc)
1975 {
1976 struct ale_rx_page *rx_page;
1977 int i;
1978
1979 sc->ale_cdata.ale_rx_seqno = 0;
1980 sc->ale_cdata.ale_rx_curp = 0;
1981
1982 for (i = 0; i < ALE_RX_PAGES; i++) {
1983 rx_page = &sc->ale_cdata.ale_rx_page[i];
1984 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1985 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1986 rx_page->cons = 0;
1987 *rx_page->cmb_addr = 0;
1988 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1989 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1990 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1991 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1992 }
1993 }
1994
1995 static void
1996 ale_rxvlan(struct ale_softc *sc)
1997 {
1998 uint32_t reg;
1999
2000 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2001 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2002 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2003 reg |= MAC_CFG_VLAN_TAG_STRIP;
2004 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2005 }
2006
2007 static void
2008 ale_rxfilter(struct ale_softc *sc)
2009 {
2010 struct ethercom *ec = &sc->sc_ec;
2011 struct ifnet *ifp = &ec->ec_if;
2012 struct ether_multi *enm;
2013 struct ether_multistep step;
2014 uint32_t crc;
2015 uint32_t mchash[2];
2016 uint32_t rxcfg;
2017
2018 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2019 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2020 ifp->if_flags &= ~IFF_ALLMULTI;
2021
2022 /*
2023 * Always accept broadcast frames.
2024 */
2025 rxcfg |= MAC_CFG_BCAST;
2026
2027 /* Program new filter. */
2028 if ((ifp->if_flags & IFF_PROMISC) != 0)
2029 goto update;
2030
2031 memset(mchash, 0, sizeof(mchash));
2032
2033 ETHER_LOCK(ec);
2034 ETHER_FIRST_MULTI(step, ec, enm);
2035 while (enm != NULL) {
2036 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2037 /* XXX Use ETHER_F_ALLMULTI in future. */
2038 ifp->if_flags |= IFF_ALLMULTI;
2039 ETHER_UNLOCK(ec);
2040 goto update;
2041 }
2042 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2043 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2044 ETHER_NEXT_MULTI(step, enm);
2045 }
2046 ETHER_UNLOCK(ec);
2047
2048 update:
2049 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2050 if (ifp->if_flags & IFF_PROMISC) {
2051 rxcfg |= MAC_CFG_PROMISC;
2052 /* XXX Use ETHER_F_ALLMULTI in future. */
2053 ifp->if_flags |= IFF_ALLMULTI;
2054 } else
2055 rxcfg |= MAC_CFG_ALLMULTI;
2056 mchash[0] = mchash[1] = 0xFFFFFFFF;
2057 }
2058 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2059 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2060 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2061 }
2062